
ibm.com/redbooks

Servlet and JSP
Programming
with IBM WebSphere Studio and VisualAge for Java

Ueli Wahli
Mitch Fielding

Gareth Mackown
Deborah Shaddon
Gert Hekkenberg

Teach yourself servlet and JSP
programming techniques

Develop and test with WebSphere
Studio and VisualAge for Java

Deploy to WebSphere
Application Server

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Servlet and JSP Programming
with IBM WebSphere Studio
and VisualAge for Java

May 2000

SG24-5755-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (May 2000)

This edition applies to Version 3.02 of WebSphere Application Server, WebSphere Studio, and

VisualAge for Java for use with the Windows NT Operating System. Many of the concepts also apply to

these products running on AIX, UNIX, and OS/2 Operating Systems.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. OWR Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the

information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in

Appendix D, “Special notices” on page 429.

Take Note!

Contents

Figures . xiii

Tables . xxi

Preface . xxiii
 Sample code on the Internet . xxiii

The team that wrote this redbook .xxiv
Comments welcome .xxvi

Part 1. Web application development .1

Chapter 1. Environment overview . 3
WebSphere execution environment . 4
VisualAge for Java development environment . 5
WebSphere Studio development environment . 6
VisualAge for Java and WebSphere Studio interactions 7
Complete product environment . 8

Chapter 2. Product overview. 11
How the products work together . 11
IBM HTTP Server. 12
WebSphere Application Server . 12
WebSphere Studio. 14
VisualAge for Java . 15
Distributed Debugger . 16
DB2 Universal Database (UDB) . 16
SecureWay Directory . 16

Chapter 3. Product installation . 17
Starting environment . 17
Creating a dedicated user ID . 18
Java Development Kit . 18
IBM HTTP Server. 19

 Installing the product. 19
 Testing the install. 19

DB2 Universal Database . 21
 Installing the product. 21
 Testing the installation . 22

VisualAge for Java . 24
© Copyright IBM Corp. 2000 iii

 Installing the product. 24
 Testing the installation . 25
 Existing errors . 25

Distributed Debugger . 26
WebSphere Application Server . 26

 Installing the product. 26
 Testing the installation . 30

WebSphere Studio. 33
 Installing the product. 33
 Testing the installation . 34

SecureWay Directory . 35
 Incompatibilities with DB2 UDB. 35
 Installing the product. 35
 Configuring SecureWay Directory. 38
 Testing the installation . 40

What we have achieved . 40

Chapter 4. Servlets . 41
Overview of Java servlets. 42

 Servlet process flow . 42
 The Java Servlet API . 43
 The servlet life cycle . 44

Basic servlet examples . 47
 Simple HTTP servlet . 47
 HTML form generator servlet . 51
 HTML form processing servlet . 53
 Simple counter servlet . 56
 Servlet initialization parameters. 58
 HTTP request handling utility servlet . 61

Additional servlet examples . 62
 Cookie servlet . 62
 URL rewriting servlet . 64
 A real persistent servlet — between servlet life-cycle 65
 User sessions. 67
 User session counter servlet . 68
 JDBC servlet. 70
 Servlet tag with SHTML . 72

Servlet interaction techniques . 73
 Servlet collaboration: filtering and chaining. 74
 Calling servlets from servlets . 79
 Response redirection. 79
 Request dispatching . 81
 Resource usage . 84
iv Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 Sharing of objects in scope . 86
New features of Java Servlet API 2.2 . 92
Summary . 94

Chapter 5. JavaServer Pages. 95
Overview . 96
How JavaServer Pages work . 97
Components of JavaServer Pages . 98

 HTML tags . 99
 JSP directives . 99
 Declarations . 101
 Scriptlets . 102
 Comments . 102
 Expressions . 102
 WebSphere extensions to JSP scripting . 103
 Accessing implicit objects. 104
 Putting it all together. 105

JSP interactions . 107
 Invoking a JSP by URL . 107
 Calling a servlet from a JSP . 107
 Calling a JSP from a servlet . 109
 Invoking a JSP from a JSP . 111

Creating dynamic content in JSPs. 111
 Standard JSP tags . 111
 WebSphere-specific tags. 116

JSP utility example . 122
Differences between JavaServer Page specification .91 and 1.0 122

Chapter 6. WebSphere Application Server 123
WAS overview . 124
WAS administration . 126

 The administrative repository . 126
 The WebSphere Administrative Console. 126

WAS Topology . 128
 Node. 128
 Application server. 129
 Servlet engine . 130
 Web application . 131
 Virtual host . 132

Internal servlets . 134
Creating your own Web application. 135

 Using the Task Wizard. 135
 Setting up your default error page . 138
Contents v

 Creating the required Web application directories. 139
 Deploying files to WAS. 140
 Defining servlets. 140
 Start the Web application . 141

Class loading and reloading . 142
 Changing the application server class path . 142

Using JNI in WAS . 143
 Creating an application server environment variable 143

Setting up connection pools . 145
 Creating a JDBC driver . 145
 Creating a DataSource . 146
 Migrating from the connection manager. 146

Using JavaServer Pages in WAS . 147
 Adding JSP support to a Web application. 147
 Keeping Java source files from JSP 1.0 compilation 148

Security . 149
 How security works in WAS. 149
 Configuring an enterprise application. 150
 Setting up security in WAS . 152

XML configuration interface . 162
 Exporting configuration data . 162
 Importing configuration data. 163
 Examples. 163

User profiling . 164
Troubleshooting . 164

 Tracing within WAS . 165
 Monitoring resources . 166
 Reference information . 166

Chapter 7. Development and testing with VisualAge for Java . 167
VisualAge for Java overview . 168
Application development with VisualAge for Java 170

 Rapid application development (RAD) . 170
 Create industrial-strength Java applications . 171
 Maintain multiple editions of programs . 171
 VisualAge for Java components. 171
 Navigating in VisualAge for Java . 175
 Additional VisualAge for Java concepts . 181

Servlet development . 185
 Rapid servlet development. 185
 The development process . 186
 Developing our first servlet . 187

WebSphere Test Environment . 191
vi Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 VisualAge for Java configuration for WebSphere. 192
 WebSphere Test Environment setup. 192
 Start the WebSphere Test Environment. 192
 What have we accomplished?. 196

Testing JSPs under WebSphere Test Environment 197
 VisualAge for Java configuration for JSPs . 197
 Configuring the JSP version used by VisualAge for Java 197
 Running our first JSP. 198
 Creating and running a JSP . 200

Debugging servlets and JSPs. 201
 Debugger basics . 201
 Debugging a servlet . 203
 JSP Execution Monitor. 206
 Debugging JSP generated source code . 208

WebSphere Test Environment — advanced configuration. 208
 Types of resources. 209
 Additional servlet examples. 209
 Resource locations . 209
 The four key configuration files . 210
 Configuration for servlet chaining, filtering, and SHTML. 212

Developing and testing additional servlet and JSP configurations 214
 Creating additional servlet examples . 214

WebSphere Test Environment — multiple Web applications 215
 Configuring multiple Web applications. 215
 Configuring the ServletEngine class . 217
 Launching ServletEngine. 219
 Using the ServletEngineConfigDumper servlet 220
 Restoring SERunner. 221

Configuring and testing servlet and JSP interactions 222
Support for JavaBeans . 222
Team development . 222

 Overview . 223
Resource management . 225

Chapter 8. Development with WebSphere Studio 227
WebSphere Studio overview. 228
The WebSphere Studio IDE . 230
Creating a project . 230
Setting the JSP version . 232

 Setting up folders . 233
 Adding files to the project . 234
 Setting the file status . 236

Editing project resources . 237
Contents vii

 Checking-out and checking-in files . 237
 Invoking Page Designer . 238
 Using forms and input fields . 239
 Calling a servlet . 241
 Preview the form and view HTML source. 242
 Inserting a JavaBean into a JSP . 244
 Modifying JavaBeans and servlets . 246
 Compiling source files . 247

Publishing stages and publishing targets . 247
 Setting up the Test stage . 248
 Setting up the Production stage . 250
 Publishing to a Web application . 251

Project relationships and integrity . 253
Publishing a project . 255
Testing published files . 256
WebSphere Studio wizards. 257

 Code produced by the wizards . 257
SQL Wizard . 258

 Run the SQL Wizard . 258
 Changing the SQL statement . 264

Database Wizard. 265
 Run the Database Wizard . 265
 Database Wizard generated code. 270
 Run the generated application. 272
 Enhance the application. 273

JavaBean Wizard . 276
 Run the JavaBean Wizard . 276
 Test the JavaBean Wizard code. 280
 JavaBean Wizard — what for? . 280

Developing an application in WebSphere Studio . 281
 Create the SQL statement for the employees of a department 281
 Create the SQL statement for the employee photo. 282
 Generate the code for the employees in a department 283
 Generate the code for the employee photo . 283
 Change the generated DataSource . 283
 Fixing the problems . 284
 Testing in VisualAge for Java . 284
 Displaying a picture . 285
 Linking the servlets . 286
 Run the application . 288

Problems . 289
 Resolving parsing problems . 289
 Folders in publishing stages for a Web application 290
viii Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 SQL Wizard generates wrong data type for a BLOB column 290
 Database Wizard JSP code is compiled within METADATA tag 290
 JavaBean Wizard generates bad code . 290

Interfacing to VisualAge for Java . 291
 Setting up the environment . 291
 WebSphere Studio . 292
 Receiving updates from Visual Age for Java. 292
 Sending updates to Visual Age for Java . 293
 Using VisualAge for Java as an editor . 293

Archiving . 293
 Opening an archive. 293

Working in a team . 294
More information and examples . 294

Chapter 9. Software Configuration Management 295
Introduction. 296

 What is Software Configuration Management? 296
SCM for architectural pattern based development. 298

 Developer roles . 299
Implementing SCM aspects in a WebSphere Studio environment 302

 SCM aspects . 302
 Choice for Clearcase as physical single point of control 306

Rational SCM toolset . 306
 ClearCase . 306
 ClearQuest . 307
 Unified Change Management . 307
 Our approach . 308

ClearCase in the WebSphere Studio environment 309
 Installation . 309
 WebSphere Studio and ClearCase considerations 312
 Setting up a ClearCase project . 313
 Create the project . 315
 Create a view . 320
 Enable ClearCase to the WebSphere Studio environment. 322
 Bring the projects artifacts under ClearCase control. 323
 Working from WebSphere Studio . 325
 Reflections on SCM procedures . 327
 WebSphere Studio and ClearCase in the broader SCM context 328

Rational Rose . 328
Epilog. 330

Chapter 10. Web application design with servlets and JSPs . . . 331
Application structure . 331
Contents ix

 HTML page . 333
 Servlet . 333
 Command beans . 333
 Data beans . 333
 View beans . 334
 JSPs. 334

Model-View-Controller . 334
Detailed information. 334

Part 2. Pattern Development Kit: a sample application335

Chapter 11. Pattern Development Kit overview 337
Background . 338
Application description . 338
Application walkthrough . 338

 Welcome page . 339
 Home page. 339
 Topology 1 — historical data . 341
 Topology 2 -— visit planets . 343

Chapter 12. Using Patterns for e-business to build the PDK. . . 347
Benefits of Patterns for e-business . 348
Applying Patterns for e-business . 348

 Choose a business pattern . 348
 Choose a related logical pattern . 349
 Choose a related physical pattern . 351
 The next steps. 353

Design techniques used . 353
 The Model-View-Controller framework. 353
 The Command bean design pattern. 354

The design for the PDK . 355
 Topology 1 . 355
 Topology 2 . 357
 In Summary . 361

Chapter 13. Running the PDK in WebSphere 363
Extracting the resources. 364
Tailoring the installation system. 364

 User ID . 364
 Set up environment parameters . 364
 Tailor the XML files . 365

Installing and running the Pattern Development Kit 367
 Restart the HTTP Server . 367
x Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 Create a self-signed SSL certificate. 367
 Create the Web site . 369
 Configure IBM HTTP Server . 369
 Restart the IBM Http Server . 370
 Quick test of HTTP Server configuration . 370
 LDAP configuration . 370
 Create the ITSOTOPO database . 372
 Copy application-specific files . 372
 Import the XML configurations into WebSphere 373
 Run the application . 373

Resetting changes . 374

Chapter 14. Running the PDK in VisualAge for Java 375
Automatic configuration . 376

 Running the configuration script. 376
 Prepare a project and import the Java code . 377

Servlet engine configuration . 377
Manual configuration . 378
Running the application . 380
Resetting changes . 381

Chapter 15. Developing the PDK using WebSphere Studio 383
Overview . 384
Building the WebSphere Studio project . 385

 Creating the WebSphere Studio project . 385
 Define the publishing stages . 386

Interfacing with VisualAge for Java . 389
 VisualAge for Java setup . 389
 Initial loading of files from VisualAge for Java 389
 Updating from VisualAge for Java . 389
 Editing Studio files with VisualAge for Java . 390

Managing the Studio project . 393
 Integrity checking for broken links . 393

Publishing files . 395
 Publishing to WebSphere Application Server. 395
 Publishing report . 396
 Publishing to VisualAge for Java . 397

Editing files . 397

Appendixes .399

Appendix A. JSP tag syntax . 401
JSP tag syntax summary . 401
Contents xi

 WebSphere specific tags . 404

Appendix B. Utility servlet and utility JSP 407
Utility servlet . 408

 ServletEnvironmentSnoop servlet source . 408
 ServletEnvironmentSnoop servlet output. 413

Utility JSP. 415
 WebPaths.jsp source. 415
 WebPaths.jsp output . 415

Appendix C. Using the additional material 417
Locating the additional material on the Internet . 417
Using the Web material . 418

 System requirements for downloading the Web material 418
 How to use the Web material. 418

Servlet and JSP sample files . 419
 Directory structure . 419
 Test preparation . 420
 Web application . 420
 WebSphere Studio project . 421
 Servlet configuration files . 422

Testing the servlets and JSPs . 423
 Basic servlet examples . 424
 Additional servlet examples. 424
 Servlet interaction techniques . 426
 JSP testing . 427

Appendix D. Special notices . 429

Appendix E. Related publications . 433
IBM Redbooks publications . 434
IBM Redbooks collections . 435
Other resources . 435
Referenced Web sites . 436

How to get IBM Redbooks . 437
IBM Redbooks fax order form . 438

Glossary . 439

Index . 441

IBM Redbooks review . 447
xii Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figures

1. WebSphere execution environment . 4
2. VisualAge for Java development environment 5
3. WebSphere Studio environment . 6
4. WebSphere Studio and VisualAge for Java interaction 7
5. Environment for Web application development and execution. 8
6. Products in our development environment . 12
7. IBM HTTP Server welcome page . 20
8. Administration interface to IBM HTTP Server 21
9. DB2 First Steps window . 22
10. Script for viewing the sample database . 23
11. Welcome to VisualAge . 24
12. Adding a feature in VisualAge for Java . 25
13. Custom installation for WebSphere Application Server 27
14. Selecting a JDK within the WebSphere install 28
15. Setting up Security and Database options for WebSphere 29
16. Starting WebSphere Application Server as a service 30
17. Error when starting the WS AdminServer . 30
18. The WebSphere Administrative Console . 31
19. Starting the Default Server. 32
20. Output from the Snoop servlet . 33
21. Error while installing WebSphere Studio . 34
22. Warning information dialog concerning missing IE installation 34
23. WebSphere Studio welcome window. 35
24. Selecting components to install. 36
25. Selecting the components to configure . 36
26. Configuring the SecureWay Directory administrator 37
27. Creating the SecureWay Directory database . 37
28. Logon to SecureWay Directory Server Administration 38
29. Adding a suffix . 39
30. Starting the directory server. 40
31. High-level client-to-servlet process flow. 42
32. Basic client-to-servlet interaction . 45
33. Servlet life-cycle . 45
34. Simple HTTP servlet . 48
35. SimpleHttpServlet package declaration. 48
36. SimpleHttpServlet import statements . 49
37. The SimpleHttpServlet class declaration. 49
38. SimpleHttpServlet service method . 49
© Copyright IBM Corp. 2000 xiii

39. HTML form generator servlet . 51
40. HTML form generator servlet: response output 53
41. HTML form handler servlet (part 1). 53
42. HTML form handler servlet (part 2). 54
43. HTML form handler servlet response output 56
44. Simple counter servlet. 57
45. Simple initialization servlet source: ServletConfig parameters 59
46. Servlet configuration file for simple initialization servlet. 60
47. General XML configuration file format . 60
48. Cookie servlet: state tracking using cookies . 63
49. URL servlet: state tracking using URL rewriting 64
50. Servlet configuration file for persistent counter servlet 65
51. Persistent counter servlet: state tracking in a file. 66
52. SaveServletStats: serialized object . 67
53. User session servlet: state tracking by user. 69
54. JDBC servlet: part 1 — connecting to a JDBC database 70
55. JDBC servlet: part 2 — SQL access . 71
56. SHTML file: servlet include (SHTMLServlet.shtml) 72
57. SHTML servlet: included servlet . 73
58. Servlet filtering process flow. 75
59. Servlet filtering example — MIME caller . 76
60. Servlet filtering example — MIME handler. 76
61. Servlet chaining process flow . 77
62. Servlet chaining: first servlet in the chain process 78
63. Servlet chaining: second servlet in the chain process 78
64. Response redirection servlet: redirecting using two techniques 80
65. Request dispatching servlet: calling servlet through forward method82
66. Request dispatching servlet: called servlet through forward method 82
67. Request dispatching servlet: calling servlet through include method 83
68. Request dispatching servlet: called servlet through include method . 83
69. Resource handler servlet: accessing passive application resources . . 85
70. Resource handler html file: application resource. 85
71. Request attribute setting code snippet. 86
72. Request attribute getting code snippet. 86
73. User session counter servlet: set user session data 88
74. User session counter servlet: get user session data. 89
75. Context set attribute servlet: setting application scope attribute . . . 91
76. Context get attribute servlet: getting application scope attribute . . . 92
77. The JSP processing life-cycle on first-time invocation 98
78. Sample JSP demonstrating JSP components (DateDisplay.jsp). . . . 106
79. Sample JSP invoking a servlet from a form (JspToServlet.jsp) 108
80. Sample JSP including a servlet (JspInclude.jsp) 108
81. Sample JSP forwarding processing to a servlet (JspForward.jsp) . . 109
xiv Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

82. DateDisplayServlet demonstrating simple redirection 109
83. Servlet configuration file with JSP names . 110
84. JavaBean to be used by a JSP (DateDisplayBean.java) 114
85. JSP with jsp:useBean and jsp:getProperty (JspWithBean.jsp). 115
86. Using the tsx:dbmodify tag to insert a row in the sample database. 118
87. Database access JSP demonstrating WebSphere tsx tags 120
88. JSP using a bean with repeating attributes. 121
89. JavaBean with repeating attributes. 121
90. WebSphere Application Server execution environment 124
91. Navigating the WAS console . 127
92. Topology in WAS . 128
93. Viewing a node in WAS . 129
94. Viewing an application server in WAS. 130
95. Viewing a servlet engine in WAS . 131
96. Default Web application in WAS . 132
97. Virtual host in WAS. 133
98. Configuring a Web application: name, servlets, JSP support 135
99. Configuring a Web application: servlet engine 136
100. Configuring a Web application: virtual host and Web path 137
101. Configuring a Web application: document root and class path. 137
102. Viewing a newly created Web application . 138
103. Web application directory structure . 139
104. Creating a servlet for the Web application. 141
105. Updating the Application Server class path 143
106. Locating the environment variables for an application server 144
107. Property Editor Environment Editor . 144
108. Creating a JDBC driver. 145
109. Creating a DataSource . 146
110. Configuring a JSP Enabler . 147
111. Adding an initialization parameter to a servlet. 148
112. Basic security in WAS . 149
113. Creating an enterprise application . 150
114. Adding resources to an enterprise application. 151
115. Enterprise application topology . 151
116. WAS security tasks . 152
117. Enabling security: Global . 153
118. Global security defaults. 154
119. Choosing an enterprise application to secure 155
120. Selecting a resource to configure for security 157
121. Viewing methods associated with method groups 158
122. File Serving Enabler servlet Web path list . 159
123. Assigning permissions to access method groups by users. 160
124. Login for the administration console . 161
Figures xv

125. VisualAge for Java application development environment. 168
126. Projects page in Workbench . 173
127. Packages page in Workbench . 174
128. Classes page in Workbench. 174
129. Interfaces page in Workbench. 175
130. Problems page in Workbench . 175
131. Scrapbook window in VisualAge for Java . 176
132. Console window in VisualAge for Java. 177
133. Log window in VisualAge for Java . 177
134. Debugger window in VisualAge for Java . 178
135. Repository Explorer window in VisualAge for Java 178
136. Project browser . 179
137. Package browser . 180
138. Class browser . 180
139. Method browser . 181
140. Hover help actions . 182
141. Program element symbols . 182
142. Program access modifiers . 183
143. Other modifiers . 183
144. Other symbols . 183
145. SimpleHttpServlet: service method . 189
146. SimpleHttpServlet: class declaration . 189
147. SimpleHttpServlet: complete source code . 190
148. WebSphere Test Environment window . 194
149. SERunner Console status . 195
150. SimpleHttpServlet output . 195
151. default_app.webapp: JSP 0.91 configuration 197
152. default_app.webapp: JSP 1.0 configuration . 198
153. Very simple JSP response . 199
154. Very simple JSP source . 199
155. DateDisplay.jsp output . 200
156. Breakpoint set in the source pane . 202
157. Changes to the simple servlet . 203
158. Debugging the SimpleHttpServlet . 204
159. Changing values while debugging . 205
160. SERunner Threads . 205
161. JSP Execution Monitor launch window . 206
162. JSP Execution Monitor window . 207
163. Servlet chaining specification in default_app.webapp. 213
164. Servlet engine class path directories . 218
165. ServletEngine console status . 219
166. ServletEngineConfigDumper output . 221
167. VisualAge for Java Enterprise team development environment . . . 223
xvi Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

168. Project resources . 225
169. WebSphere Studio application development environment 228
170. Creating a new project. 231
171. Studio Workbench . 231
172. Set the JSP version in WebSphere Studio . 232
173. Creating a new folder . 233
174. Inserting an existing folder . 233
175. Completed folder setup . 234
176. Insert a new file based on a template. 235
177. Project structure with folders and files . 236
178. Creating a custom status. 237
179. WebSphere Page Designer . 239
180. Completed survey form . 241
181. Setting the action attribute to call a servlet 242
182. HTML source view. 243
183. Declaring a JavaBean . 244
184. Browsing beans and properties. 245
185. Completed JSP including bean properties . 245
186. JSP source . 246
187. Tool registration for editing . 247
188. Editing the Test publishing stage. 248
189. Defining publishing properties . 249
190. Defining publishing targets for resources . 249
191. Defining a folder for Web application publishing 252
192. Defining publishing properties for folders . 252
193. Relationship diagram . 253
194. Project integrity report . 254
195. Publishing options . 255
196. SQL Wizard: database logon page . 259
197. SQL Wizard: joining tables . 260
198. SQL Wizard: selecting columns . 261
199. SQL Wizard: specifying conditions . 262
200. SQL Wizard: condition parameter . 262
201. SQL Wizard: generated SQL. 263
202. Database Wizard: SQL statement selection. 265
203. Database Wizard: input fields. 267
204. Generated results page in list format. 268
205. Database Wizard: results page . 268
206. Database Wizard: tailor generated files . 270
207. Database Wizard: generated files . 271
208. Database Wizard: generated relations . 271
209. Database Wizard: result JSP in Page Designer. 273
210. Page Designer: table loop . 274
Figures xvii

211. Database Wizard: generated result JSP source (extract) 275
212. JavaBean Wizard: select a bean . 276
213. Code snippet demonstrating calling additional methods 278
214. JavaBean Wizard: test run . 280
215. SQL statement for employees in a department 281
216. SQL statement for employee photos . 282
217. Employees in department test run . 284
218. Employee photo test run . 285
219. Employee photo scriptlet . 285
220. Dynamic HTML link . 287
221. Completed employee in department JSP . 288
222. Complete application flow . 288
223. Toggling the Use Parser checkbox on a file . 289
224. Configuring Visual Age for Java for WebSphere Studio interface . . 291
225. Updating WebSphere Studio files from Visual Age for Java 292
226. SCM and development process overview . 299
227. Application topology 1: additional SCM role 300
228. Application topology 2: more complexity . 301
229. Tools usage in the source code implementation phase 304
230. ClearCase on the Web from administration console 308
231. ClearCase autostart installation mode panel 309
232. ClearCase switch setup mode panel . 310
233. ClearCase Doctor Discovered Problems panel 310
234. ClearCase Doctor Logon Testing. 311
235. ClearCase Home Base . 312
236. ClearCase VOB Creation Wizard: project . 313
237. ClearCase Component definition . 314
238. ClearCase VOB Creation Wizard: component 315
239. ClearCase Glossary: project definition . 316
240. ClearCase Home Base: Projects . 316
241. ClearCase project explorer . 317
242. ClearCase create sample project. 317
243. ClearCase create sample project (step 3) . 318
244. ClearCase create sample project: add baseline 318
245. ClearCase project explorer after project creation 319
246. ClearCase project explorer project complete 320
247. Windows Explorer view on views . 321
248. WebSphere Studio Tools Preferences: Check-Out 322
249. WebSphere Studio project version control . 323
250. WebSphere Studio project version control activity prompt 323
251. WebSphere Studio external version control GUI identification 324
252. WebSphere Studio project external version control check-out 325
253. WebSphere Studio Project external version control check-in 326
xviii Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

254. ClearCase direct functions from Windows Explorer 327
255. Topology 1 tools used during source code implementation 329
256. Web application design overview . 332
257. Application welcome page . 339
258. The application’s home page . 340
259. Topology 1: input page. 341
260. Topology 1: output for XML enabled browsers. 342
261. Topology 1: output for all other browsers. 343
262. Topology 2: logon . 344
263. Topology 2: weather readings options . 344
264. Topology 2: IMS result. 345
265. Topology 2: CICS and MQSeries result . 345
266. Topology 2: EJB result. 346
267. U2B application topology 2 . 350
268. U2B runtime topology 2 . 351
269. U2B runtime topology 2 product mapping . 352
270. The structure of Web interactions . 353
271. Topology 1 component flow: stage A . 356
272. Topology 2 component flow: stage B . 357
273. Topology 2 component flow: stage C . 358
274. Topology 2 component flow: stage D . 359
275. Topology 2 component flow: stage E . 360
276. Topology 2 component flow: stage F . 360
277. Creating a new key file . 368
278. Setting options in the Password Prompt dialog 368
279. Adding a new suffix to LDAP . 371
280. Web application configuration file . 379
281. Pattern Development Kit WebSphere Studio project 385
282. Updating from VisualAge for Java . 390
283. Tool registration for .java files . 391
284. Adding VisualAge for Java as an editor . 391
285. Project integrity report . 393
286. Fixing broken links . 394
287. Publishing options . 395
288. Publishing report . 396
289. HTML to invoke servlets and JSPs . 423
Figures xix

xx Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Tables

1. Attributes of the page directive. 99
2. Attributes for the include directive. 101
3. WebSphere scripting language extensions . 103
4. Summary of implicitly declared objects . 104
5. jsp:useBean attributes . 112
6. jsp:getProperty attributes . 114
7. jsp:setProperty attibutes . 115
8. tsx:dbconnect attributes . 116
9. tsx:dbquery attributes . 117
10. tsx:dbmodify attributes . 118
11. tsx:repeat attributes . 119
12. Internal Servlets for WAS . 134
13. WebSphere application directories . 140
14. Summary of form input fields . 240
15. Publishing paths for the WebSphere Test Environment. 250
16. Publishing paths for WebSphere application and Web servers 251
17. Web pages generated by the Database Wizard 266
18. Database Wizard generated pages . 277
19. Summary of JSP tag syntax . 401
20. IBM extensions to JSP for variable data . 404
21. WebSphere scripting language extensions (XML format only) 405
22. Servlet and JSP sample file directory structure 419
© Copyright IBM Corp. 2000 xxi

xxii Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Preface

This IBM Redbook provides you with sufficient information to effectively use

the IBM WebSphere and VisualAge for Java environments to create, manage

and deploy Web-based applications using methodologies centered around

servlet, JavaServer Pages, and JavaBean architectures.

In Part 1 we describe the products used in our environment and provide

instruction on product installation and configuration. Following this, we

cover servlet and JSP programming, which provide you with both a

theoretical and practical understanding of these components, together with

working examples of the concepts described. For execution of the sample

code, we provide information on configuring the WebSphere Application

Server and deploying and running the sample Web applications in

WebSphere. Using the knowledge developed in these chapters, we then

provide detailed information on the development environments offered by

VisualAge for Java and WebSphere Studio. These chapters assist you in

using the features offered by these tools, such as integrated debugging, the

WebSphere Test Environment, Studio Wizards, and publishing of Web site

resources. We also describe how Rational’s ClearCase product can be

integrated with our environment for Software Configuration Management.

In Part 2 we describe the Pattern Development Kit sample application,
including installation, configuration, and operation. We also discuss the

application’s use of Patterns for e-business, which presents information on

some of the design decisions employed when creating the application.

This IBM Redbook is intended to be read by anyone who requires both

introductory and detailed information on software development in the

WebSphere environment using servlets and JavaServer Pages. We assume

that you have a good understanding of Java and some knowledge of HTML.

Sample code on the Internet

The sample code for this redbook is available as the 5755samp.zip and 5755pdk.zip

files on the ITSO redbooks home page on the Internet:

ftp://www.redbooks.ibm.com/redbooks/SG245755/

Download the sample code and read Appendix C, “Using the additional material”

on page 417.
© Copyright IBM Corp. 2000 xxiii

ftp://www.redbooks.ibm.com/redbooks/SG245755/

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world

working at the International Technical Support Organization, San Jose

Center.

Ueli Wahli is a Consultant I/T Specialist at the IBM International Technical
Support Organization in San Jose, California. Before joining the ITSO 16

years ago, Ueli worked in technical support at IBM Switzerland. He writes

extensively and teaches IBM classes worldwide on application development,
object technology, VisualAge products, data dictionaries, and library

management. Ueli holds a degree in Mathematics from the Swiss Federal
Institute of Technology. His e-mail address is wahli@us.ibm.com.

Mitch Fielding is an e-business Specialist working with FishTech &

Partners—an IBM Business Partner based in Sydney, Australia. He has 10

years experience in software development and consulting in both private and

government sectors. He is currently working on new Internet-based products

centered around WebSphere technology and developed with VisualAge for

Java and DB2. His e-mail address is mfieldin@fishtech.com.au.

Gareth Mackown is an Advisory I/T Specialist working within e-business

Services in Hursley, England. He has worked at IBM for nearly 5 years,
predominantly developing and consulting, though occasionally teaching. His

areas of expertise center around Java and include VisualAge for Java,
WebSphere and object technology. Gareth holds a Joint Honors degree in

Mathematics and Computer Science from Durham University. His e-mail
address is gareth_mackown@uk.ibm.com.

Deborah Shaddon is a Senior I/T Specialist from IBM Global Application

Delivery in Chicago, Illinois. She has over 12 years of application

development and architecture experience primarily in the Banking and

Finance sector. Her current area of expertise includes developing custom

e-business solutions for IBM customers, using a variety of technologies,
including WebSphere, VisualAge for Java, and Lotus Domino. Deborah holds

a degree in Business Information Systems from Bradley University, Peoria,
Illinois, and is currently pursuing a Masters in Software Engineering from

DePaul University, Chicago, Illinois. Her e-mail address is dmshadd@us.ibm.com.
xxiv Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

mailto: wahli@us.ibm.com
mailto: wahli@us.ibm.com
mailto: wahli@us.ibm.com
mailto: wahli@us.ibm.com

Gert Hekkenberg is a Senior I/T Specialist from IBM Software Group

EMEA region North, based in Amsterdam, The Netherlands. He has over 15

years of application enabling experience with a special focus on the broader

Software Configuration Management area. He is currently working as

Technical Sales Consultant designing E2E application development solutions

for large customers. He has written extensively on application development

and SCM in various redbooks over the years and was involved developing

various ITSO workshops as well. Gert holds a Masters degree in Business

Information Systems from Erasmus University, Rotterdam, The Netherlands

and a Bachelors degree in economics from Vrije Universiteit, Amsterdam,
Netherlands. His e-mail address is hekkenberg@nl.ibm.com.

Thanks to the following people for their invaluable contributions to this

project:

Pat McCarthy, Joaquin Picon, and Markus Muetschard, IBM ITSO San Jose,
for their ongoing support in all aspects of application development and

redbook publishing.

Sheldon Wosnick, IBM Toronto, Canada, for helping with servlet

development techniques and the configuration of the VisualAge for Java

WebSphere Test Environment.

Jonathan Adams, IBM UK, for leading the effort of producing the Patterns

for e-business.

The team that produced the Pattern Development Kit described in Part 2:

 ❑Anthony Griffin— IBM Hursley, Pattern Development Kit

 ❑Rob Veck—Advanced Solutions Group, IBM Hursley, Concept of the

e-Business Solution Kit

 ❑Joe Parman and Dave Mulley—Advanced Solutions Group, IBM Hursley,
Expert Install & Packaging

 ❑Mark Campbell and Robert James—Advanced Solutions Group, IBM

Hursley, Graphic Design IBM Hursley

Chris Gerken, IBM Raleigh, US, for the utility JSP.

The IBM WebSphere Application Server, WebSphere Studio, and VisualAge

for Java development teams.
Preface xxv

mailto: wahli@us.ibm.com

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your

comments about this or other Redbooks in one of the following ways:

 ❑Fax the evaluation form found in “IBM Redbooks review” on page 447 to

the fax number shown on the form.

 ❑Use the online evaluation form found at http://www.redbooks.ibm.com/

 ❑Send your comments in an Internet note to redbook@us.ibm.com
xxvi Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Part 1 Web application
development

In this Part we describe general techniques for servlet and JSP

programming. We then explain in detail how to run servlets and JSPs in

WebSphere Application Server, how to develop and test them in VisualAge

for Java, and how to use WebSphere Studio for development and publishing.

We do not describe Enterprise JavaBeans. For more information on how to

develop and test Enterprise JavaBeans, please refer to the Servlet/JSP/EJB

Design and Implementation Guide, SG24-5754.
© Copyright IBM Corp. 2000 1

2 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

1 Environment
overview
This chapter provides a schematic overview and description of the primary

functional areas addressed in this book.

The four areas presented are:

 ❑WebSphere execution environment

 ❑VisualAge for Java development environment

 ❑WebSphere Studio development environment

 ❑VisualAge for Java and WebSphere Studio interactions

The diagrams presented in this chapter are high-level diagrams aimed at

illustrating the major components and interactions within each functional
area.
© Copyright IBM Corp. 2000 3

WebSphere execution environment
The execution environment used when writing this book and its associated

code is based on the diagram shown in Figure 1. The primary components of
the environment are:

 ❑WebSphere Application Server

 ❑IBM HTTP Server

 ❑DB2

Some secondary components shown in the execution environment are:

 ❑Classes and HTML/JSP files

There are many examples throughout this book of servlets, JavaBeans

and HTML/JSP pages used by the application server and Web server.

 ❑IBM SecureWay Directory

IBM SecureWay Directory provides LDAP user authentication for the

Patterns Development Kit examples presented in Part 2 of this book.

 ❑Enterprise Data

Connectors to enterprise data are not covered within this book, however

we have depicted this in the execution environment to show that it

supports connections to a variety of enterprise data sources. The Patterns

Development Kit provides examples for enterprise connectors to CICS and

MQSeries, however, they are not discussed in this book.

Figure 1. WebSphere execution environment

DB2

WebSphere
Application Server

HTTP Server

HTML/JSP/
Classes

Browser

Enterprise
Data

SecureWay
(LDAP)

Servlets
JSPs
4 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

VisualAge for Java development environment
VisualAge for Java provides extensive functionality across the entire

development life-cycle and includes tools for Java code editing and

debugging, JavaServer Page debugging, and the WebSphere Test

Environment. The development environment is shown in Figure 2.

VisualAge for Java also includes a repository that stores project source and

compiled code, and an import/export facility that enables interaction with the

file system.

One of the most important features of VisualAge for Java is the WebSphere

Test Environment. This feature provides application and Web server

environments on a development machine, enabling you to test and debug the

resources of a Web site locally. This environment provides much of the

functionality of a full application server, including access to services such as

LDAP and enterprise resources.

Figure 2. VisualAge for Java development environment

Code Editor

Debugger

Repository Mgmt

VA Java
Repository

File System
(source and
class files)

WebSphere Test Env.

Export/
Import

VisualAge for Java

Browser

DB2

SecureWay
(LDAP)

Servlets
Beans

HTML
JSPWebSphere

App Server

WebSphere Test Environment
Chapter 1. Environment overview 5

WebSphere Studio development environment
WebSphere Studio is used to develop, manage and deploy the resources for a

Web site. Figure 3 shows the primary features and interactions of WebSphere

Studio.

WebSphere Studio maintains project files in the file system and provides

support for team development and version control tools. The deployment

features of WebSphere Studio enable you to configure the projects to deploy

to a number of locations, such as the WebSphere Application Server or the

WebSphere Test Environment of VisualAge for Java.

WebSphere Studio also contains a number of wizards that guide you through

tasks such as SQL statement generation and creation of Web pages to

interact with databases and JavaBeans. You can also use the WebSphere

Studio Page Designer to edit these generated pages, or create your own

HTML and JSP pages.

Any Java source code within WebSphere Studio can be compiled using the

supplied Java compiler.

Figure 3. WebSphere Studio environment

VisualAge Java

WorkBench - File Mgmt

File Publishing

Page Designer

Studio Wizards

File System
Project Files

Publish

WebSphere

Application Server

Test. Env.

Java Compiler

Version Control (SCM)

WebSphere
Studio

Source Code
Version Control

Editor
Java/Class

Exchange
6 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

VisualAge for Java and WebSphere Studio interactions
An invaluable feature of WebSphere Studio is its ability to interact with

VisualAge for Java. Using this feature, enabled through the Toolserver API,
you can update code from, and send code to, the VisualAge for Java

development environment (Figure 4).

When classes are imported into WebSphere Studio from VisualAge for Java,
they are extracted from the VisualAge for Java repository and converted into

files. These files are stored in the file system structure used by WebSphere

Studio and can subsequently be published to the application server.

Figure 4. WebSphere Studio and VisualAge for Java interaction

Java and
class file
exchange

Repository

WebSphere Studio

VisualAge for Java

File System

VA Java Toolserver API

WebSphere
Application

Server
Publish

Class Editor Test.Env.

Project Files

Publish
Chapter 1. Environment overview 7

Complete product environment
The complete development and execution environment is shown in Figure 5.

Figure 5. Environment for Web application development and execution

Repository

WebSphere Application Server

DB2 CICS MQ other

HTTP Server

Servlets
Beans

JSPs
HTML

WebSp.Test.Env.

Web
Application

Servlets
Beans

JSPs
HTML

Project/Pkg/Class Project

HTML

JSPs

Servlets/Beans

VisualAge Java WebSph.Studio

Servlets/Beans

export

import

publish

publishexport

store

retrieve

Wizards

SQL DB Bean

accessaccess

Page

Designer
8 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Here is a short description of the major components:

 ❑The HTTP Server serves static HTML pages to browsers.

 ❑The WebSphere Application Server plugs into the HTTP Server for

dynamic content generated by servlets and JavaServer Pages (JSP).

The Application Server supports the concept of a Web application that

represents a grouping of servlets, JSPs, and their related resources.
Managing these elements as a unit allows you to stop and start servlets in

a single step. You can also define a separate document root and class path

at the Web application level, thus allowing you to keep different Web

applications separated in the file system. Please refer to “Web application”

on page 131 for more information on Web applications.

 ❑VisualAge for Java is the product for development and testing of Java

applications, applets, servlets, JavaBeans, and Enterprise JavaBeans. It

also includes the WebSphere Test Environment, which can be used to test

Web interactions involving HTML files, servlets, JSPs, and JavaBeans.

VisualAge for Java can export Java and class files to WebSphere

Application Server and WebSphere Studio.

VisualAge for Java runs in a team environment with a repository for

central storage of the code of many developers.

 ❑WebSphere Studio provides a development environment for HTML files

and JSPs. It also provides wizards that generate skeleton Web pages,
servlets, and JSPs for database and JavaBean access.

The Page Designer tool is provided to edit static HTML pages and JSPs

with dynamic content.

The publishing facility can place HTML files, JSPs, and servlet code into

appropriate directories for running in the Application Server or for testing

with VisualAge for Java.

WebSphere Studio also provides direct interaction with VisualAge for

Java to store and retrieve Java and class files into and from the VisualAge

for Java repository.

 ❑Web applications can access enterprise resources, such as DB2, CICS,
MQSeries, IMS, SAP, and others, through connectors.
Chapter 1. Environment overview 9

10 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

2 Product overview
In this chapter we give a brief overview of the products that are used

throughout this book.

We will start with a short section on how the different products can be used

in different areas, and then follow it up with an overview of each individual
product. For installation instructions for the products, refer to Chapter 3,
“Product installation” on page 17.

How the products work together
The diagram in Figure 6 provides a picture of how the different products that

we will be using in this book can work together in a complete development

environment. More detailed information on usage of the major products can

be found in later chapters.
© Copyright IBM Corp. 2000 11

Figure 6. Products in our development environment

IBM HTTP Server
IBM HTTP Server powered by Apache is based on the Apache HTTP Server

and runs on AIX, Solaris, Windows NT, and Linux.

IBM has enhanced the Apache-powered HTTP Server; for example, IBM

added SSL for secure transactions.

For more information on IBM HTTP Server, see the product documentation

and visit the Web site:

http://www.ibm.com/software/webservers/httpservers/

WebSphere Application Server
WebSphere Application Server (WAS) allows you to extend the functionality

of a standard Web server. WAS enables Web transactions and interactions

with a robust deployment environment for e-business applications. It

provides a portable, Java-based Web application deployment platform

DB2

WebSphere
Studio

Client
(Browser)

IBM
HTTP
Server

WebSphere
Application

Server

SecureWay
Directory

VisualAge
for

Java
Java/Class

Publish

HTML, JSPS, Classes Export

JDBC

Receive

Send

Update

Import

LDAP

JDBC
12 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

http://www.ibm.com/software/webservers/httpservers/

focused on supporting and executing servlets, JavaBeans, and JavaServer

Pages (JSP) files.

In particular, the Standard Edition, for Web site builders, provides:

 ❑Support for JavaServer Pages, including:

 • Support for specifications 0.91 and 1.0

 • Extended tagging support for queries and connection management

 • An Extended Markup Language (XML)-compliant DTD for JSPs

 ❑Support for the Java Servlet API 2.1 specification, including automatic

user session and user state management

 ❑High speed pooled database access using JDBC for DB2 Universal
Database, Oracle and Microsoft SQLServer

 ❑XML server tools, including a parser and data transformation tools

 ❑A Web site analysis tool for developing traffic measurements to help

improve the performance and effectiveness of your Web sites

 ❑Machine translation for dynamic language translation of Web page

content

 ❑Tivoli-ready modules

 ❑Additional integration with IBM VisualAge for Java to help reduce

development time by allowing developers to remotely test and debug

Web-based applications

The Advanced Edition, for Web application programmers, provides all the

features of the Standard Edition, plus:

 ❑Full support for the Enterprise JavaBeans (EJB) 1.0 specification

 ❑Deployment support for EJBs, Java servlets, and JSPs with performance

and scale improvements, including:

 • Applet-level partitioning

 • Load balancing

 ❑Enhanced support for distributed transactions and transaction processing

 ❑Improved management and security controls, including:

 • User and group level setup

 • Method level policy and control

 ❑CORBA support, providing both bean-managed and container-managed

persistence
Chapter 2. Product overview 13

The Enterprise Edition, for Web enterprise architects, includes all the

features of the Advanced Edition, plus:

 ❑Full distributed object and business process integration capabilities

 ❑IBM's world-class transactional application environment integration

(from TXSeries)

 ❑Full support for the Enterprise JavaBeans (EJB) 1.0 specification

 ❑Complete object distribution and persistence (from Component Broker)

 ❑Support for MQSeries

 ❑Complete component backup and restore support

 ❑XML-based team development functions

 ❑Integrated Encina application development kit

For more information on WebSphere Application Server, see the product

documentation and visit the Web site:

http://www.ibm.com/software/webservers/appserv/

WebSphere Studio
WebSphere Studio is an integrated suite of tools and wizards for building,
organizing, and deploying Web applications in a team environment. Studio

combines graphical development wizards with tools for Web site design and

limited Java development, with integrated features including:

 ❑A workbench environment that lets Web development teams organize and

manage Web development projects. This environment can be extended

with source control management (SCM) tools.

 ❑A visual page designer for JSPs, HTML, and DHTML.

 ❑A remote debugger for easy remote debug of server-side scripts and logic,
including JSP components, servlets, JavaBean components, and more.
The remote debugger requires the Standard or Advanced edition of IBM

WebSphere Application Server.

 ❑Wizards to help developers generate JSPs, JavaBeans, SQL statements,
and servlets.

 ❑Integration between IBM VisualAge for Java Professional Edition, V3.0

and Studio.

 ❑An applet designer based on the NetObjects BeanBuilder technology.

 ❑NetObjects ScriptBuilder for script editing of Extensible Markup

Language (XML) and Wireless Markup Language (WML).
14 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

http://www.ibm.com/software/webservers/appserv/

 ❑A Web art designer for creating masthead images, buttons and other

graphics.

 ❑An animated GIF designer that makes it easier to create animated GIFs.

For more information on WebSphere Studio, see the product documentation

and visit the Web site:

http://www.ibm.com/software/webservers/studio/

VisualAge for Java
VisualAge for Java is IBM’s Java development environment. It is an

integrated, visual development environment with powerful support for

JavaBeans, client/server development, visual programming and enterprise

connectivity.

These are three VisualAge for Java editions: Entry, Professional, and

Enterprise.

 ❑VisualAge for Java Entry Edition is a free version with a 750 class limit.
This makes it ideal for small projects or evaluation purposes.

 ❑VisualAge for Java Professional Edition removes the 750 class limit from

the Entry edition.

 ❑VisualAge for Java Enterprise Edition adds enterprise access builders

and a team programming environment to the Professional Edition.

Common to all editions are:

 ❑Incremental compilation

 ❑Visual Composition Editor—for visual programming

 ❑Integrated Development Environment, including:

 • Debugger
 • Browsers—Project, Package, and Class
 • Source code editor

 ❑Repository-based environment for code-management

 ❑Advanced coding tools, including automatic formatting, automatic code

completion, and fix-on-save

 ❑Data Access Beans for simplified access to relational databases

For more information on VisualAge for Java, see the product documentation

and visit the Web site:
http://www.ibm.com/software/ad/vajava/
Chapter 2. Product overview 15

http://www.ibm.com/software/webservers/studio/
http://www.ibm.com/software/ad/vajava/

Distributed Debugger
The IBM Distributed Debugger is a client/server application that enables you

to detect and diagnose errors in your programs. This client/server design

makes it possible to debug programs running on systems accessible through a

network connection as well as debug programs running on your workstation.
The Distributed Debugger comes with VisualAge for Java.

For more information on the Distributed Debugger, see the product

documentation.

DB2 Universal Database (UDB)
DB2 UDB is a relational database management system. It is fully scalable,
being able to grow from single processors through symmetric multiprocessors

up to massively parallel clusters. It has full multimedia capabilities, being

able to support image, audio, video, text, and other advanced object support.
It is also very Web-enabled, including built-in Java support.

For more information on DB2 UDB, see the product documentation and visit

the Web site:

http://www.ibm.com/software/data/db2/udb/

SecureWay Directory
SecureWay Directory is a Lightweight Directory Access Protocol (LDAP)
based directory server that provides a common and simple method for

centrally storing, locating and managing directory information on an

enterprise network across multiple platforms. It also provides security

services allowing you to define user access rights for the information stored

in a directory.

For more information on SecureWay Directory, see the product

documentation and visit the Web site:

http://www.ibm.com/software/network/directory/
16 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

http://www.ibm.com/software/data/db2/udb/
http://www.ibm.com/software/network/directory/

3 Product installation
In this chapter we describe the installation process for the various products

that are used throughout this book.

We will discuss the environment that we are using in developing this book

and the applications that are part of it. We will also step through any other

setup instructions that are required prior to installing the products.

Next, we will guide you through an example installation of each product, and

then show you how you can test that each product has been successfully

installed.

Starting environment
The examples in this book were developed in the following environment:

 ❑PCs with Pentium II 450 MHZ processors and 512 MB RAM.

 ❑MS Windows NT 4.0 with Service Pack 4.

 ❑A combination of Netscape Communicator 4.61 and Microsoft Internet

Explorer 5.0 were used in testing the various components.
© Copyright IBM Corp. 2000 17

Due to various interdependencies between products, the order in which you

install the following software is important. Although other variations may

also work, we used the following to ensure a successful setup.

All of our work for this book was carried out on a d drive. However, to use a

standard naming convention, throughout this book we refer to the x drive

when listing paths. You should substitute your own drive letter in as

appropriate.

Creating a dedicated user ID
Many of the following products require a user ID under which to run certain

administrative tasks (and some will not allow you to use the Administrator

ID in Windows NT for that task).

Therefore, it is a good idea to create a dedicated user ID for all of these

products to use. This user will need to have full Administrator authority to

work, and so you should make it a member of the Administrator group for

your machine.

So that WebSphere Application Server can use this user ID for all its needs,
you should also make sure that it has the rights to Log on as a service and to

Act as part of the operating system. Also, WebSphere Application Server will
not let you use an account whose name matches the name of your machine or

Windows Domain. If you need help in doing this, then refer to your Windows

Help documentation.

For the purposes of this book, we created a user ID called itso with the

password itso. It is not necessary that you create such a user ID, but make

sure that the user ID used for WebSphere has full administrative authorities.

Java Development Kit
We installed IBM’s JDK 1.1.7 for Windows on to our machines. The refresh

level that we have used for this book is ibm-jdk-n117p-win32-x86 and is the

latest available at the time of writing. IBM Java developer kits for a variety

of platforms can be found at http://www.ibm.com/java/jdk/download.

To test your installation, open up a command prompt and enter:

x:\>java -fullversion
18 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

It should return something similar to the following (though build numbers

may vary):

java full version “JDK 1.1.7 IBM build xxxxx-yyyymmdd (JIT enabled: ibmjitc)”

IBM HTTP Server
IBM HTTP Server Version 1.3.6.2 was installed to run the sample

applications in this book.

Installing the product
IBM HTTP Server has a fairly straightforward installation program. When

running it, select a typical installation, and when prompted, enter the user

ID and password you created in “Creating a dedicated user ID” on page 18.

Testing the install
After installation, you can carry out a quick check to ensure that the server is

up and running. Open up a Web browser, and enter the URL,
http://localhost. You should see the HTTP Server welcome page, as displayed

in Figure 7.
Chapter 3. Product installation 19

Figure 7. IBM HTTP Server welcome page

At this point, you can set up the administration user ID and password for

IBM HTTP Server to be something other than the default. The simplest way

to do this is at a command prompt. Change to the IBM HTTP Server

directory and enter:

htpasswd -c conf/admin.passwd userid

In this command, userid should be replaced with the administration user ID

you want to use. You will then be prompted to enter the password twice, and

the system will set these values. You can test this by entering the URL,
http://localhost:8008. The system will prompt you for the administration user

ID and password, and if you enter these correctly, you should see a page

similar to that in Figure 8.

Note that IBM HTTP Administration is a service separate from IBM HTTP

Server. Both services can be started and stopped from the Services icon in the

Control Panel.
20 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 8. Administration interface to IBM HTTP Server

DB2 Universal Database
We installed DB2 Universal Database for Windows NT Version 6.1

Workgroup edition and added the latest Fixpack.

Installing the product
To keep things simple, we used the typical installation option to install this

product.

The DB2 administration server needs a user ID that has Administrator

rights to your machine to be able to run, and you should use the one created

in “Creating a dedicated user ID” on page 18.

The install will prompt to you reboot your machine. As you want to install the

latest Fixpack as well, it will save time if you choose to reboot later. At the

time of writing, the latest Fixpack for DB2 Version 6.1 is Fixpack 2.1

1 The Fixpack level had to be changed on machines where we ran SecureWay Directory (see “Incompatibilities with

DB2 UDB” on page 35).
Chapter 3. Product installation 21

Run the install for the Fixpack, and this time, when prompted, you should

choose to reboot the machine.

When your machine restarts, you should be greeted with the DB2 First Steps

window, as shown in Figure 9.

Figure 9. DB2 First Steps window

You should select Create the SAMPLE database. This will set up a sample

database for you in your DB2 installation, which can allow you to test your

access to DB2.

Testing the installation
To test your installation you can select View the SAMPLE database from the

First Steps window (if you have closed this window, you can re-open it from

the DB2 for Windows NT menu on the Start Bar).

You will be prompted for your DB2 login, and then the Command Center will
open up. This has a script pre-loaded that will access the sample database.
You can execute the script by clicking on the gears icon, as shown in Figure

10.

If this displays the list of employees stored in the sample database, then your

install has been successful.
22 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 10. Script for viewing the sample database

The tables in the sample database are prefixed by the user ID that creates

the database. This makes it hard to write examples that run on every system.
Our examples use table names such as ITSO.DEPARTMENT. If you create

the database with a different user ID, you can assign aliases to make the

examples work. Run these commands in a DB2 Command Window:

db2 connect to sample
db2 create alias itso.department for department
db2 create alias itso.employee for employee
db2 create alias itso.emp_photo for emp_photo
db2 connect reset
Chapter 3. Product installation 23

VisualAge for Java
VisualAge for Java Version 3.02 Enterprise Edition was installed on our

machines, but we could have used the Professional Edition, as this also

provided the functionality required for this book.

Installing the product
When running the setup, select a full installation and select Local for the

location of your repository, as we are not going to be setting up a team

environment.

When all the files are installed, you will then be prompted to reboot. Do so

and then start up VisualAge for Java to complete the basic installation.
During start-up, you will be asked to select the workspace owner and enter

their network name. Select Administrator and enter your normal NT logon as

the network name, then click OK.

VisualAge will then finish adding files to your workspace. When it has

finished doing this, you will be prompted with the Welcome to VisualAge

window. Select Go to the Workbench and click OK (see Figure 11).

Figure 11. Welcome to VisualAge
24 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Adding features
To enable you to create and run some of the applications within this book, you

have to add some extra features to your VisualAge for Java installation.
These will add some extra tools and code packages to your workspace.

To add the features, select File -> Quick Start and wait for the Quick Start

window. Select Features and select Add Feature, as in Figure 12.

Figure 12. Adding a feature in VisualAge for Java

Select the following features and then click on OK:

 ❑IBM JSP Execution Monitor 1.1

 ❑IBM WebSphere Test Environment 3.02

When these features are loaded, your VisualAge for Java installation is ready

for our examples.

Testing the installation
For a quick visual test that the installation has been successful, go to the

menu option Workspace -> Tools. In the list of tools you should find the two

options JSP Execution Monitor and Launch WebSphere Test Environment.

Existing errors
After installing VisualAge for Java, you may notice that there are some

errors in the pre-loaded classes, specifically in the package
Chapter 3. Product installation 25

com.sun.java.swing.plaf.mac. These errors will not effect any of the work

required for this book, and you can ignore them.

Distributed Debugger
We also chose to install IBM Distributed Debugger Version 8.4 which comes

with VisualAge for Java 3.02.

We chose a full install, which gave us the Object Level Trace facility as well,
and can be used within WebSphere Application Server as well as via

VisualAge for Java.

WebSphere Application Server
We installed WebSphere Application Server Version 3.02 Standard and

Advanced Edition for the purposes of this book. Standard Edition would be

enough as the additional features in the Advanced and Enterprise Editions

were not required.

Installing the product
When you are running the install, choose the Custom installation and follow

these steps:

 ❑You will be presented with the screen found in Figure 13. Keep all the

components selected on the left, and make sure you select IBM HTTP

Server V1.3.6 as the Plugin server. Then click on Next.
26 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 13. Custom installation for WebSphere Application Server

 ❑You should then be presented with a screen prompting you to select a JDK

for WebSphere to use (see Figure 14). The IBM Developer Kit, Java Tech

Edition, that you installed earlier should appear in the list; you should

select it and click on Next. If this item does not appear, then it is a good

idea to come out of this installation and re-install the IBM JDK to make

sure that WebSphere picks it up properly.
Chapter 3. Product installation 27

Figure 14. Selecting a JDK within the WebSphere install

 ❑You will then be presented with the Security/Database options screen as

shown in Figure 15. For the Security section, you can enter the user ID

and password that you created in “Creating a dedicated user ID” on

page 18. Next, change the Database Type to DB2; this should enable you

to enter a user ID and password for the database. Again, you can use the

same user ID that you created in “Creating a dedicated user ID” on

page 18.2 This will be the user ID under which WebSphere creates the

WAS database.3 You have to enter a user ID that has full administrative

authorities. Click on Next.

 ❑Click Next on the following confirmation, and installation of the files will
start.

 ❑Towards the end of the install, it will ask you for the location of the IBM

HTTP Server configuration file. This should have a path similar to:

d:/IBM HTTP Server/conf/httpd.conf

If you have installed the HTTP Server, the installation process should

automatically find this file for you, and you can click OK to finish the

install process.

2 By using the same IDs for both sections, you can help avoid problems later on when starting WebSphere

AdminServer as a service.
3 The WAS database is used by WebSphere to store the configuration information for your server components.
28 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 15. Setting up Security and Database options for WebSphere

 ❑After rebooting the machine as prompted, the install script creates the

WAS database in your DB2 system. This database is used by WebSphere

Application Server to manage its configuration information.

You can create the WAS database manually if the automatic process fails,
for example, because DB2 was not started. Use the command file:

d:\WebSphere\AppServer\bin\createdb2.bat

You have now completed the installation of WebSphere Application

Server.
Chapter 3. Product installation 29

Testing the installation
To test the installation, you have to start up the WS AdminServer that

enables you to administer WAS.

Starting the WS AdminServer service
You start the administration server through the Control Panel - Services

window as shown in Figure 16. Once this server is started, you will be able to

administer your servers, including starting the default server.

Figure 16. Starting WebSphere Application Server as a service

It is a good idea to set this service up to start automatically in the future. You

can do this by clicking on Startup while the WS AdminServer is selected and,
in the following dialog, changing the Startup Type to Automatic.

Errors when starting the WS AdminServer
A problem that is sometimes encountered when starting the WS

AdminServer is that you will be given the error window shown in Figure 17.

Figure 17. Error when starting the WS AdminServer
30 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

This can be caused by a number of problems, but a common one that we

found results from having used a different user ID and password combination

for the database when installing WebSphere. If this is the case, then you can

fix the error by editing:

d:\WebSphere\AppServer\bin\admin.config

Change the dbUser and dbPassword entries to be the same ID that you have

used elsewhere.

Starting the Administrative Console
Once the WS AdminServer is successfully started, you can use the

administration console to configure different components of WebSphere. This

program can be started from the Start menu by selecting the Administrator’s

Console in the IBM WebSphere -> Application Server 3.0 folder.

Figure 18 shows the Administrative Console window, and when the spinning

icon at the bottom comes to a stop, the program is fully loaded and ready.

Figure 18. The WebSphere Administrative Console

From here we can manage our servers completely. For now, though, we just

want to start the Default Server to test that everything has installed

correctly. For more information on how to use the administration interface,
refer to Chapter 6, “WebSphere Application Server” on page 123.
Chapter 3. Product installation 31

Starting the Default Server
If you select the Topology tab, and then click on the + sign next to WebSphere

Admin Domain, you should see the name of your machine. Expanding your

machine name, you will find the Default Server as shown in Figure 19. When

you select the Default Server, you can then click on the button with a green

light symbol to start it. After a while, a dialog should come up telling you the

start command was successful.

Figure 19. Starting the Default Server

Running a test servlet
Now that you have the Default Server running, you can quickly test it by

running the Snoop servlet that is part of the standard install for WAS. Open

up a browser and enter http://localhost/servlet/snoop. If the install has been

completely successful, you should see a page similar to Figure 20.

Start Stop
32 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 20. Output from the Snoop servlet

WebSphere Studio
We installed WebSphere Studio Version 3.0 and then applied Fixpack 2 to

bring it up to Version 3.0.2.

Installing the product
While installing Studio, we were prompted to see if we wanted to install the

Applet Designer. Although it would not have done any harm, we elected not

to do so, as it is not required for the topics covered in this book.

If you do not have a valid installation of Internet Explorer on your machine

prior to installing Studio, you may encounter the errors shown in Figure 21

and Figure 22.
Chapter 3. Product installation 33

Figure 21. Error while installing WebSphere Studio

You can click OK on these screens and continue as, in contradiction to the

message in Figure 22, it is not essential to be able to use Studio. But it will
prevent you from directly previewing your pages in the Page Designer tool
(see “Editing project resources” on page 237).

Figure 22. Warning information dialog concerning missing IE installation

Once completed, you have to reboot the machine and then run the setup

program provided with Fixpack 2. After the install you have to reboot again

and after that you have completed the installation of Studio.

Testing the installation
The easiest way to test the install of WebSphere Studio is to start it from the

Start bar. Select IBM WebSphere -> Studio 3.0 -> IBM WebSphere Studio

v3.0. The install was successful if the window shown in Figure 23 appears.
34 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 23. WebSphere Studio welcome window

SecureWay Directory
We installed SecureWay Directory Version 3.1.1, including the GS Kit, on our

machines to help us with some of the applications in this book.

Incompatibilities with DB2 UDB
SecureWay Directory Version 3.1.1 does not function correctly with DB2 UDB

Version 6.1 with Fixpack 2 applied. Therefore, on any machines that required

the SecureWay Directory running, we had to downgrade our DB2 installation

to Fixpack 1A. SecureWay Directory 3.1.1.5 has fixed this problem and works

with Fixpack 2 of DB2 Version 6.1.

Installing the product
When installing SecureWay Directory, choose your appropriate installation

language and then complete the following steps:

 ❑Choose to install both SecureWay Directory and the Client SDK as in

Figure 24.
Chapter 3. Product installation 35

Figure 24. Selecting components to install

 ❑Choose the appropriate install directory (you can leave the default).

 ❑Choose the appropriate Program Folder (you can leave the default).

 ❑Select all three components to configure (Figure 25). You can actually do

this configuration after the install is complete, but it is easier to do it here.

Figure 25. Selecting the components to configure

 ❑Enter in a unique name and password for the SecureWay Directory

administrator. To keep things simple, use the user ID and password that

was created in “Creating a dedicated user ID” on page 18, but prefix the

user ID with cn= (Figure 26).
36 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 26. Configuring the SecureWay Directory administrator

 ❑Choose to create the default SecureWay Directory database, as in Figure

27. When prompted, select to create the database using the local code

page, and choose an appropriate drive for it to reside in.

Figure 27. Creating the SecureWay Directory database
Chapter 3. Product installation 37

 ❑SecureWay then locates your Web server configuration file. If you have

IBM HTTP Server installed, it should find the file without any problems,
and you can click on Next.

 ❑Click on Next in the final confirmation dialog, and installation will start.

 ❑When the install has finished, reboot the machine as prompted.

 ❑After reboot, a database script runs, and when that is complete, you have

installed SecureWay Directory.

Configuring SecureWay Directory
After installation, you have to configure the server. First, open up a Web

browser and enter the URL:

http://localhost/ldap

This should direct you to the administration login screen (see Figure 28).

Logging in

Figure 28. Logon to SecureWay Directory Server Administration
38 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Enter in the user ID and password that you supplied during the install.
(Remember to prefix the user ID with cn=). Then click on Logon. You should

now be logged on to the server.

Adding suffixes
You now need to add a suffix to the configuration. This is required to set up

the top-level entry for the directory hierarchy.

In the left hand panel, select Add a suffix, and you should see the Add a

suffix for this server page in the right hand panel (see Figure 29). In the

Suffix DN field, add o=ibm, c=uk and click on Add a new suffix.

Figure 29. Adding a suffix

Starting the server
To allow your new suffixes to take effect, you have to restart the server.
Navigate down Server in the left-hand pane, and select Startup/Shutdown. A

message in the right-hand pane should tell you that The directory server is

currently stopped. Click on the button labeled Startup, and you are informed

that the server is being started. When the server is finally running, you

should see a window as shown in Figure 30.
Chapter 3. Product installation 39

Figure 30. Starting the directory server

Testing the installation
By being able to configure and start the directory server, you have proved

that the product has been installed correctly.

What we have achieved
If you have followed all these product installation instructions, you should

now have installed working versions of the following products:

 ❑IBM Java Development Kit Version 1.1.7 for Windows
 ❑IBM HTTP Server Version 1.3.6.2
 ❑IBM DB2 Universal Database for Windows NT Version 6.1 Workgroup

edition with Fixpack 2 (or Fixpack 1A)
 ❑IBM VisualAge for Java Version 3.02, Enterprise Edition
 ❑IBM Distributed Debugger Version 8.4

 ❑IBM WebSphere Application Server Version 3.02, Standard Edition
 ❑IBM WebSphere Studio Version 3.02
 ❑IBM SecureWay Directory Version 3.1.1
40 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

4 Servlets
In this chapter we introduce you to Java servlet concepts.

We provide an overview of the Java Servlet API, and discuss the servlet

runtime environment and life-cycle. Servlet examples are provided which

demonstrate basic to advanced servlet functionality. Finally, we discuss some

common servlet interaction techniques, such as servlet filtering and

chaining.

If you want to run the examples presented here, refer to Chapter 6,
“WebSphere Application Server” on page 123, and to Chapter 7,
“Development and testing with VisualAge for Java” on page 167. All the

examples are provided on the Internet (see Appendix C, “Using the additional
material” on page 417).

We recognize that there is an abundance of both online and printed

documentation on this topic, and recommend that you refer to the Sun Java

Servlet API Specification, http://java.sun.com/products/servlet/.

If you are already familiar with Java servlets, we suggest you still skim

through this chapter. We present some concepts here that are built on in

subsequent chapters. This will familiarize you with the naming conventions

used, and provide some continuity in the reading.
© Copyright IBM Corp. 2000 41

http://java.sun.com/products/servlet/

Overview of Java servlets
Servlets are protocol and platform independent server-side software

components, written in Java. They run inside a Java enabled server or

application server, such as the WebSphere Application Server. Servlets are

loaded and executed within the Java Virtual Machine (JVM) of the Web

server or application server, in much the same way that applets are loaded

and executed within the JVM of the Web client. Since servlets run inside the

servers, however, they do not need a graphical user interface (GUI). In this

sense, servlets are also faceless objects.

Servlets more closely resemble Common Gateway Interface (CGI) scripts or

programs than applets in terms of functionality. As in CGI programs, servlets

can respond to user events from an HTML request, and then dynamically

construct an HTML response that is sent back to the client.

Servlet process flow
Servlets implement a common request/response paradigm for the handling of
the messaging between the client and the server. The Java Servlet API

defines a standard interface for the handling of these request and response

messages between the client and server.

Figure 31 shows a high-level client-to-servlet process flow:

1. The client sends a request to the server.

2. The server sends the request information to the servlet.

3. The servlet builds a response and passes it to the server. That response is

dynamically built, and the content of the response usually depends on the

client’s request. External resources may also be used.

4. The server sends the response back to the client.

Figure 31. High-level client-to-servlet process flow

Client

Web Server

Request

Response

Servlet
Resources

Ex: JDBC
42 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlets are powerful tools for implementing complex business application

logic. Written in Java, servlets have access to the full set of Java API’s, such

as JDBC for accessing enterprise databases.

As mentioned above, servlets are similar to CGI in that they can produce

dynamic Web content. Servlets, however, have the following advantages over

traditional CGI programs:

 ❑Portability and platform independence: Servlets are written in Java,
making them portable across platforms and across different Web servers,
because the Java Servlet API defines a standard interface between a

servlet and a Web server.

 ❑Persistence and performance: A servlet is loaded once by a Web server, and

invoked for each client request. This means that the servlet can maintain

system resources, like a database connection, between requests. Servlets

don’t incur the overhead of instantiating a new servlet with each request.
CGI processes typically must be loaded with each invocation.

 ❑Java based: Because servlets are written in Java, they inherit all the

benefits of the Java language, including a strong typed system,
object-orientation, and modularity, to name a few.

The Java Servlet API
The Java Servlet API is a set of Java classes which define a standard

interface between a Web client and a Web servlet. Client requests are made

to the Web server, which then invokes the servlet to service the request

through this interface.

The Java Servlet API is a Standard Java Extension API, meaning that it is

not part of the core Java framework, but rather, is available as an add-on set

of packages. We will be using the Java Servlet Development Kit API (JSDK)
V2.1 conventions throughout this chapter.

The API is composed of two packages:

 ❑javax.servlet

 ❑javax.servlet.http

The javax.servlet package contains classes to support generic

protocol-independent servlets. This means that servlets can be used for many

protocols, for example, HTTP and FTP. The javax.servlet.http package

extends the functionality of the base package to include specific support for

the HTTP protocol. In this chapter, we will concentrate on the classes in the

javax.servlet.http package.
Chapter 4. Servlets 43

The Servlet interface class is the central abstraction of the Java Servlet API.
This class defines the methods which servlets must implement, including a

service() method for the handling of requests. The GenericServlet class

implements this interface, and defines a generic, protocol-independent

servlet. To write an HTTP servlet for use on the Web, we will use an even

more specialized class of GenericServlet called HttpServlet.

HttpServlet provides additional methods for the processing of HTTP requests

such as GET (doGet method) and POST (doPost method). Although our

servlets may implement a service method, in most cases we will implement

the HTTP specific request handling methods of doGet and doPost.

The servlet life cycle
A client of a servlet-based application does not usually communicate directly

with a servlet, but requests the servlet’s services through a Web server or

application server that invokes the servlet through the Java Servlet API. The

server’s role is to manage the loading and initialization of the servlet, the

servicing of the request, and the unloading or destroying of the servlet. This

is generally provided by a servlet manager function of the application server.

Typically, there is one instance of a particular servlet object at a time in the

Web servers’ environment. This is the underlying principle to the persistence

of the servlet. The Web server is responsible for handling the initialization of
this servlet when the servlet is first loaded into the environment, where it

remains active (or persistent) for the life of the servlet.

Each client request to the servlet is handled via a new thread against the

original instance object. The Web server is responsible for creating the new

threads to handle the requests. The Web server is also responsible for the

unloading or reloading of the servlets. This might happen when the Web

application is brought down, or the underlying class file for the servlet

changes, depending on the underlying implementation of the server.

Figure 32 shows a basic client-to-servlet interaction:

 ❑Servlet1 is initially loaded by the Web application server. Instance

variables are initialized, and remain active (persistent) for the life of the

servlet.

 ❑Two Web browser clients have requested the services of Servlet1. A

handler thread is spawned by the server to handle each request. Each

thread has access to the originally loaded instance variables that were

initialized when the servlet was loaded.

 ❑Each thread handles its own requests, and responses are sent back to the

calling client.
44 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 32. Basic client-to-servlet interaction

The life cycle of a servlet is expressed in the Java Servlet API in the init,
service (doGet or doPost), and destroy methods of the Servlet interface. We

will discuss the functions of these methods in more detail and the objects that

they manipulate. Figure 33 is a visual diagram of the life-cycle of an

individual servlet.

Figure 33. Servlet life-cycle

The WebSphere administrator can set an application and its servlets to be

unavailable for service. In such cases, the application and servlets remain

unavailable until the administrator changes them to available.

Understanding the life-cycle
This section describes in detail some of the important servlet life-cycle

methods of the Java Servlet API.

Web Application Server

Servlet1
Thread1 Servlet1

Thread2
Client1

Client2 Servlet1 Instance
* loaded before

first request

Create Initialize

Available
for

service

Unavailable
for

service

Servicing
requests Destroy Unload

(Initialization failed)

(Unavailable
exception
thrown)
Chapter 4. Servlets 45

Servlet Initialization: init method
Servlets can be dynamically loaded and instantiated when their services are

first requested, or the Web server can be configured so that specific servlets

are loaded and instantiated when the Web server initializes.

In either case, the init method of the servlet performs any necessary servlet

initialization, and is guaranteed to be called once for each servlet instance,
before any requests to the servlet are handled. An example of a task which

may be performed in the init method is the loading of default data

parameters or database connections.

The most common form of the init method of the servlet accepts a

ServletConfig object parameter. This interface object allows the servlet to

access name/value pairs of initialization parameters that are specific to that

servlet. The ServletConfig object also gives us access to the SevletContext
object that describes information about our servlet environment. Each of
these objects will be discussed in more detail in the servlet examples sections.

Servlet request handling
Once the servlet has been properly initialized, it may handle requests

(although it is possible that a loaded servlet may get no requests). Each

request is represented by a ServletRequest object, and the corresponding

response by a ServletResponse object in the Java Servlet API. Since we will
be dealing with HttpServlets, we will deal exclusively with the more

specialized HttpServletRequest and HttpServletResponse objects.

The HttpServletRequest object encapsulates information about the client

request, including information about the client’s environment and any data

that may have been sent from the client to the servlet. The

HttpServletRequest class contains methods for extracting this information

from the request object.

The HttpServletResponse is often the dynamically generated response, for

instance, an HTML page which is sent back to the client. It is often built with

data from the HttpServletRequest object. In addition to an HTML page, a

response object may also be an HTTP error response, or a redirection to

another URL, servlet, or JavaServer Page. The redirection techniques will be

discussed in more detail in the servlet interaction section of this chapter.
JavaServer Pages and interactions with servlets will be discussed in Chapter

5, “JavaServer Pages” on page 95.

Each time a client request is made, a new servlet thread is spawned which

services the request. In this way, the server can handle multiple concurrent

requests to the same servlet. For each request, usually the service, doGet, or

doPost methods will be called. These methods are passed the

HttpServletRequest and HttpServletResponse parameter objects.
46 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

doPost: Invoked whenever an HTTP POST request is issued through an

HTML form. The parameters associated with the POST request are

communicated from the browser to the server as a separate HTTP request.
The doPost method should be used whenever modifications on the server will
take place.

doGet: Invoked whenever an HTTP GET method from a URL request is

issued, or an HTML form. An HTTP GET method is the default when a URL

is specified in a Web browser. In contrast to the doPost method, doGet should

be used when no modifications will be made on the server, or when the

parameters are not sensitive data. The parameters associated with a GET

request are appended to the end of the URL, and are passed into the

QueryString property of the HttpServletRequest.

Other servlet methods worth mentioning
destroy: The destroy method is called when the Web server unloads the

servlet. A subclass of HttpServlet only needs to implement this method if it

needs to perform cleanup operations, such as releasing database connections

or closing files.

getServletConfig: The getServletConfig method returns a ServletConfig

instance that can be used to return the initialization parameters and the

ServletContext object.

getServletInfo: The getServletInfo method is a method that can provide

information about the servlet, such as its author, version, and copyright. This

method is generally overwritten to have it return a meaningful value for your

application. By default, it returns an empty string.

Basic servlet examples
In this section, we will build on the foundation in the previous sections, by

describing some servlets that demonstrate additional capabilities and

concepts of the Java Servlet API.

Simple HTTP servlet
We begin with a look at a very simple servlet, SimpleHttpServlet (Figure 34).
Chapter 4. Servlets 47

Figure 34. Simple HTTP servlet

As the title indicates, SimpleHttpServlet is a very simple HTTP servlet that

accepts a request and writes a response. Let’s break out the components of
this servlet so we can discuss them individually.

Basic servlet structure
Figure 35 shows that we have defined this servlet to be part of an

itso.servjsp.servletapi Java package. This is the naming convention used for

all the servlet examples in this chapter.

Figure 35. SimpleHttpServlet package declaration

Figure 36 shows the import statements used to give us access to other Java

packages. The import of java.io is so that we have access to some standard IO

classes. More importantly, the javax.servlet.* and javax.servlet.http.* import

statements give us access to the Java Servlet API set of classes and

interfaces.

package itso.servjsp.servletapi;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleHttpServlet extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>SimpleHttpServlet</TITLE><BODY>");
out.println("<H2>Servlet API Example - SimpleHttpServlet</H2><HR>");
out.println("<H4>This is about as simple a servlet as it gets!</H4>");
out.println("</BODY><HTML>");
out.close();

}
}

package itso.servjsp.servletapi;
48 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 36. SimpleHttpServlet import statements

Figure 37 shows the SimpleHttpServlet class declaration. We extend the

HttpServlet class (javax.servlet.http.HttpServlet) to make our class an HTTP

protocol servlet.

Figure 37. The SimpleHttpServlet class declaration

Figure 38 is the heart of this servlet, the implementation of the service

method for the handling of the request and response objects of the servlet.

Figure 38. SimpleHttpServlet service method

What the service method does
Let’s examine this service method in more detail. Notice that the method

accepts two parameters, HttpServletRequest and HttpServletResponse. The

request object contains information about and from the client. In this

example, we don’t do anything with the request.

This method is declared Abstract in the basic GenericServlet class, and so

subclasses, such as HttpServlet, must override it. In our subclass of
HttpServlet, when using this method, we must implement this method

according to the signature defined in HttpServlet, namely, that it accepts

HttpServletRequest and HttpServletResponse arguments.

We do some handling of the response object, which is responsible for sending

our response back to the client. Our response here is a formatted HTML

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleHttpServlet extends HttpServlet {

protected void service (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>SimpleHttpServlet</TITLE><BODY>");
out.println("<H2>Servlet API Example - SimpleHttpServlet</H2><HR>");
out.println("<H4>This is about as simple a servlet as it gets!</H4>");
out.println("</BODY><HTML>");
out.close();

}

Chapter 4. Servlets 49

page, so we first set the response content type to text/html by coding

res.setContentType("text/html"). Next, we request a PrintWriter object to write

text to the response by coding PrintWriter out = res.getWriter(). We could also

have used a ServletOutputStream object to write out our response, but

getWriter gives us more flexibility with Internationalization. In either case,
the content type of the response must be set before references to these objects

can be made.

The remaining out.println statements write our HTML to the PrintWriter,
which is sent back to the client as our response. It is pretty simple HTML, so

we do not display it here. We use out.close more for completeness, because

the Web application server automatically closes the PrintWriter when the

service method exits.

How the servlet gets invoked
We could invoke this servlet with either a GET or POST form action method;
the service method will execute for either. If we knew something about how

this servlet was ultimately to be called, for instance, what the HTML form

method was going to be, we could have implemented the above functionality

through specific doGet or doPost methods. The result would be the same.

The simplest way to invoke the servlet would be by specifying a URL in the

Web browser. This does not work for every servlet, but would work for the

above example. A URL forces the Web browser to send the request using

GET, similar to the way a standard HTML page is requested. The above

servlet could be invoked from the Web browser with the URL:

http://host/servlet/itso.servjsp.servletapi.SimpleHttpServlet
http://host/itsoservjsp/servlet/itso.servjsp.servletapi.SimpleHttpServlet

Note: the second form invokes a servlet in a Web application.

Running the servlet
At this point we have not discussed the specifics of running servlets in a Web

server environment. If you want to run this servlet, you should be able to

follow the steps in Chapter 7, “Development and testing with VisualAge for

Java” on page 167, code the SimpleHttpServlet, and run it under the

WebSphere Test Environment. The WebSphere Test Environment provides a

simulated Web server environment within the VisualAge for Java product

and enables you to test and debug your servlets. Later, in Chapter 6,
“WebSphere Application Server” on page 123, we discuss deploying servlets

to the actual application server environment.
50 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

HTML form generator servlet
We next look at another simple HTTP servlet, HTMLFormGenerator (Figure

39).

Figure 39. HTML form generator servlet

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HTMLFormGenerator extends HttpServlet {

public void init(ServletConfig config) throws ServletException {
super.init(config);
System.out.println("In the init() method of HTMLFormGenerator");

}
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
performTask(req, res, "POST",

"itso.servjsp.servletapi.HTMLFormHandler");
// "/itsoservjsp/servlet/itso.servjsp.servletapi.HTMLFormHandler");

}
public void performTask(HttpServletRequest req, HttpServletResponse res,

String method, String url) throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>HTMLFormGenerator</TITLE><BODY>");
out.println("<H2>Servlet API Example - HTMLCreatingServlet</H2><HR>");
out.println("<FORM METHOD=\"" + method + "\" ACTION=\"" + url + "\">");
out.println("<H2>Tell us something about yourself: </H2>");
out.println("Enter your name: ");
out.println("<INPUT TYPE=TEXT NAME=firstname>
");
out.println("Select your title: ");
out.println("<SELECT NAME=title>");
out.println("<OPTION VALUE=\"Web Developer\">Web Developer");
out.println("<OPTION VALUE=\"Web Architect\">Web Architect");
out.println("<OPTION VALUE=\"Other\">Other");
out.println("</SELECT>
");
out.println("Which tools do you have experience with:
");
out.println("<INPUT TYPE=checkbox NAME=\"tools\"

VALUE=\"WebSphere Application Server\">WebSphere Application Server
");
out.println("<INPUT TYPE=checkbox NAME=\"tools\"

VALUE=\"WebSphere Studio\">WebSphere Studio
");
out.println("<INPUT TYPE=checkbox NAME=\"tools\"

VALUE=\"VisualAge for Java\">VisualAge for Java
");
out.println("<INPUT TYPE=checkbox NAME=\"tools\"

VALUE=\"IBM Http Web Server\">IBM Http Web Server
");
out.println("<INPUT TYPE=checkbox NAME=\"tools\" VALUE=\"DB2 UDB\">DB2 UDB
");
out.println("<INPUT TYPE=\"SUBMIT\" NAME=\"SENDPOST\" NAME=\"SENDPOST\">");
out.println("</FORM>");

out.println("</BODY><HTML>");
out.close();
System.out.println("In the doGet method");

}
}
Chapter 4. Servlets 51

init method

This servlet implements the init method. The init method only prints a

message to standard output and call the super-class constructor. As we

mentioned before, the init method is called only once, when the servlet is

loaded. This message, therefore, should only be printed to the Web server’s

console or log once (wherever standard output is defined), regardless of how

many times the servlet is actually invoked.

doGet method
We decided that this servlet is always called through a GET request, we have

chosen to implement the doGet method, instead of the more generic service

method. We developed a performTask method to which we pass a method

posting type and a target URL.

Response object
The HTML page that this servlet generates is a bit more complex than the

previous example. It actually builds an HTML form that can be used in the

future to call other servlets. This is not the same as a servlet calling a servlet,
which is a server-side process, and is discussed in “Servlet interaction

techniques” on page 73. Here, we are just using one servlet to generate the

HTML back to the browser, so we can call our other example servlets, and we

do not have to create separate HTML files for each servlet.

Notice that this servlet has many out.println statements. This is just the

HTML that is written back to the browser. Despite the size of this servlet, it

is still only doing one simple thing, writing HTML output.

Invoking the servlet
This servlet can be invoked directly by a URL command:

http://hostname/servlet/itso.servjsp.servletapi.HTMLFormGenerator
http://hostname/webappname/servlet/itso.xxxx <== with web application

Notice the output line for the form that this servlet generates in the

performTask method:

<FORM METHOD="POST"
ACTION="itso.servjsp.servletapi.HTMLFormHandler">

This line demonstrates another way of invoking a servlet, in this case from a

Web browser using a form action event. The form is generated by the

HTMLFormGenerator servlet.

Note: The relative URL in the action is added to the current prefix of the

generating servlet, such as http://hostname/..../servlet/.
52 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlet output
The HTML Page that this servlet generates is shown in Figure 40.

Figure 40. HTML form generator servlet: response output

HTML form processing servlet
We next look at a servlet that processes HTML form data. Figure 41 and

Figure 42 show the HTMLFormHandler servlet.

Figure 41. HTML form handler servlet (part 1)

package itso.servjsp.servletapi;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HTMLFormHandler extends HttpServlet {

public void init (ServletConfig srvCfg) throws ServletException {
super.init(srvCfg);

}
Chapter 4. Servlets 53

Figure 42. HTML form handler servlet (part 2)

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html"); //must be before first ref to PrintWriter
PrintWriter out = res.getWriter();

out.println("<HTML><TITLE>HTMLFormHandler</TITLE></BODY>");
out.println("<H2>Servlet API Example - HTMLFormHandler</H2><HR>");

//Retrieving the single-value parameters
out.println("Hi " + req.getParameter("firstname") + ",<P>");
out.println("I see you are a " + req.getParameter("title") + ",<P>");
out.println("And have worked with the following tools:
");
//Retrieving the multi-value parameters
String vals[] = (String []) req.getParameterValues("tools");
if (vals != null) {

for(int i = 0; i<vals.length; i++)
out.println("" + vals[i] + "
");

}
else out.print;n(" None
");

out.println("<HR>");
getReqInfo(req, out); //gets the standard request information

out.println("</BODY></HTML>");
out.close();

}

public void getReqInfo(HttpServletRequest req, PrintWriter out)
throws ServletException, IOException {

out.println("<H4>Additional Request Information:</H4>");
out.println("Request method: " + req.getMethod() + "
");
out.println("Request URI: " + req.getRequestURI() + "
");
out.println("Request protocol: " + req.getProtocol() + "
");
out.println("Request scheme: " + req.getScheme() + "
");
out.println("Servlet path: " + req.getServletPath() + "
");
out.println("Servlet name: " + req.getServerName() + "
");
out.println("Servlet port: " + req.getServerPort() + "
");
out.println("Path info: " + req.getPathInfo() + "
");
out.println("Path translated: " + req.getPathTranslated() + "
");
out.println("Character encoding: "+req.getCharacterEncoding()+ "
");
out.println("Query string: " + req.getQueryString() + "
");
out.println("Content length: " + req.getContentLength() + "
");
out.println("Content type: " + req.getContentType() + "
");
out.println("Remote user: " + req.getRemoteUser() + "
");
out.println("Remote address: " + req.getRemoteAddr() + "
");
out.println("Remote host: " + req.getRemoteHost() + "
");
out.println("Authorization scheme: " + req.getAuthType() + "
");

}
} //end of class
54 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Request object handling

So far, all of our servlet examples have only used the response object, but not

the request object. This example shows how to process the data in the

request. We assume that this servlet is always called using a POST request,
and have therefore chosen to implement the doPost request handling method.

doPost method
Incidentally, this servlet has been designed to handle the particular type of
request from the HTML page that was generated in the previous servlet

example. In that HTML page, the user could fill out information in the form

and submit it. The action in the HTML form causes the HTMLFormHandler

servlet to be invoked, and the doPost request handler method to be called:

<FORM METHOD="POST"
ACTION="itso.servjsp.servletapi.HTMLFormHandler">

In the doPost method, we handle the HttpServletResponse in the same way as

before, except that this time, we are also handling the HttpServletRequest.

Getting form values
We use the getParameter method of the request to extract the values of the

request parameters (name/value fields passed in from the HTML page). We

extract parameters named firstname and title from the request:

req.getParameter("firstname")
req.getParameter("title")

These are two of the input fields that were passed from the HTML form. The

getParameter method requires as an argument the name of the parameter

that we want to extract (so it must be known), and returns the value of that

parameter, or null. To get a list of the all parameter names, we could use the

getParameterNames method. This method returns an enumeration of all the

parameter names in the request, which we could then iterate through to get

the individual parameter values.

To extract the value of the tools parameter, however, we must apply a slightly

different technique. The tools’ parameter is a multi-value input field (in this

case, a checkbox). Because there could be more than one value to extract, we

use the getParameterValues method, which returns an array of values.

General request properties
We can pull environment properties and other information about the client

from the HttpServletRequest object and echo them to the response. We choose

to put all this code in a separate method, getReqInfo, for ease of use.
Chapter 4. Servlets 55

The HTML page that this servlet generates is shown in Figure 43.

Figure 43. HTML form handler servlet response output

Simple counter servlet
SimpleCounter is another simple servlet, but here we have an instance

counter variable that is initialized in the init method (Figure 44).
56 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 44. Simple counter servlet

Every time this servlet is invoked, we increment this counter variable,
calledCount, by one. The first time this servlet loads, we initialize the

counter to 0. Subsequent invocations keep incrementing the counter.

Persistence
This example demonstrates the persistence property of servlets, where an

instance variable can remain active for the life of the servlet. Every time a

servlet thread is spawned to handle the servlet request, it has access to this

global instance variable. This could be useful in the case where these

instance variables take a long time to initialize, such as database

connections, and we want to set them once and reuse them with each

invocation, without having to incur the initialization overhead each time.

This is a commonly used technique, particularly when we are only

initializing data, and then reading global variables, as is the case with

database connections. In this example, however, we are reading and updating

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleCounter extends HttpServlet {

private int calledCount;

public void init(ServletConfig config) throws ServletException {
super.init(config);
calledCount = 0;

}
protected void service(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><BODY>");
out.println("<H2>Servlet API Example - SimpleCounter</H2><HR>");
++calledCount;
out.println("<H4>This servlet has been called: " + calledCount +

" times.</H4>");
out.println("</BODY><HTML>");
out.close();

}
}

Chapter 4. Servlets 57

this global variable. This introduces some issues that you have to consider

when designing your servlets.

Multi-Threaded
Because our requests to this servlet are handled in threads against the same

servlet object, we must implement mechanisms to guarantee thread safety

for these shared instance variables, because we can update them in separate

threads. In other words, there is no guarantee that the line that increments

the counter and the line that prints out the counter will be executed

asynchronously within a thread. So, we must identify critical sections of code,
and synchronize these sections if appropriate.

There are many books that deal with concurrent programming issues,
therefore we do not describe how to do this, but it is an important point to

remember when designing your servlets. Please refer to Appendix E,
“Related publications” on page 433 for a list of useful references.

Servlet initialization parameters
The SimpleInitServlet servlet shows how to retrieve initialization

parameters from the servlet configuration object (Figure 45).

ServletConfig object
The ServletConfig object is a parameter that can be passed into the init
method of the servlet. You can also get the ServletConfig object from the

request object through the getServletConfig method, but it is most commonly

used in the init method to initialize the servlet’s instance variables.

Methods of the ServletConfig object allow us to extract the parameter

information from this object. This parameter information is in a name/value

pairs format, and can be stored in a file in XML format. We do not have to

read the file, however, because the methods of the class provide us with some

handy helper methods.

What this servlet does
This servlet simply extracts the parameter information from the

configuration file, and stores those values in instance variables. It then

echoes this information back to the client that invoked the servlet. In a

real-life application, these variables would most likely be used to make a

connection to the database, and this connection would be stored in a global
instance variable for later use in the doGet method.
58 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 45. Simple initialization servlet source: ServletConfig parameters

Servlet configuration file
The statement mydriver = config.getInitParameter("driver") extracts the driver

parameter by name from the configuration file, and stores it in a global
instance variable. The parameter information itself is actually stored in XML

format, in a file called SimpleInitServlet.servlet. This file must be found

through the class path. Where this file actually exists depends on your

application server implementation, and is discussed in “Testing the servlets

and JSPs” on page 423.

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class SimpleInitServlet extends HttpServlet {

protected String mydriver;
protected String myurl;
protected String myuserID;
protected String mypassword;

public void init(ServletConfig config) throws ServletException {
super.init(config);
mydriver = config.getInitParameter("driver");
myurl = config.getInitParameter("URL");
myuserID = config.getInitParameter("userID");
mypassword = config.getInitParameter("password");

}
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType("TEXT/HTML");
PrintWriter out = res.getWriter();
out.println("<HTML>");
out.println("<TITLE>Date Display</TITLE>");
out.println("<BODY>");
out.println("<H2>Servlet Initialization Parameters (ServletConfig):

</H2><HR>");
out.println("driver: " + mydriver + "</BR>");
out.println("url: " + myurl + "</BR>");
out.println("password: " + mypassword + "</BR>");
out.println("userID: " + myuserID + "</BR>");
out.println("</BODY></HTML>");
out.close();

}
}

Chapter 4. Servlets 59

For VisualAge for Java testing, the file can be put into

d:\IBMVJava\ide\project_resources\..yourproject..\itso\servjsp\servletapi.

The XML configuration file used in this example is shown in Figure 46. Here

we have specified four parameters, for demonstration purposes only. These

could be used to make a connection to a database.

Figure 46. Servlet configuration file for simple initialization servlet

Understanding the configuration file format
Figure 47 shows the XML format of a configuration file. The WebSphere

Application Server supports XML configuration files in this format.

Figure 47. General XML configuration file format

<?xml version="1.0"?>
<servlet>
 <code>itso.servjsp.servletapi.SimpleInitServlet</code>
 <init-parameter value="COM.ibm.db2.jdbc.app.DB2Driver" name="driver"/>
 <init-parameter value="itso" name="password"/>
 <init-parameter value="jdbc:db2:sample" name="URL"/>
 <init-parameter value="itso" name="userID"/>
</servlet>

<?xml version="1.0"?>
<servlet>
 <code>itso.servjsp.servletapi.SimplePageListServlet</code>
 <description>Shows how to use PageListServlet class</description>
 <init-parameter name="name1" value="value1"/>
 <page-list>
 <default-page>
 <uri>/index.jsp</uri>
 </default-page>
 <error-page>
 <uri>/error.jsp</uri>
 </error-page>
 <page>
 <uri>/itso/OutputA.jsp</uri>
 <page-name>pageA</page-name>
 </page>
 <page>
 <uri>itso/OutputB.jsp</uri>
 <page-name>pageB</page-name>
 </page>
 </page-list>
</servlet>
60 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Some of the parameters are beyond the scope of this section, however, we

describe a few of the more important parameters that you should know. The

elements (also known as tags) are:

 ❑servlet: The root element. The XMLServletConfig class automatically

generates this element.

 ❑code: The class name of the servlet (without the .class extension), even if
the servlet is in a JAR file.

 ❑init-parameter: The attributes of this element specify a name/value pair to

be used as an initialization parameter. A servlet can have multiple

initialization parameters, each within its own init-parameter element.

 ❑page-list: The elements within this tag specify JavaServer Pages that may

be called by the servlet.

HTTP request handling utility servlet
We next look at a servlet, ServletEnvironmentSnoop. Because the source for

this servlet is rather large, we have chosen to include it in Appendix B,
“Utility servlet and utility JSP” on page 407.

This is a good utility servlet that extracts a lot of information from the

request, and echoes its contents back to the client in the response. You should

spend some time looking through the source code to see what kind of data can

be extracted from a request object, and how to manipulate that data. Use this

servlet as a future reference. Sample output of this servlet is also included in

the appendix.

The ServletEnvironmentSnoop servlet demonstrates the handling of the

following request data:

 ❑Request information—HTTP specific request information

 ❑Request header— data passed in the header of the request, such as the

character and encoding sets

 ❑Request parameters—name/value pairs of parameter data

 ❑Request attribute names—attributes of the class

 ❑Request cookies—an array containing all cookies present in the request

 ❑Servlet configuration—values used for initializing the servlet

 ❑Servlet context attributes—information about the environment where the

application server is running

 ❑Session information—session data associated with the request
Chapter 4. Servlets 61

Additional servlet examples
Now that we have covered some servlet basics, we will demonstrate some

additional servlet techniques. We do not go into painstaking detail about how

some of these work, and you can research the details by reading a more

comprehensive book on servlets. Instead, we will focus on the important

concepts each servlet demonstrates.

Cookie servlet
A cookie is a piece of data passed between a Web server and a Web browser.
The Web server sends a cookie that contains data it requires the next time

the browser accesses the server. This is one way to maintain state between a

browser and a server.

The CookieServlet (Figure 48) demonstrates a servlet which gets and sets a

cookie stored at a client. Initially, the browser may not have sent the cookie

as part of the request, (for example, the first time it is called), so we just

initialize a local calledCount variable to 0. If we are able to get this cookie

from the request, we set the local calledCount to the value of the cookie.

The servlet first tries to get the calledCount by iterating through the cookies

it received as part of the request. If no cookie contains the calledCount item,
then the servlet initializes the calledCount value to 0. This value is then

incremented, and a new cookie instance is created for calledCount and added

to the response.

If we call this servlet from a URL, we find that the first time we call it, the

calledCount is 0. Subsequent calls to the same servlet from this Web browser

will show that we keep incrementing the counter, and storing it into the

cookie sent back to the browser.

This is one way by which we can maintain state between the Web browser

and the server. The major drawback with cookies is that most browsers

enable the user at the client machine to deactivate (not accept) cookies.
62 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 48. Cookie servlet: state tracking using cookies

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CookieServlet extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

int calledCount = 0;
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>CookiesServlet</TITLE><BODY>");
out.println("<H2>Servlet Cookie Example:</H2><HR>");
if (getReqCookie(req, out, "calledCount") == null)

calledCount = 0;
else

calledCount = new Integer(getReqCookie(req, out,
"calledCount")).intValue();

out.print("The value of the cookie calledCount sent in on the request: ");
if (calledCount == 0) out.println

("null - value not sent in on request<HR>");
else out.println(calledCount + "<HR>");
calledCount++;
Cookie cookie = new Cookie("calledCount",

new Integer(calledCount).toString());
res.addCookie(cookie);
out.println("The value of the cookie calledCount set on the response: " +

calledCount);
out.println("</BODY><HTML>");
out.close();

}
private String getReqCookie(HttpServletRequest req, PrintWriter out,

String name) {
Cookie[] cookies = req.getCookies();
if (cookies != null && cookies.length > 0) {

for(int i=0; i<cookies.length; i++) {
if (cookies[i].getName().equals(name))
 return (cookies[i].getValue());

}
}
return null;

}
}

Chapter 4. Servlets 63

URL rewriting servlet
URL rewriting is another way to support state tracking. With URL rewriting,
the parameter that we want to pass back and forth between the Web browser

and client is appended to the URL. URL rewriting is the lowest common

denominator of session tracking, and is used when a client does not accept

cookies. We modified the CookieServlet to implement the same state tracking

mechanism technique, but by using URL rewriting. The URLServlet (Figure

49) demonstrates this technique.

Figure 49. URL servlet: state tracking using URL rewriting

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class URLServlet extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

int calledCount = 0;
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>URLServlet</TITLE><BODY>");
out.println("<H2>Servlet URL Rewriting Example:</H2><HR>");
calledCount = getReqURLInt(req, “calledCount”);
out.println("The value of the url-parm calledCount received in the

request:");
if (calledCount == 0) out.println("null - value not received <HR>");
else out.println(calledCount + "<HR>");
calledCount++;
out.println("The value of the url-parm calledCount sent back: " +

calledCount);
out.print("<HR><P><A HREF=\"itso.servjsp.servletapi.URLServlet");
out.print("?calledCount=" + calledCount +

"\"> Click to reload");
out.println("</BODY><HTML>");
out.close();

}
public int getReqURLInt(HttpServletRequest req, String name) {

int val = 0;
if (req.getParameter(name) != null)

val = new Integer(req.getParameter(name)).intValue();
return val;

}
}

64 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

A real persistent servlet — between servlet life-cycle
In the SimpleCounter servlet (Figure 44 on page 57) we introduced a servlet

that incremented a counter with every request to the servlet. We wanted to

demonstrate that the servlet is persistent between requests.

The problem
If the server is brought down, however, the servlet would be reloaded, and the

counter set back to zero. What if we wanted to store this counter between

servlet life-cycle sessions? Every time the servlet initializes, we want to be

able to reset it to the value of the last servlet life-cycle session.

A solution
We could do this by storing the counter variable in a file, and then loading

this file into the counter variable in the next initialization. In this way, we

have persistence between servlet life-cycle sessions.

The PersistentCounter servlet demonstrates how we might do this. We create

our own object type, SaveServletStats, with a calledCount variable. We make

the SaveServletStats object Serializable, so that we can save it to an

ObjectOutputStream file (we use an object here because serialization is not

supported for native data types, such as int).

The init method gets the file name of the stats file from the ServletConfig,
then rebuilds the SaveServletStats object from the serialized file by using the

ObjectInputStream. Once the SaveServletStats object has been rebuilt, we

now have restored the calledCount value from our last servlet life-cycle

session. If the file does not exist, we initialize it for the first time to zero. The

PersistentCounter.servlet file is shown in Figure 50.

Figure 50. Servlet configuration file for persistent counter servlet

The PersistentCounter servlet is shown in Figure 51. In the doGet method we

save the file after each invocation (which would slow down performance

slightly). To be thread safe, we synchronized this block. We could have put

saving the file in the destroy method, but if the server crashed, we would not

have the interim values.

<?xml version="1.0"?>
<servlet>
 <code>itso.servjsp.servletapi.PersistentCounter</code>
 <init-parameter value="statsfile" name="filename"/>
</servlet>
Chapter 4. Servlets 65

Figure 51. Persistent counter servlet: state tracking in a file

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class PersistentCounter extends HttpServlet {
private int calledCount;
private SaveServletStats stats;
private String filename;

public void init(ServletConfig config) throws ServletException {
super.init(config);
calledCount = 0;
filename = config.getInitParameter("filename");
stats = new SaveServletStats();
if (filename != null) {

try { ObjectInputStream in = new ObjectInputStream(
new FileInputStream(filename + ".ser"));

stats = (SaveServletStats) in.readObject();
in.close(); }

catch (Exception e) { e.printStackTrace(); }
}

}
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType("TEXT/HTML");
PrintWriter out = res.getWriter();
calledCount++;
out.println("<HTML><TITLE>PersistentCounter</TITLE><BODY>");
out.println("<H4>This servlet has been called: </H4>
");
out.println("" + calledCount + " times since the servlet was loaded

THIS servlet life-cycle session
");
out.println("" + stats.calledCount + " times since the servlet was

loaded ALL servlet life-cycle sessions
");
out.println("</BODY></HTML>");
stats.calledCount++;
synchronized (this) {

if (filename != null) {
ObjectOutputStream outstats = new ObjectOutputStream(

new FileOutputStream(filename + ".ser"));
outstats.writeObject(stats);
System.out.println("Saving stats file: " + stats.calledCount);
outstats.close(); } }

out.close();
} }
66 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Synchronizing access to our instance variables slows down the performance

of this servlet, but it guarantees that only one thread can update the data at

a time. This trade-off between servlet performance and data integrity is a

common issue you must deal with when designing servlets.

The object that we are saving in serialized format is of type SaveServletStats

(Figure 52).

Figure 52. SaveServletStats: serialized object

The file that stores the serialized object is written to the directory:

d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment <== VA Java
c:\Winnt\system32 <== WebSphere

You can delete this file to restart the counter at zero.

User sessions
We have introduced several approaches to session and state tracking

between Web browsers and the Web server. One limitation with our first two

counter servlet examples, SimpleCounter (Figure 44 on page 57) and

PersistentCounter (Figure 51 on page 66), is that they maintain the counter

variable globally, within the servlet session, not by user.

We also showed a couple of session tracking mechanisms at the user level,
CookieServlet (Figure 48 on page 63) and URLServlet (Figure 49 on page 64),
where we maintain the counter variable per user, between multiple requests

from the same Web browser to the Web server. In these methods, the

developer is responsible for manually managing all of the session information

within the code.

HttpSession
Luckily, the Java Servlet API has a class, HttpSession, which supports

built-in session tracking between the client and the server, by user. HTTP is,
by design, a stateless protocol. The HttpSession interface allows a server to

use several approaches to track a user’s session, or state, and makes it easy

for the developer to use. The session information is managed at the user

level.

package itso.servjsp.servletapi;
import java.io.*;
public class SaveServletStats implements Serializable {

public int calledCount = 0;
}

Chapter 4. Servlets 67

The Java Servlet API supports two ways to associate multiple requests with

a session: URL rewriting and cookies. In either case, the implementation

details in the servlet are the same. A unique session ID is used to track

multiple requests from the same client to the server, and this is what is

passed as the URL or cookie parameter. The actual session object that we are

tracking is maintained on the server.

Cookies
Session tracking through HTTP cookies is the most commonly used session

tracking mechanism. In this way, the servlet container sends a cookie to the

client, and the client will return the cookie on each subsequent request. The

name of the session tracking cookie is JSESSIONID.

Although it is sent as a cookie, you as the developer do not need to

manipulate it as such; the HttpSession class does all that for you.

Using HttpSession
Using HttpSession makes it easy for the developer to maintain and access

session information within a servlet. It associates an HTTP client with an

HTTP session, and it persists over multiple connections by the same user.

User session counter servlet
The UserSessionCounter servlet (Figure 53) demonstrates how to keep a

session counter by user, using the HttpSession tracking technique.

The flow of this servlet can be described in the following steps:

 ❑We get a handle to a session object using the getSession method of the

request. This method returns the current valid session associated with

this request and user. This method takes a boolean argument, true means

a new session should be created if none exists, false only returns an

existing session, or null.

 ❑If it is a new session, or if the session does not contain our object, we must

add an object into the session of the type that we want to keep around,
using the putValue method of HttpSession. In this case, the

SaveServletStats object (Figure 52 on page 67) contains the counter

variable.

 ❑We now have to create a reference to the SaveServletStats object in the

servlet. We use the getValue method of HttpServlet to retrieve this object.

Once you have a reference to your object through getValue, you can just

manipulate the object as needed; updates to the object are automatically

stored as part of the session object.
68 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 53. User session servlet: state tracking by user

Session object types
As you can see, you can store different object types in a session, distinguished

by name. We used the SaveServletStats class (Figure 52 on page 67) as a

session object.

package itso.servjsp.servletapi;
import java.io.*;
import java.util.*;
import java.lang.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class UserSessionCounter extends HttpServlet {
private int calledCount;

public void init(ServletConfig config) throws ServletException {
super.init(config);
calledCount = 0;

}
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType("TEXT/HTML");
PrintWriter out = res.getWriter();

HttpSession session = req.getSession(true);
if (session.isNew() || session.getValue("usersession")==null) {

session.putValue("usersession", new SaveServletStats());
}
SaveServletStats ustats =

(SaveServletStats)session.getValue("usersession");
calledCount++;
ustats.calledCount++;
out.println("<HTML><TITLE>SessionCounter</TITLE><BODY>");
out.println("<H4>This servlet has been called: </H4>
");
out.println("" + calledCount + " times since the servlet was loaded

THIS servlet life-cycle session
");
out.println("" + ustats.calledCount + " times since the servlet was

loaded by this user
");
out.println("</BODY></HTML>");
out.close();

}
}

Chapter 4. Servlets 69

JDBC servlet
In JDBCInitServlet (Figure 54 and Figure 55) we extend the

SimpleInitServlet example of Figure 45 on page 59 to actually make a

connection to a DB2 database from the variables we initialize from the

servlet configuration file. This example demonstrates how to make a

connection to an external resource, and print the results back in the

response.

Figure 54. JDBC servlet: part 1 — connecting to a JDBC database

package itso.servjsp.servletapi;
import java.io.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class JDBCInitServlet extends SimpleInitServlet {
protected Connection conn = null;

public void init(ServletConfig config) throws ServletException {
super.init(config);
try {

// load JDBC driver
Class.forName(mydriver).newInstance();
conn = DriverManager.getConnection(myurl, myuserID, mypassword);
System.out.println("Connection successful..");

}
catch (SQLException se) { System.out.println(se); }
catch (Exception e) { e.printStackTrace(); }

}
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType("TEXT/HTML");
PrintWriter out = res.getWriter();
out.println("<HTML>");
out.println("<TITLE>JDBC Init Connection</TITLE>");
out.println("<BODY>");
try { executeSQL(out); }
catch (SQLException se) { se.printStackTrace(); }
out.println("</BODY></HTML>");
out.close();

}
70 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 55. JDBC servlet: part 2 — SQL access

The JDBCInitServlet extends the SimpleInitServlet. This demonstrates that

we can consider designing base servlet classes at an application level and

then extend them for a specific function. This servlet was built primarily to

demonstrate functionality; exception handling has been left out in order to

keep the code concise.

We choose to extend the SimpleInitServlet, and override the doGet method to

make our processing specific to this example. The executeSQL method

performs the actual SQL database calls.

This servlet connects to the SAMPLE database that is installed with DB2. It

must first load up the database driver and make the connection. In this case,
we choose to make the connection object (Connection conn) a shared instance

variable, which we reuse from servlet request to servlet request, but initialize

only once.

The connection information (user ID, password, URL, and driver) is specified

in the JDBCInitServlet.servlet file, which must be copied to the appropriate

directory.

public void executeSQL(PrintWriter out) throws SQLException{
Statement stmt = conn.createStatement();
String sql = "SELECT * FROM DEPARTMENT";
stmt.executeQuery(sql);
ResultSet rs = stmt.getResultSet();
int count = 1;
while (rs.next()) {

out.println(""+rs.getString("DEPTNAME")+"
<BLOCKQUOTE>");
String sql2 = "SELECT * FROM EMPLOYEE WHERE WORKDEPT = '" +

rs.getString("DEPTNO") + "'";
Statement stmt2 = conn.createStatement();
stmt2.executeQuery(sql2);
ResultSet rs2 = stmt2.getResultSet();
while(rs2.next()) {

out.println(rs2.getString("FIRSTNME") + " " +
rs2.getString("LASTNAME") + "
");

}
out.println("</BLOCKQUOTE>");

}
}
}

Chapter 4. Servlets 71

Servlet tag with SHTML
With the SHTMLServlet, we demonstrate how to make the Web application

server dynamically generate part of its HTML file. Using the servlet tag

technique, the server converts a section of an HTML file into a dynamic

portion each time the document is sent to the client. This dynamic portion

invokes an appropriate servlet, and inserts the response of that server in the

HTML page that is sent to the Web client. Initialization and other servlet

parameters can be passed through the tag syntax, similar to the way an

applet’s parameters are set in the HTML. Here, the Web browser is calling

the servlet indirectly, through the SHTML page. The Web server is

responsible for including the output of the specified servlet in the HTML

response.

The HTML syntax is as follows:

<servlet> name="myServlet" code="package.classname" </servlet>

Figure 56 shows the HTML that we used to call our servlet, and Figure 57

shows the servlet whose response is dynamically included between the tags.
Notice that this servlet only generates a part of the total response back to the

Web client.

Figure 56. SHTML file: servlet include (SHTMLServlet.shtml)

The <SERVLET> tag has been replaced with <jsp:include> in JSP 1.0. See

“Calling a servlet from a JSP” on page 107 for examples of how to invoke a

servlet from a JSP, which is a more modern technique to accomplish the same

purpose.

To get this example working in WebSphere and VisualAge for Java, you must

associate the .shtml extension with the JSP 0.91 compiler (it does not work

with JSP 1.0). See “Additional servlet examples” on page 424 for instructions.

Because this technique is not commonly used, we do not elaborate further on

this technique, but rather focus on JavaServer Pages (JSPs) and other

server-side techniques in the chapters that follow.

<HTML><BODY>
<H2>Start of SHTML Servlet Example, the following lines are from the servlet:
</H2> <HR>
<SERVLET name="SHTMLServlet”

CODE="itso.servjsp.servletapi.SHTMLServlet"> </SERVLET>
<HR> <H2>ENd of servlet include</H2>
</HTML></BODY>
72 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 57. SHTML servlet: included servlet

Servlet interaction techniques
In our examples so far, we have demonstrated various servlet concepts and

techniques. In most cases, these examples consisted of stand-alone servlet

programs that handled a request and returned a response.

In the real world, servlets would not be stand-alone programs, but rather,
they would be grouped together as part of an application; and the application

components could consist of servlets, shared objects, and other resource files,
such as HTML and JSPs. We call this our Web application in the WebSphere

Application Server environment.

It would be expected that the servlets of an application would need some way

to communicate and interact, either with each other or with the resources of
the application. The ServletContext object, which we describe in more detail
in “Application level scope” on page 89, provides a way for us to define this

Web application level, and the resources that it can access and interact with.

This section describes various techniques for servlet interaction and

communication. We will discuss the following types:

 ❑Servlet collaboration: Two techniques for servlet collaboration are servlet

filtering and chaining. Here multiple servlets collaborate on producing a

single response for a client. The servlets themselves are not really

interacting directly with each other, rather, the Web application server is

responsible for tying the servlets together.

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SHTMLServlet extends HttpServlet {

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PrintWriter out = res.getWriter();
out.println("<HR><H4>Servlet API Example - SHTMLServlet</H4>");
out.println("<H4>Basic included servlet...</H4><HR>");

}
}

Chapter 4. Servlets 73

 ❑Calling servlets from servlets: Since servlets are Java programs, they can

do anything a standard Java program can do, such as make a network

connection. In this way, we have implicit servlet interaction. Additionally,
because a servlet is just a Java class, we can instantiate and call a

servlet’s public methods.

 ❑Response redirection: We can redirect the servlet response to another

application resource, such as another servlet or an error page (HTML or

JSP). We discuss JSPs, and their interactions with servlets, in detail in

Chapter 5, “JavaServer Pages” on page 95. They are just mentioned here

as another servlet resource.

 ❑Request dispatching: Through the RequestDispatcher object, we can

forward a request to another servlet, which can handle the request and

return the response. Additionally, we can include directly another servlet’s

response within the context of a calling servlet. We can use request

dispatching to dispatch the handling to another active application

resource.

 ❑Resource usage: We can interact with an application’s resources through

the servlet context. The ServletContext object allows us access to these

resources through the getResource method.

 ❑Sharing of objects in scope: There are three levels of object scope for a

servlet. Application scope is between all servlets in the same application,
and is accessed through the ServletContext object. User session objects are

accessed through the HttpSession object, and request level objects through

the servlet request.

We will provide a more detailed discussion, and some examples for each of
these techniques.

Servlet collaboration: filtering and chaining
If multiple servlets are needed to produce a response to a particular client,
then the normal procedure for producing HTML responses becomes a little

more complex. Two ways for multiple servlets to collaborate on the response

are filtering and chaining. We will discuss how these techniques work in the

WebSphere Application Server environment.

Note: We recognize that sometimes the terms filtering and chaining are used

interchangeably. However, in our discussion here, we use filtering to refer to

only the MIME type filtering.
74 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlet MIME filtering
In servlet filtering, the servlet changes the MIME type of the response it

sends from text/html to a user-defined MIME type. When using text/html,
the Web application server would normally send the response straight back

to the browser. With our own MIME type, we configure the Web application

server to associate the MIME type with a particular servlet, and the output

of the first servlet is used as input to the second servlet. In this way, servlets

can filter their output as input to other servlets. Figure 58 shows the servlet

filtering process flow.

Figure 58. Servlet filtering process flow

In taking the output of one servlet, and using it as input to another servlet,
this is useful for translation or substitution, for example, if you want to

convert from the XML of one servlet into HTML for the user. Servlet filtering

may have to be explicitly enabled in the Web Application Server through the

httpd.properties, enable.filters=true property.

See “Servlet interaction techniques” on page 426 for instructions on how to

set up this example.

Figure 59 shows how we can write to a specially defined MIME type from one

servlet. On the server, we define a second servlet to be the handler of this

MIME type (Figure 60).

Web Application Server

Servlet1

Response

Servlet2

User
MIME

Browser Response
Request

MIME
Text/HTML
Chapter 4. Servlets 75

Figure 59. Servlet filtering example — MIME caller

Figure 60. Servlet filtering example — MIME handler

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FilterFirst extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/Deb");
PrintWriter out = res.getWriter();
out.println("<H2>Servlet API Example - FilterFirst</H2><HR>");
out.println("<H4>Output from the FilterFirst servlet</H4>");
out.close();

}
}

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FilterSecond extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
//reading the output from the first servlet..
BufferedReader in = req.getReader();
String line;
out.println("<HTML><BODY>");
while((line = in.readLine()) != null)
 out.println(line);
out.println("<H4>This part of the output produced

by the second filter servlet..</H4>");
out.println("</BODY></HTML>");
out.close();

}
}

76 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlet chaining
In servlet chaining, multiple servlets are called for a single client HTTP

request, each servlet providing part of the HTML output. Each servlet

receives the original client HTTP request as input, and each servlet produces

its own output independently. Figure 61 shows the servlet chaining process

flow.

Figure 61. Servlet chaining process flow

WebSphere provides a ChainerServlet (in com.ibm.websphere.servlet.filter)
that is invoked through a servlet alias. This servlet is specified on the

original request, and multiple servlets are specified in an initialization

parameter as the target:

Parameter name: chainer.pathlist
Parameter value: /chainFirst /chainSecond

Each servlet is called in the order specified on the alias, and the output

HTML is made up of the output from all of the servlets.

Servlet filtering and chaining have the advantage of allowing the Web

developer to create modular servlets that can, for example, output standard

HTML headers and footers or provide common dynamic content for pages.

Figure 62 and Figure 63 show how two servlets can be used in collaboration

to produce a single output response. Notice that the second servlet must

process the output of the first servlet, in order to produce the desired

composite result. One possible application of this technique might be when

one servlet produces as its output an XML formatted response, and we chain

it to another servlet that wraps the appropriate style sheet around the XML

before sending it back to the browser.

Web Application Server

Response1
Composite
Response

Response2

Browser

ChainerServlet

Servlet1

Servlet2
Chapter 4. Servlets 77

Figure 62. Servlet chaining: first servlet in the chain process

Figure 63. Servlet chaining: second servlet in the chain process

See “Servlet interaction techniques” on page 426 for instructions on how to

set up this example.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ChainerFirst extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>ChainerFirst</TITLE><BODY>");
out.println("<H2>Servlet API Example - ChainerFirst</H2><HR>");
out.println("<H4>This part of the output produced by

the first servlet..</H4>");
}
}

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ChainerSecond extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType(req.getContentType());
PrintWriter out = res.getWriter();
//Need this to read through the output of the last servlet:
BufferedReader in = req.getReader();
String line;
while((line = in.readLine()) != null)
 out.println(line);
out.println("<H4>This part of the output produced

by the second servlet..</H4>");
out.println("</BODY></HTML>");
out.close();

}
}

78 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Calling servlets from servlets
By using standard features of the Java language, such as the built-in

networking support of the java.net package, a servlet can access another

servlet’s resources in a number of different ways.

A servlet can make an HTTP request to another servlet, and filter this

response back to the client. By opening a connection to a URL, an HTTP

request can be made, and a response received. In this way, the servlet is

acting as both a client and a server-side process, and it has access to

resources that could be on another server. There is really no magic here, any

Java program can theoretically perform this kind of function.

A servlet can also instantiate a servlet object, and call its public methods

directly, if the called servlet class is found relative to the original servlet’s

scope (which is usually on the same server). To instantiate a servlet object,
you can use these methods:

 ❑Getting the object via servlet context: Using the ServletContext object, we

can get access to any other servlets that are part of the Web application

that we defined:

myHttpServlet myServlet =
getServletConfig().getServletContext().getServlet("myServlet");

 ❑Using class instantiation: This is just standard Java class instantiation,
and we just have to find the servlet class in the class path of the Web

application:

myHttpServlet myServlet =
(myHttpServlet)Class.forName("myServlet").newInstance()

This technique was common in the JSDK 2.0. We will not show any

examples of this technique because request dispatching, available in

JSDK 2.1, is more preferred. It does, however, demonstrate one technique

for servlet-to-servlet interaction.

Response redirection
We can redirect the response of the servlet to another application resource.
This resource may be another servlet, an HTML page, or a JSP. The resource

(URL) must be available to the calling servlet, in the same servlet context.

There are two forms of response redirection that we discuss:

 ❑Sending a standard redirect: Using a response.sendRedirect("myHtml.html")
page sends the HTML page as the response. If this page were another

servlet, that servlet does not have access to the original request object, but
Chapter 4. Servlets 79

its response would be sent. To have access to the request object, you must

use the request dispatching technique discussed below.

 ❑Sending a redirect to an error page: Here, an error code is sent as a

parameter of the method, as in response.sendError(response.SC_NO_CONTENT).
The error numbers are predefined constants of the response. The defined

error page is displayed with the appropriate error message. What this

page looks like is dependent on how this feature is configured for the

application.

Figure 64 shows a servlet which redirects its response conditionally to either

an error page, using the sendError method, or a standard HTML page, using

the sendRedirect method, depending on the contents of the request. This

servlet example is called from a form POST in an HTML page, generated by

the servlet HTMLFormGeneratorRedirect (subclass of
HTMLFormGenerator).

Figure 64. Response redirection servlet: redirecting using two techniques

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HTMLFormHandlerRedirect extends HTMLFormHandler {

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>HTMLFormHandler</TITLE></BODY>");
out.println("<H2>Servlet API Example -

HTMLFormHandlerRedirect</H2><HR>");
out.println("Hi " + req.getParameter("firstname") + ",<P>");
String title = req.getParameter("title");
if (title.equals("Web Architect"))

res.sendError(res.SC_BAD_REQUEST, "Sorry, but Web architects can't
see the page");

else res.sendRedirect("HTMLFormHandlerRedirect.html");
out.println("And have worked with the following tools:
");
out.println("</BODY></HTML>");

}
}

80 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Request dispatching
When building a Web application, it is often useful to forward the processing

of a request to another servlet, or to include the output of another servlet in

the response. The RequestDispatcher interface provides a mechanism to

accomplish this, by defining a request dispatcher object that receives a

request from the client and sends it to any resource to be further processed.

Similar to response redirection, this resource may be another active server

resource, such as a servlet or JSP file, and the resource (URL) must be

available to the calling servlet, in the same servlet context. Unlike response

redirection, however, the request object is available to the called resource, in

other words, it remains in scope.

We define an active application resource as one which can handle the

request, such as another servlet or a JSP file (something in this case which

has access to the request object). A passive resource would be an HTML file,
which cannot explicitly handle the request, but is available to the

application, usually in the document root.

An object implementing the RequestDispatcher interface may be obtained by

the ServletContext through the getRequestDispatcher method. This method

takes a String argument describing a path within the scope of the

ServletContext. The path must be relative to the root of the ServletContext.

There are two ways to use a request dispatcher object:

 ❑RequestDispatcher.forward: Forwards the responsibility of processing the

request and creating the response to another active resource. It is illegal
to use this method if a reference to the PrintWriter output object has

already been made (which is responsible for sending the response).
HTMLFormHandlerDispatcher1 (Figure 65) calls DispatcherForward

(Figure 66) using the forward method to hand off the responsibility of
processing the request and sending the response from the calling servlet

to the called servlet.

 ❑RequestDispatcher.include: The include method of the RequestDispatcher

interface provides the calling servlet the ability to respond to the client,
but to use the included object’s resource for part of the reply. Here, it can

have the PrintWriter output object open, because the calling servlet is still
responsible for handling the request. The called resource, however, cannot

set headers in the client response. HTMLFormHandlerDispatcher2

(Figure 67) calls DispatcherInclude (Figure 68) where we are using these

two servlets together to produce a single response. Control is returned to

the calling servlet.
Chapter 4. Servlets 81

In both the forward and include methods, the request object remains in the

scope of the called object. The primary point to remember here is that when

using forward, you must handle all writing of the response in the called

servlet. When using include, you can write in either, or both, but you can only

set the headers in the calling servlet.

The HTMLFormHandlerDispatcherX servlets are invoked from an HTML

form generated by appropriate HTMLFormGeneratorDisplatcherX servlets.

Figure 65. Request dispatching servlet: calling servlet through forward method

Figure 66. Request dispatching servlet: called servlet through forward method

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HTMLFormHandlerDispatcher1 extends HttpServlet {

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

 RequestDispatcher rd = getServletContext().getRequestDispatcher
("/servlet/itso.servjsp.servletapi.DispatcherForward");

 rd.forward(req, res);
}
}

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DispatcherForward extends HttpServlet {

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><BODY>Start of FORWARDED request");
out.println("<P>Hi " + req.getParameter("firstname"));
out.println("
I see you are a " + req.getParameter("title"));
out.println("<P>End of request</BODY></HTML>");

}
}

82 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 67. Request dispatching servlet: calling servlet through include method

Note: You must flush the output before including the servlet, otherwise the

output may be in the wrong order.

Figure 68. Request dispatching servlet: called servlet through include method

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HTMLFormHandlerDispatcher2 extends HttpServlet {

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><BODY>Start of INCLUDED request");
out.println("<P>Hi " + req.getParameter("firstname"));
out.flush();
RequestDispatcher rd = getServletContext().getRequestDispatcher

("/servlet/itso.servjsp.servletapi.DispatcherInclude");
rd.include(req, res);
out.println("<P>End of request</BODY></HTML>");

}
}

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DispatcherInclude extends HttpServlet {

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

PrintWriter out = res.getWriter();
out.println("<HR>I see you are a " + req.getParameter("title"));
out.println("<P>End of include<HR>");

}
}

Chapter 4. Servlets 83

Resource usage
In request dispatching, discussed above, we can only dispatch to another

active application resource, such as another servlet. We described passive

application resources as elements such as HTML files.

We have shown that we can redirect to an application’s resources, such as

HTML files. But how do we get access to this application’s resources directly,
without having to redirect?

We can interact with an application’s passive resources through the servlet

context. The ServletContext object allows us access to these resources

through the getResource or getResourceAsStream methods:

 ❑getResource: This method returns a URL object to a resource known to the

servlet context, and we can access the resource as a URL object:

URL url = servletContext.getResource("resourcefilename");

 ❑getResourceAsStream: This method allows us to read the resources body

directly as an InputStream that we can manipulate:

InputStream is = servletContext.getResourceAsStream("resourcefilename");

The ResourceHandler servlet (Figure 69) shows how we can implement these

objects. In this example, we are accessing the HTML file shown in Figure 70.
We reference it as a URL, through the getResource method, and also as an

input stream, through the getResourceAsStream method.

Note that only the TITLE tag of the servlet is displayed in the output, not the

title of the included HTML file.
84 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 69. Resource handler servlet: accessing passive application resources

Figure 70. Resource handler html file: application resource

package itso.servjsp.servletapi;

import java.io.*;
import java.net.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ResourceHandler extends HTMLFormHandler {

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>HTMLFormHandlerResource</TITLE></BODY>");
out.println("<H2>Servlet API Example -

HTMLFormHandlerResource</H2><HR>");
ServletContext sc = getServletContext();
URL url = sc.getResource("HTMLFormHandlerRedirect.html");
out.println("URL name: " + url.getFile());
out.println("<HR> Now the input file html:");
BufferedReader in = new BufferedReader(new

InputStreamReader(sc.getResourceAsStream("ResourceHandlerHTML.html")));
String str;
while ((str = in.readLine()) != null)

out.println(str);
in.close();
out.println("<HR></BODY></HTML>");

}
}

<HTML>
<HEAD>
<TITLE>Servlet Examples - ResourceHandlerHTML</TITLE>
</HEAD>
<BODY>
<h4> Just a plain-old static HTML page </h4>
</BODY>
</HTML>
Chapter 4. Servlets 85

Sharing of objects in scope
We have seen that servlets may interact by calling each other’s methods,
redirecting, and dispatching (forwarding) their requests. Servlets may also

communicate by accessing objects (attributes) which they have in common

with other servlets. Attributes are available to servlets within the scope of
request, session, and application. This section describes the ways in which

objects may be shared at these different levels.

Request level scope
We have already seen how request level scope can be implemented, through

the RequestDispatcher forward method. Here, the request object stays in

scope as it is passed from resource to resource.

But in addition to the objects that are natively part of the request, how do we

pass other objects along with the request? We do this by using the

request.setAttribute method. This method allows us to store an object type by

name, which we can later reference by that name as we forward the request

to another servlet for processing. The object we store can be of a user-defined

type, such as a JavaBean, which is accessible within the called servlet.
Objects at this level remain in scope as long as the request is active, which is

until the server sends back the response.

Figure 71 shows how we can set a request attribute called count. This code

would be found in a calling (forwarding from) servlet in the request

dispatching process.

Figure 71. Request attribute setting code snippet

Figure 72 shows how we can retrieve this attribute. This code would be found

in a called (forwarded to) servlet in the request dispatching process.

Figure 72. Request attribute getting code snippet

//calledCount is the value we are storing to the attribute
int calledCount;
//Cast our int object to Integer, because cannot store native types
request.setAttribute("count", new Integer(calledCount));

//getting count attribute, and casting back to an int
Integer tempCount = (Integer)request.getAttribute("count");
int calledCount = tempCount.intValue();
out.println("Called count is: " + calledCount);
86 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Session level scope
We have discussed the HttpSession object in “User sessions” on page 67. We

showed how multiple requests from the same user to the same servlet can

maintain state between request invocations. This information was managed

at the user session level, and is referred to as session scope.

Session objects may be shared among other servlets and resources as well,
within the scope of the same user. The only restriction is that the session

object can only be shared among servlets that are within the same

application server context of the original session; but this is true for all our

servlet resources.

Session scope sharing example
In this example, we use the UserSessionCounterSetter (Figure 73) to generate

and update the session counter with a variable each time that servlet is

called by the user.

We also create another servlet, UserSessionCounterGetter (Figure 74), which

gets the counter set in the UserSessionCounterSetter servlet. This

demonstrates how these different servlets interact with the same

SaveServletStats session object, through the HttpSession object.

We have also used a variable named calledCount, used in many examples

thus far, to demonstrate the different values that are set when a counter is

incremented by the servlet instance verses the user instance.
Chapter 4. Servlets 87

Figure 73. User session counter servlet: set user session data

package itso.servjsp.servletapi
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class UserSessionCounterSetter extends HttpServlet {
private int calledCount;

public void init(ServletConfig config) throws ServletException {
super.init(config);
calledCount = 0;

}
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType("TEXT/HTML");
PrintWriter out = res.getWriter();

HttpSession session = req.getSession(true);
if (session.isNew() || session.getValue("usersession")==null) {

session.putValue("usersession", new SaveServletStats());
}
SaveServletStats ustats =

(SaveServletStats)session.getValue("usersession");
calledCount++;
ustats.calledCount++;
out.println("<HTML><TITLE>SessionCounter</TITLE><BODY>");
out.println("<H4>This servlet has been called: </H4>
");
out.println("" + calledCount + " times since the servlet was loaded

THIS servlet life-cycle session
");
out.println("" + ustats.calledCount + " times since the servlet was

loaded by this user
");
out.println("</BODY></HTML>");
out.close();

}
}

88 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 74. User session counter servlet: get user session data

Application level scope
We introduced the term application context, where we described how Web

applications are a grouping of servlets and resources that can share

information and interact. This concept of Web applications is expressed in the

ServletContext object.

The ServletContext object defines a servlet’s view of the Web application

within which the servlet is running, and gives the servlet the ability to access

resources that are explicitly available to it. Using such an object, a servlet

can log events, obtain URL references to resources, and get and set attributes

at the application level that are available to other servlets in the same

context, in much the same way as we set attributes at the request and

session level.

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class UserSessionCounterGetter extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("TEXT/HTML");
PrintWriter out = res.getWriter();
HttpSession session = req.getSession(true);
if (session.isNew() || session.getValue("usersession")==null) {

session.putValue("usersession", new SaveServletStats());
}
SaveServletStats ustats =

(SaveServletStats)session.getValue("usersession");
out.println("<HTML><TITLE>SessionCounter</TITLE><BODY>");
out.println("<H4>SessionCounter - UserSessionCounterGetter

servlet</H4>");
out.println("" + ustats.calledCount + " times since the

UserSessionCounter servlet was loaded by this user
");
out.println("</BODY></HTML>");

}
}

Chapter 4. Servlets 89

The ServletContext is rooted at a specified path within a Web server. For

example, a context could be located at http://mywebserver/itsoservjsp. All
requests that start with the /itsoservjsp request path, which is known as the

context path, will share the same servlet context.

ServletContext scope
Only one instance of a ServletContext may be available to the servlets of a

Web application. Servlets that exist in WebSphere that are not part of a Web

application are implicitly part of a default Web application called default_app

in WebSphere Application Server.

ServletContext attributes
The Web application, through the ServletContext object, can also put object

attributes into the context by name, using the setAttribute method. Any

object in the context is available to other servlets that are part of the Web

application through the getAttribute method. These objects may be of any

object type, even JavaBeans.

ServletContext example
By being able to use the ServletContext object, we can share data among

servlets at the application level, within the same servlet context.

In the next example, we demonstrate this servlet interaction technique. We

have two simple servlets, ContextSetAttribute (Figure 75) that sets an

attribute in the ServletContext, and ContextGetAttribute (Figure 76) that gets

the attribute of the servlet context. These two servlets do not interact

directly, but by the sharing of data in the ServletContext object.

Every time the ContextSetAttribute servlet is invoked, it increments a

counter, and stores it in the servlet context, which is available to all servlets

in the application. When ContextGetAttribute is called, it retrieves the last

attribute value set, and prints it to the response.

We call this kind of scope application level scope. For the objects which we

store in the session context, we can say they have application level scope.
This concept ties directly into the application level scope of a JavaBean as

discussed in Chapter 5, “JavaServer Pages” on page 95.

Servlets loaded by System class loader cannot be used for inter-servlet

communication because they are not recognized in the servlet context, even

though they may be part of the same application. To get a list of all other

servlets in the servlet context, you can use the getServletNames method.
90 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 75. Context set attribute servlet: setting application scope attribute

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ContextSetAttribute extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>SetContextAttribute</TITLE><BODY>");
out.println("<H4>ServletContext example - Attribute Setter</H4><HR>");
ServletContext sc = getServletContext();
int calledCount = 0;
if (sc.getAttribute("calledCount") != null) {

Integer tempCount = (Integer)sc.getAttribute("calledCount");
calledCount = tempCount.intValue();

}
out.println("ServletContext, server info: " + sc.getServerInfo() +

"
");
out.println("SerlvetContext, real path: " + sc.getRealPath("") + "
");
out.println("The attribute 'calledCount' value we retrieved: " +

calledCount + "
");
calledCount++;
sc.setAttribute("calledCount", new Integer(calledCount));
out.println("We set the ServletContext attribute 'calledCount' to: " +

sc.getAttribute("calledCount"));
out.println("</BODY><HTML>");

}
}

Chapter 4. Servlets 91

Figure 76. Context get attribute servlet: getting application scope attribute

New features of Java Servlet API 2.2
The following is a summary of new features available in the Java Servlet API

2.2. We did not use the API 2.2 convention in this chapter, because the

WebSphere Application Server currently supports only Version 2.1.

Changes made to the specification
 ❑Introduction of the Web application concept

 ❑Introduction of the Web application archive files

 ❑Introduction of response buffering

 ❑Introduction of distributable servlets

 ❑Ability to get a RequestDispatcher by name

 ❑Ability to get a RequestDispatcher using a relative path

package itso.servjsp.servletapi;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ContextGetAttribute extends HttpServlet {

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>SetContextAttribute</TITLE><BODY>");
out.println("<H4>ServletContext example - Attribute Getter</H4><HR>");
ServletContext sc = getServletContext();
int calledCount = 0;
if (sc.getAttribute("calledCount") != null) {

Integer tempCount = (Integer)sc.getAttribute("calledCount");
calledCount = tempCount.intValue();

}
out.println("The attribute 'calledCount' value we retrieved: " +

calledCount + "
");
out.println("</BODY><HTML>");
out.close();

}
}

92 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 ❑Internationalization improvements

 ❑Many clarifications of distributed servlet engine semantics

Changes made to the API
 ❑Added the getServletName method to the ServletConfig interface to allow

a servlet to obtain the name by which it is known to the system, if any.

 ❑Added the getInitParameter and getInitParameterNames method to the

ServletContext interface so that initialization parameters can be set at

the application level to be shared by all servlets that are part of that

application.

 ❑Added the getLocale method to the ServletRequest interface to aid in

determining what locale the client is in.

 ❑Added the isSecure method to the ServletRequest interface to indicate

whether or not the request was transmitted via a secure transport such as

HTTPS.

 ❑Replaced the construction methods of UnavailableException, as existing

constructor signatures caused some amount of developer confusion. These

constructors have been replaced by simpler signatures.

 ❑Added the getHeaders method to the HttpServletRequest interface to

allow all the headers associated with a particular name to be retrieved

from the request.

 ❑Added the getContextPath method to the HttpServletRequest interface so

that the part of the request path associated with a Web application can be

obtained.

 ❑Added the isUserInRole and getUserPrinciple methods to the

HttpServletRequest method to allow servlets to use an abstract role based

authentication.

 ❑Added the addHeader, addIntHeader, and addDateHeader methods to the

HttpServletResponse interface to allow multiple headers to be created

with the same header name.

 ❑Added the getAttribute, getAttributeNames, setAttribute, and

removeAttribute methods to the HttpSession interface to improve the

naming conventions of the API. The getValue, getValueNames, setValue,
and removeValue methods are deprecated as part of this change.
Chapter 4. Servlets 93

Summary
We have covered a lot of ground in this chapter:

 ❑We provided an overview of the Java Servlet API, and described how

servlets interact with the Web application server.

 ❑We described the servlet life-cycle, and discussed the important servlet

life-cycle methods of init, service, doGet, doPost, and destroy.

 ❑We introduced a number of servlet examples. In these examples, we

covered the topics of:

 • Life-cycle execution

 • Persistence

 • Multi-threading

 • Servlet initialization

 • State maintaining mechanisms, including:

 • Cookies
 • URL rewriting
 • HttpSession objects

 ❑We discussed various servlet interaction techniques, including:

 • Servlet collaboration

 • Calling servlets from servlets

 • Response redirection

 • Request dispatching

 • Resource usage

 • Sharing of object in scope
94 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

5 JavaServer Pages
In this chapter, we discuss JavaServer Pages and how to use the JavaServer

Pages Version 1.0 specification to create dynamic Web pages.

This chapter begins with a high-level introduction to JavaServer Pages, how

they interact with the application server, and what benefits the technology

offers over previous technologies. Later in the chapter, we provide details on

JavaServer Page syntax elements and offer simple working examples which

demonstrate the use of these elements. Finally, we describe some of the

differences between the JSP 0.91 specification and the 1.0 specification.

In addition to reading this chapter, you may also want to refer to Appendix A,
“JSP tag syntax” on page 401 for a summary of JSP tags and syntax.

If you are unfamiliar with Java servlets, we suggest you read “Servlets” on

page 41 prior to reading this chapter.

If you want to run the examples presented here, refer to Chapter 6,
“WebSphere Application Server” on page 123 and to Chapter 7, “Development

and testing with VisualAge for Java” on page 167. All the examples are

provided on the Internet (see Appendix C, “Using the additional material” on

page 417).
© Copyright IBM Corp. 2000 95

Overview
JavaServer Pages (JSPs) are similar to HTML files, but provide the ability to

display dynamic content within Web pages. JSP technology was developed by

Sun Microsystems to separate the development of dynamic Web page content

from static HTML page design. The result of this separation means that the

page design can change without the need to alter the underlying dynamic

content of the page. This is useful in the development life-cycle because the

Web page designers do not have to know how to create the dynamic content,
but simply have to know where to place the dynamic content within the page.

To facilitate embedding of dynamic content, JSPs use a number of tags that

enable the page designer to insert the properties of a JavaBean object and

script elements into a JSP file. A number of development tools, such as the

WebSphere Studio Page Designer, can be used to visually create a page

containing dynamic contents based on the properties of Java beans (this is

covered in more detail in Chapter 8, “Development with WebSphere Studio”

on page 227).

Here are some of the advantages of using JSP technology over other methods

of dynamic content creation:

 ❑Separation of dynamic and static content

This allows for the separation of application logic and Web page design,
reducing the complexity of Web site development and making the site

easier to maintain.

 ❑Platform independence

Because JSP technology is Java-based, it is platform independent. JSPs

can run on any nearly any Web application server. JSPs can be developed

on any platform and viewed by any browser because the output of a

compiled JSP page is HTML.

 ❑Component reuse

Using JavaBeans and Enterprise JavaBeans, JSPs leverage the inherent

reusability offered by these technologies. This enables developers to share

components with other developers or their client community, which can

speed up Web site development.

 ❑Scripting and tags

JSPs support both embedded JavaScript and tags. JavaScript is typically

used to add page-level functionality to the JSP. Tags provide an easy way

to embed and modify JavaBean properties and to specify other directives

and actions.
96 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Throughout this book, we use the JSP 1.0 specification; however, WebSphere

Application Server 3.02 and Visual Age for Java 3.02 support both JSP 1.0

and JSP 0.91 specifications.

At the time of writing, the JSP 1.1 Specification - Final Release was available

at http://java.sun.com/products/jsp/.

How JavaServer Pages work
JavaServer Pages are made operable by having their contents (HTML tags,
JSP tags and scripts) translated into a servlet by the application server. This

process is responsible for translating both the dynamic and static elements

declared within the JSP file into Java servlet code that delivers the

translated contents through the Web server output stream to the browser.

Because JSPs are server-side technology, the processing of both the static and

dynamic elements of the page occurs in the server. The architecture of a

JSP/servlet-enabled Web site is often referred to as thin-client because most

of the business logic is executed on the server.

The following process outlines the tasks performed on a JSP file on the first
invocation of the file or when the underlying JSP file is changed by the

developer (Figure 77):

 ❑The Web browser makes a request to the JSP page.

 ❑The JSP engine parses the contents of the JSP file.

 ❑The JSP engine creates temporary servlet source code based on the

contents of the JSP. The generated servlet is responsible for rendering the

static elements of the JSP specified at design time in addition to creating

the dynamic elements of the page.

 ❑The servlet source code is compiled by the Java compiler into a servlet

class file.

 ❑The servlet is instantiated. The init and service methods of the servlet are

called, and the servlet logic is executed.

 ❑The combination of static HTML and graphics combined with the dynamic

elements specified in the original JSP page definition are sent to the Web

browser through the output stream of the servlet’s response object.
Chapter 5. JavaServer Pages 97

Figure 77. The JSP processing life-cycle on first-time invocation

Subsequent invocations of the JSP file will simply invoke the service method

of the servlet created by the above process to serve the content to the Web

browser. The servlet produced as a result of the above process remains in

service until the application server is stopped, the servlet is manually

unloaded, or a change is made to the underlying file, causing recompilation.

In the source code examples provided with this book, we have included the

compiled JSP source for the DateDisplay.jsp (Figure 79 on page 108) in the

file _DateDisplay_xjsp.java. This code is useful in understanding the

relationship between JSPs and servlets and to help you understand the role

of the JSP engine in converting a JSP to a servlet.

Components of JavaServer Pages
JavaServer Pages are composed of standard HTML tags and JSP tags. The

available JSP tags defined in the JSP 1.0 specification are categorized as

follows:

 ❑Directives
 ❑Declarations
 ❑Scriptlets
 ❑Comments
 ❑Expressions

This section describes each of these categories in more detail.

JSP

Source

JSP

Parser

Java

Source

Java

Compiler

JSP

Servlet

Web
Page

(HTML)

Web
Browser

Web Server

Request

Result
98 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

HTML tags
JavaServer Pages support all HTML tags. For a listing of HTML tags, refer

to your HTML manual.

JSP directives
A JSP directive is a global definition sent to the JSP engine that remains

valid regardless of any specific requests made to the JSP page. A directive

always appears at the top of the JSP file, before any other JSP tags. This is

due to the way the JSP parsing engine produces servlet code from the JSP

file.

The syntax of a directive is:

<%@ directive directive_attr_name = value %>

Directives are grouped as follows:

page
The page directive defines page dependent attributes to the JSP engine.

<%@ page language="java" buffer="none" isThreadSafe="yes"
errorPage="/error.jsp" %>

The attributes of the page directive are listed in Table 1.

Table 1. Attributes of the page directive

Attribute Name Description

language Identifies the scripting language used in scriptlets in the JSP

file or any of its included files. JSP supports only the value of
“java”. WebSphere extensions provide support for other

scripting languages.
<%@ page language = "java" %>

extends The fully-qualified name of the superclass for which this JSP

page will be derived. Using this attribute can effect the JSP

engine’s ability to select specialized superclasses based on the

JSP file content, and should be used with care.

import When the language attribute of "java" is defined, the import

attribute specifies the additional files containing the types used

within the scripting environment.
<%@ page import = "java.util.*" %>
Chapter 5. JavaServer Pages 99

session
"true" | "false"

If true, specifies that the page will participate in an HTTP

session and enables the JSP file access to the implicit session

object. The default value is true.

buffer
"none" |

"sizekb"

Indicates the buffer size for the JspWriter. If none, the output
from the JSP is written directly to the ServletResponse

PrintWriter object. Any other value results in the JspWriter

buffering the output up to the specified size. The buffer is

flushed in accordance with the value of the autoFlush attribute.
The default buffer size is no less than 8kb.

autoFlush
"true" | "false"

If true, the buffer will be flushed automatically. If false, an

exception is raised when the buffer becomes full.
The default value is true.

isThreadSafe
"true" | "false"

If true, the JSP processor may send multiple outstanding client

requests to the page concurrently. If false, the JSP processor

sends outstanding client requests to the page consecutively, in

the same order in which they were received.
The default is true.

info Allows the definition of a string value that can be retrieved

using Servlet.getServletInfo().

errorPage Specifies the URL to be directed to for error handling if an

exception is thrown and not caught within the page

implementation. In the JSP 1.0 specification, this URL must
point to a JSP page.

isErrorPage
"true" | "false"

Identifies that the JSP page refers to a URL identified in

another JSP’s errorPage attribute. When this value is true, the

implicit variable exception is defined, and its value set to

reference the Throwable object of the JSP source file which

causes the error.

contentType Specifies the character encoding and MIME type of the JSP

response. Default value for contentType is text/html. Default
value for charSet is ISO-8859-1. The syntax format is:
contentType="text/html; charSet=ISO-8859-1"

Attribute Name Description
100 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

include
The include directive allows substitution of text or code to occur at

translation time. You can use the include directive to provide a standard

header on each JSP page, for example:

<%@ include file="copyright.html" %>

The include directive has the attributes shown in Table 2.

Table 2. Attributes for the include directive

taglib
The taglib directive allows custom extensions to be made to the tags known

to the JSP engine. This tag is an advanced feature. Refer to the Sun

JavaServer Page 1.0 specification for more information about this tag.

Declarations
A declaration block contains Java variables and methods that are called from

an expression block within the JSP file. Code within a declaration block is

usually written in Java, however, the WebSphere application server supports

declaration blocks containing other script syntax. Code within a declaration

block is often used to perform additional processing on the dynamic data

generated by a JavaBean property.

The syntax of a declaration is:

<%! declaration(s) %>

For example:

<%!
private int getDateCount = 0;
private String getDate(GregorianCalendar gc1)

{ ...method body here...}
%>

Attribute Name Description

file Directs the JSP engine to substitute the text or code specified by

file or URL reference. The URL reference can be another JSP

file.
Chapter 5. JavaServer Pages 101

Scriptlets
JSP supports embedding of Java code fragments within a JSP by using a

scriptlet block. Scriptlets are used to embed small code blocks within the JSP

page, rather than to declare entire methods as performed in a declarations

block. The syntax for a scriptlet is:

<% scriptlet %>

The following example uses a scriptlet to output an HTML message based on

the time of day. You can see that the HTML elements appear outside the

script declarations.

<% if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM)
{%>

How are you this morning ?
<% } else

{ %>
How are you this afternoon ?

<% } %>

Comments
You can use two types of comments within a JSP. The first comment style,
known as an output comment, enables the comment to appear in the output

stream on the browser. This comment is an HTML formatted comment whose

syntax is:

<!-- comments ... -->

The second comment style is used to fully exclude the commented block from

the output and is commonly used when uncommenting a block of code that so

that the commented block is never delivered to the browser. The syntax is:

<%-- comment text --%>

You can also create comments containing dynamic content by embedding a

scriptlet tag inside a comment tag. For example:

<!-- comment text <%= expression %> more comment text ->

Expressions
Expressions are scriptlet fragments whose results can be converted to String

objects and subsequently fed to the output stream for display in a browser.
The syntax for an expression is:

<%= expression %>
102 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Typically, expressions are used to execute and display the String

representation of variables and methods declared within the declarations

section of the JSP, or from JavaBeans that are accessed by the JSP. If the

conversion of the expression result is unsuccessful, a ClassCastException is

thrown at the time of the request.

The following example calls the incrementCounter method declared in the

declarations block and prints the result.

<%= incrementCounter() %>

All primitive types such as short, int, and long can be automatically

converted to Strings. Your own classes must provide a toString method for

String conversion.

WebSphere extensions to JSP scripting
WebSphere Application Server Version 3 offers a number of enhancements

over the JSP 1.0 specification and includes the ability to:

 ❑Use non-Java scripting languages within JSP pages.

 ❑Use multiple scripting languages within the same JSP file.

You can use any of the Bean Scripting Framework (BSF) 1.0 compliant

languages in your JSP by specifying it within the language_name attribute of
the page directive. Information about using BSF compliant scripting

languages can be found at

http://www.alphaWorks.ibm.com/tech/bsf

See Table 3 for semantics of using multiple scripting languages within a JSP.

Table 3. WebSphere scripting language extensions

SpecifySyntax

<jsp:scriptlet language="language_name">

<jsp:expr language="language_name">

<jsp:declaration language="language_name">
Chapter 5. JavaServer Pages 103

http://www.alphaWorks.ibm.com/tech/bsf

Accessing implicit objects
When you are writing scriptlets or expressions, there are a number of objects

that you have automatic access to as part of the JSP standard without having

to fully declare them or import them. Table 4 summarizes these implicit

objects available in JSP 1.0.

You can use these implicit objects directly in your code. The following code

snippet is an example of accessing the out implicit object to display a line of
text in the browser:

out.println("Here is the Date Display JSP");

Table 4. Summary of implicitly declared objects

Object name Type Description

request javax.servlet.HttpServletRequest The request triggering the

service invocation

response javax.servlet.HttpServletResponse The response to the request

pageContext javax.servlet.jsp.PageContext Page context of this JSP. By

accessing this object, you

have access to a number of
convenience objects and

methods such as

getException, getPage, and

getSession providing an

explicit method of
accessing JSP

implementation-specific

objects.

session javax.servlet.http.HttpSession Session object created for

the requesting client

application javax.servlet.ServletContext The servlet context as

obtained from the servlet
configuration object

out javax.servlet.jsp.JspWriter Output stream writer

config javax.servlet.ServletConfig ServletConfig for this JSP

page java.lang.Object Instance of this page’s

implementation class

processing the current

request
104 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Putting it all together
Figure 78 shows an example which combines many of the JSP components

previously discussed in this chapter. In the example, the current date is

displayed together with a count of the number of times the getDate function

has been called.

Note that the counter continues to increment until the servlet is manually

stopped, the Application Server is restarted, or the JSP page is modified,
forcing a page compilation to occur.

Note also that the calledCount variable is a private variable declared outside

of the getDate function. This has implications in a multi-user environment,
as each browser accessing the servlet causes the count to be updated, and is

therefore not thread-safe. For thread-safety, the variable should be accessed

in an access function that implements the synchronized modifier.
Chapter 5. JavaServer Pages 105

Figure 78. Sample JSP demonstrating JSP components (DateDisplay.jsp)

<html>
<title>Date Display</title>
<body>

<!-- D I R E C T I V E S -->
<%@ page language = "java" %>
<%@ page import = "java.util.*" %>
<%@ page contentType = "TEXT/HTML" %>

<!-- S C R I P T L E T S-->
<H3>
<% if (Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM)

{%>
How are you this morning,
<%} else {%>
How are you this afternoon,
<% }

%>
WebSphere 3 User ?
</H3>
<HR>

<!-- A C C E S S I N G I M P L I C I T O B J E C T S -->
<% out.println("Here is the Date Display JSP"); %>

<!-- D E C L A R A T I O N S -->

<%!

private int calledCount = 0;
private String getDate(GregorianCalendar gcalendar) {

StringBuffer dateStr = new StringBuffer();
dateStr.append(gcalendar.get(Calendar.DATE));
dateStr.append("/");
dateStr.append(gcalendar.get(Calendar.MONTH) + 1);
dateStr.append("/");
dateStr.append(gcalendar.get(Calendar.YEAR));
return (dateStr.toString());

}

private int incrementCounter() {
return (++calledCount);

}

%>

<H1> Today's Date is: <%= getDate(new GregorianCalendar()) %> </H1>
<H1> This page has been called: <%= incrementCounter() %> time(s)</H1>
</body>
</html>
106 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

JSP interactions
There are a number of methods that a JSP can use to interact with the Web

environment. Primarily, a JSP will use a JavaBean object to present dynamic

content. However, a JSP can also invoke another JSP page by URL, by

including another JSP or HTML page in the include directive, or by calling a

servlet.

This section describes these interactions.

Invoking a JSP by URL
A JSP can be invoked by URL, from within the <FORM> tag of a JSP or

HTML page, or from another JSP.

To invoke a JSP by URL, use the syntax:

http://servername/path/filename.jsp

For example, to invoke the DateDisplay.jsp, use this URL:

http://localhost/itsoservjsp/DateDisplay.jsp <== WebSphere
http://localhost:8080/itsoservjsp/DateDisplay.jsp <== VA Java

Calling a servlet from a JSP
You can invoke a servlet from a JSP either as an action on a form, or directly

through the jsp:include or jsp:forward tags.

Form action
Typically, you want to call a servlet as a result of an action performed on a

JavaServer Page. For example, you may want to process some data entered

by the user in an HTML form when they click on the Submit button.

To invoke a servlet within the HTML <FORM> tag, the syntax is:

<FORM METHOD="POST|GET" ACTION="application_URI/JSP_URL">
 <!-- Other tags such as text boxes and buttons go here -->

</FORM>

For example:

<form method="POST"
action="/itsoservjsp/servlet/itso.servjsp.jspsamples.DateDisplayServlet">

Figure 79 shows the code to call the DateDisplayServlet from within a JSP.
Chapter 5. JavaServer Pages 107

Figure 79. Sample JSP invoking a servlet from a form (JspToServlet.jsp)

JSP include tag
You can include the output of a servlet in a JSP using the jsp.include tag:

<jsp:include page="/servlet/itso.servjsp.servletapi.SHTMLServlet" />

Figure 80 shows a JSP that includes the servlet that we used in Figure 57 on

page 73.

Figure 80. Sample JSP including a servlet (JspInclude.jsp)

When you run this JSP the output of the servlet is imbedded in the JSP

output.

JSP forward tag
You can forward processing from a JSP to a servlet using the jsp.forward tag:

<jsp:forward page="/servlet/itso.servjsp.servletapi.SHTMLServlet" />

Figure 81 shows a JSP that forwards processing to the servlet that we used

in Figure 57 on page 73.

<HTML>
<HEAD> <TITLE> Call Servlet from JSP </TITLE> </HEAD>
<CENTER>
<H1> Call Servlet from JSP </H1>
<FORM method="POST"

action="/itsoservjsp/servlet/itso.servjsp.jspsamples.DateDisplayServlet">

<H2> DateDisplay Servlet Launcher </H2>
Click the button below to display the current date
<P> <INPUT type="submit" name="CALL_SERVLET" value="Call the Servlet">

</FORM>
</CENTER>
</BODY></HTML>

<HTML><BODY>
<H2> JSP to Servlet </H2>
<HR>
<jsp:include page="/servlet/itso.servjsp.servletapi.SHTMLServlet" />
<HR>
<H2>End of servlet include</H2>
</HTML></BODY>
108 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 81. Sample JSP forwarding processing to a servlet (JspForward.jsp)

When you run this JSP, the output of the processing servlet replaces the

output of the JSP. All output of the JSP is lost.

Calling a JSP from a servlet
Figure 82 shows the DateDisplayServlet’s doPost method, which is called

when the Submit button is clicked. The servlet simply calls the sendRedirect
method of the HttpServletResponse object, directing the response to the

DateDisplay.jsp. This example simply demonstrates the redirection

capability of the response object. In reality, the doPost method could invoke

other methods which process the form data, instantiate other beans that

perform the business logic, and finally redirect the user to the JSP.

Figure 82. DateDisplayServlet demonstrating simple redirection

You can also use the RequestDispatcher object (see “Request dispatching” on

page 81) to invoke a JSP:

getServletContext().getRequestDispatcher("/DateDisplay.jsp").forward(req,resp);

<HTML><BODY>
<H2> JSP to Servlet </H2>
<HR>
<jsp:forward page="/servlet/itso.servjsp.servletapi.SHTMLServlet" />
<HR>
<H2>End of servlet include</H2>
</HTML></BODY>

import javax.servlet.http.*;

public class DateDisplayServlet extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse resp)
throws javax.servlet.ServletException, java.io.IOException {

// Redirect to the DateDisplay JSP page
resp.sendRedirect("/DateDisplay.jsp");

// alternate call to JSP
// getServletContext().getRequestDispatcher("/DateDisplay.jsp").forward(req,resp);

}

Chapter 5. JavaServer Pages 109

PageListServlet Class
IBM provides the PageListServlet class in the com.ibm.servlet package. This

is a subclass of HttpServlet that provides a callPage method to invoke JSPs.

Servlets generated by the WebSphere Studio wizards are subclasses of the

PageListServlet class. Such a servlet must have an associated servlet

configuration file (.servlet) that specifies all the possible JSPs that the

servlet may invoke. See “Servlet configuration file” on page 59 for a

description.

A typical call to invoke a JSP from a PageListServlet is:

callPage("myJSP", request, response);

The name of the JSP can be a short name (alias) that is assigned to the real
file name of the JSP in the servlet configuration file (Figure 83).

Figure 83. Servlet configuration file with JSP names

Because the JSP names used in the callPage method of the servlet are

aliases, a change of directory can be accomplished by changing the servlet

configuration file, without touching the servlet code.

<?xml version="1.0"?>
<!-- This file was generated by IBM WebSphere Studio 3.0.2 -->
<servlet>
 <page-list>
 <default-page>
 <uri>/itsoservjsp/photo/photoResults.jsp</uri>
 </default-page>
 <error-page>
 <uri>/itsoservjsp/photo/photoError.jsp</uri>
 </error-page>
 <page>
 <uri>/itsoservjsp/photo/photoNoData.jsp</uri>
 <page-name>com.ibm.webtools.runtime.NoDataException</page-name>
 </page>
 <page>
 <uri>/itsoservjsp/photo/photoSpecial.jsp</uri>
 <page-name>myJSP</page-name>
 </page>

</page-list>
 <code>itso.servjsp.photo.photo</code>
</servlet>
110 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Invoking a JSP from a JSP
To invoke a JSP file from another JSP file, you can:

 ❑Specify the URL of the second JSP file on the FORM ACTION attribute:

<FORM action="/itsoservjsp/DateDisplay.jsp">

 ❑Specify the URL of the second JSP file in an anchor tag HREF attribute:

 reference-text

 ❑Use the javax.servlet.http.RequestDispatcher.forward method to invoke

the second JSP file (see “Request dispatching” on page 81). This is the

same as using the jsp:forward tag.

Creating dynamic content in JSPs
This section discusses some of the more commonly used tags available in the

JSP 1.0 specification which assist you in creating dynamic content within a

JSP. In addition to describing some of the more commonly used JSP tags, we

also describe how to use the WebSphere-specific tags that provide support for

relational database access.

For a complete description of all tags supported by the JSP 1.0 specification,
please refer to the Sun JavaServer Pages Specification Version 1.0 available

on the Sun Web site.

Standard JSP tags

jsp:useBean
The jsp:useBean tag is used to declare a JavaBean object that you want to

use within the JSP. Before you can use the jsp:getProperty and

jsp:setProperty tags, you must have first declared your JavaBean using the

jsp:useBean tag. When the jsp:useBean tag is processed, the application

server performs a lookup of the specified given Java object using the values

specified in the id and scope attributes. If the object is not found, it will
attempt to create it using the values specified in the scope and class

attributes.

The syntax for inserting a JavaBean is:

<jsp:useBean id="beanInstanceName" scope="page|request|session|application"
typespec>

optional scriptlets and tags
</jsp:useBean>
Chapter 5. JavaServer Pages 111

Here, typespec can be declared using any of the following variations:

class="package.class"
type="package.class"
type="package.class" beanName="package.class"

You can also embed scriptlets and tags such as jsp:getProperty within the

jsp:useBean declaration which will be executed upon creation of the bean.
This is often used to modify properties of a bean immediately after it has

been created.

An example of a simple form of bean instantiation is:

<jsp:useBean id ="DateDisplayBean"
class="itso.servjsp.jspsamples.DateDisplayBean"/>

This example tries to locate an instance of the DateDisplayBean class. If no

instance exists, a new instance is created. The instance can then be accessed

within the JSP using the specified id of DateDisplayBean.

Table 5 describes the jsp:useBean attributes.

Table 5. jsp:useBean attributes

Parameter Name Description

id Identifies the object name within the name space of the

specified scope. This name is used to reference the bean

throughout the JSP file and is case sensitive.

scope Valid values are page, request, session, and application. If
omitted, the value defaults to page scope.
page: Objects declared with page scope are only valid until the

response is sent back from the server or until the request is

forwarded elsewhere. References to objects in page scope are

only valid within the page where the object is declared. Objects

declared in page scope are stored in the pagecontext object.
request: Objects declared within request scope are valid for

the duration of the request and are accessible if the request is

forwarded to a resource in the same runtime. Objects

referenced in request scope are stored in the request object.
session: Session-scope objects are available for the duration of
the session provided that the page is made “session aware”
using the page directive.
application: Application-scope objects are available from

pages that are processing requests within the same Web

application (as defined in the application server setup) and are

valid until the ServletContext object is reclaimed by the

application server. Objects with this scope are stored in the

application object.
112 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

If you do not want to automatically instantiate a bean if it does not already

exist within the specified scope, use the type attribute rather than the

beanName or class attributes. The following line will result in an

InstantiationException if the object specified by the type attribute does not

exist in the session scope, and as a result, the bean will not be instantiated.

<jsp:useBean id="DateDisplayBean"
type="itso.servjsp.jspsamples.DateDisplayBean" scope="session"/>

jsp:getProperty
Once the bean has been declared with jsp:useBean, you can access its

exposed properties through the jsp:getProperty tag, which inserts the String

value of the primitive type or object into the output stream. For primitive

types, the conversion to String is performed automatically. For object types,
the toString method of the object is called.

The syntax for the jsp:getProperty tag is

<jsp:getProperty name="beanName" property="propertyName"/>

class The name of the object’s implementation class, for example:
itso.servjsp.jspsamples.DateDisplayBean. This value is case

sensitive.
Specify the class attribute if you want to instantiate the bean

if it does not already exist within the specified scope.

beanName Specifies the class name or serialized file (.ser) containing the

bean which is used when first creating the bean.

type Identifies the type of the specified object. This allows the

scripting variables type to be declared as the class itself, the

superclass or an interface implemented by the class.
By specifying the type attribute, you can avoid automatic

instantiation of the bean if it does not already exist within the

specified scope, effectively reproducing the behavior of the JSP

.91 create="yes/no" attribute on the <BEAN> tag.
The default value is the value specified in the class attribute.
If the object is not of the specified type, you may receive a

java.lang.ClassCastException.

Parameter Name Description
Chapter 5. JavaServer Pages 113

The jsp:getProperty tag has a number of attributes as defined in Table 6.

Table 6. jsp:getProperty attributes

Figure 84 shows the source code of a JavaBean called DateDisplayBean that

we are referencing in a JSP.

Figure 84. JavaBean to be used by a JSP (DateDisplayBean.java)

Attribute Name Description

name The name (id) of the bean instance specified in the jsp:useBean

tag.

property The name of the property to get.

package itso.servjsp.jspsamples;
import java.util.*;

public class DateDisplayBean {
private int counter = 0;
private String dateString = null;

public DateDisplayBean() {
super();
dateString = buildDateString(new GregorianCalendar());
counter = 0;

}
public String buildDateString(GregorianCalendar gcalendar) {

StringBuffer dateStr = new StringBuffer();
dateStr.append(gcalendar.get(Calendar.DATE));
dateStr.append("/");
dateStr.append(gcalendar.get(Calendar.MONTH) + 1);
dateStr.append("/");
dateStr.append(gcalendar.get(Calendar.YEAR));
return dateStr.toString();

}
public int getCounter() {

return counter;
}
public void setCounter(int newCounter) {

counter = newCounter;
}
public java.lang.String getDateString() {

counter++;
return dateString;

}
}

114 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The example JSP file in Figure 85 below declares the DateDisplayBean and

displays the two properties, dateString and counter.

Figure 85. JSP with jsp:useBean and jsp:getProperty (JspWithBean.jsp)

jsp:setProperty
The properties of beans can be set by using the jsp:setProperty tag. The

syntax for this tag is:

<jsp:setProperty name="beanName" prop_expr/>

For example, to initialize the counter variable used in Figure 85, you could

use the code:

<jsp:setProperty name="DateDisplayBean" property="counter" value="0"/>

The jsp:setProperty tag has a number of attributes, as defined in Table 7.

Table 7. jsp:setProperty attibutes

<html> <title>Date Display Bean </title> <body>
<H1> Date Display with JSP and JavaBean </H1>
<jsp:useBean id="DateDisplayBean"

class="itso.servjsp.jspsamples.DateDisplayBean" scope="session" />
<H2> Today's Date is:

<jsp:getProperty name="DateDisplayBean" property="dateString"/>
</H2>
<H2> This page has been called:

<jsp:getProperty name="DateDisplayBean" property="counter"/>
time(s)

</H2>
</body> </html>

Attribute Name Description

name The name (id) of the bean instance specified in the jsp:useBean

tag.

property The name of the property to set. By setting this value to “*“,
you can automate the setting of properties, provided that

form-element names match the property name. For example, if
a bean has a property called dateString, and the JSP page

contains a text box named dateString, then the dateString

property of the bean will be looked up and set automatically.
For this feature to work, your beans must conform to the

JavaBeans API specification 1.0.
Chapter 5. JavaServer Pages 115

WebSphere-specific tags
WebSphere provides a number of extensions to the JSP language.

tsx:dbconnect
The tsx:dbconnect tag is required to connect to JDBC or ODBC databases.
This tag does not actually make the connection, but rather sets the

connection attributes used by the tsx:dbquery and tsx:dbmodify tags, which

are responsible for making the database connection before interacting with

the database.

The syntax of the tsx:dbconnect tag is:

<tsx:dbconnect id="connection_id"
userid="db_user" passwd="db_password"
url="jdbc:subprotocol:database"
driver="database_driver_name" >

</tsx:dbconnect>

The tsx:dbconnect tag has the attributes shown in Table 8.

Table 8. tsx:dbconnect attributes

param The request parameter name to give to the Bean property.
Request parameters usually refer to the names of HTML form

elements, and are used to implicitly set the value of a

particular bean property based on the value of the HTML form

element. This attribute cannot be used with the value

attribute.

value The new value for the property.

Attribute Name Description

id The name of the connection. This tag is used by the

tsx:dbquery and tsx:dbmodify tags as a reference to the

connection.

userid A valid database user ID. If omitted, the user ID and password

should be specified using the tsx:userid tag.

password The password for the database.If omitted, the user ID and

password should be specified using the tsx:password tag.

url The JDBC URL of the database, for example:
url="jdbc:db2:sample"

Attribute Name Description
116 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The tsx:dbconnect tag does not support JNDI datasource lookup, as in the

example:

url="jdbc/sample"

tsx:dbquery
The tsx:dbquery tag provides the mechanism to get a result set containing

database data. It relies on the connection attributes specified by the

tsx:dbconnect tag, which must be defined before this tag can be used.

The responsibilities of the tsx:dbquery tag are to:

 ❑Reference the connection object attributes created by tsx:dbconnect.

 ❑Establish the database connection.

 ❑Retrieve and cache the result set data.

 ❑Release the connection resource.

The tsx:dbquery tag has the following syntax:

<tsx:dbquery id="query_id" connection="connection_id" limit="value">
SELECT statement

</tsx:dbquery>

The tsx:dbquery tag has the attributes shown in Table 9.

Table 9. tsx:dbquery attributes

When a tsx:dbquery tag is compiled by the JSP engine, the name specified in

the id parameter is used to create a JavaBean of that name containing the

result set. The bean will also have properties that match the names of the

database columns returned in the result set. Figure 87 on page 120

driver The name of the driver used to establish the connection:
driver="COM.ibm.db2.jdbc.app.DB2Driver"

Attribute Name Description

id The name of the query. This becomes the name of the result
bean.

connection The name given to the id attribute specified in the

tsx:dbconnect tag.

limit Specifies the maximum number of rows to return in the result

set. This attribute is optional.

Attribute Name Description
Chapter 5. JavaServer Pages 117

demonstrates using these properties to embed values from the record set

within the formatted output.

If you want to customize the property names within the bean, you can use a

column name alias in the SQL query. The SQL statement below will create a

bean with a property of Dept rather than WORKDEPT:

Select WORKDEPT As Dept from Department

tsx:dbmodify
The tsx:dbmodify tag enables you to perform INSERT and UPDATE SQL

commands on a database. Similar to the tsx:dbquery tag, it relies on the

connection attributes specified by the tsx:dbconnect tag, which must be

defined before this tag can be used.

The tsx:dbmodify tag has the following syntax:

<tsx:dbmodify connection="connection_id">
INSERT/UPDATE/DELETE SQL statement

</tsx:dbmodify>

The attributes for the tsx:dbmodify tag are defined in Table 10.

Table 10. tsx:dbmodify attributes

The example in Figure 86 demonstrates how to insert a row into the

EMPLOYEE table.

Figure 86. Using the tsx:dbmodify tag to insert a row in the sample database

Attribute Name Description

connection The name given to the id attribute specified in the

tsx:dbconnect tag.

<tsx:dbmodify connection="conn" >
insert into EMPLOYEE

(EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, EDLEVEL)
values (

'<%= request.getParameter("EMPNO") %>',
'<%= request.getParameter("FIRSTNME") %>',
'<%= request.getParameter("MIDINIT") %>',
'<%= request.getParameter("LASTNAME") %>',
'<%= request.getParameter("WORKDEPT") %>',
'<%= request.getParameter("EDLEVEL") %>')

</tsx:dbmodify>
118 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

tsx:getProperty
The tsx:getProperty tag is a WebSphere extension to the jsp:getProperty tag.
This implementation includes all the functionality of jsp:getProperty and

adds the ability to introspect a database bean created by the tsx:dbquery or

tsx:dbmodify tags. You can use this tag to get properties from your own

JavaBeans, or to get properties from the JavaBeans created by a call to

tsx:dbquery where the beans properties refer to database columns, as in the

following example:

<tsx:getProperty name="queryid" property="DEPTNAME"/>

tsx:repeat
The tsx:repeat tag is used to iterate over a database query result set using

the optional start and end values as the bounding indexes for the iteration.
The syntax is:

<tsx:repeat index=name start=start_index end=end_index>
</tsx:repeat>

The start and end attributes are optional attributes that can be implicitly or

explicitly set. By default, these values are 0 and the upper bound of the result

set respectively. You can use either attribute on its own or as a pair.

The iteration is complete when either the end value has been reached or an

ArrayIndexOutOfBounds exception is thrown. No output is written until a

complete iteration of the tsx.repeat block is complete. If an

ArrayIndexOutOfBounds exception is thrown during an iteration, no output

is written, and the repeat block is terminated.

The attributes for the tsx:repeat tag are listed in Table 11.

Table 11. tsx:repeat attributes

Attribute Name Description

index The name of the index. This name has JSP file scope and is

case sensitive.

start The optional start index for the iteration, with a default of 0.

end The optional end index for the interaction. The maximum

value for this attribute is 2,147,483,647. If the end attribute is

less than the start attribute, it is ignored. The default is the

number of available values in the bean.
Chapter 5. JavaServer Pages 119

Nesting of tsx:repeat tags is permissible and can be used to provide

sub-category information during a query. For example, for each department

in the department table, you might wish to list each employee associated

with the department. You would do this by nesting tsx:repeat tags as shown

in Figure 87.

Figure 87. Database access JSP demonstrating WebSphere tsx tags

In this example we use the tsx:dbquery tag to select all the departments and

then all the employees within one department. For the second query we use

the deptno property of a department in the WHERE clause. In the inner

repeat loop we list the first name and last name of each employee.

<HTML>
<HEAD> <TITLE>Call Servlet</TITLE> </HEAD>

<H1> Department Listing with a JSP and TSX tags </H1>

<tsx:dbconnect id="conn"
userid="itso" passwd="itso"
url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver">

</tsx:dbconnect>

<tsx:dbquery id="dept" connection="conn" >
 SELECT * FROM DEPARTMENT ;
</tsx:dbquery>

<tsx:repeat index="deptidx">
 <H2> <tsx:getProperty name="dept" property="DEPTNAME" /> </H2>

 <tsx:dbquery id="emp" connection="conn" >
 SELECT FIRSTNME, LASTNAME FROM EMPLOYEE
 WHERE WORKDEPT = '<tsx:getProperty name="dept" property="DEPTNO"/>';
 </tsx:dbquery>

 <tsx:repeat index="empidx">
 <tsx:getProperty name="emp" property="FIRSTNME" />
 <tsx:getProperty name="emp" property="LASTNAME" />
 </tsx:repeat>

</tsx:repeat>
</BODY>
</HTML>
120 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Repeating over nondatabase properties
The tsx:repeat tag is not limited to iterating over the properties provided by

the tsx:dbquery tag.

You can also use this tag to iterate over any indexed property within a

JavaBean class or repeatedly call any method in a JavaBean until an

ArrayIndexOutOfBounds exception is thrown.

Figure 88 shows a JSP that iterates over a JavaBean using a tsx:repeat tag.
Figure 89 shows the source code of the JavaBean with a vector where each

element is an array of two values. The bean provides two get methods to

return the values from the array of a vector element.

Figure 88. JSP using a bean with repeating attributes

Figure 89. JavaBean with repeating attributes

<HTML>
<HEAD> <TITLE> JSP with Repeating Bean </TITLE> </HEAD>
<H1> CD Listing </H1>
<jsp:useBean id="vectorBean"
 class="itso.servjsp.jspsamples.VectorBean" scope="session" />
<tsx:repeat index="i">
 <%= vectorBean.getTitle(i) %> by
 <%= vectorBean.getArtist(i) %>
</tsx:repeat>
</BODY></HTML>

package itso.servjsp.jspsamples;
public class VectorBean {

java.util.Vector cdList = new java.util.Vector();
public VectorBean() {

cdList.addElement(new String[] {"Woman In Me","Shania Twain"});
cdList.addElement(new String[] {"Come On Over","Shania Twain"});
cdList.addElement(new String[] {"When I Call Your Name","Vince Gill"});

}
public String getArtist(int ix) {

try { return ((String[])cdList.elementAt(ix))[1]; }
catch (Exception e) { throw new ArrayIndexOutOfBoundsException(); }

}
public String getTitle(int ix) {

try { return ((String[])cdList.elementAt(ix))[0]; }
catch (Exception e) { throw new ArrayIndexOutOfBoundsException(); }

}}
Chapter 5. JavaServer Pages 121

JSP utility example
See “Utility JSP” on page 415 in Appendix B, “Utility servlet and utility JSP”

for an example of a complex utility JSP that collect useful information about

the WebSphere configuration and the servlet environment.

Differences between JavaServer Page specification
.91 and 1.0

The JSP 1.0 specification contains the following changes and additions over

the JSP .91 specification:

 ❑Tags use XML formatting. For example, the JSP bean declaration tag

<BEAN> is now declared using the syntax <jsp:useBean ...>. Similarly,
WebSphere specific tags such as <REPEAT> are now declared using the

syntax <tsx:repeat>.

 ❑Tags are case sensitive.

 ❑Standard tags use the mixed-case convention of Java code, for example,
jsp:useBean.

 ❑Server-side includes (SSI) have been replaced with the <%@ include %>

directive.

 ❑jsp:getProperty and jsp:setProperty tags have been defined.

 ❑jsp:request has been added, providing runtime forward and include

functionality.

 ❑jsp:include has been added to include resources from other files.

 ❑jsp:plugin has been added.

 ❑Implementation of LOOP, ITERATE, INCLUDEIF and EXCLUDEIF tags have been

postponed pending enhancements to the tag extension mechanism.

 ❑<SCRIPT> </SCRIPT> tags have been superseded with <%! ... %>

There have been other releases of the JSP specification such as .92 and .93.
The additional functionality offered by these releases has not been discussed

in this chapter.
122 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

6 WebSphere
Application Server
In this chapter we describe how to use WebSphere Application Server, which

throughout this chapter will be referred to as WAS.

We explain the administration environment that comes with WAS, how it is

structured, and how you will use it to configure your server environment. For

each of the components within the WAS topology, we show with an example

how they are used in supporting the applications created in this book.

We look at where the physical files have to be placed when you are deploying

applications to the WAS environment. We use our sample applications as

examples for deployment.

We then discuss security in WAS and how you can use it to protect your

applications and resources.
© Copyright IBM Corp. 2000 123

WAS overview
The WAS execution environment is shown in Figure 90.

Figure 90. WebSphere Application Server execution environment

WebSphere
Application Server

DB2 CICS MQ other

access

Node

DataSources, JDBCDrivers

Default Server

Web Application

Servlet JSP

JSP Compiler

Admin Console

HTTP Server
DB2

HTTP Server
htdocs

html

WebSphere
AppServer

hosts
default_host

default_app
servlets
web

myWebApp
servlets
package

web
jsp
html

config
124 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Here is a short description of the major components of WAS:

 ❑WAS contains a plug-in for many HTTP servers, including the IBM HTTP

Server.

 ❑WAS runs on a node (a TCP/IP host name).

 ❑JDBC drivers and DataSources describe how relational databases are

accessed from servlets.

 ❑Multiple servers (for example, the Default Server), each with a servlet

engine, run on the node.

 ❑Servlets and JSPs are grouped into Web applications. A server contains

multiple Web applications.

 ❑An administrative console program maintains the configuration of the

Application Server in a DB2 (or Oracle) database. The configuration

contains information about servers, Web applications, servlets, EJBs, the

JSP compiler, DataSources, and other resources.

 ❑The right side of the diagram shows the directory structure for the HTTP

Server and the Application Server.

The HTTP Server directory contains static HTML files.

The Application Server directory contains the directories for the Web

applications, such as the default application and any user defined Web

applications. For each Web application there is normally a servlets and a

web subdirectory.

 • The servlets subdirectory contains executable code for servlets and

JavaBeans.

 • The web subdirectory contains HTML and JSP files. HTML files are

served to a browser by a special file handling servlet. JSP files are

compiled into servlets the first time they are invoked.

 ❑The code in Web applications can access enterprise resources, such as

relational databases (DB2 and others), CICS, MQSeries, IMS, SAP, and

others. This is normally done using the Common Connector Framework

and WebSphere connection pools.
Chapter 6. WebSphere Application Server 125

WAS administration
The WebSphere administrative model allows you to:

 ❑Configure applications and their components

 ❑Control access to applications (security)

 ❑Perform daily administrative operations

 ❑Analyze usage statistics and optimize performance

WAS provides centralized administration of all your components with an

administrative server tracking all of a domain’s1 contents and activities in an

administrative repository. Details on how to start up a WebSphere

AdminServer can be found in “Starting the WS AdminServer service” on

page 30.

The administrative repository
The repository is the database of information about an administrative

domain, and all its resources. Each resource in a WebSphere administrative

domain corresponds to an object in the repository. So for every Web

application you add to the domain, a matching Web application object,
containing descriptive information about that resource, is created in the

repository.

Administration servers on different machines can all access the same

repository, allowing you to administer the domain from any machine.

The WebSphere Administrative Console
The WebSphere Administrative Console is a graphical administrative client

that enables you to makes requests to an administrative server to access and

make changes to resources in the domain. For example, you can start, stop,
ping, and modify application servers in the WebSphere Administrative

Console, which in turn invokes methods on the resource beans for the

application servers.

For a guide on to how to start the console, see “Starting the Administrative

Console” on page 31.

1 An administrative domain can be comprised of one or more administrative servers who share an administrative

repository.
126 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Navigating the console
The console has three main areas (Figure 91):

 ❑The navigation pane on the left, with Tasks, Types, and Topology pages.

 ❑The content pane on the right, for displaying information based on what

has been selected in the navigation pane.

 ❑The messages pane on the bottom, for displaying high-level messages of
important events.

Each of these panes can be resized appropriately (although you may find that

the console is occasionally a little stubborn when trying to do this).

Figure 91. Navigating the WAS console

Navigation Pane
The navigation pane enables you to control what appears in the content pane.
It has three different views which are accessible by selecting on the tabs at

the top of the pane. Selecting any of the items within each view brings up

relevant information, and sometimes editable fields, in the contents pane.
The different tabs are:

 ❑The Tasks tab is for performing administrative tasks, such as creating

new Web applications.

Navigation

Content

Messages
Chapter 6. WebSphere Application Server 127

 ❑The Types tab is for specifying defaults and taking inventory of your

components.

 ❑The Topology tab is primarily for surveying and managing existing

components, although you can create new ones here also.

We will be using elements within each of these different views throughout

this chapter.

WAS Topology
We now discuss the topology of the WAS environment, which can be accessed

in the console by selecting the Topology tab. The topology within WebSphere

is built on a containment hierarchy which can be seen in Figure 92.

Figure 92. Topology in WAS

Node
A node represents a physical machine. After installation, WAS will have

created a node representing your machine, named after the machine’s host

name. In Figure 93, our node is named chusa.almaden.ibm.com after the

machine where WAS was installed.

Admin
Domain

Node

Application
Servers

Servlet
Engine

Web
Applications

Virtual
Host

Servlets JSPs HTML

one

many
128 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 93. Viewing a node in WAS

You can have more than one node, each of which would represent different

machines to which you can distribute various resources. In this book, we will
keep it simple and stick with the default node provided.

Application server
Application servers are used to extend the capabilities of a Web server to

handle requests for servlets, enterprise beans and Web applications. It is

important to note that the IBM WebSphere Application Server product is

more than just an application server, and can actually be used to support

multiple application server processes.

An application server in WAS has two main components:

 ❑A Java virtual machine configuration

 ❑Support for a servlet engine to handle servlet requests

After installation, WAS is configured with the default application server,
appropriately named Default Server (Figure 94). We used this application

server exclusively in our examples.
Chapter 6. WebSphere Application Server 129

Figure 94. Viewing an application server in WAS

The application server can be started and stopped by clicking on the “green

light” and “red light” buttons in the tool bar.

Servlet engine
A servlet engine is a program that runs within the application server and

handles the requests for servlets, JavaServer Pages, and other types of
server-side include coding. The servlet engine is responsible for creating

instances of servlets, initializing them, acting as a request dispatcher, and

maintaining servlet contexts for use by your Web applications.

WAS only supports one servlet engine per application server. For the

purposes of the examples in this book, we will be using the one that is created

by default for our application server and is named servletEngine (Figure 95).
130 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 95. Viewing a servlet engine in WAS

Web application
A Web application represents a grouping of servlets, JSPs, and their related

resources. Managing these elements as a unit allows you to stop and start

servlets in a single step. You can also define a separate document root and

class path at the Web application level, thus allowing you to keep different

Web applications separate in the file system.

Servlets that are running within a Web application share the same servlet

context with others in the same application, allowing them to communicate

with each other.

Installation of WAS creates three Web applications under the default servlet

engine, and each comes with a number of default servlets. For a list of some

of the common servlets that are included (and that you may also want to

include in your own Web applications), see “Internal servlets” on page 134.

 ❑The default_app Web application (Figure 96) can be used to deploy simple

servlets for testing. It has been designed to ease the migration of servlets

and applications from WAS version 2. You can also use the default_app as

a template for your own Web applications.

 ❑The admin Web application is used by WAS to install the AdminServer

GUI, and you will not normally have to change it.
Chapter 6. WebSphere Application Server 131

 ❑The examples Web application contains a few sample servlets that you can

run from day-one to test your environment and give you an idea of some

basic designs. You can invoke these samples using the URL

http://yourHostName/webapp/examples/.

Figure 96. Default Web application in WAS

On the Advanced page of the Web application, you will find the file locations

for documents (HTML, JSP) and servlets. We will show these when we define

our own Web application in “Creating your own Web application” on

page 135.

Virtual host
A virtual host is a mechanism allowing a single physical machine to resemble

multiple host machines. Different resources, including servlets, JSPs, and

Web applications, are associated with a single virtual host, and are not

shared with other virtual hosts, even if they are on the same physical
machine. You can also specify MIME type support at a virtual host level. This

might be a common setup for an ISP who has one physical machine

managing sites for a number of different customers who would not want their

data visible to others.
132 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Each virtual host has a logical name and a list of DNS aliases by which it is

known, for example, yourHostName:80. When a servlet request is made, the

server name and port number entered are compared to the list of aliases.
Once a match is located with a virtual host, the servlet is then found and

served up. If no match is found, an error is returned to the browser.

WAS comes configured with a default virtual host, default_host, with some

common aliases, such as the machine's IP address, short host name, and fully

qualified host name. All the default Web applications and their resources are

set up to use this virtual host. This configuration is fine for the purposes of
most examples in this book, and is shown in Figure 97.

Figure 97. Virtual host in WAS

For the sample application described in Part 2, we defined a separate virtual
host for the Web application that uses the secure HTTPS protocol. For more

information on how to set up another virtual host, refer to Managing virtual
hosts in the Administration Console documentation that comes with the WAS

product.
Chapter 6. WebSphere Application Server 133

Internal servlets
The servlets shown in Table 12 are provided by WAS in the default_app and

can also be loaded as part of your own Web application. You must add some of
these servlets to your Web application for file serving from WAS directories

and to compile JSPs.

Table 12. Internal Servlets for WAS

See “Adding JSP support to a Web application” on page 147 for more

information on how to set up the JSP compiler at 0.91 or 1.0 specification.

Function Class Additional Information

Invoke a servlet by

class name
com.ibm.servlet.engine.
webapp.
Invoker

In addition to invoking the

servlet by the servlet Web paths

configured via the

Administrative Console, the

Invoker servlet enables you to

invoke servlets by their class

names. Using the Invoker

servlet is considered a security

exposure.

Serve HTML files

in the application's

document root

using the Web

application prefix

com.ibm.servlet.engine.
webapp.
SimpleFileServlet

This servlet handles files in the

application document root whose

URLs are not covered by the

HTTP server configuration

through pass rules.

Enable the JSP

0.91 page compiler

com.ibm.servlet.jsp.http.
pagecompile.
PageCompileServlet

This servlet is in ibmwebas.jar.

Enable the JSP 1.0

page compiler

com.sun.jsp.runtime.
JspServlet

This servlet is in jsp10.jar. See

the Sun JSP 1.0 specification for

more information.

Use the extended

error reporting

function

com.ibm.servlet.engine.
webapp.
DefaultErrorReporter

Use this servlet if you want error

reporting through an error page,
but you do not want to write your

own error page.

Enable a servlet
chain

com.ibm.websphere.
servlet.filter.
ChainerServlet

Use this servlet for chaining

multiple servlets together.
134 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Creating your own Web application
We suggest that you create a Web application for all the servlets and JSPs

that have to work together. For this redbook we created our own Web

application.

Using the Task Wizard
When creating and adding new resources to your WAS setup, you can

generally use one of the task wizards to help you through the process. These

can be found by selecting the Task tab in the Administrative Console.

Select the wizard you want to use—in our case this is Configure a Web

application—and click on the green Start Task button (Figure 98). The

wizard appears in the right-hand pane and prompts you for the name of the

new Web application, for example, itsoservjsp. You then select which internal
servlets you would like pre-loaded (for more information see “Internal
servlets” on page 134) and the level of JSP support. For more information on

setting up JSP support, see “Adding JSP support to a Web application” on

page 147.

Figure 98. Configuring a Web application: name, servlets, JSP support
Chapter 6. WebSphere Application Server 135

Click on Next and you are prompted to select a servlet engine. Our

configuration has only one node with one application server (Default Server),
therefore we can only select the servletEngine belonging to the default server.
Expand the node until you find the servlet engine, select it, and click on Next
(Figure 99).

Figure 99. Configuring a Web application: servlet engine

The next step prompts you for the virtual host and the Web application Web

path. The Web path, when combined with the virtual host, is the base URL

that is used in Web browsers to locate a resource within the Web application

(Figure 100).

For instance, if you wanted to access the snoop servlet that was part of a Web

application with a Web path of /webapp/itsoservjsp and that Web application

was on a virtual host with an alias of chusa.almaden.ibm.com, then the

correct URL would be:

http://chusa.almaden.ibm.com/webapp/itsoservjsp/snoop

For our Web application we select the default virtual host (default_host),
however, we set up the Web path as /itsoservjsp (the default would be

/webapp/itsoservjsp). Therefore, our URL for servlets and JSP will be:

http://chusa.almaden.ibm.com/itsoservjsp/..servletname...
136 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 100. Configuring a Web application: virtual host and Web path

The next step prompts you for the document root and the class path (for

servlets) of the Web application (Figure 101). The document root is where all
your document files used in this Web application reside; this includes HTML

files and JSPs. For more information on the class path and class loading in

general, see “Class loading and reloading” on page 142.

Figure 101. Configuring a Web application: document root and class path
Chapter 6. WebSphere Application Server 137

The directories that are proposed are based on the Web path specified in the

previous step, in our case:

d:\WebSphere\AppServer\hosts\default_host\itsoservjsp\web
d:\WebSphere\AppServer\hosts\default_host\itsoservjsp\servlets

These directories are not automatically created for you, so you will have to do

this as a manual step afterwards (see “Creating the required Web application

directories” on page 139). For now, leave the proposed values and click on

Finished. Check the messages pane for a confirmation: Command

"WebApplication.create" completed successfully.

Setting up your default error page
In the Administrative Console, click on the Topology tab and navigate down

the tree until you see your newly created Web application (Figure 102).

Figure 102. Viewing a newly created Web application

Notice that in addition to the three servlets we set up with the wizard,
another servlet called ErrorReporter has appeared. This is what the Web

application uses for handling errors in JSPs and servlets.
138 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

If you want to use your own error page instead, change the value on the

Advanced page, for example, enter error.jsp, which can be found in the

document root of default_app. However, for the purposes of our application,
we leave it set to the ErrorReporter, as it does all we need.

Creating the required Web application directories
For every new Web application that you create, you probably have to create

the physical directories for the documents and Java classes (servlets).

Underneath the Websphere/AppServer/hosts/default_host directory is where each

of the Web applications that are part of the default_host has a directory. For

each Web application directory, you normally have a servlets directory for the

class path and a web directory for the document root. These three directories

have to be created for our new Web application itsoservjsp (Figure 103).

Figure 103. Web application directory structure

For simple tests you can copy the SnoopServlet.class and the very_simple.jsp

files from the default_app directories to the itsoservjsp directories. Another

nice test servlet is the ServletEngineConfigDumper.class from the

examples\servlet directory.

Web application
servlets, beans
JSP, HTML, images, ...

virtual host

WebSphere Application Server
Chapter 6. WebSphere Application Server 139

Deploying files to WAS
When you have developed an application in your test environment, you will
at some stage want to deploy that application to the WAS environment.

After creating the necessary components—such as a Web application—in the

WS Admin Console interface, you have to physically put the resource files

into the correct directories. Table 13 displays where particular files must

reside.

Table 13. WebSphere application directories

For more information on how to deploy Java classes from VisualAge for Java

into specific directories, see “Importing and exporting code” on page 172. For

information on how to deploy files of all types from WebSphere Studio into

specific directories, see “Project relationships and integrity” on page 253.

Defining servlets
We set up the Web application in a way that servlets can be invoked by class

name. WAS also enables us to invoke servlets by an alias name, and this is

the preferred technique.

Let us take the simple HTTP servlet of Figure 34 on page 48. We deploy the

servlet to WebSphere\AppServer\hosts\default_host\itsoservjsp\servlet into the

subdirectory itso\servjsp\servletapi.

Description File extension Directory path

HTML documents

and related files
html, .shtml,
.jhtml, .gif, .jpg,
.au, and so forth

The Web application document root
(or under the HTTP server root)

JavaServer Pages .jsp The Web application document root

Servlets,
JavaBeans, and

other Java classes

.class, .jar, .ser The application class path or the

Application Server class path (for

classes that are not to be reloaded,
such as serialized objects and servlets

that use Java Native Interface

methods)a. If the servlets are in a

package, mirror the package

structure as subdirectories under the

application class path.

a. See “Class loading and reloading” on page 142

Servlet

configuration file
.servlet The directory that contains the

servlet
140 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

We define the servlet in WAS by selecting the itsoservjsp Web application in

the Topologies pane and selecting Create -> Servlet from the context menu.
We enter simple as the servlet name, itsoservjsp as the Web application

(prefilled), a short description, and itso.servjsp.servletapi.SimpleHttpServlet
as the class name. Click on Add and enter /itsoservjsp/simple as the servlet

Web path (this is the alias to be used in the browser). Click on Create to

define the servlet (Figure 104). This action adds the servlet to the list of
servlets under the itsoservjsp Web application.

Figure 104. Creating a servlet for the Web application

Start the Web application
If the application server is already running, you can start the new Web

application from the console. Right-click on the Web application and select

Restart Web App. The Web application is also started when the application

server is started or restarted.

Test the sample servlets
Open a browser and enter the following URLs:

http://localhost/itsoservjsp/simple
http://localhost/itsoservjsp/very_simple.jsp
http://localhost/itsoservjsp/servlet/SnoopServlet
http://localhost/itsoservjsp/servlet/ServletEngineConfigDumper
Chapter 6. WebSphere Application Server 141

Class loading and reloading
Class loading and automatic reloading in the WAS environment has been

written to help keep all the Web application components synchronized when

there are any code changes.

A Web application's scope is its application class path plus the system class

loader class path. When you configure a Web application, you specify its class

path, which contains the servlets and the non-servlet Java components, such

as JavaBeans that are used in the servlets. Whenever one of the loaded

classes in that class path has been changed, all of the classes in that class

path are reloaded. This helps to keep the Java components synchronized.

There will be occasions where you do not want certain classes to be reloaded,
and you can prevent this from happening by adding those classes to the

application server class path instead of the application class path. The

classes are then not reloaded, although the objects will be.

Java components that should not have their classes reloaded are:

 ❑Java objects that are added to sessions because they are serialized.

 ❑Java classes that call Java Native Interface (JNI) methods.

 ❑Objects passed as arguments for remote calls.

Changing the application server class path
The application server class path is automatically set when you install WAS.
The default setting for the class path contains all of the Application Server

APIs (the JAR files in the d:\WebSphere\AppServer\lib directory). When the

Application Server starts, the system class loader automatically loads the

classes in the application server class path. Classes in this class path are not

reloaded.

If you want to add individual classes or jar files to the application server class

path, you set up a command-line argument (see Figure 105).

You then have to restart the application server, which adds the additional
directories (in this case d:\java\loadOnce) to the system class loader class path.
142 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 105. Updating the Application Server class path

Using JNI in WAS
If your application needs to use JNI, then there are two configuration steps

that need to be completed:

1. Add the jar file containing your JNI classes to the application server class

path (see “Changing the application server class path” on page 142 for

instructions on how to do this).

2. Create a path environment variable for the application server that points

at the location of the relevant DLL files.

Creating an application server environment variable
To create an environment variable for an application server, select the

application server within the Topology view and make sure the General tab is

selected in the right-hand pane (Figure 106).
Chapter 6. WebSphere Application Server 143

Figure 106. Locating the environment variables for an application server

Click on the Environment field, and the Property Editor Environment Editor

window will appear. Enter path for the Variable Name and the location of the

DLL files as the Value (separating different locations with a semi-colon).
Then click Add and the window should look similar to Figure 107.

Figure 107. Property Editor Environment Editor
144 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Select OK to close this window. You must then click Apply to complete this

change.

Restarting the application server should enable you to use the JNI

functionality.

Setting up connection pools
WAS provides you with the ability to access databases through connection

pools. In particular, you can use the DataSource mechanism to set up

connection pools to particular databases, and then within your code simply

ask the DataSource to pass you a connection to the database. This

architecture helps to provide robustness and efficiency when dealing with

database connections.

Creating a JDBC driver
To set up a DataSource, you first need to create a JDBC driver. Select the

Types view in the left-hand pane, and right-click on JDBC Drivers. Select

Create and you are prompted for the specification of the driver (Figure 108).

Figure 108. Creating a JDBC driver

Enter a name for the driver and select the Implementation class from those

available. Click on Create and the driver is created.
Chapter 6. WebSphere Application Server 145

Creating a DataSource
Once you have created a JDBC driver, you can create a DataSource.
Right-click on DataSources in the Types view, select Create and complete the

fields in the dialog (Figure 109).

Figure 109. Creating a DataSource

Enter the name of the DataSource and the database name that you want to

access, and then click on Create. The advanced page of the dialog contains

parameters that set the size of the connection pool and time-out values.

You now have created a DataSource with an underlying connection pool
through which you can access the SAMPLE database. For more information

on how to use this, and on DataSources and connection pooling in general,
you can refer to the user documentation that comes with WAS.

The JDBC driver and the DataSource are now visible at the bottom on the

Topology page.

Migrating from the connection manager
WAS also provides support for handling connection pools through the

connection manager, a facility that was available in older versions of WAS.
However, for any new code that you write, we recommended that you use the

new connection pool implementation, as it conforms closer to the JDBC 2.0

API standard, and the connection manager classes are deprecated in WAS

Version 3.0. You should also consider migrating old database access code to

use the new DataSource capabilities, because the code changes are fairly

simple (refer to Connection pooling implementation in the user

documentation).
146 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Using JavaServer Pages in WAS
WAS supports the use of JavaServer Pages at both the 0.91 and 1.0 API

levels, as well as extending the base JSP 1.0 specification (see Chapter 5,
“JavaServer Pages” on page 95).

Adding JSP support to a Web application
You can configure individual Web applications to support a specific level of
the JSP API by adding the appropriate JSP enabler to a Web application. If
you used the Task Wizard to create the Web application, this may already

have been done.

Click on the Tasks tab of the Administrative Console and select Add a JSP

Enabler and click on the green Start Task button.

Select the Web application, the desired level of JSP support, and click on

Finished (Figure 110). You can check that the servlet has been successfully

added by locating it in the Web application under the Topology tab.

Figure 110. Configuring a JSP Enabler
Chapter 6. WebSphere Application Server 147

Keeping Java source files from JSP 1.0 compilation
The JSP 1.0 enabler generates a Java source file for each JSP 1.0 file. If you

want to keep the generated .java files for a JSP 1.0 page, then you need to

add an extra initialization parameter to the JSP servlet.

Select the JSP 1.0 servlet in your the application, and click on the Advanced

tab in the right-hand pane. Here you can add the initialization parameter

keepgenerated with a value of true to the JSP servlet (Figure 111).

Figure 111. Adding an initialization parameter to a servlet

You have to restart the Web application to activate the change. The Java

source files will be stored under the Temp subdirectory of the WAS

installation directory:

d:\WebSphere\AppServer\temp\default_host\...yourwebapplication...

Use this option to keep the generated .java file for debugging purposes only,
and empty the directory from all the Java files now and then. It is safer and

more efficient not to use this option in a production environment.

Note: The temp subdirectory will contain many files. Each compilation of a

JSP adds a new file with a suffix (it does not overlay the previous

compilation). You should periodically remove old files from this directory.
148 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Security
WAS provides a unified security model for both Web resources (such as

servlets and JSPs), and enterprise beans. Because we are not using

enterprise beans in this book, we will not be concerned with how security

works for these in particular, although most of what we cover applies to

enterprise beans also.

In this section, we discuss the basics of how security works within a WAS

environment, and then we explain how you can set up security through the

administrative console on your Web resources.

How security works in WAS
Figure 112 describes basic steps that are carried out when a user requests a

Web resource that has been made secure with basic authentication.2

Figure 112. Basic security in WAS

1. The user requests a Web resource.

2. The Web server determines that the resource is a protected URI serviced

by WebSphere.

3. The Web server issues a challenge back to the user asking them to prove

who they are.

2 There are other forms of authentication, but for now we will focus on the basic method.

Servlet

Client
(Browser)

Web Server

Servlet
Engine

Response

Security
Server

Authorize

Authenticate5

6
Response

Userid, Password4

2

401 Challenge

Servlet Request1

3 Was
Web Server

Plug-in

9

7
Invoke
Servlet

8 WebSphere
Application

Server
Chapter 6. WebSphere Application Server 149

4. The user responds with their user ID and password.

5. The Web server delegates this information to WebSphere’s security server

that authenticates the user ID and password.

6. Once the user has been authenticated, the user’s permissions are

consulted to see if the user is authorized to access the requested resource.

7. Upon successful authorization, a security context is set up for the request,
and this is passed on to the servlet engine.

8. Upon invocation of the method (for example, doGet) on the resource, the

user information is extracted from the security context, and the user’s

authorization to access that method is verified.

9. The results of the method are sent back to the user’s browser.

Configuring an enterprise application
Before we can configure security in WAS, we have to define an enterprise

application containing resources such as Web applications. Enterprise

applications are a grouping that WAS uses for security configurations.

Select the Configure an enterprise application task from the Task pane, and

click on the green Start button. You are prompted to give enter an enterprise

application name, for example, itsosecure (Figure 113).

Figure 113. Creating an enterprise application
150 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Click on Next, and you are prompted to add resources to the enterprise

application. Expand Web applications, select itsoservjsp, and click on Add

(Figure 114).

Figure 114. Adding resources to an enterprise application

When you are finished adding the Web resources, click on Next. All enterprise

application resources are listed for confirmation. Click on Finished and the

enterprise application is built.

If you want to see your enterprise application, select the Topology view

(Figure 115).

Figure 115. Enterprise application topology
Chapter 6. WebSphere Application Server 151

You can add or remove resources associated with an enterprise application

with the Edit an enterprise application task.

Setting up security in WAS
We now discuss the steps required in setting up security in a WAS

environment. Now that we have an enterprise application created, we are

ready to begin setting up security.

The tasks for setting up security are listed in the Tasks pane under security

(Figure 116). You have to go through all of the tasks to have basic security

configured and enabled.

Figure 116. WAS security tasks

Specify global settings
You must first enable security globally for the WAS environment, and set up

the default settings that all your enterprise applications will inherit.

Start the Specify Global Settings task under Security in the Tasks view. This

displays a multi-tabbed view, and you will see the dialog shown in Figure

117. We will go through each tab one at a time.

General
Make sure the check box marked Enable Security is selected; this will turn on

security for your WAS environment, although you will not yet have protected

any individual resources.
152 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 117. Enabling security: Global

The Security Cache Timeout value is how long the server will retain security

information regarding users. We will leave this on the default of 600 seconds.

We are going to use the default settings for all the other values in this task

wizard as well, but it is worth looking through them to understand what is

happening.

Figure 118 shows the other three pages for global security: Application

Defaults, Authentication Mechanism, and User Registry.
Chapter 6. WebSphere Application Server 153

Figure 118. Global security defaults

Application defaults
On the Application Defaults page, you specify the security realm that your

enterprise applications will belong to. If so configured, a user is prompted

only once for their identity information within a realm, no matter how many

different resources they access.

You can also specify the default challenge type that your enterprise

applications will use. This is how the Web server will ask the user to identify

themselves. For the purposes of our book, basic HTTP authentication is fine.
This will simply ask the user to provide a user ID and password.

You can also opt to use an SSL connection between the client and Web server,
but this is a little excessive for our examples.

Authentication mechanism
On the Authentication Mechanism page, choose what system the user will be

authenticated against. You can either use the local operating system’s user

registry, or you can connect to a Lightweight Third Party Authentication

(LTPA) system, for example, IBM SecureWay Directory. To keep our example

simple, we are going to use the Windows NT User Registry as our

authentication mechanism.
154 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

User registry

The contents of the User Registry page varies depending on the selection

made in the Authentication Mechanism page. The image shown in Figure 118

is a result of having chosen the local operating system as our authentication

mechanism.

The user ID and password that the security server will use to run under

should have been pre-filled in, based on information given during the install
of WAS. Again, you can leave these fields as they are.

Click on Finished when you have reviewed all the settings, and you will be

informed that your changes will not take effect until the Administration

server is restarted. We will delay this step until we have finished configuring

all of our security settings.

Configure enterprise application security
The next step is to configure the security at the individual enterprise

application level. Even if you just want to use the default settings that you

configured in “Specify global settings” on page 152, you still have to complete

this step.

Start the task wizard called Configure Application Security. You are

prompted to select the enterprise application that you want to configure

(Figure 119).

Figure 119. Choosing an enterprise application to secure

It is worth noting that, in addition to the enterprise applications you have

created, there is also one named AdminApplication. This is used by

WebSphere to provide security for the administrative console. A side effect of
enabling global security is that the next time you start the administrative
Chapter 6. WebSphere Application Server 155

console, you are asked for a user ID and password (see “Restarting the

administration server” on page 160).

Select itsosecure, and click on Next. This displays the same dialog as for

global application defaults (Figure 118 on page 154). Here you can override

many of the default values that you set up as global settings. However, we

will leave all the values set to the defaults. Click on Finished, and the

enterprise application is configured for security, although individual
resources still have to be configured.

Method groups
Method groups are categories of methods, grouped for the purpose of
assigning permissions to the method group as a whole, instead of having to

assign permissions at an individual level.

WAS provides six default groups, and you can create your own method groups

through the Work with Method Groups task wizard. For the purposes of our

example, we will just use the default groups that have already been created.

Default method groups
 ❑ReadMethods

 • GET and POST methods of Web resources
 • Enterprise bean methods that have the prefix get

 ❑WriteMethods

 • PUT methods of Web resources
 • Enterprise bean methods that have the prefix set

 ❑RemoveMethods

 • DELETE methods of Web resources
 • REMOVE methods of an enterprise bean Home

 ❑CreateMethods

 • CREATE methods of an enterprise bean Home

 ❑FinderMethods

 • FIND methods of an enterprise bean Home

 ❑ExecuteMethods

 • Methods that do not fit in the other default categories.

You do not have to run this wizard if you only use the default method groups.
156 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Configuring the resource security
Now we need to actually place some security on individual resources. Start

the Configure Resource Security task wizard. Here you can select the Web

resource that you want to protect (Figure 120).

Figure 120. Selecting a resource to configure for security

Expand the virtual hosts (default_host) to see the list of resources. Select one

of the resources, for example, /itsoservjsp/*.jsp (meaning all JSP files of our

Web application) and click on Next.

You are prompted if you wish to use the default method groups. Because we

did not create any of our own method groups, select Yes. On the following

page you can see that the methods of the selected resource have been

associated with their appropriate groups (Figure 121).

Click on Finished, and resource security for the selected resource is

configured.

......
Chapter 6. WebSphere Application Server 157

Figure 121. Viewing methods associated with method groups

You have to repeat this step for all the resources that you want to be secure.
All resources that you do not configure are left open and not secure. As a

minimum, you should secure JSPs (/itsoservjsp/*.jsp) and your servlets

(/itsoservjsp/simple), or you can secure all the resources that start with

/itsoservjsp. Do not secure /itsoservjsp/ErrorReporter, otherwise security

errors cannot be reported properly.

Configuring the File Serving Enabler servlet
If you want to add security to all normal files (for example, .html and .gif
files) that are served by WAS, then you have to configure security for the File

Serving Enabler servlet resource. The File Serving Enabler servlet is used by

WAS to return Web files that are not served by the HTTP server.

In our example the default URI for the File Serving Enabler servlet resource

is /itsoservjsp/.

To make this work, you have to add all file types to the Servlet Web Path List
for this servlet (Figure 122). Click Apply when all file types have been added.
Otherwise, you may find yourself being able to load up a JSP, but an image it

contains will be reported as not found.

Restart the Web application after adding file types to the Web path. When

you select the File Serving Enabler servlet again, you should see the file

types in the bottom pane.
158 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 122. File Serving Enabler servlet Web path list

Resource Security
Go back to the Configure Resource Security task wizard. The new resources

that you added to the File Serving Enabler are now listed as well. Select each

one and add them to the default method groups; when done, click Finished.

Assigning permissions
Once you have specified which resources in your enterprise applications are

protected, you have to assign method groups to users to set up which user(s)
are to have permission to see these resources.

Select the Assign Permissions task, and a list of all the enterprise application

and method groups pairings is displayed. Select individual pairings or all the

itsosecure-Xxxx Methods, and click on Add (Figure 123).

You are prompted to identify a user or user group that can access that

application — method group pairing.

You can select Everyone, All Authenticated Users (by the operating system or

LDAP), or Selection. For Selection you can use the search capability to search

for the individual user that you want to give access to the resource pairing.
You can select a number of users or even user groups, but for the purposes of
Chapter 6. WebSphere Application Server 159

our example, a single user is sufficient. When done with selecting users, click

on OK.

One user is now allowed to access the selected application - method group

pairings. The permissions configuration is now complete.

Figure 123. Assigning permissions to access method groups by users

Restarting the administration server
The final step before testing the newly-secured resources is to restart the

administration server. You can do this by locating the node in the Topology

view, and right-clicking on it and selecting Restart. Because the

administrative console is running on the same node as the administration

server, the console is automatically closed as well (after prompting you).

Check that the administration server has been restarted (by looking at the

Services window in the Control Panel). When the server is up, start the

administrative console. During start up, you are prompted for a user ID and

password to access the console (see “Specify global settings” on page 152).
Figure 124 shows the login with values that were configured for the security

server.

When the administrative console appears, make sure that your application

server and all its Web applications are started. You are now ready to test the

security setup.
160 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 124. Login for the administration console

Testing your secure Web resources
After restarting the application server, test security from a browser by

entering the URLs:

http://localhost/itsoservjsp/simple
http://localhost/itsoservjsp/very_simple.jsp
http://localhost/itsoservjsp/servlet/SnoopServlet
http://localhost/itsoservjsp/servlet/ServletEngineConfigDumper

You should be prompted once for user ID and password, and all the requests

should complete.

Making further changes
If you wish to make any changes to the resource security and permissions at

an enterprise application level, you can do so without having to restart the

administration server. Simply make your changes, and then locate your

application server in the Topology view, and restart it. When this is complete,
your changes should be in effect.
Chapter 6. WebSphere Application Server 161

XML configuration interface
WebSphere Application Server provides an XML interface that can be used to

import and export definitions into the administrative database. This facility

is a technology preview of the product.

The XML configuration utility is invoked as:

d:\WebSphere\AppServer\bin\xmlconfig -adminNodeName nodename
-import input.xml
-export output.xml -partial select.xml

The nodename is required and identifies the node for which the operation

is performed.

For import, the input file contains the changes for the configuration.

For export, the output file contains the result. The -partial specification is

optional and can be used to select what part of the configuration should be

exported (default is the whole node).

Exporting configuration data
To export a complete or partial configuration for the chusa node, run:

xmlconfig -export chusa.xml -adminNodeName chusa
xmlconfig -export export.xml -partial select.xml -adminNodeName chusa

The select.xml file specifies what part of the system to export. For example, to

export the itsoservjsp Web application, the select file would be:

<websphere-sa-config>
<node name="chusa" action="locate">

<application-server name="Default Server" action="locate">
<servlet-engine name="servletEngine" action="locate">

<web-application name="itsoservjsp" action="export">
</web-application>

</servlet-engine>
</application-server>

</node>
</websphere-sa-config>

To export a JDBC driver and a data source, the select file would be:

<websphere-sa-config>
<jdbc-driver name="DB2AppDriver" action="export"> </jdbc-driver>
<data-source name="sampledb" action="export"> </data-source>

</websphere-sa-config>
162 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Importing configuration data
To import a definition, run:

xmlconfig -import input.xml -adminNodeName chusa

The input.xml file contains the definitions that have to be added or updated.
For example, to define a JDBC driver and a data source, the input file would

contain these statements:

<websphere-sa-config>
 <jdbc-driver name="DB2AppDriver" action="update">
 <implementation-class>COM.ibm.db2.jdbc.app.DB2Driver

</implementation-class>
 <url-prefix>jdbc:db2</url-prefix>
 <jta-enabled>false</jta-enabled>
 <install-info>
 <node-name>fundy</node-name>
 <jdbc-zipfile-location>D:\SQLLIB\java\db2java.zip

</jdbc-zipfile-location>
 </install-info>
 </jdbc-driver>

<data-source name="sampledb" action="update">
 <database-name>sample</database-name>
 <jdbc-driver-name>DB2AppDriver</jdbc-driver-name>
 <minimum-pool-size>1</minimum-pool-size>
 <maximum-pool-size>30</maximum-pool-size>
 <connection-timeout>300</connection-timeout>
 <idle-timeout>1800</idle-timeout>
 <orphan-timeout>1800</orphan-timeout>
 </data-source>
</websphere-sa-config>

Note: Export of a JDBC driver generates an incomplete file in WebSphere

Version 3.02; the install information is missing.

Examples
A number of import and export examples are provided in the sample code in

the wasxml directory. See Appendix C, “Using the additional material” on

page 417 for more information.

A number of examples for importing of definitions are provided in Part 2 of
this book. Refer to “Tailor the XML files” on page 365 for examples.
Chapter 6. WebSphere Application Server 163

User profiling
The need to manage user profiles within Web applications is becoming very

common. Handily, WAS comes ready-built with some helper classes for

managing your user profiles.

Built-in WAS functionality enables you to create a database table that will
store user data, with common columns such as name and title provided. This

table maps to the com.ibm.websphere.userprofile.UserProfile class. WAS also

contains a com.ibm.websphere.userprofile.UserProfileManager class which

allows you to perform the following tasks:

 ❑Creation and deletion of user profiles

 ❑Getting and updating (cached and immediate) from/to the database

 ❑Getting a user profile for read-only tasks

 ❑Queries on database columns

This should be enough to provide a solid foundation for building user

profiling capabilities into your application, although you can easily extend

the user profile for anything else you require.

For an example of implementing and extending user profiling in WAS Version

3, refer to “The XML Files: Using XML and XSL with IBM WebSphere 3.0”,
SG24-5479.

Troubleshooting
Although you will carry out the majority of your development in the

VisualAge for Java and WebSphere Studio environment described in earlier

chapters, there will be occasions when you will need to perform some

troubleshooting activities in WAS.

WAS provides two levels of tracing support:

 ❑Tracing within WAS

 ❑Tracing your application components using the Object Level Trace (OLT)
and debugging tool.

We briefly discuss how to enable tracing within WAS, but will not cover using

the OLT, as it is outside the scope of this book. For more detailed information

on all aspects of tracing, please refer to the documentation that comes with

the WAS product.
164 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Tracing within WAS
Within WAS there are three different ways of collecting troubleshooting

information:

 ❑Messages

 ❑Logs

 ❑Traces

Messages
These provide a high-level view of important events, such as successful
completions and fatal errors, as your code runs on the Application Server

product.

Console message pane
Messages are visible in the Console Message pane of the Administrative

Console (see Figure 91 on page 127). If you require more detailed information

regarding a message, you view it in the Serious Event Viewer.

Serious event viewer
This tool can be started from the menu option Console -> Trace -> Serious

Events. Using this tool, you can show combinations of audit, fatal, terminate,
and warning message events.

Logs
The WAS log files are kept within the d:\WebSphere\AppServer\logs directory.
Here, you can find the standard error and standard output files for each

application server that is running. In most setups, this will include the files:
default_server_stderr.log and default_server_stdout.log. Servlets and JSPs

will place the System.out.println output into these files.

Traces
These are collections of data from trace statements placed throughout the

WebSphere product code or from any trace statements you may have added

to your application code.

To enable tracing, select the menu option Console -> Trace -> Enabled.
Obviously, enabling tracing will impact performance, and so it should be used

sparingly.
Chapter 6. WebSphere Application Server 165

Trace settings

It is possible to specify the trace settings for the administrative server and

the application servers. You can specify which components the data is

collected from, what type of data is collected, and where this data is placed

(which file or which stream).

Monitoring resources
As well as tracing through the code, WAS provides a method of tracking

resources running in your application server using the Resource Analyzer.

The Resource Analyzer can be started from under the Performance heading

within the Tasks view. From here you can track different statistics for a

number of resources, such as servlets, sessions, and data pools. You are then

able to take this data and plot it in various combinations onto different types

of charts, including graphs and pie charts.

For more detailed information on this topic and how to use the Resource

Analyzer, refer to the documentation that comes with the WAS product.

Reference information
For more information about WebSphere Version 3. refer to the redbook

“WebSphere Application Servers: Standard and Advanced Editions”,
SG24-5460.
166 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

7 Development and
testing with
VisualAge for Java
In this chapter we discuss the VisualAge for Java environment for developing

and testing Java servlets and JavaServer Pages (JSP).

We introduce the VisualAge for Java development environment for the

development of servlets. We then discuss how to build, test, and run servlets

in the WebSphere Test Environment under VisualAge for Java, and the use of
the JSP Execution Monitor for the testing of JSPs. We show how to test

complete Web applications, which include interacting application resources,
such as servlets and JSPs; and passive application resources, such as static

HTML files.

We will not discuss the Servlet Builder capabilities of the VisualAge for Java

product. For information about the Servlet Builder, please refer to the IBM

Redbook, “VisualAge for Java Enterprise - Data Access Beans - Servlets -
CICS Connector”, SG24-5265.
© Copyright IBM Corp. 2000 167

VisualAge for Java overview
The VisualAge for Java application development environment is shown in

Figure 125.

Figure 125. VisualAge for Java application development environment

Repository

WebSphere
AppServer

.....
servlets

Studio
projects

....

IBMVJava
ide
project_res.

......
myProject
WTE

hosts
default_host

default_app

myWebApp
servlets
package

web
jsp
html

VisualAge for Java

DB2 CICS MQ other

access

Workbench

Debugger

Console

Project/Package/Class

WebSphere Test Environm.

Web Application

Servlet JSP

JSP Compiler

Servlet
Engine

JSP
Monitor

export

exchange
168 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Here is a short description of the major components of VisualAge for Java:

 ❑VisualAge for Java provides many windows to work with Java code:

 • The Workbench is the main window. It shows all the code that one

developer works with.

 • The Debugger window is used to step through Java source code while

debugging an application (or servlet).

 • The Console window shows output that normally would go to the

system console.

 • The Browser windows for projects, packages, and classes provide views

into smaller subsets of the code.

 ❑VisualAge for Java incorporates the WebSphere Test Environment that

enables the testing of complete Web interactions involving HTML files,
servlets, JSPs, and JavaBeans.

 • A servlet engine runs the servlet code.

 • HTML files, servlets, and JSPs can be grouped into Web applications

to mirror the support that is available in WebSphere Application

Server.

 • A JSP compiler compiles JSPs on first usage into servlets.

 ❑All the code of multiple developers is stored in a central repository and

can be versioned.

 ❑The right side shows the directory structure. The most important

directory for Web development is the IBM WebSphere Test Environment
(abbreviated WTE) directory in the project_resources.

Each Web application has its own subdirectories for servlets and Web

resources (HTML and JSP).

 ❑Source and class files can be exported from VisualAge for Java into

appropriate directories of WebSphere Application Server or WebSphere

Studio.

 ❑WebSphere Studio provides a facility to interact directly with VisualAge

for Java to exchange source and class files.

 ❑The code in Web applications can access enterprise resources, such as

relational databases (DB2 and others), CICS, MQSeries, IMS, SAP, and

others. This is normally done using the Common Connector Framework

and connection pools.
Chapter 7. Development and testing with VisualAge for Java 169

Application development with VisualAge for Java
VisualAge for Java is a complete, integrated environment for creating Java

applications. We first familiarize you with the VisualAge for Java

development environment essentials, so that you have a solid background

before beginning your servlet development.

This is a summary of the information that can be found in the product

documentation, and is structured to get you on the fast-track to developing,
testing, and debugging your servlets.

For additional information about the VisualAge for Java product, refer to

http://www.ibm.com/software/ad/vajava/.

Rapid application development (RAD)
You can use VisualAge for Java’s visual programming features to quickly

develop Java applets and applications, using the Visual Composition Editor.
Although we do not use the Visual Composition Editor in this chapter, we

mention it here because it is a key component of the VisualAge for Java

environment.

SmartGuides
In addition to its visual programming features, VisualAge for Java gives you

SmartGuides (Wizards) to lead you quickly through many development

tasks, including:

 ❑Creating new applets

 ❑Creating new program elements, such as:

 • Project: The top-level program element in VisualAge for Java. A project

contains packages. Projects are for organizational purposes, for

example, versioning and deployment.

 • Package: The Java language construct. Packages contains classes and

interfaces, also called types.

 • Class: The Java language construct. Classes contain methods and

fields.

 • Interface: The Java language construct. Interfaces contain methods

and fields. The fields in interfaces must be static final fields.

 • Method: The Java language construct.

 ❑The ability to visually create and manage JavaBeans and Enterprise

JavaBeans.
170 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

http://www.software.ibm.com/ad/vajava/

 ❑Importing and exporting of code from the file system, for deployment, or

for integration with other tools, such as WebSphere Studio and

WebSphere Application Server.

Create industrial-strength Java applications
VisualAge for Java gives you the programming tools that you need to develop

industrial-strength code. Specifically, you can:

 ❑Use the completely integrated visual debugger to examine and update

code while it is running

 ❑Build, modify, and use JavaBeans and BeanInfo classes

 ❑Browse your code at the level of project, package, class, or method

 ❑Package code into projects and packages

 ❑Share a common repository of code among team members

 ❑Instantly see all program errors across all projects and packages

Maintain multiple editions of programs
VisualAge for Java has a sophisticated code management system that makes

it easy for you to maintain multiple editions of programs. When you want to

capture the state of your code at any point, you can version an edition. An

edition is a specific cut of a program element. This marks the particular

edition as read-only, and allows you to give it a version identification.

VisualAge also provides integration with other external Source Code

Management Systems (SCMS), such as ClearCase, Microsoft Visual
SourceSafe, and PVCS.

VisualAge for Java components
In this section we describe the key components of the VisualAge for Java

development environment:

Development with a repository
Within the VisualAge for Java environment, you do not manipulate Java code

files directly. Instead, VisualAge for Java manages your code in a database of
structured objects, called a repository. VisualAge for Java shows code to you

as a hierarchy of program elements:

 ❑Project: This is the highest organizational level within VisualAge for Java,
also referred to as the application level, and it contains packages.
Chapter 7. Development and testing with VisualAge for Java 171

 ❑Package: Packages in VisualAge for Java are basically Java packages, a

related grouping of classes in an application.

 ❑Class or interface: These are the individual source code elements, also

called types.

 ❑Method: This is an individual method of a type.

Because you are manipulating program elements rather than files, you can

concentrate on the logical organization of the code without having to worry

about file names or directory structures.

The workspace and the repository
All activity in VisualAge for Java is organized around a single workspace,
which contains the code for the Java programs that you are currently

working on. The workspace also contains all the packages, classes, and

interfaces that are found in the standard Java class libraries and other class

libraries that you may need. When you exit from VisualAge for Java, the

workspace is stored as a file.

While you work on code in the workspace, the code is automatically stored in

a repository. In addition to storing all the code that is in the workspace, the

repository contains other packages that you can add to the workspace if you

have to use them.

In Chapter 3, “Product installation”, Figure 12 on page 25, we added two

features that we need for servlet development to the workspace.

Importing and exporting code
You can easily move your code between your file system and VisualAge for

Java. If you want to bring existing Java code into VisualAge for Java, you use

the Import SmartGuide to specify the files (or whole directory structures)
that you want to bring in. VisualAge for Java compiles your code, indicates if
there are any errors, and adds the appropriate program elements to the

workspace.

When you want to run your program outside of VisualAge for Java, you can

export it using the Export SmartGuide. VisualAge for Java creates a Java

source (*.java) file or compiled (*.class) file for each class that you export.

All the source code used in this redbook can be found at the ITSO Web site.
The detailed instructions for importing this code into the VisualAge for Java

environment can be found in Appendix C, “Using the additional material” on

page 417.
172 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The Workbench
VisualAge for Java gives you a variety of ways to examine and manipulate

your code using different windows. The primary window you use in

VisualAge for Java is called the Workbench. This window displays all the

program elements in the workspace. It is important to make a clear

distinction between the Workbench and the workspace. The Workbench is a

window in the VisualAge for Java user interface. It displays the program

elements that are in the user’s workspace.

Pages (tabs) in the Workbench
Each page gives you a specific viewpoint on the application and code in the

workspace.

Projects page
The Projects page displays all the projects in the workspace. You can expand

projects to see the contained program elements (Figure 126). For this book we

created a project named ITSO Servlet JSP Redbook.

Figure 126. Projects page in Workbench

Packages page
The Packages page displays all the packages in the workspace. You can

expand packages to see the contained program elements (Figure 127).
Chapter 7. Development and testing with VisualAge for Java 173

Figure 127. Packages page in Workbench

Classes page

The Classes page displays all the classes in the workspace in a hierarchy

rooted at java.lang.Object. You have the choice of displaying the hierarchy as

a list or as a graphical view. You can expand a class to see what classes

inherit from it. Figure 128 shows some of the classes in the ITSO Servlet JSP

Redbook project.

Figure 128. Classes page in Workbench
174 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Interfaces page

The Interfaces page displays all the interfaces in the workspace. Figure 129

shows the interfaces in the ITSO Servlet JSP Redbook project.

Figure 129. Interfaces page in Workbench

All Problems page
The All Problems page displays all the classes and methods in the workspace

that have unresolved problems (Figure 130). When you save code, VisualAge

for Java compiles it automatically.

Figure 130. Problems page in Workbench

Navigating in VisualAge for Java
VisualAge for Java gives you many ways to look at and manage your code.
This section gives you a brief overview of primary windows in the VisualAge

for Java environment, and tells you how to move from one window to another.
Chapter 7. Development and testing with VisualAge for Java 175

Moving between windows
Every window in VisualAge for Java has a Window menu. You can move

between windows by selecting the window you want from this menu.
Additionally, double-clicking on a program element may bring up the specific

window browser associated with that element.

If the window you select is already open, it becomes the active window. If the

window you want is not open, it is opened and becomes the active window. If
you select Switch To in the Window menu, you can select from any of the

windows that are currently open.

Windows you can open from the Window menu
Here is a summary of the windows that you can open from the Window menu.

Scrapbook
The Scrapbook window is a place to try out code (Figure 131). You can enter

and run code fragments, without making them a part of any project, package,
or class.

Figure 131. Scrapbook window in VisualAge for Java

Console
The Console window displays standard out. It also gives you an area for

entering input to standard in. If more than one thread is waiting for input

from standard in, you can select which thread gets the input. Figure 132

shows the Console window (with the results from the scrapbook above).
176 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 132. Console window in VisualAge for Java

Log
The Log window displays messages and warnings from VisualAge for Java,
for example, when a new edition is created from a version (Figure 133).

Figure 133. Log window in VisualAge for Java

Debugger
The Debugger window displays running threads and the contents of their

runtime stacks (Figure 134). In the Debugger you can suspend and resume

execution of threads; inspect and modify variable values; and set, remove,
and configure breakpoints.
Chapter 7. Development and testing with VisualAge for Java 177

Figure 134. Debugger window in VisualAge for Java

Repository Explorer
The Repository Explorer window displays all the editions of program

elements in the repository (Figure 135). In the Workbench you can only find

one edition of program elements that were loaded from the repository.

Figure 135. Repository Explorer window in VisualAge for Java
178 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Searching
The IDE gives you several choices for searching program elements. For

example, in program element panes, if you press a letter key, VisualAge for

Java selects the first displayed program elements that begins with that

letter.

You have the following search options:

 ❑Searching with the Search dialog

 ❑Searching for references and declarations

 ❑Searching from the Workspace menu

 ❑Searching for a program element within a browser page

Browsing
VisualAge for Java gives you extensive facilities for browsing program

elements. In the IDE, you browse a program element by opening it. There are

many ways to open a program element in VisualAge for Java, but for now,
here are two simple methods:

 ❑Select the program element, and select Open from the Selected menu or

from the pop-up menu of the program element.

 ❑Select the appropriate browser in the Workspace menu, (Open Type

Browser, Open Package Browser, Open Project Browser) for the program

elements.

Project browser
The Project browser displays the following pages of one project: Packages,
Classes, Interfaces, Editions, and Problems (Figure 136).

Figure 136. Project browser
Chapter 7. Development and testing with VisualAge for Java 179

Package browser

The Package browser displays the following pages for one package: Classes,
Interfaces, Editions, and Problems (Figure 137).

Figure 137. Package browser

Class browser
The Class browser displays the following pages for one class: Methods,
Hierarchy, Editions, Visual Composition, and BeanInfo (Figure 138).

Figure 138. Class browser

Method browser
When you open a method, you get a window with two pages: the Source page

lists the source code, and the Editions page lists all the available editions

(Figure 139).
180 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 139. Method browser

Additional VisualAge for Java concepts
The following are a few additional items worth mentioning about the

VisualAge for Java environment.

Adding features
We mentioned previously that you can use the SmartGuide to add features to

the system as needed. You can access this SmartGuide through File ->

QuickStart -> Features -> Add Features. The F2 key is a fast path to the

QuickStart menu.

Setting preferences
The VisualAge for Java IDE is a flexible work environment that you can

adjust to meet your needs and preferences. You can change the way the IDE

appears and functions by changing settings in the Options dialog.

To open the Options dialog, select Options from the Window menu, which

appears on all IDE windows. The Options dialog contains settings for each of
the customizable features. The settings are initially set to default values, but

you can change the defaults to suit your work style or environment.

Java version
The VisualAge for Java product which we are running supports the Java API

Version 1.1.7. There is another version of VisualAge for Java that supports

Java 2.
Chapter 7. Development and testing with VisualAge for Java 181

VisualAge for Java IDE symbols
This section describes some of the symbols (icons) used in the VisualAge for

Java environment. Use this mainly as a reference.

Hover help
When you move and hold the pointer over most symbols in the IDE, hover

help and the status line present information about them, and the function

that they perform. Figure 140 shows how the hover help displays when we

move the mouse over the Search icon. From this page, we can also see

symbols for creating projects, classes, applets, methods, and fields. We will
discuss these more as we actually build our servlets.

Figure 140. Hover help actions

Other options from this page include the icons for creating packages, classes,
applets, applications, methods, fields, opening and running the debugger,
searching, viewing editions, and versioning.

The following symbols do not display this help, and may be used to display

information about the programming elements.

Program elements
Figure 141 shows the symbols used to describe information at the program

element level.

Figure 141. Program element symbols
182 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Access modifiers for methods and fields

Figure 142 shows the symbols used to describe information about the

program and its elements:

Figure 142. Program access modifiers

Other modifiers for classes, methods, and fields
Figure 143 shows the symbols used to describe additional information about

the program and its elements:

Figure 143. Other modifiers

Other symbols
Figure 144 shows some other symbols in the VisualAge for Java

environment:

Figure 144. Other symbols
Chapter 7. Development and testing with VisualAge for Java 183

Bookmarking elements
The Workbench lets you bookmark program elements, making it quick and

easy to return to a frequently-used project, package, class, interface, or

member within the Projects page. You can bookmark up to nine program

elements.

To bookmark a program element:

 ❑In the Workbench, select the Projects page.

 ❑Select the program element you want to bookmark.

 ❑Select the bookmark button, located in the top right-hand corner of the All
Projects pane. A bookmark number appears next to the bookmark button.

 ❑To see which bookmark relates to a particular program element, move the

mouse pointer over it.

Code assist
Source panes, SmartGuides, and some other dialogs and browsers (for

example, the Configure Breakpoints dialog) contain code assist, a tool to help

you find the classes, methods, and fields you are looking for without having

to refer to class library reference information. Code assist is accessed by

typing Ctrl+Spacebar.

When you type Ctrl+Spacebar, classes, methods, parameters, and types that

could be inserted in the code at the cursor are shown in a pop-up list, from

which you can select one.
184 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlet development
In this section we discuss how to develop servlets in the VisualAge for Java

environment.

Rapid servlet development
VisualAge for Java gives you the ability to rapidly develop programs because

of the Visual Composition editor and the built-in SmartGuides. VisualAge for

Java gives you the ability to develop servlets visually as well, through the

Servlet Builder interface. We have already mentioned that we will not cover

the Servlet Builder in this chapter, but you might want to know why. In the

following paragraphs, we provide some background about the servlet

development process which might help explain this concept in more detail.

Model-View-Controller
We introduce the term Model-View-Controller (MVC) to describe a paradigm

that has become popular in design, where we separate out the user interface

in the view layer from the control layer, which manages the flow of the

application, and the model layer, which handles our business logic and access

to application resources.

We will describe this concept in more detail and other design techniques in

Chapter 12, “Using Patterns for e-business to build the PDK” on page 347.
This is a popular technique, because we can separate out our design

components into different objects, making it a more modular, and

object-oriented design.

Servlet-only applications
In servlet-only applications, the servlet is used as both the controller and the

view. We can see this in our examples in Chapter 4, “Servlets” on page 41,
where the servlets process our requests (control) AND produce the HTML

response (view). In some cases, such as the JDBC servlet example, the servlet

also acted as the model, because it referenced our data source.

Since we have tightly coupled the code for the controller and the view

together in a single process, making changes to the HTML output will be

difficult, because we have to modify source code, and recompile our program.
One of the benefits of JSPs is that we can separate the view from the control.
Chapter 7. Development and testing with VisualAge for Java 185

Servlet-JSP applications
In servlet-JSP-based Web applications, discussed in Chapter 5, “JavaServer

Pages” on page 95, the servlet can be used as the controller, and the JSP can

be responsible for the view layer. (Note that the JSP can also be the

controller, but this moves us away from a separation of view and controller.)

Servlet Builder
The Servlet Builder feature of VisualAge for Java enables us to build servlets

visually, using JavaBean elements to visually design our servlet’s HTML

response page. Because we can do this HTML formatting in a JSP, and have

a separate view layer to do so, we will not use the Servlet Builder for any of
these examples. (We will be building JSPs visually in Chapter 8,
“Development with WebSphere Studio” on page 227.) The Servlet Builder

still has a role in development (although not implemented here) because it

can be used to tie the servlet to other types of non-visual JavaBeans as well.

Even though we are not choosing to develop servlets using the Servlet

Builder, VisualAge for Java is still a very rapid application development

environment for servlets because of its many built-in features, including:

 ❑Built-in support for managing code versions
 ❑Easy Navigation
 ❑SmartGuides for developing everything from projects, packages, classes,

and methods
 ❑Integrated visual debugging, which allows incremental code compilation

while debugging a program.

The development process
The development process is more than just writing code. It is usually an

incremental process that involves coding, testing, and debugging (and then

some more coding). VisualAge for Java is uniquely suited for servlet

development because it integrates all of these development tasks within a

single environment.

We will use VisualAge for Java to develop and test our servlet examples. In a

typical environment, you might develop your servlets in a tool such as

VisualAge for Java, and then deploy them to run on a Web application server

for testing. Additionally, your code could be shared with other development

tools, such as WebSphere Studio (see Chapter 8, “Development with

WebSphere Studio” on page 227).

VisualAge for Java provides not only a development environment in which to

create and manage our servlets, but also a WebSphere Test Environment in
186 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

which to run and test; as well as a debugger to interactively debug our

servlets. We can also interactively run and debug JSPs in VisualAge using

the JSP Execution Monitor. We discuss the WebSphere Test Environment

and the JSP Execution Monitor in the next sections. Having integrated these

development tasks in a single environment, VisualAge for Java is truly a

rapid application development tool.

We will talk about each of these tasks later in this chapter, but for now, we

will concentrate on how to code our servlets in VisualAge for Java. We will be

creating our first servlet, SimpleHttpServlet, in VisualAge for Java.

Developing our first servlet
In walking through the steps below, we will be setting up our environment to

allow us to create our first servlet, SimpleHttpServlet. We have already

discussed the various windows in the VisualAge for Java environment. We

will touch on each one when building our servlet.

Workbench
This is your IDE. It is the launching point for the other function specific

browser windows. This is the window that you start on in the VisualAge tool.
Start VisualAge, and go to the Workbench.

Workspace
This is your development environment. It contains references to all your

source code, and it is customized and configured by you according to your

specifications. The repository, which contains your workspace in addition to

other VisualAge resources, is saved as a file <IBMVJava>\ide\repository\ivj.dat,
where <IBMVJava> is your installation root. The workspace is stored as a

separate file, <IBMVJava>\ide\program\ide.icx. All source code and resources

become part of your workspace. You can see all the projects available to you

in the workspace.

Projects
Projects are the highest level organizational structure within VisualAge for

Java. All source code and application resources must belong to a project that

enables a high level grouping of an application’s resources. You have to create

a new project if you plan on running the servlet examples.

 ❑From the workbench, click on the Project (folder) icon to Add New or

Existing Project to Workspace and enter ITSO Servlet JSP Redbook as the

name of the project.
Chapter 7. Development and testing with VisualAge for Java 187

Packages
Packages in VisualAge for Java are like Java packages. It is a way to create

groupings of related classes within an application. You will need to create a

package to contain all of the servlet example source code that you create.

 ❑Select the ITSO Servlet JSP Redbook project.

 ❑Click on the Package icon to Add New or Existing Package to Workspace.

 ❑Create a new package named itso.servjsp.servletapi.

Note: If you have already imported the source code for this redbook, this

package should already exist. If you still want to develop the source code

from the ground up, we suggest you use a different project and package name

(to guarantee uniqueness). However, we will use these naming conventions in

this chapter.

Classes
What you actually create here are the Java source code programs which

compile into Java class files. These classes should always be added to the

ITSO Servlet JSP Redbook project and the itso.servjsp.serlvetapi package

(unless this package already exists, and you have created your own).

To create a new Java source file:

 ❑Select the ITSO Servlet JSP Redbook project and the

itso.servjsp.servletapi package in your workspace.

 ❑Click on Create Class icon to Add New or Existing Class. The project and

package name should already be filled in and match the names above.
Select the default options on this page.

 ❑Enter the class name as SimpleHttpServlet, and the superclass name as

javax.servlet.http.HttpServlet. Select the default options on this page and

click Next.

 ❑Add the following packages: java.io.*, javax.servlet.*, and

javax.servlet.http.*.

 ❑Click Finish, and the skeleton class is generated.

Viewing and modifying the Java source code
The servlet which you just created above has the signature and methods of a

servlet, but no implementation. You have to modify this new servlet to add

some basic functionality. Figure 145 shows the source of the service method.

 ❑Double-click on the new class to open the Class browser.

 ❑Select the service method and edit the code to match Figure 145.
188 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 ❑To save the code, hit Ctrl-s, or select another method (when a method

object loses focus, you will force VisualAge for Java to re-compile the code

if it has been changed).

Figure 145. SimpleHttpServlet: service method

Viewing the class declaration
To see the servlet class declaration, select the class. (If a method already has

focus, use the ctrl+mouse combination, and reselect the class). You should see

the Java source code declaration shown in Figure 146. One thing you do not

see is the package declaration (package itso.servjsp.servletapi;). You do not

programmatically have to specify this in the source code; VisualAge for Java

adds it for you by default in the package where you create the class.

Figure 146. SimpleHttpServlet: class declaration

Viewing the complete source code
In VisualAge for Java, all of the individual properties and methods of your

class file are stored as their own objects for easy manipulation within the

IDE environment, and this is stored in the repository. You cannot see a full
source code listing within VisualAge for Java; to do this you would have to

export the source code from VisualAge to the file system. Because the

VisualAge for Java environment itself can easily be navigated, you will find

that you require the complete source very seldom, if ever. We will, however,

protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>SimpleHttpServlet</TITLE><BODY>");
out.println("<H2>Servlet API Example - SimpleHttpServlet</H2><HR>");
out.println("<H4>This is about as simple a servlet as it gets!</H4>");
out.println("</BODY><HTML>");
out.close();

}

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
/**
 * ITSO SimpleHttpServlet - Basic servlet example
 */
public class SimpleHttpServlet extends HttpServlet {

}

Chapter 7. Development and testing with VisualAge for Java 189

discuss the details of importing and exporting in VisualAge later in this

chapter.

Complete SimpleHttpServlet
Figure 147 shows the entire SimpleHttpServlet source code that you just

created. This is the same SimpleHttpServlet that we introduced in Chapter 4,
“Servlets” on page 41. The primary differences from the source code you see

here, and what you see in the Servlets chapter, is that VisualAge for Java

built a default constructor, and added a number of nice comments. We like

the comments, but have eliminated them here to condense the code.

Figure 147. SimpleHttpServlet: complete source code

package itso.servjsp.servletapi; <=== generated on export

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
/**
 * ITSO SimpleHttpServlet - Basic servlet example
 */
public class SimpleHttpServlet extends HttpServlet {

}

/**
 * SimpleHttpServlet constructor comment.
 */
public SimpleHttpServlet() {

super();
}

/**
 * service method comment.
 */
protected void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>SimpleHttpServlet</TITLE><BODY>");
out.println("<H2>Servlet API Example - SimpleHttpServlet</H2><HR>");
out.println("<H4>This is about as simple a servlet as it gets!</H4>");
out.println("</BODY><HTML>");
out.close();

}

190 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

WebSphere Test Environment
VisualAge for Java integrates much of the WebSphere Application Server

Advanced runtime so that debugging servlets and JSPs (and EJBs) is

possible in a highly integrated development environment. The WebSphere

Test Environment (WTE) in VisualAge for Java actually encompasses the

servlet and JSP runtime and test environments.

The WTE enables us to run our servlet examples in a controlled, simulated

Web application server environment. Typically, one consequence of the

servlet life-cycle is that you must normally stop and restart the Web

application or reload the class file to apply your updated code changes. This

can become tedious during development, when you are making lots of
changes.

Fortunately, WTE offers a much more productive way to develop and test

servlets (and JSPs) for WebSphere. When you change a method in the

servlet, VisualAge for Java incrementally compiles only this modified method

of the class, not the entire class, and hot-links it into the running program.
This type of incremental compilation is an important productivity boost,
because you do not have to stop and restart the WTE in programs that you

are debugging to execute your updated code, and rebuild program state.

There are two different ways to configure and run the WebSphere Test

Environment:

 ❑SERunner
 ❑ServletEngine

The first way, using SERunner, is described in this section, and is the

primary method we use when talking about running the WebSphere Test

Environment. We describe how to configure, run, and test our

SimpleHttpServlet using the WTE within the VisualAge for Java tool.

The second way, using ServletEngine, is not documented (yet) in the

VisualAge for Java help. With the ServletEngine we can configure the test

environment to support multiple Web applications, to mirror what can be

done in WebSphere. This gives us more flexibility and control over the testing

environment, but is much harder to configure. We discuss this second method

in more detail in “Configuring multiple Web applications” on page 215.
Chapter 7. Development and testing with VisualAge for Java 191

VisualAge for Java configuration for WebSphere
You need to ensure that the WebSphere Test Environment feature under

VisualAge for Java have been successfully installed and configured. See

“VisualAge for Java” on page 15 for detailed instructions on what features

must be added to the VisualAge for Java workspace.

WebSphere Test Environment setup
There several steps that you have to perform to configure the WebSphere

Test Environment for servlet development and testing:

 ❑In the Workbench, find the IBM WebSphere Test Environment project,
and select the com.ibm.servlet package. Find the SERunner class.

 ❑Create a bookmark to this class by selecting the bookmark icon in the top

right of the window. This step is optional, but will make it easier to find

this class in the future.

 ❑Select Run -> Check Class Path in the context menu of the SERunner

class.

 ❑Select the Class Path tab. Click the Edit button to edit the Project Path.
Select the project ITSO Servlet JSP Redbook. Save this setting by

selecting OK.

Note: You may have to come back here in the future to manipulate the

class path settings for the application. One option (but unscientific and

potentially unsafe with complex configurations) is to select all the projects

and add them to the class path of the SERunner class.

Start the WebSphere Test Environment
Now we want to run the SimpleHttpServlet example in the WebSphere Test

Environment.

There are a couple of ways to start the WebSphere Test Environment and

launch the servlet. The WebSphere Test Environment starts a local
WebSphere Application Server process (localhost, or 127.0.0.1), running on

port 8080, by default.

Starting the SERunner class directly
To start the SERunner process directly, select the SERunner class, and select

Run -> Run Main from the context menu. You can also click on the running
192 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

man icon in the tool bar. Once started, you invoke the servlet from a Web

browser by entering the appropriate URL of the servlet, for example:

http://localhost:8080/servlet/itso.servjsp.servlatapi.SimpleHttpServlet

Of course, this assumes you know the URL of the servlet, and we have not yet

discussed this.

A more direct way to run your servlet is to use the Servlet Launcher.

Using the Servlet Launcher to launch the servlet
You can also start the SERunner class by using the Servlet Launcher

capabilities. Select your servlet, SimpleHttpServlet, and Tools -> Servlet
Launcher -> Launch from the context menu. If the SERunner is not yet

running, it is started for you.

This method launches the servlet by starting a Web browser to invoke the

servlet. The first time you launch the servlet, you are prompted for servlet

parameters. This servlet does not require any parameters, so just click OK to

continue.

Considerations when launching SERunner
If your servlet process requires any classes (jar files) that are not part of the

VisualAge for Java workspace (for instance, external API or DB2 jars, such

as d:\SQLLIB\java\db2java.zip), you have to either:

 ❑Import the jar or class directory into the VisualAge for Java workspace,
and add this project to the SERunner class path, as described.

 ❑Select Run -> Check Class Path for the SERunner class and Edit
directories path, then add the directory or jar file to the list.

 ❑Add the directory or jar file to the VisualAge for Java system class path in

the Resources setting of the Window -> Options dialog.

Importing the classes or jar files increases the size of the workspace file.
Additionally, unless you have the corresponding Java files, you will not be

able to interactively debug your code.

This is why it may be desirable to use the second approach. This, however,
forces you to always launch the SERunner before invoking a servlet.
Otherwise, launching SERunner using the Servlet Launcher does not load

the external classes.

The last approach is most often used for jar files that are required for many

servlets and applications. For example, we suggest to add the

D:\SQLLIB\java\db2java.zip to the workspace class path.
Chapter 7. Development and testing with VisualAge for Java 193

WebSphere Test Environment windows
If the SERunner class starts correctly, you will see a little pop-up window

entitled WebSphere Test Environment (Figure 148). This is your indication

that SERunner is running.

Figure 148. WebSphere Test Environment window

Stopping SERunner
You can stop the SERunner process from the WebSphere Test Environment

window. This will gracefully shut down the Web server and call the destroy

methods for any loaded servlets. One of the nice things about this test

environment, however, is that if you change your underlying class, you most

likely do not have to restart SERunner, allowing for incremental
development and debugging within the VisualAge for Java environment.

One situation where you may have to restart the SERunner is if you change

the init method of the class. Because the init is processed only once within a

servlet’s life-cycle, changes to this method (such as the changing of
initialization parameters), do not take effect until SERunner is restarted.

Console window
The VisualAge for Java Console window is also opened and displays the

status of the SERunner process, and any servlets that you launch. The

Console window basically displays the standard output and standard error of
the Java program’s execution. If there were problems starting up the

environment, they would be display here. The messages that you see on

successful start-up of the SERunner process are shown in Figure 149.

We mentioned that the status of any of our servlets is also displayed in this

window. The simple servlet has started successfully if the line: Instantiate:
itso.servjsp.servletapi.SimpleCounter appears in the Console window (Figure

149).
194 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 149. SERunner Console status

Launching the browser
If you launched your servlet through the Servlet Launcher method, you

should see the results of your servlet’s execution displayed in your Web

browser window. The results of the SimpleHttpServlet are shown in Figure

150.

Figure 150. SimpleHttpServlet output
Chapter 7. Development and testing with VisualAge for Java 195

It is possible to invoke the servlet directly from the browser, without having

to use the Servlet Launcher method. You would use this same URL, as long

as the SERunner process is running. This may also be a desired approach,
especially when you are testing servlets that interact with each other, or with

other servlet resources. You do not want to be limited to having to invoke

each servlet from the Servlet Launcher each time.

Web host path
Notice that the servlet is invoked with http://127.0.0.1:8080 (or
http://localhost:8080). There may be variations here based upon your TCP/IP

settings, and any special configuration that you may do under WTE.

Servlet root path
The servlet Web path is /servlet/itso.servjsp.servletapi.SimpleHttpServlet.
The /servlet/ path is the default for servlets running in the default

application environment in the WebSphere Test Environment. This

corresponds to the default_app Web application in the Web Application

Server environment.

Fully qualified class name
The fully qualified class name, itso.servjsp.servletapi.SimpleHttpServlet,
contains the package name, itso.servjsp.servletapi.

In our true WebSphere Application Server environment, we most likely

would not invoke our servlets directly by their fully qualified name, because

we would want to hide this implementation detail from the user. We do this

by creating aliases for Web invocation. Because this is how servlets are

invoked by default in the WTE, you have to keep this in mind when designing

your programs, and use relative paths in your code when appropriate.

VisualAge for Java provides the facility to use multiple Web applications and

servlet aliases. See “WebSphere Test Environment — multiple Web

applications” on page 215 for more information.

What have we accomplished?
So far, we have been able to successfully create a Java servlet class in the

VisualAge for Java development environment. We have modified the code,
which caused VisualAge for Java to recompile it. We then set up the

WebSphere Test Environment and launched the servlet using the SERunner

process and the Servlet Launcher. We were able to see the results of the

servlet’s execution in the Web browser.
196 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

You now have the basis for developing and running servlets in VisualAge for

Java. The remainder of this chapter does not focus on how to create and

develop more servlets. You should be able to repeat the steps above to

accomplish that. Rather, we will focus on how to configure, run, and debug

these servlets in VisualAge for Java.

Testing JSPs under WebSphere Test Environment
This section describes how to run JSPs under the VisualAge for Java

environment, and how to have those JSPs interact with other servlets and/or

JavaBeans.

VisualAge for Java configuration for JSPs
You have to make sure that the WebSphere test environment features under

VisualAge for Java have been successfully installed and configured. See

“VisualAge for Java” on page 15 for detailed instructions on the necessary

features which must be added to the VisualAge for Java workspace.

Configuring the JSP version used by VisualAge for Java
Visual Age for Java version 3 supports both JSP .91 and JSP 1.0 versions,
and defaults to JSP .91 for backward compatibility. To change the version of
the JSP support used by the Visual Age Test Environment, perform these

steps:

 ❑Open the configuration file of the default application:

d:IBMVJava\ide\project_resources\IBM WebSphere Test Environment
\hosts\default_host\default_app\servlets\default_app.webapp

 ❑Find the JSP compiler servlet (Figure 151):

Figure 151. default_app.webapp: JSP 0.91 configuration

<servlet>
<name>jsp</name><
description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet</code>
<init-parameter>
...
Chapter 7. Development and testing with VisualAge for Java 197

 ❑Change the text for the <code> tag (Figure 152):

Figure 152. default_app.webapp: JSP 1.0 configuration

Running our first JSP
JSPs in VisualAge for Java run in the same WebSphere Test Environment

that servlets do. (After all, JSPs actually become servlets once they are page

compiled.) Because we cannot create JSP files directly in the VisualAge tool
(we will use WebSphere Studio to develop our JSPs), we have to make sure

that SERunner can find the JSP files in the file system.

Location of JSP files
The default location for HTML and JSP files is specified in the file:

<IBMVJavaRoot>\ide\project_resources\IBM WebSphere Test Environment\
SERunner.properties

in the line:

docRoot=D:\\IBMVJava\\ide\\project_resources\\IBM WebSphere Test Environment
\\hosts\\default_host\\default_app\\web

To qualify this path, you could create a subdirectory within this Web

directory, for example, \itsoservjsp.

Running a simple JSP
VisualAge for Java ships with a couple of sample JSPs that we can use to test

out our configuration, and see that JSPs have been enabled. Follow these

steps to run the very_ simple.jsp example:

 ❑Start the SERunner process and wait until it is ready.

 ❑Enter the following URL in a Web browser:
http://127.0.0.1:8080/very_simple.jsp

Figure 153 shows a successful JSP response.

<servlet>
<name>jsp</name><
description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
<init-parameter>
...
198 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 153. Very simple JSP response

As the message indicates, this is a VERY simple JSP. In fact, the only tags it

uses are HTML tags (Figure 154). It is essentially an HTML file saved with a

.jsp extension.

Figure 154. Very simple JSP source

How do we know it ran as a JSP?
This file is still very much a JSP. This example does not have any advanced

JSP tags, so how do we know that SERunner really ran it as a JSP and not as

a regular HTML file? Its because of the .jsp file extension.

When SERunner (and the WebSphere Application Server) receives a request

for a .jsp file, it compiles this JSP into a servlet. This happens only the first

time the JSP is requested; subsequent requests use the already compiled

JSP. This JSP life-cycle is described more in the Chapter 5, “JavaServer

Pages” on page 95.

So where is the compiled JSP stored? The JSP is translated into a servlet

Java source file, and imported into VisualAge for Java (JSP Page Compile

Generated Code project). The intermediate .java files, however, can be found

in the file system, in the WebSphere Test Environment \temp\ directory:

<IBMVJava>\ide\project_resources\IBM WebSphere Test Environment
\temp\default_app\pagecompile_very__simple_xjsp.java <=== JSP 0.91
\temp\Jsp1.0\default_app\very_simple_jsp_0.java <=== JSP 1.0

<html><head><title>Very Simple JSP</title></head>
<body>
<h1>Very Simple JSP</h1>
</body>
</html>
Chapter 7. Development and testing with VisualAge for Java 199

Creating and running a JSP
The very_simple.jsp file does not demonstrate much, except that the system

can run JSPs. Our next step is to take one of the JSP examples from Chapter

5, “JavaServer Pages” on page 95, and run it within the VisualAge for Java

WebSphere Test Environment.

We have not yet talked about the WebSphere Studio environment, which is a

fully integrated Web site development environment that enables us to

visually create JSPs (in addition to other application resources). So for now,
you have to create this file by hand, using a standard editor of your choice.

Creating the JSP
Create a new folder: \...\hosts\default_host\default_app\web\itsoservjsp. This

is the root Web path that we will use for all of our JSP examples.

Create a new file in this directory, DateDisplay.jsp, and add the code from

Figure 78 on page 106 from Chapter 5, “JavaServer Pages”. This JSP file

contains many of the standard types of JSP tags, including directives,
scriptlets, declarations, and accessing of implicit objects.

Run the JSP
Start the WebSphere Test Environment (SERunner) and enter the following

browser command: http://127.0.0.1:8080/itsoservjsp/DateDisplay.jsp

Figure 155 shows the results of the JSP execution.

Figure 155. DateDisplay.jsp output
200 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Debugging servlets and JSPs
VisualAge for Java includes an integrated visual debugger with a rich set of
features. This section outlines some of these features, and describes how we

can debug our servlets and JSPs within the VisualAge for Java environment.

Debugger basics
This section outlines the basics of the VisualAge for Java debugging

environment.

Opening the debugger
You can open the debugger manually by selecting Debug -> Debugger from

the Window menu. If a program is running, you can suspend its thread, and

view its stack and variable values. Alternatively, the debugger will
automatically open with the current thread suspended for the following

reasons:

 ❑A breakpoint in the code is encountered.

 ❑A conditional breakpoint that evaluates to true is encountered

 ❑An exception is thrown and not caught

 ❑An exception selected in the Caught Exceptions dialog is thrown.

 ❑A breakpoint in an external class is encountered.

Setting breakpoints
When a program is running in the IDE and encounters a breakpoint, the

running thread is suspended and the Debugger browser is opened so that you

can work with the method stack and inspect variable values. In the IDE, you

can set breakpoints in any text pane that is displaying source.

To set a breakpoint
Find the code you want, and double-click in the left-margin of the source

pane.

To remove a breakpoint
Find the breakpoint that is set in the code, and double-click on it in the left

margin of the source pane.

Note: There are other ways to remove breakpoints while debugging, and we

will discuss these as we walk through an example.
Chapter 7. Development and testing with VisualAge for Java 201

Figure 156 shows a breakpoint that is set in the source pane.

Figure 156. Breakpoint set in the source pane

Using the Debugger window
We indicated that the Debugger window can be opened by choosing Window

-> Debug -> Debugger. The Debugger window is also opened if you execute

any code that has a breakpoint. You can interact with your program by

controlling the program execution flow and by interacting with the threads.

Controlling program execution flow

 ❑Step in: Steps into the current statement or method.

 ❑Step over: Runs the current statement, and stops before the next

statement.

 ❑Run to return: Runs the current method, up to the return statement.

 ❑Resume: Runs to the next breakpoint, until you manually suspend the

thread, or to the end of the program.

 ❑Run: Runs the program code, until the next breakpoint or end of program.
202 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Controlling the execution of the program threads

 ❑Suspend a thread: To examine a thread at any point while it is running,
you must suspend it manually. Threads halted because of a breakpoint or

an uncaught exception are suspended automatically.

 ❑Resume a thread: Resumes the suspended thread. The program will
continue running until it is suspended again or until it terminates.

 ❑Terminate a thread: Terminates a thread, and removes it from the

debugger.

Debugging a servlet
Now we will walk through the debugger by debugging and stepping through

one of our servlet examples.

SimpleHttpServlet servlet changes
You have to modify the SimpleHttpServlet class and add a field. This makes it

more interesting for the debugger, and allow us to demonstrate an important

concept about threading. Add the variable calledCount to the class, and add

the code snippet to the service method (Figure 157).

Figure 157. Changes to the simple servlet

Set a breakpoint
Set a breakpoint at the ++calledCount statement.

Run the servlet
Start the SERunner class and launch the servlet. The browser window will
be launched, but will be waiting for the response from the servlet. You should

see the code stop at your breakpoint in the Debugger window (Figure 158).

class:
private int calledCount;

service:
++calledCount;
out.println("<H4>This servlet has been called: " + calledCount +

" times.</H4>");
out.println("</BODY><HTML>");
Chapter 7. Development and testing with VisualAge for Java 203

Figure 158. Debugging the SimpleHttpServlet

Stepping through the program
There are a lot of options you can choose when stepping through the program.
You can look at the variable stack, you can suspend the code, you can run till
return, or you can step through the program and watch the calledCount get

incremented by one.

This program can be called multiple times from the browser just by hitting

the refresh button. Each time, it will stop at the selected breakpoint. To see

that the debugger is performing incremental compiles, you can update the

value of calledCount yourself, and verify that the new value is sent back to

the browser. In the debugger window, edit the value of calledCount, and

select Save from the context menu (Figure 159).
204 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 159. Changing values while debugging

Working with servlet threads
In the All Program/Threads window pane of the debugger, you can see that

there are multiple threads of execution. Many of these threads have to do

with the running of the SERunner class. In addition, you will see a Thread

for each servlet that is running. In the example below, we have triggered

SimpleHttpServlet from two browser windows. We can see that both threads

are running, and have stopped at the breakpoint (Figure 160).

Figure 160. SERunner Threads

This is a useful technique to show thread interaction among servlets. For

instance, we can step through one thread of the SimpleHttpServlet and see

the calledCount value being incremented, then step on over to the second
Chapter 7. Development and testing with VisualAge for Java 205

SimpleHttpServlet thread, and verify that it has the value set in the first

thread.

JSP Execution Monitor
The JSP Execution Monitor enables you to monitor the execution of JSP

source, the JSP-generated Java source, and the HTML output. With the JSP

Execution Monitor, you can efficiently monitor JSP run-time errors. The JSP

Execution Monitor displays the mapping between the JSP and its associated

Java source code, and enables you to insert breakpoints in the JSP source.

If you find an error in a JSP page, you can also modify the JSP source in a

text editor, and then run the JSP source in the JSP Execution Monitor. To

load the updated version of the JSP source into the JSP Execution Monitor,
you simply have to refresh from the Web browser.

The JSP Execution Monitor highlights the location of syntax errors in both

the JSP and JSP-generated Java source.

Launching the JSP Execution Monitor
To launch the JSP Execution Monitor, perform these steps:

 ❑From the Workspace menu, select Tools -> JSP Execution Monitor. The

JSP Execution Monitor Option dialog box opens (Figure 161). (The default

internal port number for the use of the JSP Execution Monitor is 8082. If
port number 8082 is already in use, change the port number in the JSP

Execution Monitor internal port number field.)

Figure 161. JSP Execution Monitor launch window

 ❑By default, the JSP Execution Monitor mode is disabled. You must select

Enable monitoring JSP Execution to activate monitoring when a JSP file

gets loaded.
206 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 ❑By default, the Load generated servlet externally option is disabled.
Selecting this option enables you to load a generated servlet, so that the

servlet does not get imported into the IDE. We usually recommend leaving

this unchecked because you do not get the class path options that were

configured in the WebSphere Test Environment, and your JSPs might not

load properly.

Stepping through the JSP
VisualAge for Java ships with a couple of sample JSPs that we can use to test

out our configuration, and see that JSPs have been enabled. Follow these

steps to run the DateDisplay JSP example, and test its result:

 ❑Start the SERunner process.

 ❑Enable the JSP Execution Monitor.

 ❑Enter the following browser command:
http://127.0.0.1:8080/itsoservjsp/DateDisplay.jsp

The JSP Execution Monitor window appears and displays the current status

of the JSP (Figure 162).

Figure 162. JSP Execution Monitor window
Chapter 7. Development and testing with VisualAge for Java 207

Similar to the debugger window for our servlets, you can step through this

code, or run to completion. We can also fast-forward and terminate. Using the

JSP source and Java source panes, you can see the JSP that was invoked,
and the corresponding Java source file that was compiled, and walk through

them simultaneously. The HTML output pane shows the JSP response that is

generated.

Debugging JSP generated source code
We mentioned earlier that the compiled .java files for JSPs are stored in the

file system (WebSphere Test Environment\temp). These files are also

imported into the workspace, in the project JSP Page Compile Generated

Code, and a package named after the \web subdirectory.

JSP compilation occurs when a JSP is invoked the first time (each time after

starting the WebSphere Test Environment), or when the underlying JSP file

is changed.

Because these servlets exist in the workspace, they are candidates for

interactive debugging. You can set breakpoints in the JSP generated source

servlets, and debug these servlets in the same way as you debugged the

servlet.

You can also step through the code using the JSP Execution Monitor, but this

does not give you the ability to interactively change the variable values, or

inspect the call stack or threads.

WebSphere Test Environment — advanced configuration
In “Servlet interaction techniques” on page 73 we discussed how servlets can

be grouped under a single Web application context. In the VisualAge for Java

SERunner environment, all servlets and JSPs, by default, belong to the same

default Web application. Thus, they share a common ServletContext, and can

share resources even if we have defined them in different VisualAge projects.

In this section, we describe the WTE SERunner default configuration, and

how (and where) to locate, build, and/or change servlet resources that your

Web application might need. Being part of the same Web application, all
servlets and JSPs that are launched through SERunner share this same

configuration. Keep this in mind when configuring the test environment.

Later, in “WebSphere Test Environment — multiple Web applications” on

page 215, we describe how to set up additional Web application environments
208 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

in VisualAge for Java, by bypassing SERunner and running the

ServletEngine process directly.

Types of resources
Servlets may require additional resources as part of a Web application. These

could include active server resources, such as other servlets and JSPs, or

passive resources, such as HTML files. Additionally, servlets may require

access to servlet configuration files, or other system resources, such as JDBC

databases.

Additional servlet examples
Many of the servlet and JSP examples that we have discussed in previous

chapters require additional resources. We will describe the basics here so

that you can find your way around the WebSphere Test Environment. In the

next section, we describe how to configure for specific situations.

Resource locations
In this section, we use <IBMVJava> to describe the root path where VisualAge

for Java is installed on your system, and <IBMVJavaWTE> for the resource

directory of the IBM WebSphere Test Environment, for example:

<IBMVJava>: d:\IBMVJava
<IBMVJavaWTE>: d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment

WebSphere Test Environment root locations
These describe the default root locations for the server process:

 ❑Server root: <IBMVJava>\ide\project_resources\IBM WebSphere Test
Environment: This is the server root from which all paths are derived.

 ❑Default file root: <IBMVJava>\ide\project_resources\IBM Servlet IDE Utility
class libraries\filename. When running servlets that perform I/O and you

do not specify a path, files will be created here, for example, SaveStats.ser,
for a serialized file.

WebSphere Test Environment default application locations
By default, the WTE uses the following directory locations:

 ❑Document root: <IBMVJavaWTE>\hosts\default_host\default_app\web, is the root

directory for HTML and JSP files. For example, index.html and

very_simple.jsp are found here, and are invoked through

http://localhost:8080/very_simple.jsp.
Chapter 7. Development and testing with VisualAge for Java 209

 ❑Document root folders: You can create additional folders under the

document root for specific configurations, for example, itsoservjsp.

The URL path for a JSP in this folder would be:
http://localhost:8080/itsoservjsp/myjsp.jsp.

 ❑Compiled JSP: <IBMVJavaWTE>\temp\Jsp1_0\default_app\filename. (For JSP

0.91 the directory is \temp\default_app\pagecompile\filename.) This is useful
if you want to see the compiled JSP’s servlet code.

 ❑Class path for servlets: <IBMVJavaWTE>\hosts\default_host\default_app
\servlets. This is where the default_app.webapp configuration file can be

found.

Configuring project resources
If a servlet requires a configuration file (for example, impleInitServlet.servlet,
which is an XML servlet configuration file), or a property file, you can place

this file anywhere in the SERunner class path. However, we suggest using

the following conventions in order to keep your various project resources

separate:

 ❑Build project specific resource directory root: <IBMVJava>\ide
\project_resources\ITSO Servlet JSP Redbook, is the ITSO Servlet JSP

Redbook project resources root. This assumes that the ITSO Servlet JSP

Project has been added to the SERunner class path.

 ❑Build package directories: You have to create fully qualified directories

that match the servlet’s package name, for example, <IBMVJava>\ide
\project_resources\ITSO Servlet JSP Redbook\itso\servjsp\servletapi
(...\itso\servjsp\servletapi\SimpleInitServlet.servlet).

The four key configuration files
The following four files are the primary files used to configure the WebSphere

Test Environment. Many parameters are not applicable to the SERunner

environment, so we will not go into much detail here. These files will be

reintroduced later in this chapter when we discuss configuring for the

ServletEngine test environment. The configuration matches very closely the

configuration in the WebSphere Application Server environment.

SERunner.properties
Location: <IBMVJavaWTE>\SERunner.properties.

This is a standard Java property file. You probably do not have to change this

file, however, the parameters are:

 ❑httpPort: 8080 (default)
210 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 ❑docRoot: <IBMVJavaWTE>\\hosts\\default_host\\default_app\\web

 ❑serverRoot: <IBMVJavaWTE>

default.servlet_engine
Location: <IBMVJavaWTE>\default.servlet_engine

This is an XML formatted file. It is the main configuration file for the servlet

engine. The key parameters are:

 ❑Virtual host: <websphere-servlet-host name="Host for VisualAge for Java
WebSphere Unit Test Environment">. This tag defines the virtual host in the

servlet engine. Only one single virtual host is used in SERunner.

 ❑webgroup tag: <websphere-webgroup name="default_app">. This tag defines the

Web application deployment bindings within the servlet engine. Only the

default application (default_app) is valid when using SERunner.

 ❑Hostname bindings: <hostname-binding hostname="localhost" servlethost=
"Host for VisualAge for Java WebSphere Unit Test Environment">. This tag is

for binding a DNS name to a virtual host.

 ❑MIME types: This tag defines a mime type mapping for the virtual host.

default_app.webapp
Location: <IBMVJavaWTE>\hosts\default_host\default_app\servlets\
default_app.webapp

This is the configuration file for the default Web application. The SERunner

environment supports only this default_app. The key parameters are:

 ❑Error page: <error-page>/ErrorReporter/</error-page>, the URI page that is

called in response to an error during the processing of a servlet; it can be a

customized servlet, JSP, or HTML file.

 ❑Servlet properties: <servlet> <name>myser</name> <code>MyServlet</code>
<init-parameter> <name>key</name> <value>123</value>
<servlet-path>/servlet</servlet-path> <autostart>true</autostart> ...
</servlet>, defines a servlet within a Web application. There can be many

servlets defined in this file. A user defined servlet in our application does

not have to be defined here (by default, it will be invoked by its class

name), but we can use this to specify some additional servlet properties,
such as the name (alias) that we use in the browser, and configuration

parameters.

 ❑Invoker servlet: <servlet> <name>invoker</name> <servlet-path>/servlet
</servlet-path> ... </servlet>, is a special servlet that allows us to load a

class by name, such as itso.servjsp.servletapi.SimpleHttpServlet. The
Chapter 7. Development and testing with VisualAge for Java 211

servlet-path value of /servlet specifies the URL prefix used to invoke

servlets in the browser.

 ❑JSP: <servlet> <name>jsp</name> <code>...</code> </servlet>, is a special
servlet that is used to compile JSPs. The init parameter of jspemEnable

allows us to enable or disable JSP Execution Monitor support. The class

specified in the <code> tag specifies the level of JSP support:

 • com.ibm.ivj.jsp.runtime.JspDebugServlet <== JSP 1.0
 • com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet <== JSP 0.91

 ❑Error Reporter: <servlet> <name>ErrorReporter</name> ...< /servlet>, is a

special servlet that handles the error reporting in our application.

session.xml
Location: <IBMVJavaWTE>\session.xml

This controls the WebSphere Session Management functions in the servlet

engine. All tags within <session-data> are valid in WTE. All others should be

ignored.

Configuration for servlet chaining, filtering, and SHTML
This section describes how to configure the WebSphere Test Environment to

support servlet chaining, filtering, and the processing of SHTML files. These

servlet techniques were discussed in Chapter 4, “Servlets” on page 41.

Servlet chaining
To support servlet chaining, we define a sequence of two or more servlets,
such that the response of one servlet is chained as the request into another

servlet, until the final servlet in the chain is executed, and the accumulated

response sent back to the Web browser. In this way, the execution of all the

servlets in the chain produce our composite response.

Figure 163 shows how to add support for servlet chaining. You need to define

a ChainerServlet in your Web application file, default_app.webapp (or

itsoservjsp.webapp). For this example, we are chaining two servlets in the

itso.servjsp.servletapi package together to create our composite response.
212 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 163. Servlet chaining specification in default_app.webapp

Servlet filtering
In servlet filtering, the servlet changes the MIME type of the response from

text/html to a user-defined MIME type, and tie this MIME type to a servlet.

We do not know how to configure the VisualAge for Java Test Environment

for servlet filtering.

See “Servlet interaction techniques” on page 426 on how to configure

WebSphere Application Server for servlet filtering.

Running SHTML
See “Additional servlet examples” on page 424 for instructions on how to set

up WebSphere or VisualAge for Java to run the SHTML example. Basically,
you have to associate .shtml files with the JSP 0.91 compiler to have the

source compiled into a servlet.

<servlet>
 <name>Servlet Chaining Servlet</name>
 <description>Servlet Chaining Servlet</description>
 <code>com.ibm.websphere.servlet.filter.ChainerServlet</code>
 <servlet-path>/chainer</servlet-path>
 <autostart>true</autostart>
 <init-parameter>
 <name>chainer.pathlist</name>
 <value>/servlet/itso.servjsp.servletapi.ChainerFirst

/servlet/itso.servjsp.servletapi.ChainerSecond</value>
 </init-parameter>
</servlet>
Chapter 7. Development and testing with VisualAge for Java 213

Developing and testing additional servlet and JSP
configurations

We have really only covered the very basics of servlet and JSP development,
testing, and debugging in VisualAge for Java. This section covers some

specific servlet and JSP configurations, primarily to support servlet and JSP

interactions discussed in Chapter 4, “Servlets” on page 41 and Chapter 5,
“JavaServer Pages” on page 95.

Creating additional servlet examples
We will not provide the detail to create the rest of the servlet examples by

hand. You can choose to go through the class creation process for each servlet

you create, or you can use code reorganization to copy the first servlet,
SimpleHttpServlet, using it as a template for your other servlets. You can

also import the code from the 5755samp.zip file that is available on the

Internet (see Appendix C, “Using the additional material” on page 417.).

To copy a class for a new servlet
 ❑Select the class file.

 ❑Select Reorganize -> Copy from the context menu.

 ❑Keep the same package, and select Rename the copy. Click on OK.

 ❑Enter the new name, then click on OK to generate the new class.

Configuring and running additional servlets
In “Testing the servlets and JSPs” on page 423 (in Appendix C, “Using the

additional material”), we provide the detailed steps to allow you to configure

and test most of the servlet examples discussed in Chapter 4, “Servlets” on

page 41. Some of these servlets have dependencies, such as they may require

for supporting HTML pages, initialization files, or servlet configuration files.

The steps to configure and run these servlets can be classified as:

 ❑Servlet configuration files — servlet initialization parameters and names

of called JSPs

 ❑JDBC database connections—configuring DB2 JDBC connections

 ❑Redirecting to HTML files — location of HTML files for redirection

 ❑Redirecting to error_Page — location of error page file

 ❑Dependencies on generated forms — other servlets
214 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

WebSphere Test Environment — multiple Web
applications

We mentioned earlier that SERunner might not provide all of the

functionality required to fully test your application, such as the ability to

configure multiple Web applications in the WebSphere Test Environment.

You can run the ServletEngine directly, which gives you the following control
over your Web application environment:

 ❑You can run multiple Web applications with their own document root

configurations

 ❑You can set the servlet class path individually for each Web application

 ❑You can define individual Web application servlet contexts

The following section describes how to configure the environment for a

tailored Web application, in addition to the default application.

Configuring multiple Web applications
In this section, we build a new Web application, itsoservjsp, to run our

examples. The following sections walk us through the steps to configure the

ServletEngine for two Web applications.

Create new directories
Create the following directories under the WTE root directory

<IBMVJava>\ide\project_resources\IBM WebSphere Test Environment:

 ❑\hosts\default_host\itsoservjsp\servlet—class path for servlets, and

location of the .webapp file

 ❑\hosts\default_host\itsoservjsp\web—document root (for testing, we

suggest you include an index.html document in this directory)

 ❑\temp\JSP1_0\itsoservjsp—scratch directory for compiled JSPs (1.0)

You have to create these three directories for each Web application that you

define.

Modify default.servlet_engine
Edit the <IBMVJavaWTE>\default.servlet_engine file to set up the itsoservjsp Web

application. We suggest that you back up this file first prior to making any

changes so that you can restore the default SERunner environment.
Chapter 7. Development and testing with VisualAge for Java 215

 ❑Change the WebSphere servlet host name to default_host:

<websphere-servlet-host name="default_host">

 ❑Add a <websphere-webgroup> for itsoservjsp:

<websphere-webgroup name="itsoservjsp">
<description>ITSO Servlet JSP Redbook</description>
<document-root>$approot$/web</document-root>
<classpath>$approot$/servlets$psep$$server_root$/servlets</classpath>
<root-uri>/itsoservjsp</root-uri>
<auto-reload enabled="true" polling-interval="3000"/>
<shared-context>false</shared-context>

</websphere-webgroup>

In this definition, we set the <root-uri> to /itsoservjsp, so that servlets are

invoked with http://localhost:8080/itsoservjsp/servletname.

 ❑Change the hostname binding to match the servlet host:

<hostname-binding hostname="localhost:8080" servlethost="default_host"/>
<hostname-binding hostname="127.0.0.1:8080" servlethost="default_host"/>

With this configuration, we should be able to call HTML files, servlets, and

JSP for the itsoservjsp Web application as:

http://localhost:8080/itsoservjsp/index.html
http://localhost:8080/itsoservjsp/myPackage.myServletClass
http://localhost:8080/itsoservjsp/myJSP.jsp

Create a new itsoservjsp.webapp file
We use the default_app.webapp file as our initial template. Copy the file into

the new servlets directory (<IBMVJavaWTE>\hosts\itsoservjsp\servlets) and

rename it as itsoservjsp.webapp. This provides us with some basic support.
such as the ErrorReporter, Invoker, and JSP servlets.

Customize the itsoservjsp.webapp file as follows:

 ❑Provide a tailored name and a description for the application:

<webapp>
 <name>itsoservjsp</name>
 <description>ITSO Servlet JSP Redbook</description>

 ❑Change the JSP servlet to use JSP 1.0 and point to the correct directories

for compiled JSPs:

<servlet>
<name>jsp</name><description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.runtime.JspDebugServlet</code>
<init-parameter> <name>workingDir</name>

<value>$server_root$/temp/itsoservjsp</value> </init-parameter>
...
216 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

<init-parameter> <name>scratchdir</name>
<value>$server_root$/temp/JSP1_0/itsoservjsp</value> </init...>

...
</servlet>

 ❑Configure one servlet for this application to demonstrate how to specify

specific servlet parameters and an alias:

<servlet>
<name>SimpleHttpServlet</name>
<description>Simple Http Servlet</description>
<code>itso.servjsp.servletapi.SimpleHttpServlet</code>
<servlet-path>/simple</servlet-path>
<init-parameter>

<name>xxxxxxxx</name> <value>yyyyyyyy</value>
</init-parameter>
<autostart>true</autostart>

</servlet>

You can later configure additional servlets.

Configuring the ServletEngine class
We will use our existing ITSO Servlet JSP Redbook project for the servlet

code. When using multiple Web applications, we have to start the WebSphere

Test Environment using the ServletEngine class instead of the SERunner

class.

Configuration of ServletEngine
 ❑In the Workbench, find the IBM WebSphere Test Environment project,

select the com.ibm.servlet.engine package, and find the ServletEngine

class.

 ❑Create a bookmark to this class by selecting the bookmark icon in the top

right of your window. This step is optional, but will make it easier to find

this class in the future.

Setting command line arguments
Open the Properties of the ServletEngine class from the context menu, then

select the Program page. Enter following single command line argument:

-serverRoot "<IBMVJavaWTE>"

For example:

-serverRoot "d:\IBMVjava\ide\project_resources\IBM WebSphere Test Environment"
Chapter 7. Development and testing with VisualAge for Java 217

Setting the ivj.version

The SERunner class sets a system property called ivj.version to a non-null
value. This tells the WebSphere runtime that it is running in VisualAge for

Java and performs a special setup required for this environment. To emulate

this behavior when launching ServletEngine directly, it is important to set

this value to a non-null value. On the same Properties - Program page, enter

the following line into the Properties pane:

ivj.version=3.02

Setting the class path
In the same Properties dialog, select the Class Path page to set up the class

path for the ServletEngine.

 ❑Edit the Project path and add the ITSO Servlet JSP Redbook project.

 ❑Edit the Extra directories path and enter all the directories listed in

Figure 164. To save you all the typing, you can copy these entries from the

same dialog of the SERunner class, and add your Web application servlets

directory.

Figure 164. Servlet engine class path directories

Note: This list is dependent on the Version of VisualAge for Java. The best

way is to copy the entries from the SERunner class.

../IBM WebSphere Test Environment/lib/db2java.zip;

../IBM WebSphere Test Environment/lib/ns.jar;

../IBM WebSphere Test Environment/lib/ibmwebas.jar;

../IBM WebSphere Test Environment/lib/servlet.jar;

../JFC class libraries/;

../IBM Persistence EJB Library/;

../IBM JSP Examples/;

../Servlet API Classes/;

../IBM Data Access Beans/;

../IBM XML Parser for Java/;

../JSP Page Compile Generated Code/;

../IBM WebSphere Test Environment/;

../IBM IDE Utility local implementation/;

../IBM IDE Utility class libraries/;
D:\IBMVJava\IDE\project_resources\IBM WebSphere Test Environment\

hosts\default_host\itsoservjsp\servlets\;
218 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Launching ServletEngine
To start the ServletEngine process directly, select the ServletEngine class and

Run -> Run Main, or click on the Running man icon in the tool bar.

Console window
The VisualAge for Java Console window displays the status of the

ServletEngine process. If there are problems starting up the environment,
messages would be displayed here. The messages that you see for a

successful start-up of the ServletEngine are shown in Figure 165.

Figure 165. ServletEngine console status

Launching the browser and testing URLs

Start a Web browser, and enter the following URLs to test the Web

application configuration:

 ❑To test that your servlet alias is configured properly, enter

http://localhost:8080/itsoservjsp/simple

Load group: default_app
Instantiate: com.ibm.servlet.engine.webapp.DefaultErrorReporter
009.481 76be ServletInstan A Loading servlet: "ErrorReporter"
009.626 76be WebGroup A [Servlet LOG]:
"com.ibm.servlet.engine.webapp.DefaultErrorReporter: init"
009.630 76be ServletInstan A Servlet available for service: "ErrorReporter"
......
Instantiate: com.ibm.ivj.jsp.runtime.JspDebugServlet
009.714 76be ServletInstan A Loading servlet: "jsp"
009.784 76be WebGroup A [Servlet LOG]: "com.ibm.ivj.jsp.runtime.JspDebugServlet:
Scratch dir for the JSP engine is: d:\IBMVJava\ide\project_resources\IBM WebSphere
Test Environment/temp/JSP1_0/default_app
IMPORTANT: Do not modify the generated servlets
009.864 76be ServletInstan A Servlet available for service: "jsp"
Instantiate: com.ibm.servlet.engine.webapp.SimpleFileServlet
009.906 76be ServletInstan A Loading servlet: "file"
009.929 76be WebGroup A [Servlet LOG]: "com.ibm.servlet.engine.webapp.SimpleFile
Servlet: init"
010.035 76be ServletInstan A Servlet available for service: "file"
Load group: itsoservjsp
Instantiate: SnoopServlet
010.338 76be ServletInstan A Loading servlet: "snoop"
010.421 76be WebGroup A [Servlet LOG]: "SnoopServlet: init"
010.424 76be ServletInstan A Servlet available for service: "snoop"
.......
Instantiate: com.ibm.servlet.engine.webapp.SimpleFileServlet
010.861 76be ServletInstan A Loading servlet: "file"
010.872 76be WebGroup A [Servlet LOG]:
"com.ibm.servlet.engine.webapp.SimpleFileServlet: init"
010.874 76be ServletInstan A Servlet available for service: "file"
011.778 76be HttpTransport A HTTP Transport Started on Port 8,080
Chapter 7. Development and testing with VisualAge for Java 219

 ❑To test other servlets not defined in the itsoservjsp.webapp file, you must

use the fully qualified class name:
http://localhost:8080/itsoservjsp/servlet/itso.servjsp.servletapi.SimpleHttpServlet

Stopping the ServletEngine
To stop the ServletEngine process, select the ServletEngine process in the

Console window and select Programs -> Terminate or click on the black

square stop button.

Note that killing the ServletEngine is a forceful stop that does not shut down

cleanly, and therefore the destroy methods of the servlets are not called. This

function will be enhanced in the future.

Using the ServletEngineConfigDumper servlet
The ServletEngineConfigDumper servlet is a servlet provided with the

WebSphere Application Server. The Java and the class files are in:

d:\WebSphere\AppServer\hosts\default_host\examples\servlets

You can import this servlet into the VisualAge for Java environment to

display additional information about the ServletEngine environment.

Import the ServletEngineConfigDumper
You can either copy the class file into the VisualAge for Java directories, or

you can import the source code into the Workbench for debugging.

Copy: <IBMVJavaWTE>\hosts\default_host\itsoservjsp\ServletEngineConfigDumper.class

Configuring the servlet in the Web application
Locate the itsoservjsp.webapp file, and add the following <servlet>

configuration:

<servlet>
<name>ServletEngineConfigDumper</name>
<description>Servlet Engine Configuration Dumper</description>
<code>ServletEngineConfigDumper</code>
<servlet-path>/configDump</servlet-path>
<autostart>true</autostart>

</servlet>

Running the servlet
To run this servlet, enter the following URL:
http://localhost:8080/itsoservjsp/configDump

Figure 166 shows a partial display of the servlet output that is generated.
220 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 166. ServletEngineConfigDumper output

Restoring SERunner
The SERunner process can easily be restored by restoring the original
default.servlet_engine file. Any additional Web application directories are

ignored.
Chapter 7. Development and testing with VisualAge for Java 221

Configuring and testing servlet and JSP interactions
See Appendix C, “Using the additional material” on page 417 for instructions

on how to load the sample code into VisualAge for Java and test the servlets

and JSPs.

Support for JavaBeans
VisualAge for Java includes first-class support to create and manage

JavaBeans. The class browser has a BeanInfo page where you can define

properties, methods, and events for a JavaBean and generate the associated

BeanInfo class.

Refer to “Programming with VisualAge for Java Version 2”, SG24-5264, for

detailed instructions on JavaBeans.

Team development
The software development process is becoming more and more complex. End

users are demanding that more function be delivered in less time. Many

companies are extending their core business applications to enable new users

to work in new ways through their intranet and the Internet, and new

applications are required to run on many different platforms. All this often

results in the need for large development teams to design, build, and

maintain applications. Additionally, the teams are often forced to maintain or

expand existing code in a very short time.

Java programmers need development tools that enable them to work

together in a highly dynamic environment. They require facilities that easily

allow them to manage multiple versions of their work and switch quickly

between the different versions. VisualAge for Java Enterprise provides an

extremely flexible, productive, and secure built-in team environment for

managing the software life cycle process.

The VisualAge for Java team environment is described in detail in the

redbook “VisualAge for Java Enterprise Version 2 Team Support”, SG24-5245.
The team development environment has only minor changes between Version

2 and Version 3; the concepts described in the book are still valid. An extract

from the introduction chapter of this redbook is given below.
222 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Overview
At its simplest level, the architecture of the VisualAge for Java Enterprise

team environment is a two-tier client/server model: multiple developer

workstations connected to a single file server.

Residing on the file server is a shared file, which stores all code for all
developers of the development team. This file is called the repository.

Each developer workstation has a set of executable files that are common to

every client, as well a unique file that contains a single developer’s working

code set. This file is called the workspace.

The client connection to the server is established over a local area network

(LAN), and communication between client workspaces and the repository

server is through TCP/IP.

Figure 167 shows the VisualAge for Java Enterprise team development

environment.

Figure 167. VisualAge for Java Enterprise team development environment

The repository is a large binary file that stores the source and bytecodes of all
developer workspaces connected to it. It can be thought of as an

object-oriented database that houses all development objects.

Local
Workspace
File Shared

Workstations
L

A

N

Developer

Repository
Chapter 7. Development and testing with VisualAge for Java 223

The workspace file is unique to each client that is connected to the repository.
It contains the bytecodes for the development environment and all program

elements that the developer has loaded and is working with. A developer

makes changes to code inside the workspace. These changes are always

saved immediately into the repository.

Starting VisualAge for Java causes the local workspace file to be loaded into

memory and connected to the repository. A VisualAge for Java team client

cannot run without a live connection to a repository.

Developers can add program elements, for example, classes or packages, from

the repository into their workspace. Only loaded program elements are

subject to change by a developer. Generally, many more program elements

are stored in the repository than are loaded in a developer’s workspace.
Developers can also delete program elements from their workspace. Deleted

program elements still exist in the repository and can be added back into the

workspace.

The workspace file also defines the context of execution when applets and

applications are tested during development. All classes and packages that

are required to successfully run a program must be loaded into the

workspace.

Adding program elements from the repository is a way of easily sharing code

among developers working with the same repository. In contrast to other

file-based source code management systems, code changes are immediately

available to other developers in the group. This does not mean that each

developer is directly informed about any changes made by other users. A

changed piece of code must be loaded into the workspace in order for it to be

accessible. Therefore, each developer has full control over which program

elements reside in the workspace.

A powerful system of ownership supports the dynamic, concurrent VisualAge

for Java team environment. Each program element must have an owner.
Thus developers have the freedom and flexibility to make changes and try

new things, and at the same time the integrity of each program element is

ensured. The ownership model assigns distinct responsibilities to different

team members, imposes discipline on the team during the development cycle,
and facilitates tracking of changes at maintenance time.
224 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Resource management
Complete applications are composed of Java code and external resources,
such as images, sound files, property files, and so forth. The VisualAge for

Java repository only handles the Java code. The external resources are stored

in the directory structure, and every project has an associated directory, for

example:

d:\IBMVJava\ide\project_resources\ITSO Servlet JSP Redbook

In this directory you would manage the external resource files. If you open a

project browser, you can see the list of resources when you select the

Resources page in the project browser. The ITSO Servlet JSP Redbook project

does not have any resources, but the IBM WebSphere Test Environment
project shows many resources (Figure 168).

Figure 168. Project resources

You can perform limited function from that window, such as rename, delete,
and open. You can associated an external program with specific file types for

the Open action. Associations are defined in the Windows -> Options ->

Resources -> Resource Associations dialog.

When you package code into a jar file using the export function, you can

select that the resources will be included with the Java and class files.
Chapter 7. Development and testing with VisualAge for Java 225

226 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

8 Development with
WebSphere Studio
In this chapter, we describe the features and functionality available within

WebSphere Studio Version 3.0 and demonstrate how to use this functionality

to create, manage, and deploy your Web development projects.

This chapter begins with some background information describing how to use

WebSphere Studio to create and manage projects, folders, and files. We then

describe, by example, how to use the tools provided in WebSphere Studio to

edit project resources, and to add components such as servlets and

JavaBeans to your Web pages.

Later in the chapter, we discuss how to deploy your project resources using

publishing stages and publishing targets. Then we move on to describe the

WebSphere Studio Wizards and how you can use them to easily create Web

pages for database and JavaBean interaction.

The final section of this chapter describes how we created a simple

application using WebSphere Studio. The example demonstrates how you can

easily produce the majority of the code using the wizards, and then customize

the generated code to add functionality.
© Copyright IBM Corp. 2000 227

WebSphere Studio overview
The WebSphere Studio application development environment is shown in

Figure 169.

Figure 169. WebSphere Studio application development environment

WebSphere
AppServer

.....
servlets/web

Studio
projects

myProject
html
jsp
servlet
bean

IBMVJava
ide

project_res.
myProject
WTE

hosts
default_host

myWebApp
servlets
web

WebSphere Studio

DB2

access

SQL
Wizard

Project

HTML

JSP

Servlet

Bean

sql

Relations

Bean
Wizard

DB
Wizard

publish

VisualAge for Java
Workbench

Page Designer

HTML JSP

exchange

publis
h

Production

Test
=> Server
--- html
--- jsp
--- servlet
--- bean
228 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Here is a short description of the major components of WebSphere Studio:

 ❑WebSphere Studio is a Workbench for developing components of a Web

application.

 ❑The user works on a project. Such a project can easily be mapped to a Web

application. The Workbench displays the Project view on the left side, and

either a Relations view or a Publish view on the right side.

 • The project files are organized into folders at the user’s discretion.
Normally there is a folder for servlets, and multiple folders for other

Web resources, such as HTML, JSPs, and JavaBeans.

 • The Relations view shows how the files are interconnected, for

example, an HTML file invokes a servlet, and the servlet invokes a

JSP.

 • The Publish views define where files are placed through a publishing

action. Normally there are at least two Publish views (Test and

Production), but you can define as many as you want. For example, you

can map the Test view to place files into the VisualAge for Java

WebSphere Test Environment directories, and the Production view into

WebSphere Application Server directories.

 ❑WebSphere Studio provides three wizards:

 • The SQL Wizard is used to develop SQL statements based on table

definitions in a relational database.

 • The Database Wizard generates HTML, servlet, and JSP code for an

SQL statement created with the SQL Wizard.

 • The JavaBean Wizard generates HTML, servlet, and JSP code for a

JavaBean.

 ❑WebSphere Studio provides a Page Designer that is used to edit HTML

pages and JSPs. The Page Designer generates the HTML and JSP code

for static and dynamic Web pages.

 ❑WebSphere Studio can exchange source and class files with the VisualAge

for Java Workbench and repository.

 ❑The right side shows the directory structure. WebSphere Studio provides

a projects directory where individual projects maintain their subdirectory

structure.

 ❑A team of developers can share a project directory. When editing files,
they are checked out, and only one developer can edit a specific file at a

time.
Chapter 8. Development with WebSphere Studio 229

The WebSphere Studio IDE
The WebSphere Studio Integrated Development Environment (IDE) allows

you to develop, manage, and deploy Web site resources. The IDE consists of
the Project view in the left hand pane and either the Publish view or

Relations view in the right hand pane, depending on the selected view option.
From any of these panes, you can launch and edit the selected file in its

associated editor by double-clicking the file icon.

The Publish view shows the folder structure for the selected publishing stage.
The Relations view graphically shows the logical links, if any, between the

files in your project.

Refer to the WebSphere Studio Guide for further information on the features

and functionality of the IDE.

When you start WebSphere Studio the first time, you are prompted to either

create a new project or to open an existing project (see Figure 23 on page 35).

Creating a project
WebSphere Studio is a project-based tool which organizes the resources in a

project hierarchy. The first task you will want to do in WebSphere Studio is to

create a new project that will provide a top-level folder under which all other

resources will be placed.

To create a new project, select File -> New Project.

The New Project window is displayed as in Figure 170. Here you can type a

name for the project and select a project template for your project. A directory

will be created based on the project name specified in this dialog. WebSphere

Studio offers two template project structures, Corporate1 and Corporate2,
which include pre-defined folder structures and basic HTML files that

provide a good starting point for a typical Web site. You can create your own

folder structure by selecting <none> for the Project Template field.
230 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 170. Creating a new project

Once the project is created, two folders named servlet and theme are created

by default. Included in the theme folder is a cascading style sheet named

Master.css. Style sheets allow the Web page designer to define the appearance

of HTML tags such as <H1> or <BLOCKQUOTE> in one place. Subsequently

developed HTML and JSP pages can link to these predefined styles, thus

making maintenance of the pages a much easier task. For example, to change

the appearance of all <H1> tags in a project, we simply modify the definition

within the style sheet.

Figure 171 shows the Studio Workbench for the new project.

Figure 171. Studio Workbench
Chapter 8. Development with WebSphere Studio 231

Setting the JSP version
WebSphere Studio 3 can be configured to use either JSP 0.91 or JSP 1.0

specifications, depending on which application server you are using. For

WebSphere Application Server Version 2, only the JSP 0.91 specification is

valid. For WebSphere Application Server Version 3, both JSP 0.91 and

JSP 1.0 specifications are valid.

Before starting a new project, you should set the JSP version to the setting

appropriate for your project. This is necessary, as the wizards will generate

code compatible with the version you specify, and the code is not

interchangeable. Also, WebSphere Studio does not allow you to mix JSP 1.0

and JSP 0.91 tags in the same Studio project, or in the same JSP page.

To specify the JSP version, highlight the project node and select Edit ->

Properties to display the project Properties dialog shown in Figure 172.

Figure 172. Set the JSP version in WebSphere Studio
232 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Setting up folders
Defining a folder structure for your project is an important part of organizing

project resources into logical groupings. You should consider creating folders

which separate HTML files, JSP files, and servlets.

To create a new folder, click the project node and select Insert -> Folder

(Figure 173). On the Create New page, type a name for the folder. This

creates a folder under the project level icon. If you want to create nested

folders, select a folder, which will be the parent folder, and select Insert ->

Folder.

Figure 173. Creating a new folder

When you create a new folder in WebSphere Studio, a physical folder is

created on the hard disk under the \projects directory, for our example:

d:\WebSphere\Studio\projects\ITSO Servlet JSP Redbooks\

You can also browse for an existing folder on the hard disk for inclusion in the

project as shown in Figure 174.

Figure 174. Inserting an existing folder

Note that when you select an existing folder, the folder and its contents are

copied into a sub-directory beneath the Studio project directory mentioned

above, and the original folder and its contents are not referenced again.
Chapter 8. Development with WebSphere Studio 233

You can insert multiple existing folders by clicking the Add button after

navigating to each folder.

When the folder structure is complete, you can expand the folders to see the

complete structure (Figure 175).

Figure 175. Completed folder setup

Adding files to the project
The next task you want to do is to create or insert files into the project. Select

the folder in the Project file pane where the file will reside, and select Insert
-> File.

WebSphere Studio provides a number of file templates that you can use as a

starting point for your project resources. For example, the HTML file

template includes the minimum HTML tags required for a HTML page.

We have added a blank HTML file template named SampleHTML.html to the

html folder, and a blank JSP file template named SampleJSP.jsp to the jsp

folder, using the Insert File dialog shown in Figure 176.

The Insert File dialog also enables you to insert existing files (Use Existing

page) and provides a function to interface to Visual Age for Java (From

External Source page) to import files directly from the VisualAge IDE (see

“Interfacing to VisualAge for Java” on page 291 for details about this

feature).
234 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 176. Insert a new file based on a template

At this point, the project now has a JSP file and an HTML file.

We also add the JavaBeans and servlets that were developed in Chapter 5,
“JavaServer Pages” on page 95 to enable us to demonstrate how we can use

WebSphere Studio to call servlets and embed JavaBeans to create dynamic

content.

To add the required Java files and classes, the process is similar to adding an

HTML or JSP file except that we select the Use Existing tab to navigate to

the directories containing the .class and .java files. You should always place

these files underneath the servlet folder in the WebSphere Studio project

view.

Servlets should also be stored in a folder structure that represents the

package name of the class:

...\projects\ITSO Servlet JSP Redbook\servlets\itso\servjsp\jspsamples

This is a requirement of the JavaBean Wizard. If you do not intend to use the

JavaBean Wizard, you do not have to adhere to this structure; however, you

will have to set up publishing targets to ensure that these files are placed in

the correct folder structure when published to the target server.

At this point, we have a number of files included in our WebSphere Studio

project (Figure 177).
Chapter 8. Development with WebSphere Studio 235

Figure 177. Project structure with folders and files

Setting the file status
Before doing anything further with the project, it is often useful to tag the

resources in the project with a status. Files marked with a status are colored

to provide a visual clue which is associated with a particular text label.
Typically, you use the status feature to identify a particular phase in the

development cycle.

WebSphere Studio offers the following status colors by default:

 ❑Work-in-Progress (Red)

 ❑Submitted-for-Approval (Yellow)

 ❑Ready-for-Publishing (Green)

The status names and colors are fully configurable. You can configure a

Status by selecting Edit -> Set Status -> Customize status and modifying one

of the existing status entries, as shown in Figure 178.
236 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 178. Creating a custom status

To apply the new status to selected files in the project pane, select Edit -> Set
Status -> ITSO Development Stage (or any other predefined status).

Editing project resources
WebSphere Studio allows developers to edit project resources using built-in

editing tools. When a resource is being edited, WebSphere Studio flags the

resource as checked-out, preventing other developers from modifying the

same resource in a team environment.

This section describes how to edit resources in WebSphere Studio.

Checking-out and checking-in files
When a resource is edited in WebSphere Studio, the resource is marked as

checked-out. When a resource is checked-out, it is locked so that other

developers in the team do not have write access to it.

Resources that are checked-out have a small red check mark placed in front

of the file name, providing a visual clue to other developers as to which

resources are checked-out (Figure 177 on page 236 shows the two new files
Chapter 8. Development with WebSphere Studio 237

with the mark). This mechanism is very useful in a team environment to

prevent simultaneous edits to the same project resource which may result in

loss of data. A checked-out file remains that way until a check-in option is

performed on the file.

Checking out a file is done automatically if the file is edited by launching it

from WebSphere Studio. Developers can also manually check-out a selection

of files by highlighting them and selecting Project -> Check Out (or use the

pop-up context menu).

When a resource is checked-out, a copy of the resource is placed in the

directory:

d:\WebSphere\Studio\check_out\ITSO Servlet JSP Redbook\..folder..\

Any editing of the resource is performed on this copy of the file. Only when

the file is checked-in does the edited resource get copied back into the

original project directory. This feature allows the developer to easily undo

any changes made to a file before it is checked-in.

If you want to undo a check-out operation, or you do not want to save any

changes made while editing a particular project resource, highlight the files

and select Project -> Undo Check Out.

When a check-in or an undo check-out operation is performed, the copy of the

resource in the \check_out directory is deleted.

Invoking Page Designer
Most graphical project resources can be edited using WebSphere Page

Designer. To edit a page resource such as the SampleHTML.html, invoke the

WebSphere Page Designer by double-clicking the file icon in the Project file

view WebSphere Studio. This launches the Page Designer and loads the

selected file into the Page Designer workspace, as shown in Figure 179.
238 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 179. WebSphere Page Designer

Once the resource is loaded, you can add other HTML page elements using

the features provided in WebSphere Page Designer.

Using forms and input fields
Many Web sites contain HTML forms which are used to capture user input.
We are going to create a form using the sample.html file, which will capture

details about the user. Later, we will call a servlet from within this form to

process the information inside the form and return the entered information

back to the user.

First, we insert a form by selecting Insert -> Form and Input Fields -> Form.
This creates a form body in which you can insert other input fields. The

bounds of the form are denoted by a pink rectangle.

In this example, we create a simple survey form, where we can capture

details about the user. You can add a heading to the page by typing inside or

outside the form boundary.

We add a large heading titled WebSphere User Survey Form and give it the

Heading 1 format tag by highlighting the text and selecting Insert ->

Paragraph -> Heading1. We also add a horizontal rule tag beneath the

heading by selecting Insert -> Horizontal Rule.
Chapter 8. Development with WebSphere Studio 239

Next we will use WebSphere Page Designer to insert the user-input fields

that will capture user-entered data. This is done by selecting Input -> Form

and Input Fields -> [input field type]. Input fields can be of the types

identified in Table 14.

Table 14. Summary of form input fields

In general, each input field requires that you define a name for the field. For

input fields that are grouped, such as radio button and check boxes, you

provide one name (a group name) with different values.

For this example, we name the entry field firstname, the drop-down list title,
and all the check boxes tools, with values that match the description of the

check boxes.

When programming a servlet that will respond to the Submit button action,
this enables you to iterate through the group and determine which fields are

selected within the group. This is described in more detail in “Calling a

servlet” on page 241.

The are many attributes and configuration options available for each input

type. Refer to the WebSphere Page Designer documentation for detailed

information on these attributes.

Name Description

Submit button Used to send form data to the Web server. You can specify a name

and caption for the button which can be used to determine which

button was pressed in the case of a multi-button form.

Reset button Used to resent data within the form to default values.

Image button Used to convert an image to a button and trigger script code for

special processing. Does not interact with the server directly.

Push button Used to trigger script code for special processing. Does not interact
with the server directly.

Radio Button Allows selection of one option from a group of two or more option

buttons within the same group.

Check Box Used to make multiple selections within a particular grouping.

Text Area Multiple line text entry field.

Text Field Single-line data entry fields.

List Box Allow single or multiple selection of values from a list.

Option Menu Provides a drop-down list of values where only one value can be

selected.
240 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Building the form is simply a matter of placing the required input fields

within the form and providing text labels next to each field in a typical
WYSIWYG manner. Figure 180 shows the completed form.

Figure 180. Completed survey form

Calling a servlet
Now that the form is complete, we need a way to send the form data to the

Web server for processing. In this example, we call a servlet that iterates

through the form elements and performs some actions based on the selections

made by the user.

The itso.servjsp.servletapi.HTMLFormHandler is provided with the source code

examples that accompanies this book.

To modify the form to call the servlet that performs this task, select the form

by clicking on its bounding rectangle, and select Edit -> Attributes (or

double-click). This brings up the attributes dialog for the form, where you can

provide a value for the form’s action attribute, as shown in Figure 181.
Chapter 8. Development with WebSphere Studio 241

Figure 181. Setting the action attribute to call a servlet

Preview the form and view HTML source
You can use the Preview tab at the bottom of the survey form in the Page

Designer to see how the HTML page might look in a browser.

To view the HTML source code, use the HTML Source tab. You can make

modifications in the source and they are reflected in the Normal view.

Figure 182 shows the source of the HTML page. The actual listing in the

Page Designer is color coded, with blue for tags, red for strings, black for text,
and purple for keywords.
242 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 182. HTML source view

Save the HTML page and exit the page. Do not close the Page Designer

window; it is reused for all editing activities started from the Studio

Workbench.

The Web page is now ready to be published to the Web server for testing. As

an exercise, use the check-in function on the saved file as a preparation for

publishing.

See “Project relationships and integrity” on page 253 for detailed instructions

on publishing project resources.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"><!-- Sample HTML file -->
<HTML>
<HEAD>
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.0.2 for Windows">
<META http-equiv="Content-Style-Type" content="text/css">
<TITLE>WebSphere User Survey</TITLE>
<LINK href="file:///E:/WebSphere/Studio/Projects/ITSO Servlet JSP Redbook/theme
/Master.css" rel="stylesheet" type="text/css">
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<H1>WebSphere User Survey Form</H1>
<HR>
<FORM action="/servlet/itso.servjsp.servletapi.HTMLFormHandler">
<H3>Tell us something about yourself:</H3>
<P>Enter your name: <INPUT size="20" type="text" maxlength="30"
name="firstname">

Select your title: <SELECT name="title">
<OPTION selected>Web Architect</OPTION>
<OPTION>GUI Designer</OPTION>
<OPTION>Web Developer</OPTION>
</SELECT>

Wich tools do you have experience with:

<INPUT type="checkbox" name="tools" value="WebSphere Application Server"> WebSphere
Application Server

<INPUT type="checkbox" name="tools" value="WebSphere Studio"> WebSphere Studio

<INPUT type="checkbox" name="tools" value="VisualAge for Java"> VisualAge for Java

<INPUT type="checkbox" name="tools" value="IBM HTTP Web Server"> IBM HTTP Web Server

<INPUT type="checkbox" name="tools" value="DB2 UDB"> DB2 UDB

<INPUT type="submit" name="Submit" value="SUBMIT"></P>
</FORM>
</BODY>
</HTML>
Chapter 8. Development with WebSphere Studio 243

Inserting a JavaBean into a JSP
WebSphere Page Designer provides an interface to easily insert JavaBeans

into JSPs. Using the SampleJSP.jsp file, we will add the DateDisplayBean that is

provided with the source code that accompanies this book.

Launch the SampleJSP.jsp file from the WebSphere Studio Workbench to load

it into the Page Designer. We add labels to the page that identify the

properties of the bean that we want to insert, counter and dateString.

Next we need to declare the JavaBean that we want to use. Before we can

insert properties of the bean, it must first be declared. Select a position at the

top of the page, before any usage of properties from the bean. Select Insert ->

JSP Tags -> Insert a Bean (Figure 183).

Figure 183. Declaring a JavaBean

In the JSP file, you will notice that a green marker (J) identifies the location

of the declared bean, and a jsp:useBean tag is generated.

Once the bean declaration has been made, you can extract the properties of
the bean. Click on where you want the bean property to be inserted and

select Insert -> JSP Tags -> jsp:getProperty Tag to display the Attribute

dialog.

This dialog enables you to specify the bean name and the bean property that

you want to insert. Click the Browse button to display the list of the available

objects and select the DateDisplay bean as shown in Figure 184.
244 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 184. Browsing beans and properties

In addition to user-defined objects, this dialog lists other implicit objects

available to the page. Refer to Chapter 5, “JavaServer Pages” on page 95 for

more information on implicit objects.

Next, in the Attribute dialog, type dateString as the name of the property to

insert. When complete, notice another green (J) marker embedded in the file

where the property is inserted. Repeat this for the counter properties that

you want to insert into the JSP.

The completed page is shown in Figure 185.

Figure 185. Completed JSP including bean properties

Bean declaration

Bean properties
Chapter 8. Development with WebSphere Studio 245

By selecting the HTML Source tab in WebSphere Page Designer, you can

view the source code for the page as shown in Figure 186. This is often useful
to see the syntax used to declare and insert bean properties. You can add and

edit code directly in the source code view, for example, to change the title.

Figure 186. JSP source

Modifying JavaBeans and servlets
In addition to modifying Web page resources, such as JSP and HTML files,
WebSphere Studio allows you to modify Java source code files and recompile

the modified source code into class files.

Changing the default editor

The default editor for Java files is Notepad.exe. You can change the default

editor for a particular MIME time by selecting Tools -> Tools Registration

(Figure 187).

You can then edit the file with your chosen editor by highlighting the file in

the WebSphere Studio Project file view and selecting Tools -> Edit With ->

[your editor]. You may consider registering VisualAge for Java as an editing

tool in addition to your favorite text editor (see “Editing Studio files with

VisualAge for Java” on page 390).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"><!-- Sample JSP file -->
<HTML>
<HEAD>
<META name="GENERATOR" content="IBM WebSphere Page Designer V3.0.2 for Windows">
<META http-equiv="Content-Style-Type" content="text/css"><TITLE>
JSP with Bean
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF">
<H1>JSP with Java Bean Properties</H1>
<P>This is an example of inserting a JavaBean
and accessing its properties.</P>
<jsp:useBean id="DateDisplay" class="itso.servjsp.jspsamples.DateDisplayBean"

scope="session" />
<P>The date today is: <jsp:getProperty name="DateDisplay" property="dateString"
/>

The date display bean has been called
 times.<jsp:getProperty name="DateDisplay" property="counter" />

</P>
</BODY>
</HTML>
246 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 187. Tool registration for editing

Compiling source files
If you have made changes to the Java source file and want to recompile it,
highlight the source file and select Compile (or Project -> Compile).

This invokes the Java compiler specified in the Java tab in the Tools ->

Preferences dialog. You can change the Java compiler and class path used by

this process by editing the values displayed there.

Publishing stages and publishing targets
WebSphere Studio enables you to set up multiple publishing stages for

deployment of WebSphere Studio resources to different locations. You can set

up different deployment servers and configurations, depending on how your

development environment is structured.

For example, in most development environments, you would probably have,
as a minimum, a test server and a production server. During the development

cycle, you would publish your files to the test stage, which would reflect a

Web server in your test environment. Later, when the project or a project

phase is complete, you would publish the files to the production stage.
Publishing stages are fully configurable, and you can add any number of
stages to your project.
Chapter 8. Development with WebSphere Studio 247

WebSphere Studio provides two publishing stages by default, Test and

Production.

 ❑We configure the Test stage to publish to the WebSphere Test

Environment of VisualAge for Java that runs on the same machine as

WebSphere Studio.

 ❑We configure the Production stage to publish to the WebSphere

Application Server and IBM HTTP Server. We use a real TCP/IP

hostname for publishing, although it might actually be the same machine.

Setting up the Test stage
By default, WebSphere Studio provides a configuration for localhost that is

configured by default to publish all files to the document root of the IBM

HTTP Server. Because we want our Test stage to publish to the WebSphere

Test Environment, we have to modify the configuration of this stage.

To configure the Test stage, ensure that your WebSphere Studio project is set

to the Publishing view by selecting View -> Publishing. Next, select the test

configuration by selecting Project -> Publishing Stage -> Test (Figure 188).

Figure 188. Editing the Test publishing stage

The server name is used for testing directly from WebSphere Studio. The

VisualAge WebSphere Test Environment runs (by default) on port 8080,
therefore we must redefine the server as localhost:8080. Select the Test stage

and Insert -> Server, and enter localhost:8080. Then select each folder under

localhost and move (drag) it to localhost:8080. When done, select the

localhost server and delete it.
248 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Select the server-level node as shown in Figure 188 and select Edit ->

Properties. This displays the properties for the localhost:8080 server (Figure

189).

Figure 189. Defining publishing properties

Because we will be publishing to the local file system, select the File system

publish option button and select Windows NT as the file system from the

drop-down list. Next, we have to configure the publish locations for the files.
Select the Define Publishing Targets button to display the Publishing Targets

dialog (Figure 190).

Figure 190. Defining publishing targets for resources
Chapter 8. Development with WebSphere Studio 249

WebSphere provides two publishing targets by default:

 ❑The servlet target is used to publish any files in the servlet folder, and

points to the WebSphere Application Server if that product is installed on

the same machine.

 ❑The html target is used for all other project resources in the project,
unless you have manually added other publishing targets and linked

those to folders in the project. It points to the root document of the HTTP

Server if that product is installed on the same machine.

We change the default configuration of the Test stage to publish to the

WebSphere Test Environment. The publishing paths that we require for our

project resources are shown in Table 15.

Table 15. Publishing paths for the WebSphere Test Environment

Change the directory for both the html and servlet entries by clicking on the

path and selecting Browse to navigate to the appropriate directory.

With this setup, when you publish to the Test publishing target, WebSphere

Studio creates the folders of your project structure underneath these

publishing root directories and copy the files from the project to these folders.
You can then start the WebSphere Test Environment from VisualAge for Java

and execute the Web pages in the project.

Setting up the Production stage
The process for setting up the publishing targets for the Production stage is

identical to the Test stage. However, there is one step you may have to

complete before setting up the publishing targets. WebSphere may not

provide a default server (depending on the order of product installation) for

the Production stage, we have to define the production server.

Display the Production publishing stage by selecting Project -> Publishing

Stage -> Production. Click the node displaying Production and select Insert ->

Server. Enter the hostname of your WebSphere server:

 ❑We used the hostname fundy as our production host
 ❑You can use localhost if the server is on the same machine

Resource type
(folder name)

Path

html d:\IBMVJava\IDE\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\web

servlet d:\IBMVJava\IDE\project_resources\IBM WebSphere Test
Environment\hosts\default_host\default_app\servlets
250 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

This defines a new server for which you can now set publishing targets. If
your server name is a remote server, you can type a meaningful server name

here to identify it.

Provided that you have WebSphere Application Server and Web Server

installed locally, WebSphere Studio should default the publishing targets to

the correct products, but you may want to change the servlet path to the

default application instead of the default servlets directory. Table 16 shows

possible options for production publishing targets.

Table 16. Publishing paths for WebSphere application and Web servers

On the publishing Properties you can use file system publishing or FTP

publishing (Figure 189 on page 249). File publishing is appropriate when the

server is accessible through a LAN connection, and FTP publishing is used if
the server is remote and not accessible through the file system.

Publishing to a Web application
In a larger environment you will have multiple Web applications defined in

WebSphere Application Server, and you want to publish directly to those Web

applications. See “Creating your own Web application” on page 135 on how to

set up a Web application.

To publish to a Web application, you can modify the standard publishing

stages, or you can set up new publishing stages.

Create a new publishing stage
Select Project -> Customize Publishing Stages, and enter a new name in the

Stage name field, such as WebApplication. Switch the publishing view by

selecting Project -> Publishing Stage -> WebApplication.

 ❑Insert a server as described for the production stage, for example, fundy.

 ❑Define the publishing targets (select Properties for the server):

html: E:\WebSphere\AppServer\hosts\default_host\itsoservjsp\web
servlet: E:\WebSphere\AppServer\hosts\default_host\itsoservjsp\servlets

Resource type
(folder name)

Path

html c:\Program Files\IBM HTTP Server\htdocs
e:\IBM HTTP Server\htdocs

servlet e:\WebSphere\AppServer\servlets
e:\WebSphere\AppServer\hosts\default_host\default_app\servlets
Chapter 8. Development with WebSphere Studio 251

The URLs for invoking the resources of a Web application must be prefixed

by the name of the Web application. To achieve this, insert a folder in the

publishing view under the server (select Insert -> Folder), and name the

folder itsoservjsp. Select all the old folders and drag them into the new

itsoservjsp folder. The resulting publishing view is shown in Figure 191.

Figure 191. Defining a folder for Web application publishing

Publishing creates subdirectories matching the structure defined in the

publishing view, and this creates the wrong structure for Web applications.
We have to set up the itsoservjsp folder to publish into the proper directory.
Select the itsoservjsp folder and change its properties (Edit -> Properties) as

shown in Figure 192.

Figure 192. Defining publishing properties for folders

Do not select Make this folder a virtual directory, otherwise the itsoservjsp

folder name is not inserted into the URL for the browser.

You can also check the servlet folder. It is already set up to publish into the

servlet publishing target, overwriting its parent folder.
252 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Manage folder structure
When new directories are added to the project, they may be added to the

publishing server, instead of being added to the itsoservjsp subfolder.

In such a case, select the new folder in the publishing view and move (drag) it

to the itsoservjsp folder.

Publishing to a Web application in VisualAge for Java
Repeat this process and define another publishing stage named

WebApplicationVAJ for a tailored Web application in the WebSphere Test

Environment of VisualAge for Java (see “WebSphere Test Environment —

multiple Web applications” on page 215).

Insert a server named localhost:8080 and define the publishing stages as:

d:\IBMVJava\IDE\project_resources\IBM WebSphere Test Environment\hosts\
default_host\itsoservjsp\web
default_host\itsoservjsp\servlets

Define the itsoservjsp folder under the server and move all other folders

under the itsoservjsp folder. This step is identical to publishing to a

WebSphere Web application. You also have to open the Properties and select

the check box labeled Publish this folder to a publishing target.

Another option is to copy a complete publishing stage to another stage

(Project -> Copy Publishing Stage) and then just change what is different.

Project relationships and integrity
The parts of a project are interrelated and should be checked periodically for

relationship integrity.

Project relationships
For each part in the project you can display its relationship in the Relations

view (select View -> Relations). For example, when you select the

SampleHTML.html file, the relationship diagram shown in Figure 193 is

displayed.

Figure 193. Relationship diagram
Chapter 8. Development with WebSphere Studio 253

This diagram shows one broken link because the SampleHTML.html file

invokes the HTMLFormHandler servlet, and we have not added that servlet

to the project.

Project integrity
Before publishing files in the project, you should check if there are any

broken links within any of the project files. Select Tools -> Check Project
Integrity. This will generate a report similar to Figure 194, detailing any

broken links within the project files. The report is displayed in a Web

browser.

Figure 194. Project integrity report

You can fix the broken link by adding the HTMLFormGenerator servlet (Java

and class files) to the servlet\itso\servjsp\servlatapi folder.

You may have to invoke the Page Designer and save the HTML file to

regenerate the relationship diagram without the broken link.
254 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Publishing a project
Provided that publishing stages and publishing targets have been defined,
the project files can be published to any of the publishing stages. WebSphere

Studio allows you to publish selected files or the entire project.

To publish selected files to the selected publishing stage, select the file(s) and

the select File -> Publish selected files. The Publishing Options dialog is

displayed, allowing configuration of a number of publishing options (Figure

195).

Figure 195. Publishing options

By default, WebSphere Studio only publishes modified files. Most of the

configuration options in this dialog relate to the warnings and prompts

displayed during the publishing operation. During development, you may

find it convenient to turn off all warning and prompts to expedite file

publishing.

Clicking the OK button starts the publishing operation to the specified

publishing stage. Once complete, an HTML formatted report is generated.

Note: We suggest that you select the Relative to document root radio button;
the other option may create a problem with the style sheet when using the

Netscape browser.
Chapter 8. Development with WebSphere Studio 255

Testing published files
To test a published file directly from WebSphere Studio, select Tools ->

Preview File With -> Internet Explorer (or Netscape).

This invokes the selected Web browser with a URL generated for the current

publishing stage, for example:

http://localhost:8080/html/SampleHTML.html <= Test
http://fundy/html/SampleHTML.html <= Production
http://fundy/itsoservjsp/html/SampleHTML.html <= WebApplication
http://localhost:8080/itsoservjsp/html/SampleHTML.html <= WebApplicationVAJ

This process is very fast and efficient if the Web server is up and running.
256 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

WebSphere Studio wizards
WebSphere Studio provides a number of wizards that guide you through the

process of creating Java servlets and JavaBeans. The wizards provided in

WebSphere Studio are:

 ❑SQL Wizard

 ❑Database Wizard

 ❑JavaBean Wizard

In addition to generating Java source, HTML, and JSP files for you, the

WebSphere Studio wizards also invoke the Java compiler where appropriate

to produce the class files from the Java source files.

In this section, we will use the DB2 sample database with department and

employee information to demonstrate the functionality provided by the

wizards.

Code produced by the wizards
When you use WebSphere Studio wizards, by default, the code produced is

compatible with WebSphere Application Server Version 2.0. However, if you

are using WebSphere Application Server Version 3, you should configure

WebSphere Studio to generate code compatible with Version 3 to leverage the

enhancements offered in the new version.

WebSphere Application Server Version 3 now supports the JDBC 2.0

Standard Extension API, which provides extensions to support connection

pooling. In WebSphere Application Server Version 2, where the JDBC 1.0

specification was implemented, support for connection pooling was only

available through special classes provided in the WebSphere environment.

While code generated for Application Server Version 2.0 generally works

under Version 3.0, the connection pool support objects used in Version 2.0 are

now deprecated and may not be supported in future releases of WebSphere

Application Server. For any new code you develop, we recommend that you

use the enhancements offered by Version 3.0. You should also consider

upgrading your existing code for future compatibility.

To have the wizards generate Version 3.0 compatible code, check that you

have selected 3.0 in the Application Server Version field in the Advanced tab

of the project properties dialog (Figure 172 on page 232).
Chapter 8. Development with WebSphere Studio 257

SQL Wizard
The SQL Wizard guides you through the process of building an SQL query

that can be used by the Database Wizard to build Web pages. Similar to other

visual SQL tools, the SQL Wizard enables you to compose your SQL

statements by selecting tables, columns, and operations through a GUI

dialog, rather than by typing the statement manually.

In this example, we create a query that lists all employees by department

and we will sort the department in ascending order.

Before you access the SQL Wizard, you should first highlight the folder in

which the completed .sql file will be placed. For example, you can create a

folder named sql.

Run the SQL Wizard
To invoke the SQL Wizard, select Tools -> Wizards -> SQL Wizard. The dialog

consists of a number of steps.

Welcome page
In the Welcome page, specify a meaningful name for the new SQL statement,
for example, AllEmployeesByDept.

Logon page
Enter the database connection details for the DB2 sample database as shown

in Figure 196.

Because the database is installed locally on our machines, we select the IBM

DB2 UDB Local database driver. Before proceeding, you click the Connect
button so that the wizard can establish a connection to the database. This

allows the wizard to query the structure of the database so that it can be

presented to you visually.

You are prompted to select a database schema, and the wizard displays the

list of tables. The tables of the sample database are usually under the schema

of the user ID that installed DB2. (We used a schema name of USERID for

the tables.)
258 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 196. SQL Wizard: database logon page

Tables page
Select statement type (Select) and the tables (DEPARTMENT and

EMPLOYEE) to be used in the query.

The wizard steps to complete the SQL statement depend on the statement

type selected in this page:

Select: Join, Columns, Conditions, Sort, SQL, Finish
Insert: Insert, SQL, Finish
Update: Update, Conditions, SQL, Finish
Delete: Conditions, SQL, Finish

Join page
The Join page allows us to tell the wizard how our tables relate to each other.

From observing the table definitions, we can see that the common field

between the two tables is a department number, called DEPTNO in the

DEPARTMENT table and WORKDEPT in the EMPLOYEE table.
Chapter 8. Development with WebSphere Studio 259

Join these two tables by selecting the join fields and click on Join (Figure

197). A red line is drawn for a successful join operation.

Figure 197. SQL Wizard: joining tables

You can specify the type of join by clicking the Options button to display the

Join Properties dialog. In this example, the default join type of Inner Join is

appropriate for the way we want to present our data, but outer joins are

supported as well. Consult the SQL or DB2 documentation for information on

other types of joins.

Columns page
On the Columns page you select the columns that you want to include in the

result set produced by the query. For this example, select the columns shown

in Figure 198. You can change the order in which the column data is placed in

the result set by clicking the Move up and Move down buttons.
260 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 198. SQL Wizard: selecting columns

Condition page
Conditions enable you to specify restrictions on the data retrieved by the

query. You can specify conditions for all statement types other than Insert.
Adding a condition builds a WHERE clause to the SQL statement using the

columns, operators, and values specified in this screen.

For example, we could add a condition to the select query to retrieve only

employees over a given education level, as shown in Figure 199. You can use

the Find button to query the table for values.

Similarly, we could add a condition to an update statement to change only

employees below a given salary.
Chapter 8. Development with WebSphere Studio 261

Figure 199. SQL Wizard: specifying conditions

You can add values either by hard-coding the value or by specifying a

parameter. If you specify a parameter, the Database Wizard generates HTML

input fields to capture the parameters from the user.

Click on Find on another column to add another Condition page. For

example, we want to retrieve only male or female employees, by user input.
To specify a value by parameter, click the Parameter button to display the

Create a new parameter dialog as in Figure 200.

Figure 200. SQL Wizard: condition parameter
262 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

When adding parameters, each parameter name must be unique and must

not have been used in any prior step in the wizard. There are many operators

available in the Conditions screen that determine the type of filtering to

perform in the query. Depending on the selected operator, the values you

have to specify will vary.

Sort page
On the Sort page, you can order the results of the query. This step builds an

ORDER BY clause to the SQL statement.

For our example, select Ascending sort order and add the DEPTNAME and

LASTNAME columns. You must select the Sort order before you add a

column.

SQL page
The SQL page displays the accumulated SQL query that the wizard has

generated (Figure 201).

Figure 201. SQL Wizard: generated SQL

SELECT
 USERID.EMPLOYEE.FIRSTNME,
 USERID.EMPLOYEE.LASTNAME,
 USERID.DEPARTMENT.DEPTNAME,
 USERID.DEPARTMENT.DEPTNO
FROM
 USERID.DEPARTMENT,
 USERID.EMPLOYEE
WHERE
 (
 (
 USERID.DEPARTMENT.DEPTNO = USERID.EMPLOYEE.WORKDEPT <=== join
)
 AND
 ((
 USERID.EMPLOYEE.EDLEVEL > 12 <=== condition
)
 AND
 (
 USERID.EMPLOYEE.SEX = ? <=== parameter
))
)
ORDER BY
 USERID.DEPARTMENT.DEPTNAME,
 USERID.EMPLOYEE.LASTNAME
Chapter 8. Development with WebSphere Studio 263

Testing the SQL statement

From this page you test that the query works by clicking on Run SQL. You

are prompted for the parameter (enter M or F), and the query is run and the

results are displayed.

You can also copy the contents of the query to the clipboard. This is useful if
you want to paste the SQL query into the DB2 Command window.

Finish page
Clicking the Finish button completes the wizard and creates the .sql file in

the folder you selected before invoking the wizard. This file includes details of
the SQL statement in addition to other information required by WebSphere

Studio.

Insert page
The Insert page enables you to specify values to be inserted into a table. This

screen is only presented if you have select the Insert statement type in the

Tables page. Data can be entered as hard-coded values or as parameters.

To create a parameter field, click the Parameters button and type a name for

the parameter. The names entered will correspond to the names of the Bean

properties generated by the Database Wizard. For example, if there is a

database column named MGRNO, and a parameter named ManagerNumber

is created for this field, the bean created by the Database Wizard contains a

property called ManagerNumber. Similarly, any HTML pages generated by

the Database Wizard will use the specified parameter name as the name for

the HTML input field and its associated label.

Update page
The Update page enables you to specify column values and conditions for the

Update statement. Similar to the Insert statement type, you can hard-code

values or use parameters.

Changing the SQL statement
The query can be modified at any time using the SQL Wizard by

double-clicking on the file. Although you can view the .sql file in an editor,
you cannot modify the SQL statement produced by the SQL Wizard by

manually changing the .sql file.
264 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Database Wizard
The Database Wizard uses .sql files created by the SQL Wizard to generate

input pages, results pages, error pages, and the corresponding JavaBeans

and servlets responsible for performing the database interaction.

Run the Database Wizard
Start the wizard from the Tools menu.

SQL statement selection
In the first step of the Database Wizard, you select the .sql file to be used.
You can preselect the .sql file before starting the wizard, or you can use the

Browse button to find it. This page also displays the SQL statement

corresponding to the selected file (Figure 202).

Figure 202. Database Wizard: SQL statement selection

Note: You get an error message box if your project name contains blanks or

invalid characters. The default package name used for the generated code is

the project name, and invalid characters are eliminated. You can overwrite

the package name before generating the code.
Chapter 8. Development with WebSphere Studio 265

Web Pages
On this page you select the Web pages that the wizard should produce.

The available options are shown in Table 17.

Table 17. Web pages generated by the Database Wizard

Input page
Here you specify the inputs fields to be included in the input HTML page

generated by the wizard. The fields that are presented are the parameters of
the SQL statement and database connection information (Figure 203).

To customize the behavior of the input fields created by the wizard, select the

field that you want to customize and click the Change button to display the

Change Details dialog shown in Figure 203.

You may want to change the length of the fields, for example, the employee

sex field is only 1 character, and user ID and password are 8 characters.

Select as many fields as you want included on your data entry page. As a

minimum, you would include all fields specified as parameters during in the

Page Type Description

Input page A Web page containing an HTML form with user input fields. If
your query contains parameters, you want to generate an input
page to capture the parameter data from the user. You can also

capture database connection information such as user ID and

password.

Results page For a Select query, this page displays the data returned by the

query. You can specify whether to return the results in table or list
form. For Insert and Update queries, you can choose to display the

values used in the Insert or Update operation and optionally

display the number of rows affected by the query.

Error page

No Data page

These pages are displayed when an unexpected error occurs or

when no data is returned from a query. The pages may be existing

pages you have created or you can let the wizard create them for

you. For Insert and Update queries, the No Data page is

unavailable.
266 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

SQL Wizard. Remember that other than the database connection fields, only

those fields identified as parameters in the SQL Wizard are available for

selection.

Figure 203. Database Wizard: input fields

Results page
You can configure the way the results are displayed to the user in the Results

page. The page produced by the Database Wizard is displayed to the user

after execution of the SQL query or statement.

For all queries, you can chose to include any of the parameters specified

during the SQL Wizard. In addition, you may chose to display information

fields, such as the SQL statement text or the connection information.

Results from a Select query can be presented either in table format or as a

drop-down list:

 ❑If you select the List format, a drop-down list is created for each column

specified in the Select query. For example, Figure 204 shows the results of
a Select statement where department name and employee last name are

displayed.

 ❑If you select the Table format, results are displayed in an HTML table.
Chapter 8. Development with WebSphere Studio 267

Figure 204. Generated results page in list format

For our example, select the result columns and the parameter. Change the

caption of each result to a descriptive table heading (Figure 205).

Figure 205. Database Wizard: results page
268 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

For Select queries, data from the returned result set is displayed. For Insert
statements, the inserted data is displayed using the default format, which is

not configurable from the wizard.

By selecting the num affected rows field, the number of rows affected by the

Insert or Update statement is displayed in the results page. This feature may

be useful during development and testing phases, where an Update

statement may effect many rows in the database.

Standard Error page
If your Web site uses a standard error reporting page, you can specify it in

this step, or you can have the wizard generate a basic page for you containing

default error text. You can later edit this text in WebSphere Page Designer.

If you have an existing error page, you must know the path and file name of
the page, as you cannot browse for it. The specified path is relative to the

document root.

No Data page
Similar to the Standard Error page, you can display a different page if the

result set from your query does not return any data.

Methods page
The Methods page enables you to select the methods of the JavaBean

generated by the wizard that are to be executed. The only method presented

here will be the execute method.

Session page
The Session page allows you to specify the scope of the bean generated by the

wizard.

 ❑If you want to access the data access bean generated by the wizard from

another page, select Yes, store it in the user’s session. With this option

selected, the wizard creates the bean using the jsp:useBean tag (if JSP 1.0

is selected) and will set its scope attribute to session.

 ❑If you do not select this option, the scope attribute will be set to request.
This means that access to the bean is limited to the current page request

only, and is not visible to any other pages, as each JSP page invocation is a

separate request.

You should overwrite the generated name of the bean, for example,
allEmpByDeptBean.
Chapter 8. Development with WebSphere Studio 269

Finish
On the last page you are prompted with a list containing the files to be

generated. You can change the default prefix for the files be selecting the

Rename button to display the Rename dialog (Figure 206). You can also

rename the default package name for the generated classes.

Figure 206. Database Wizard: tailor generated files

Click on Finish to generate and compile the files. The HTML and JSP files

are generated into the folder you selected when the wizard was started. The

servlet files are generated into the package structure specified.

Database Wizard generated code
Figure 207 shows the Studio Workbench after generation. The HTML and

JSP files are in the sql folder. The Java files and the compiled class files are

in servlet\itso\servjsp\studio.

There is one additional file, AllEmpByDept.servlet. This is the servlet

configuration file required for servlets that are subclasses of PageListServlet.
If you inspect this file with an editor, you can see all the JSP output pages

listed, and also the database connection information, as initialization

parameters.
270 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

You may want to change the generated DataSource value to one that you

have defined in WebSphere Application Server:

old: <init-parameter value="jdbc/jdbcdb2sample" name="dataSourceName"/>
new: <init-parameter value="sampledb" name="dataSourceName"/>

Figure 207. Database Wizard: generated files

Note. In the publishing views for Web applications, the new folders are

placed at the root level and must be manually moved to the Web application

folder itsoservjsp. Otherwise, the files will be published to the wrong

directories. You have to perform this step for the WebApplicationVAJ and

WebApplication publishing views.

Relationships
Select the Relations view (View -> Relations) and look at the diagrams for the

input page, the servlet, and the result JSPs. These diagrams show you how

the files are connected (Figure 208).

Figure 208. Database Wizard: generated relations
Chapter 8. Development with WebSphere Studio 271

Run the generated application
You can run the generated code without tailoring the HTML pages and JSPs.
Use either the VisualAge for Java Test Environment or WebSphere

Application Server. Publish the project to the selected publishing stage.

Test in VisualAge for Java
Perform these steps:

 ❑Prepare the SERunner or the ServletEngine class path.

 ❑Start the WebSphere Test Environment.

 ❑Launch a Web browser from the Studio Workbench by selecting Preview

File With -> [browser] for the AllEmpByDeptInput.html file. The URL

http://localhost:8080/sql/AllEmpByDeptInput.html is sent to the server.

 ❑Fill the form with suitable data:

 ❑Click Submit to invoke the servlet. Our first test ended in the Debugger

when executing the compiled result JSP with error message:

The type named itso.servjsp.studio.AllEmpByDeptDBBean is not defined

Import the source of the AllEmpByDeptDBBean class into the VisualAge

for Java Workbench to resolved the syntax error in the JSP.

 ❑Test again, and the list of employees should appear in the browser:

....abbreviated....
272 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Enhance the application
The generated form and JSP contain only the necessary fields, but no

headings and other nice features.

You can use the Page Designer to enhance the AllEmpByDeptInput.html
input page. Publish the changed file for testing while it is checked-out. This

enables you to keep the master file until the test is successful. Then you can

check-in the file to replace the master copy.

Understanding the result JSP
Open the Page Designer for the AllEmpByDeptResult.jsp file (Figure 209).

Figure 209. Database Wizard: result JSP in Page Designer

Most of the green (J) markers refer to the generated bean. Investigate the (J)
markers by double-clicking:

 ❑The first marker declares the AllEmpByDeptDBBean bean, similar to

Figure 183 on page 244.

 ❑The second marker is the sexMorF property of the bean.

 ❑The four markers in the table retrieve the SQL column value properties of
the bean, for example, USERID_EMPLOYEE_FIRSTNME().

Note the parenthesis in the property. The SQL statement retrieves

multiple rows, and the parentheses indicate that it is a repeating

property.

 ❑The last marker is a JSP scriptlet to close the SQL result set; it contains

the code allEmpByDeptBean.closeResultSet();

The table displays multiple rows. So where is the loop? Here is how this

works:

 ❑Select the table by clicking on the outside border of the table (a pink

rectangle should surround the table).

 ❑Double-click, or Edit -> Attributes, and the Attributes dialog appears.
Select the Dynamic page (Figure 210). The Loop check box is selected, and

one of the column properties of the bean is the loop property.
Chapter 8. Development with WebSphere Studio 273

 ❑The setup of a loop property generates a Java for loop in the JSP.

Figure 210. Page Designer: table loop

View the JSP source
Click on the HTML Source tab in the Page Designer to analyze the JSP

source code. An extract of the code is shown in Figure 211. Notice:

 ❑<jsp:usebean> tag to declare the bean.

 ❑Each table is preceded by a <!--METADATA> tag that contains the

reference bean properties. From this specification, the actual code is

generated.

 ❑The repeating column values are retrieved into temporary variables using

a for loop with an index variable, and the values are placed into the table

using a JSP expression:

_p0 = allEmpByDeptBean.getUSERID_EMPLOYEE_FIRSTNME(_i0);
<TD><%= _p0 %> </TD>

 ❑Before the table is started, the loop property is checked with index value

0. If no data was retrieved the table is bypassed.

 ❑The ArrayIndexOutOfBoundsException triggers the end of the loop. You

can see this exception being fired in the AllEmpByDeptDBBean Java code.
274 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 211. Database Wizard: generated result JSP source (extract)

You can use the Page Designer to enhance the result page with a heading and

other HTML features.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
 <!-- This file was generated by IBM WebSphere Studio 3.0.2 using
E:\WebSphere\Studio\BIN\GenerationStyleSheets\AppServerV3\JSP1.0\WebSphere\Pages.xsl
-->

<BODY>
<jsp:useBean id="allEmpByDeptBean" type="itso.servjsp.studio.AllEmpByDeptDBBean"
scope="request"> </jsp:useBean>
<TABLE border="0">
<TR> <TD>Male or Female</TD>
<TD>
 <!--METADATA<WSPX:PROPERTY property="allEmpByDeptBean.sexMorF"> -->

<%=allEmpByDeptBean.getSexMorF() %>
......</TABLE>
<!--METADATA type="DynamicData" startspan
<TABLE border="1" width="567" dynamicelement
innerloopproperty="allEmpByDeptBean.USERID_EMPLOYEE_FIRSTNME()"
innerloopdirection="vertical" innerloopstartindex="1" innerloopendindex="1">
<TR><TH>Firstname</TH><TH>Lastname</TH><TH>Department</TH><TH>Dept-Number</TH></TR>
 <TR><TD><WSPX:PROPERTY property="allEmpByDeptBean.USERID_EMPLOYEE_FIRSTNME()"></TD>
...... </TR> </TABLE>-->

<%
try {
 java.lang.String _p0 = allEmpByDeptBean.getUSERID_EMPLOYEE_FIRSTNME(0); // throws an
exception if empty.
 java.lang.String _p0_0 = allEmpByDeptBean.getUSERID_DEPARTMENT_DEPTNAME(0);
 %>
 <TABLE border="1" width="567">
 <TBODY>
 <TR><TH>Firstname</TH><TH>Lastname</TH><TH>Department</TH>...... </TR>
<% for (int _i0 = 0; ;) { %>
 <TR> <TD><%= _p0 %> </TD> <TD><%= _p0_2 %> </TD> </TR><%
 _i0++;
 try {
 _p0 = allEmpByDeptBean.getUSERID_EMPLOYEE_FIRSTNME(_i0);
 _p0_0 = allEmpByDeptBean.getUSERID_DEPARTMENT_DEPTNAME(_i0);
 }
 catch (java.lang.ArrayIndexOutOfBoundsException _e0) {
 break;
 }
 } %>
 </TBODY>
 </TABLE><%
}
catch (java.lang.ArrayIndexOutOfBoundsException _e0) { } %>
<!--METADATA type="DynamicData" endspan-->
<%allEmpByDeptBean.closeResultSet();%>
</BODY>
</HTML>
Chapter 8. Development with WebSphere Studio 275

JavaBean Wizard
The JavaBean Wizard helps you create Web pages based on properties of a

JavaBean. The JavaBean Wizard interrogates the specified Bean object and

steps you through the process of creating pages to display and update the

properties of the Bean. In addition to normal JavaBean objects, the wizard

supports command and navigator beans developed in Visual Age for Java,
and access beans created in the VisualAge for Java EJB development

environment.

Before using the JavaBean Wizard
To invoke and use the JavaBean Wizard, you must have at least one

JavaBean in your project, and the folder structure containing the JavaBean

you want to use must match the package name of the Bean.

For example, the DateDisplayBean used in this section must be placed in the

path itso\servjsp\jspsamples\DateDisplayBean underneath the servlets node in

the WebSphere Studio project view. You have to manually create this folder

structure.

Run the JavaBean Wizard
Start the wizard from the Tools menu and the wizard welcome dialog appears

(Figure 212).

Figure 212. JavaBean Wizard: select a bean
276 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

JavaBean Wizard
In the first page of the wizard, you must specify the JavaBean that the

wizard will use. Select the bean from the drop-down list of available beans,
and the full package and name of the bean is displayed (Figure 212).

Web pages
The Web pages dialog allows you to specify the pages produced by the wizard.
The function of each page is described in Table 18.

Table 18. Database Wizard generated pages

Input page
Here you specify which fields are included in the HTML input page

generated by the wizard. The wizard interrogates the Bean object and lists

the properties exposed by the JavaBean.

In our example, only one property (counter) has a set method, and it is

displayed in the list of properties. The semantics of the input field and its

associated caption (Enter the counter value:) can be changed by highlighting

the property and clicking the Change button (similar to Figure 203 on page

267).

Results page
The results JSP is displayed following successful invocation and processing of
the input page. You can display the data entered by the user in the input

page and all the bean properties. In our example, select the counter and the

dateString properties and change the captions for the output.

Standard Error page
You can optionally specify a JSP page that is displayed if errors occur. For

more information see “Standard Error page” on page 269).

Page Type Description

Input page A Web page containing user input fields to capture data from the

user. The data entered in this form will be used to update the

properties of the bean. The form field data is passed as URL

parameters to the servlet generated by the wizard.

Results page A page containing the properties of the JavaBean. You can specify

which properties are displayed in a later step in the wizard.

Error page A page containing error text displayed when an unexpected error

occurs. An error may be triggered by the bean not being found or an

error in the bean syntax.
Chapter 8. Development with WebSphere Studio 277

Methods page
The Methods dialog enables you to specify additional methods that are

executed in the servlet generated by the wizard. By default, no additional
methods are selected. If you specify additional methods, they will be called

from the performTask method of the generated servlet.

The standard methods of the servlet produced by the wizard are executed as

follows:

doPost/doGet -> performTask -> [set propertys] -> [call additional methods]

Figure 213 shows the servlet code produced when the method toString is

specified.

Figure 213. Code snippet demonstrating calling additional methods

When clicking Next, we got an error box that the package name contains

invalid characters. This is because the default package name is the project

name, and our project includes blanks.

public void performTask(HttpServletRequest request, HttpServletResponse response)
 {
 try
 {
 // instantiate the beans and store them so they can be accessed by the called page
 itso.servjsp.jspsamples.DateDisplayBean dateDisplayBean = null;
 dateDisplayBean = (itso.servjsp.jspsamples.DateDisplayBean)

java.beans.Beans.instantiate(getClass().getClassLoader(),
"itso.servjsp.jspsamples.DateDisplayBean");

 setRequestAttribute("dateDisplayBean", dateDisplayBean, request);

 // Initialize the bean counter property from the parameters
 dateDisplayBean.setCounter(Integer.valueOf(

getParameter(request, "counter", true, true, true, null)).intValue());

 // Call the toString action on the bean.
 dateDisplayBean.toString();

 // Call the output page. If the output page is not passed
 // as part of the URL, the default page is called.
 callPage(getPageNameFromRequest(request), request, response);
 }
 catch (Throwable theException)
 {
 // uncomment the following line when unexpected exceptions are occuring

to aid in debugging the problem
 // theException.printStackTrace();
 handleError(request, response, theException);
 }
 }
278 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Finish
The last step of the wizard displays the list of generated files. Click Rename

to specify the package name (itso.servjsp.studio) and the prefix

(DateBeanWiz). This is similar to the Database Wizard (Figure 206 on page

270).

We got an error message from code generation:

E:\WebSphere\Studio\check_out\ITSO Servlet JSP Redbook\servlet\
itso\servjsp\studio\DataBeanWiz.java:20:
Class ITSOServletJSPRedbook.DateDisplayBean not found in import.

import ITSOServletJSPRedbook.DateDisplayBean;

The generated servlet uses the wrong package for the DateDisplayBean!

Organize the folders
The generated HTML and JSP files are in the root folder. Move these files to

the HTML and JSP folders.

Check the publishing views. For publishing to a Web application, you must

move all folders under the itsoservjsp folder.

Tailor the input form and the output JSP
Optionally, you can use the Page Designer to edit the input and result page

and improve their appearance.

Edit the DateBeanWiz.java source code and replace all occurrences of
ITSOServletJSPRedbook with itso.servjsp.jspsamples. Recompile the

source, then check-in the changed files.

You also have to edit the generated JSP files and change the package name

of the DateDisplayBean.

Fix the broken code
Chapter 8. Development with WebSphere Studio 279

Test the JavaBean Wizard code
Before testing, import the DateDisplayBean into the Workbench, otherwise

you will get syntax errors in the JSPs.

Check that the SERunner (or ServletEngine) class path includes the servlet

directory:

D:\IBMVJava\IDE\project_resources\IBM WebSphere Test Environment\
hosts\default_host\...webapp....\servlets\;

Publish the files, and start the test from the DateBeanWizInput.html file.
The browser should display output as shown in Figure 214.

Figure 214. JavaBean Wizard: test run

JavaBean Wizard — what for?
This example does not make much sense, because the JavaBean is not

persistent and does not perform any processing.

However, just imagine that the JavaBean is an access bean for an Enterprise

JavaBean, or a command bean that connects to a back-end system, and you

will understand the power of the concept.
280 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Developing an application in WebSphere Studio
This section discusses the necessary steps to develop an extended application

using the DEPARTMENT, EMPLOYEE, and EMP_PHOTO tables of the DB2

sample database. The example was developed using WebSphere Studio and

demonstrates the following scenario:

 ❑Display a form where the user can enter a department number.

 ❑Display a list of employees in that department.

 ❑For each employee, check if a GIF photo is available in the EMP_PHOTO

table. If so, provide an HTML reference link for the photo.

 ❑When a photo link is clicked, display the photo in the browser.

In the example, we used the SQL Wizard and Database Wizard to generate

the input and output pages, the servlets, and the data access beans. We also

developed a stand-alone JSP to display an employee photo using one of the

data access beans.

We had to make a few changes to the generated code to deal with the photo

BLOB and to implement the optional link to the employee photo.

The steps are described in sequence. Some of the details of the SQL and

Database Wizards are omitted because they can be performed in exactly the

same way as described in the previous sections about the wizards.

Create the SQL statement for the employees of a department
Define a new folder called photo for this application.

Start the SQL Wizard and create an SQL statement called EmpInDept with

the select statement shown in Figure 215.

Figure 215. SQL statement for employees in a department

 SELECT DISTINCT USERID.EMPLOYEE.EMPNO, USERID.EMPLOYEE.LASTNAME,
USERID.EMPLOYEE.JOB, USERID.EMPLOYEE.SEX, USERID.EMPLOYEE.SALARY,
USERID.EMP_PHOTO.PHOTO_FORMAT

FROM USERID.EMPLOYEE LEFT OUTER JOIN USERID.EMP_PHOTO ON
(USERID.EMPLOYEE.EMPNO = USERID.EMP_PHOTO.EMPNO)

WHERE ((USERID.EMPLOYEE.WORKDEPT = ?) AND
((USERID.EMP_PHOTO.PHOTO_FORMAT = 'gif') OR

(USERID.EMP_PHOTO.PHOTO_FORMAT is null)))
ORDER BY USERID.EMPLOYEE.EMPNO
Chapter 8. Development with WebSphere Studio 281

This statement returns all the employees in a given department. The photo

format is returned if it is GIF or null. We must use an outer join, because

there are no photographs for most employees.

Note: Your statement may require a right outer join, such as:

FROM USERID.EMP_PHOTO RIGHT OUTER JOIN USERID.EMPLOYEE ON
(USERID.EMP_PHOTO.EMPNO = USERID.EMPLOYEE.EMPNO)

Here are the steps in the SQL Wizard:

 ❑Name the statement EmpInDept and logon as ITSO/itso.

 ❑Specify a Select Unique and select the EMPLOYEE and EMP_PHOTO

tables.

 ❑Join the two tables on the EMPNO column. Click on Options and select

the left outer join.

 ❑Select the columns EMPNO, LASTNAME, JOB, SEX, SALARY (from

EMPLOYEE), and PHOTO_FORMAT (from EMP_PHOTO).

 ❑First condition: WORKDEPT is exactly equal to deptnum (a parameter).

 ❑Second condition (AND): PHOTO_FORMAT is exactly equal to gif
(a constant)

 ❑Third condition (OR): PHOTO_FORMAT is blank (this means null).

 ❑Sort ascending by EMPNO.

 ❑Check that the SQL statement matches the statement in Figure 215.

Note one difference: The wizard cannot generate the extra set of
parentheses around the OR conditions. You have to fix this later in

the generated code!

 ❑Finish to save the statement.

Create the SQL statement for the employee photo
Start the SQL Wizard and create an SQL statement called EmpPhoto with

the select statement shown in Figure 216.

Figure 216. SQL statement for employee photos

This statement returns the employee picture for a given employee number.

SELECT USERID.EMP_PHOTO.PICTURE
FROM USERID.EMP_PHOTO
WHERE ((FUNDY.EMP_PHOTO.EMPNO = ?) AND

(FUNDY.EMP_PHOTO.PHOTO_FORMAT = 'gif'))
282 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Here are the steps in the SQL Wizard:

 ❑Name the statement EmpPhoto and logon as ITSO/itso.
 ❑Specify a Select and select the EMP_PHOTO table.
 ❑Select the PICTURE column.
 ❑First condition: EMPNO is exactly equal to empno (a variable).
 ❑Second condition (AND): PHOTO_FORMAT is exactly equal to gif

(a constant).
 ❑Check the SQL statement. It should match Figure 216.
 ❑Click Finish to save the statement.

Generate the code for the employees in a department
Here are the steps in the Database Wizard:

 ❑Start the Database Wizard and select the EmpInDept SQL statement.
 ❑Web pages: Select all four pages to be generated.
 ❑Input page: Select the deptnum field and change the caption to some

descriptive text (Enter a department number:); change the length to 3.
 ❑Results page: Select the table columns and the deptnum field. Change the

captions to appropriate table headings.
 ❑Session: Select No for session and name the bean empdeptBean.
 ❑Finish: click Rename and set the package to itso.servjsp.photo and the

prefix as Empdept. Click Finish to generate the code.

Generate the code for the employee photo
Here are the steps in the Database Wizard:

 ❑Start the Database Wizard and select the EmpPhoto SQL statement.
 ❑Web pages: Select all four pages to be generated.
 ❑Input page: Select the empno field and change the caption to some

descriptive text (Enter an employee number:); change the length to 6.
 ❑Results page: Select only the table column and change the caption to

appropriate table heading (Photo).
 ❑Session: Select No for session and name the bean photoBean.
 ❑Finish: Click Rename and set the package to itso.servjsp.photo and the

prefix as photo. Click Finish to generate the code.

Change the generated DataSource
Edit the generated servlet configuration files (Empdept.servlet and

photo.servlet) and change the DataSource from jdbc/jdbcdb2sample to

sampledb, which is the DataSource we defined in WebSphere Application

Server (see “Creating a DataSource” on page 146).
Chapter 8. Development with WebSphere Studio 283

Fixing the problems
The generated code has two problems. The first SQL statement has a missing

set of parentheses for the OR conditions, and the second SQL statement uses

a wrong data type for the picture BLOB.

Changing the SQL statement
Edit the EmpDeptDBBean.java file and add the extra parenthesis around

the OR condition. Save the file and compile it. Check-in the Java and class

file.

Changing the Java data type for the picture
The data type of the BLOB is generated as java.lang.Byte, instead of byte[].
Edit the photoDBBean.java file, search for java.lang.Byte and replace the 3

occurrences with byte[]. Save the file and compile it. Check-in the Java and

class file.

The photoResults.jsp file uses the bean and also has the java.lang.Byte data

type. Open the bean with the Page Designer and check the JSP source code.
It should now pick up the new data type (byte[]) from the bean. Save the file.

Testing in VisualAge for Java
Publish all the new files, basically, the photo and the itso.servjsp.photo

folders. Import the two beans into the Workbench, EmpdeptDBBean and

photoDBBean.

Start the WebSphere Test Environment and launch the browser for the

EmpdeptInput.html file. Enter C01 or D11 as department number (the other

departments have no pictures). A sample output is shown in Figure 217.

Figure 217. Employees in department test run

Now launch the browser for the photoInput.html file and enter 000130 as

employee number. A sample output is shown in Figure 218.
284 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 218. Employee photo test run

At this point the code to display the real GIF picture is not there yet, and the

link between the first servlet and the second servlet is missing too.

Displaying a picture
How do we display the picture? We have to create a different kind of output,
instead of text/html we use image/gif and write the byte stream to the

response object.

Open the photoResult.jsp in the Page Designer. Delete the (J) marker in the

table, and add a scriptlet instead (Insert -> JSP Tags -> Scriptlet). Enter the

code into the box (Figure 219).

try {
byte[] photo = photoBean.getUSERID_EMP_PHOTO_PICTURE(0);
response.setContentType("image/gif");
javax.servlet.ServletOutputStream outx = response.getOutputStream();
outx.write(photo,0,photo.length); }

catch (Exception e){}

Figure 219. Employee photo scriptlet
Chapter 8. Development with WebSphere Studio 285

Next, open the table itself and deselect the loop property on the Dynamic

page. There is only one picture per employee.

Test with the modified JSP and the picture should be displayed by the

browser. Note that the table itself is not shown, just the picture.

Linking the servlets
The changes needed to link from the department listing to the photo servlet

are in the EmpdeptResults.jsp output page. When the value in the photo

column is gif, we have to add HTML tags with a reference to the photo servlet

into that column.

What we want to construct is a conditional link:

if photo_format = gif then
Display

Edit the EmpdeptResults.jsp with the Page Designer.

 ❑Check the source code. The variable used in the table loop is _i0. We have

to use the variable in our test of the picture format.

 ❑Delete the (J) marker in the photo column. We do not display the photo

format. Instead we build the HTML reference.

 ❑Add this scriptlet into the table column:

if (empdeptBean.getUSERID_EMP_PHOTO_PHOTO_FORMAT(_i0) != null) {

Note that you can drag properties from the left pane into the code pane to

build the code, then you replace the index with _i0.

 ❑Add a second scriptlet (to end the if statement) with the code: }

 ❑Between the two scriptlets, add a link (Insert -> Link), and an Attribute

dialog opens (Figure 220).

 • On the Dynamic URL page, enter itso.servjsp.photo.photo, the name of
the target servlet, as the URL.

 • Click on Edit in the Parameters pane. This opens the URL Parameter

Editor dialog. Enter empno as name. For the value select Specify by

property and click on Browse.

 • In the Bean Property Selection dialog, select the EMPNO property of
the empdeptBean and click OK.

 • In the URL Parameter Editor, click Add to add this parameter to the

list. Close the dialog.

Figure 220 shows the completed Attribute dialog. Close the dialog.
286 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 220. Dynamic HTML link

 ❑This dialog enters the link into the table. The text for the link is taken

directly from the URL and reads as itso.servjsp.phot.photo.

 ❑You can overtype the text with Display, which will be the link.

JSP compile problem
If you save and publish this code, the JSP does not compile in JSP 1.0. The

code that is inserted into the METADATA tag for the table produces a

compile error.

To fix that compile error, switch to the source view. Find the METADATA tag

that starts like:

<!--METADATA type="DynamicData" startspan
<TABLE border="1" width="600" dynamicelement
innerloopproperty="empdeptBean.USERID_EMPLOYEE_EMPNO()"
innerloopdirection="vertical" innerloopstartindex="1" innerloopendindex="1">
.......
</TABLE>
-->

Change this code to be a JSP comment so that nothing inside is compiled:

<%--METADATA
--%>

Save the completed JSP (Figure 221), publish it, and test again.
Chapter 8. Development with WebSphere Studio 287

Figure 221. Completed employee in department JSP

Run the application
The complete application is shown in Figure 222.

Figure 222. Complete application flow

This is the team that
produced the redbook:

 ❑Gareth Mackown
 ❑Deborah Shaddon
 ❑Mitch Fielding
 ❑Ueli Wahli
 ❑Gert Hekkenberg
288 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Problems
Not everything worked fine with this level of the WebSphere Studio product.
We have already touched on some of the problems we encountered during the

previous sections. In the sections below, we discuss these problems.

Resolving parsing problems
Occasionally, the parsing engine used by WebSphere Studio updates the links

between parts incorrectly.

For example, in WebSphere Studio 3.02, a scriptlet embedded in the ACTION

attribute of a FORM declaration gets incorrectly prefixed with a leading "/"

when the file is published:

<FORM action="<%= myObject.myProperty %>" method="POST"></FORM> <== original
<FORM action="/<%= myObject.myProperty %>" method="POST"></FORM> <== after parse

To overcome any parsing problems such as this, select the file in WebSphere

Studio and Edit -> Properties (Figure 223). By deselecting the Use Parser

check box, you can force WebSphere Studio to not change URL information in

this file during the publishing operation.

Figure 223. Toggling the Use Parser checkbox on a file
Chapter 8. Development with WebSphere Studio 289

Folders in publishing stages for a Web application
When new folders are created, they are not automatically subfolders of the

Web application folder in the publishing view. You have to move them

manually. This is even true for the servlet folder that already exists in the

Web application folder.

Refer to “Publishing to a Web application” on page 251 for directions on how

to publish to a Web application.

SQL Wizard generates wrong data type for a BLOB column
The SQL Wizard generates the Java type java.lang.Byte instead of a byte

array (byte[]) for a BLOB column.

Database Wizard JSP code is compiled within METADATA tag
The code to retrieve properties that is placed into a METADATA tag in the

result JSP is compiled by the JSP 1.0 compiler. (It is not compiled under JSP

0.91.)

When updating such a result table with user defined code in a scriptlet, this

can lead to compile errors.

A circumvention is to change the METADATA comment into a JSP comment

(as discussed in “JSP compile problem” on page 287), but we have seen

problems when such a JSP is updated a few times.

JavaBean Wizard generates bad code
The JavaBean Wizard generates the wrong package name if the project name

contains blanks or other invalid characters. See “Finish” on page 279.
290 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Interfacing to VisualAge for Java
WebSphere Studio provides two-way communication with Visual Age for

Java, allowing you to keep your Java source files synchronized between

WebSphere Studio and the VisualAge for Java repository.

You should use this feature if VisualAge for Java is your primary Java

development and test tool.

Setting up the environment
Before WebSphere Studio can interface to Visual Age for Java, you must

enable the Remote Access to Tool API feature within VisualAge for Java.
Select Window -> Options to display the dialog shown in Figure 224.

Figure 224. Configuring Visual Age for Java for WebSphere Studio interface

If you will be using this feature regularly, ensure that the Start Remote

Access to Tool API on VisualAge startup option is checked. To start the

communication, click the Start Remote Access to Tool API button.

start always

start now
Chapter 8. Development with WebSphere Studio 291

WebSphere Studio
The menu interface to VisualAge for Java is under Project -> VisualAge for

Java, once you select a Java or class file.

If the menu items in WebSphere Studio are greyed-out, you may have

installed WebSphere Studio before you installed Visual Age for Java. If so,
try reinstalling WebSphere Studio after you have installed Visual Age for

Java.

Receiving updates from Visual Age for Java
Similarly, you can update the WebSphere Studio project’s files with the

source updated in the Visual Age for Java projects.

Highlight the files that you want to update from Visual Age for Java. Note

that you should highlight both the .java and .class files if you want the .java

source file to be updated, otherwise you have to compile the source file

yourself afterwards.

Select Project -> Visual Age for Java -> Update from VisualAge (Figure 225).
Again, no visual notification is provided, so manually verify that the update

was successful by checking your code.

Figure 225. Updating WebSphere Studio files from Visual Age for Java
292 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Sending updates to Visual Age for Java
If you make changes to Java source code files in WebSphere Studio, you can

send these changes to Visual Age for Java.

Select Project -> Visual Age for Java -> Send to VisualAge. You must tell
VisualAge for Java the project into which the class is inserted. Once this is

done, you will not receive any further visual notification that the operation is

complete; however, you can simply view the class in VisualAge for Java to

check that the update operation was successful.

Using VisualAge for Java as an editor
See “Editing Studio files with VisualAge for Java” on page 390 for

instructions on how to register VisualAge for Java as an editor for Java files.

Archiving
You can archive a whole project into a WebSphere Studio archive (.war) file.
Select File -> Save as Archive and enter the name of the generated file in the

dialog that follows.

An archive file contains the project structure, publishing stages, and all the

files.

Opening an archive
You can restore an archive file onto a developer’s machine by using the File ->

Open Archive action. A dialog opens and you should carefully go through the

three pages:

 ❑On the Extract page, either create a new project or replace the current

project folders (a merge operation).

 ❑On the Destination page (only for a new project), select original locations

or custom locations. If you use original locations, the disk letter must exist

on your system, otherwise extract fails with an error box saying that a file

could not be written (not a very helpful message). With custom locations,
you can control the directory where the project will be stored.

 ❑On the Options page, select Use archived publishing targets if you want to

preserve the publishing target locations for the publishing stages. If you

do not select this check box, the publishing targets are lost, and you must

update the project manually.
Chapter 8. Development with WebSphere Studio 293

Working in a team
Multiple team members can use the same directory structure for their Studio

project. Files (HTML, JSP, Java source) are checked-out for editing by team

members. A checked-out file cannot be edited by another developer.

This support is not very comprehensive, and it only protects the files if all
developers use the Studio Workbench and do not modify files outside of the

Workbench.

More information and examples
Refer to Chapter 15, “Developing the PDK using WebSphere Studio” on page

383 for more information and examples of using WebSphere Studio.
294 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

9 Software
Configuration
Management
In this chapter we describe the challenging area of Software Configuration

Management (SCM), and how it relates to WebSphere Studio and VisualAge

for Java.

While the starting point of customer involvement with SCM varies, no

customer can afford to ignore this area. In fact, after implementing SCM

processes, the resulting improvements in IT reaction times to meet business

demands could well prove to be a key success factor for being successful with

e-business.
© Copyright IBM Corp. 2000 295

Introduction
SCM is one of the key areas that has to be addressed when developing and

maintaining applications. This is not only true for managing the software

configuration within your development environment, but also applies to the

software configuration within the production environment.

Application architectures, methodologies, technologies, and associated tools

put into a development process context potentially fail on delivering the

appropriate functionality to the business if SCM processes and supporting

tools are not in place.

Pressure to deliver faster and more complex applications makes it more

urgent to implement SCM. At the same time, businesses that are developing

and deploying applications in the e-business space may find themselves open

to exposure when SCM problems occur.

Although this calls for an end-to-end (E2E) approach for SCM throughout the

complete application life cycle, we will limit ourselves by addressing some

SCM aspects within the scope of this book. Although an E2E approach is still
advisable, addressing all aspects of SCM would be a book in itself.

We will illustrate some aspects of SCM using Rational’s ClearCase product.
Our choice for ClearCase is driven by the fact that ClearCase has a

prominent role within IBM’s SCM strategy.

First, we will start with some general thoughts on SCM.

What is Software Configuration Management?
The U.S Department of Defense, in its standard on software development,
DOD-STD-2167A, defines SCM as follows:

Software Configuration Management is the discipline of identifying the

configuration of software systems at discrete points in time for the purpose

of controlling changes and maintaining traceability of changes throughout
the software life cycle.

Other definitions from IEEE or ISO are more or less the same, although the

focus differs.

Over the years, two groups have expanded on the definition of SCM, with

each providing a different perspective. One group, the Software Engineering

Institute (SEI) at Carnegie Mellon University, has approached SCM from the
296 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

process side; while the second group, the International Standards

Organization (ISO), has approached it from the management side.

While it appears that these groups have worked in different areas, they have

in fact addressed the two major areas needed for successfully implementing

SCM. It is not only important to know WHAT to manage and HOW to

manage development artifacts, but this should be put into a context, which

calls for a repeatable process.

Successful software development organizations are measured by SEI

maturity levels and by compliance with ISO 9000 standards. These maturity

levels and standards present new challenges to development teams that are

being asked to deliver software to market at faster and faster rates, while at

the same time improving the quality.

In order to raise an organization’s maturity level or to comply with ISO 9000

standards, tools are required. These tools must support the following related

and sometimes overlapping functional areas:

 ❑Version management

The capability of managing versions is one of the building blocks of SCM.
Being able to restore to the exact point-in-time when an application was

working properly is just one example of the necessity of versioning.

 ❑Change management

Being able to apply changes to an existing situation in a controlled

manner is important. This is especially true when applying changes to the

production environment. In order to have flexibility in this respect, there

is a requirement to be able to separate changes, attach them to identified

work items, and create flexible baselines based upon sets of changes.

 ❑Change request tracking

Strongly related to change management, this means tracking change

requests and associated work items over time during their life cycle.
Tracking is applicable to both planned work items (new release,
improvements) and unplanned work items (problems).

 ❑Build management

Throughout the development life cycle, there is a requirement to be able

to build the software at hand in a repeatable manner. This might call for

multiple platform build capabilities if your applications span multiple

platforms.
Chapter 9. Software Configuration Management 297

 ❑Deployment

A natural extension to build management is to have functions available

that are capable of deploying the resulting artifacts to the execution

environment, which can reside on multiple platforms.

 ❑Impact analysis

From both a development and runtime perspective, there is a requirement

to be able to predict and assess the impact potential changes have.

 ❑Process

The above-mentioned functions are not independent from each other.
They should work in a concerted manner. At least, the functions should be

embedded into a set of procedures to follow when applying changes to IT

solutions. Given the importance of this aspect, it calls for a tool that

supports and enforces an SCM process while at the same time providing

flexibility in this respect.

As indicated, we will only skim the surface of SCM in this book. We wanted to

illustrate in this section that SCM is important, and which areas it should

cover. If this summary has fueled your interest, we suggest that you read

Managing the Software Process, by Watts S. Humphrey (see “Other

resources” on page 435).

SCM for architectural pattern based development
Chapter 8 of the redbook Patterns for e-business: User to Business Patterns

for Topology 1 and 2 using WebSphere Advanced Edition, SG24-5864,
addresses various aspects of the application development process and

associated work products that are being created throughout the application

development life cycle.

We will build upon that chapter by adding some SCM aspects. In the

introduction, we said that SCM processes and implementing tools should

cover the whole application life cycle, covering not only the development

phase but also the deployment and maintenance phases as well (Figure 226).
298 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 226. SCM and development process overview

This means that all work products that are created and or updated during

the development process should be managed by the SCM processes and the

toolset used to implement the required SCM functionality.

There will be many pieces to manage; not only the developed code artifacts

such as .jsp, .java, .class, .servlet, .html, and .gif files, but also the business,
functional, and database models involved, test cases, and runtime artifacts,
such as .jar files, DLLs, and executables.

Moreover, versions of these artifacts do have relationships. A specific version

of an application model relates to a specific version of the implementing code,
test cases and test beds.

These related configurations of artifacts are usually referred to as being

baselines or drivers (we will use the term baselines). Typically, you would

have developer baselines, staging or development baselines (test, integration

test, preproduction test), and production baselines.

While developers are focused on crafting the work products, they typically do

not bother much about how to manage these baselines. The pressures of
delivering work faster and faster, with higher quality, paired with the

increasing complexity of the development environment, should give some

food for thought in this respect.

Developer roles
Developers have different roles within the development process, and they

have a different perspective, thus they have different requirements for SCM

functionality.

In Figure 227 we illustrate that, in our opinion, SCM functions call for at

least one additional development role.

Implementation

Release Cycle

DeploymentDetailed
Design

High-level
Design

Project
Startup

Software Configuration Management processes
Chapter 9. Software Configuration Management 299

Figure 227. Application topology 1: additional SCM role

We introduce an SCM role to emphasize the importance of SCM for a

development project. The person in this role should make sure that the

developers are provided with SCM functionality, and should accept

responsibility for making sure that the development baselines are managed

throughout the development life cycle.

From this perspective, the SCM role has SCM requirements beyond those of
the other developer roles. While the developers’ SCM requirements perhaps

could be fulfilled with a relatively simple tool or process (for example, copy

before update), the requirements of the SCM role cannot be met easily. This

provides one more reason to identify this role. This does not mean we should

forget about the developers, they simply have other SCM requirements.

The SCM role is often embedded within the project leader’s role, although

given the complexity, we would advise assigning a separate developer for this

role. Note that Figure 227 only covers the development perspective. From a

runtime and production perspective, there will be more roles that have

interest in SCM functionality.

Interaction
Control

Page
Construction

Business
Logic

Data
Java classes

Beans
EJBs

JSPs / Servlets

JSPs

HTML
JavaScript

Browser
Client

view
developer

script
developer

business
logic

developer

JDBC /
SQLJ

SCM role

Consumes

Creates

Control flow

Legend

"SCM"
300 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Some aspects of the latter perspective are covered in the redbook Managing

Your Java Software with IBM SecureWay On-Demand Server Release 2.0,
SG24-5846.

We will focus on the development process SCM requirements, and thus focus

on the development roles.

In an application topology with enterprise data, legacy systems, and third

party applications, the SCM complexity is growing. There are more artifacts

to manage, and artifacts may reside not only in the distributed environment,
but also on a mainframe. This also means that build, deployment, and testing

is more challenging (Figure 228).

Figure 228. Application topology 2: more complexity

On top of that, it is very likely that multiple SCM tools have to inter-operate.
Most organizations have mastered SCM from a mainframe perspective. They

have deployed tools, and have implemented SCM processes in that area.

business
logic

developer

Interaction
Control

Page
Construction

Business
Logic

Data

3rd party
applications

Legacy
systems

Java classes
Beans
EJBs

JSPs / Servlets

JSPs

HTML
JavaScript

Browser
Client

view
developer script

developer

3rd tier
integration
developer

JDBC /
SQLJ

C
O
N
N
E
C
T
O
R
S

Consumes

Creates

Control flow

Legend

"SCM"SCM role
Chapter 9. Software Configuration Management 301

In order to be successful with topology 2 based development efforts, it will be

key to integrate at least the SCM processes on both sides. It might well be

that the organization will continue to use multiple tools to implement E2E

SCM. Even if there were to be a single E2E tool set available, migration costs

might prevent the implementation.

However, if possible, you should have a strategic objective to implement an

integrated E2E SCM solution, not only from a process perspective, but also

from a tools perspective.

For this book, we had to make a choice. Therefore, we will focus on the

distributed environment, where a lot of organizations are struggling to get

SCM in place.

It is not just a matter of defining processes and buying supporting tools; SCM

should become a fact of development life. New technology that is thrown at

development organizations comes with an associated new generation of
developers, who will not necessarily appreciate the requirement for SCM.

Therefore, the SCM tools should at least be easy to use, and if possible,
provide transparent SCM functionality from the developers’ points of view,
that is, from their IDEs.

The next section provides an example of SCM in the context of the

WebSphere development work done for this redbook.

Implementing SCM aspects in a WebSphere Studio
environment

In this section, we introduce various SCM aspects within our WebSphere

environment. The result is that our sample code is version controlled by an

external SCM tool in a manner that supports the SCM requirement to have a

repeatable development process.

SCM aspects
The most important aspects of SCM are versioning and single point of
control.

Versioning
Versioning of related artifacts is a foundation for all other SCM functions. In

fact, this is a function developers understand. Before applying changes, you
302 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

make a copy to be able to travel back in time to a situation when you knew

things were working. If we can provide an easy-to-use function that supports

versioning, that is an easy sell to a developer.

As stated before, other SCM stakeholders will have functional requirements

beyond that. Project leaders or developers who have SCM roles assembling

work from various developers to create a new version of the system or

application will have different requirements.

In fact, depending on the role, developers will have other requirements as

well:

 ❑Testers would like to be able to raise test environments, encompassing the

right level of all required artifacts, be it code, test beds, or test cases.

 ❑Analysts would like to have impact analysis tools spanning all technology

at hand, operating on various versions of the application or system.

In this chapter we will focus on providing a sound versioning capability for

all roles involved, without forgetting the requirements other roles are having.
We strongly suggest that you assign a separate developer to the identified

SCM role. This developer must understand the SCM requirements of the

complete development process to design one SCM solution to meet those

requirements.

Single point of control
Within our development environment we are using both VisualAge for Java

and WebSphere Studio. From a versioning perspective, only one of both tools

can be the master.

Because WebSphere Studio provides an open environment, integrates all
possible tools, and provides two-way integration with VisualAge for Java, we

decided to use WebSphere Studio as the single point of control. Figure 229

shows that this is an obvious choice.

However, this means that the people performing the different roles identified

should have a level of discipline as far as the process to follow is concerned.
This is especially the case when you have to change existing Java code or

craft new Java code.

The other development artifacts, given our choice, are by default controlled

through WebSphere Studio.

The development of such procedures is required because multiple roles are

stakeholders in the Java code, for example, view developers, script

developers, and business logic developers (see Figure 228 on page 301).
Chapter 9. Software Configuration Management 303

Figure 229. Tools usage in the source code implementation phase

The requirement to keep the Java code artifacts synchronized between

VisualAge for Java and WebSphere Studio is also illustrated in Figure 229.

To make things a bit more challenging, we have to consider as well that

VisualAge for Java does have a team-based version management

environment of its own, and because of the characteristics of developing fine

grained object-oriented code, it should have those capabilities.

The team environment capabilities are covered in VisualAge for Java

Enterprise Version 2 Team Support, SG24-5245.

The current level of the Software Configuration Control (SCC) API

implementation in between VisualAge for Java with external SCM is not

sufficient for our requirements. When using this integration, there is no

indication whatsoever in the IDE that definitions are controlled by external
SCM.

This implies that the synchronization effort must be manual, preferably

performed by one role.

VisualAge for
Java

Web
Server

Application
Server

Create and debug
servlets, Java beans
and other Java classes

Deploy controller and
business logic code
(servlets, beans and classes)

WebSphere
Studio Page

Designer

Deploy view code

(HTML, JSP and image files)

Create HTML and
JSP view code

WebSphere
Studio

Create,
then keep in sync

Edit HTML
and JSP files

Publish

Check files in and out,
manage baselines

NetObjects
Fusion

Publish and
review initial
prototype

Rational
Rose

Use design artifacts to
generate initial controller
and business logic code

Import initial Java code for
controller and business logic

Import
initial
prototype

Use for initial
prototyping

SCM Tool
304 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

We would recommend that, given the Java task at hand, it is the

responsibility of the project leader role or SCM role to load and create an

open edition of the code within the VisualAge for Java repository. If a load of
Java code is required, use the point-to-point integration capability of
WebSphere Studio and VisualAge for Java.

You could argue that the start is an in-sync situation. In that case, you only

have to create an open edition. We suggest that prior to that, you should

run “compare” on the versions held in VisualAge for Java and WebSphere

Studio.

After exploiting the VisualAge for Java environment to create, change, and

test the code (including the versioning of code increments during the

development of the code) this should result in an edition that is ready to

integrate with other artifacts being part of the same development effort.

It will be once again the responsibility of the project leader to move that

edition of the code to the WebSphere Studio environment.

In the case of a servlet, this code might have to be integrated with a possibly

changed JSP and deployed to the test environment, after which another

iteration might be needed.

When everyone involved agrees, the project leader should create a version

and move that version to the WebSphere Studio environment, after which the

project can move to the next development stage in the development cycle.

For the time being, this synchronization effort is the pain you must endure if
you would like to exploit the best of both worlds with a single point of control
in mind.

In section “Working from WebSphere Studio” on page 325, we show that

ClearCase has the capability to group related changes through its activities

concept. This can be exploited to synchronize the Java code versions with JSP

versions, thus providing additional support in the synchronization effort.

Note that this is true for the tactical time frame. Given IBM’s SCM direction,
the requirement for synchronization would still exist, but would be available

when tools at hand are integrated with the SCM solution. Therefore, we

suggest that you should not invest too much in creating automatic

synchronization procedures, and instead use a procedural approach.

Note that the choice for project leader or SCM role to perform the

synchronization task is arbitrary. It could just as well be the developer

performing this task, depending on project and organization.
Chapter 9. Software Configuration Management 305

Choice for Clearcase as physical single point of control
We chose ClearCase as our SCM tool because it is positioned as the preferred

tool for SCM. Its functionality will play an important role in the toolset

implementing IBM’s application for the e-business framework. Rational is a

business partner signed up to integrate its toolset to this framework.

The relationship regarding SCM is even more fundamental. IBM will port

ClearCase and ClearQuest to UNIX System Services (USS) on OS/390, thus

creating a multiplatform toolset which can fulfill E2E SCM requirements.

Besides that, IBM will integrate the SCM functionality in future versions of
the framework supporting development IDEs.

Selected functions of IBM’s existing SCM offering will also be integrated

within these SCM offerings.

However, this is not the only reason. ClearCase is also chosen because it does

provide support to enforce an SCM oriented development process.

Rational SCM toolset
The SCM toolset from Rational includes ClearCase, ClearQuest, and Unified

Change Management (UCM).

ClearCase
Rational ClearCase is a configuration management system designed to help

software development teams track the files and directories used to create

software. ClearCase enables you to manage the development and build

process, and to enforce your site-specific development policies.

ClearCase is specifically designed to support parallel development, whether

you are simply isolating the work of one developer from others on a small
team, developing multiple releases in parallel using different teams, or

sharing a source code base between multiple teams at geographically

distributed sites.

ClearCase enables you to recreate the source base from which a software

system was built, allowing it to be rebuilt, debugged, and updated, all
without interfering with other development work.
306 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

In ClearCase, files and directories, or elements, are stored in a repository

called a versioned object base or VOB. A version is a particular revision of a

file or directory element.

Similar to many configuration management systems, ClearCase uses a

“check-out, edit, check-in” model to manage software changes. When you

check-out a file, ClearCase creates an editable copy, or checked-out version,
in your view. When you check-in a file, ClearCase creates a new, permanent

version of the file in the VOB.

You access and change elements using a view. A VOB contains all versions of
a particular set of elements; a view selects a specific version of each element

using a set of rules called a configuration specification (or config spec). The

result is that when accessed through a view, a VOB looks just like an

ordinary file system directory tree.

ClearQuest
Rational ClearQuest is a change request management application that

allows you to track change requests for your products. Using ClearQuest, you

can submit change requests, view and modify existing change requests, and

create and run user-specific or site-specific queries and reports to determine

the current state of your project.

In ClearQuest, change requests are stored as records in a ClearQuest

relational database. Each record consists of all the data related to that

record. ClearQuest supports different types of records for different projects

and uses. For example, you might have record types for enhancements,
defects, and activities, each with unique fields and data requirements.

ClearQuest records move through a pattern, or life cycle, from submission

through resolution. In ClearQuest, each stage in this life cycle is called a

state, and each movement from one state to another is called a state

transition.

Unified Change Management
Rational Unified Change Management (UCM) combines ClearCase and

ClearQuest to provide a complete, out-of-the-box, activity-based change

management process.

UCM combines ClearCase configuration management capabilities (such as

version control, parallel development, build management, and

component-based management of directories and files) with ClearQuest

change request and activity management capabilities (such as task
Chapter 9. Software Configuration Management 307

management, state transition support, parent/child associations, policy

enforcement rules, and extensive querying and reporting).

Our approach
Note that we will not write extensively on ClearCase concepts. We will only

address ClearCase aspects briefly. Sometimes we will copy some descriptions.

The help information offered by ClearCase is both extensive and well
structured. An approach that proves to be useful is to click on the Help

button while performing the tasks we describe. Within these descriptions you

will see hyperlinks to more information and, for instance, concept definitions

that we do not want to replicate in this book.

Furthermore, ClearCase offers a fast path to a lot of information on

Rational’s ClearCase customers Web site. This site can be accessed by

clicking on the ClearCase on the Web entry from the ClearCase

administration console (Figure 230).

Figure 230. ClearCase on the Web from administration console
308 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

ClearCase in the WebSphere Studio environment
In this section we illustrate our approach of using ClearCase as the SCM tool
in conjunction with WebSphere Studio and VisualAge for Java.

Installation
We installed ClearCase V4.0 in evaluation mode to avoid setting up a

network installation of ClearCase.

A consequence of this approach is that you have to redo the installation,
project setup, and project population steps when moving to a real
installation. Therefore we suggest that you evaluate ClearCase by enabling

one project (our sample).

Basically you have to execute the following steps to install ClearCase. We

identified two starting points:

 ❑Use the autostart facility of the CD-ROM drive (Figure 231). Select the

second radio button (evaluation install).

Figure 231. ClearCase autostart installation mode panel

 ❑If for some reason the CD does not autostart, run the setup.exe from

cd_drive:\cpf\nt_i386 and the Switch Setup Mode dialog is displayed

(Figure 232). Select the second radio button for an evaluation installation.
Chapter 9. Software Configuration Management 309

Figure 232. ClearCase switch setup mode panel

 ❑On the Welcome to ClearCase install panel, click on Next.

 ❑Now the ClearCase Doctor screen is displayed (Figure 233).

Figure 233. ClearCase Doctor Discovered Problems panel
310 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

You should look at the messages presented and possibly fix the problems

after assessment. Note that if a TCP/IP DHCP problem is identified, it is

not applicable for an evaluation installation. However, this might need to

be considered when installing for real. We did assess all messages and

decided that we did not have a real problem, and continued by clicking the

Continue Install button.

 ❑After stepping through various panels, including the copying of files and

reading the installation notes file, we clicked on Finish to reboot the

machine.

 ❑After reboot, another Clearcase Doctor screen is displayed (Figure 234).
We recommend selecting the first radio button to prevent starting of
ClearCase Doctor at the next reboot.

Figure 234. ClearCase Doctor Logon Testing

 ❑Installation should be complete after this.

If you would like to de-install after the evaluation and prior to a real
installation, you should run cd_drive:\cpf\nt_i386\uninstal.exe. Note that you

must make sure by selecting the appropriate options that all information,
including the variable directory, is removed. Not doing so results in confusing

results after re-installation.

Testing the installation
After the installation is complete, there are various ways of working with

ClearCase. Either go through the Windows start menu, ClearCase and

ClearCase administration submenus, or double-click the ClearCase Home

Base icon that should be on your desktop:
Chapter 9. Software Configuration Management 311

In the remainder of this chapter, we used the ClearCase Home Base route to

complete the setup and configuration. After bringing a project under control
of ClearCase, ClearCase will be used transparently from WebSphere Studio.

The ClearCase Home Base is shown in Figure 235.

Figure 235. ClearCase Home Base

WebSphere Studio and ClearCase considerations
Because of the fact that we are in favor of following a structured process

throughout the development life cycle, the obvious choice was made to exploit

the process that is shipped with ClearCase. Furthermore, we kept our role

approach in mind when making decisions on the implementation. Ease of use

from a role perspective was also instrumental in making our implementation

choices.

We will illustrate the integration using our redbook project. We suggest that

you use the same project to evaluate ClearCase. We will take you through all
the steps needed to enable the redbook project code as project within a

ClearCase environment.
312 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

As indicated, ClearCase comes with an out-of-the-box process called Unified

Configuration Management (UCM). This does not mean that this process

cannot be changed, but everything is set up to support a development effort

with a development process in mind. Throughout the setup steps documented

in the following sections, we will comment on some aspects of UCM and the

choices that we made.

Setting up a ClearCase project
To set up the ClearCase project environment, you have to create datastores

containing project definitions and components.

Creating a datastore: Project VOB (PVOB)
First of all ClearCase must have a place to store the project meta data. Recall
that in ClearCase, the data stores are called versioned object bases (VOBs).

To create the PVOB, follow these steps:

 ❑In the Home base (Figure 235) select the VOB tab, and click the Create

VOB button.

 ❑Enter the project name (ITSO_Servlet_JSP_Redbook) on the VOB

Creation Wizard panel (Step 1 of 3), and make sure that only the UCM

project data check box is selected (Figure 236). Click Next.

Figure 236. ClearCase VOB Creation Wizard: project
Chapter 9. Software Configuration Management 313

Checking the UCM project data check box results in creating a VOB that only

contains project meta data, and not actual development artifacts. This way,
we separate interests. Probably the SCM role will be responsible for the

content of this VOB (in consultation with the project leader and project

management). The SCM role will tailor the project setup, including setup of
component VOBs and developer views through which the developers can

work with the component VOBs. We will discuss components and developer

views when we create them in future steps.

 ❑On the next VOB Creation Wizard panel (Step 2 of 3), accept the defaults

and click Next.

 ❑On the next VOB Creation Wizard panel (Step 3 of 3), click Finish.

 ❑Then click OK in the confirmation panel, and after the processing is

finished, you can click Close on the summary panel.

This completes the steps to create the project VOB.

Creating datastores: Component VOBs
After successful creation of the project VOB, you have to create one or more

VOBs holding the project artifacts. We did choose an approach that separates

our development artifacts in components.

Figure 237 shows the definition of a component.

Figure 237. ClearCase Component definition

Actually, there are numerous valid approaches. One could store all artifacts

in one VOB, or have multiple ones. We suggest that the choice of component

VOBs should be guided by the roles identified and the tools that are used by

these roles. The real separation of interests will be established with the view

concept, which will be discussed later.

Knowing that we did choose WebSphere Studio as being the central point of
control of all of our development artifacts, and having multiple roles with a

requirement to have a broad working view on various artifacts, we made the

decision to create a component VOB for the artifacts created and updated

through the WebSphere Studio tool environment.
314 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Definitely, this is an area you should plan for, and make proper decisions

upon, after you have had more working experience. Note that the UCM

approach is new in version 4.0 of ClearCase.

To create the component VOBs, you have to step through the same steps

performed for the creation of the PVOB:

 ❑In the first step of the wizard (Step 1 of 3), select the Create VOB as a

UCM component check box and enter Studio as the component name

(Figure 238).

Figure 238. ClearCase VOB Creation Wizard: component

 ❑Run through the other steps in the same way as for the PVOB.

 ❑Repeat the process and create a component called Rose. We will describe

the purpose of this component later.

Create the project
The next step is to create a ClearCase project. Figure 239 shows the

definition of a project.
Chapter 9. Software Configuration Management 315

Figure 239. ClearCase Glossary: project definition

 ❑Select the project tab in the ClearCase Home Base and click on the Project
Explorer button (Figure 240).

Figure 240. ClearCase Home Base: Projects
316 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 ❑The Exploring ClearCase Projects window is displayed (Figure 241).

Figure 241. ClearCase project explorer

 ❑Select the ITSO_Servlet_JSP_Redbook VOB entry, then select File -> New

Project and enter the project title (Figure 242). Click Next.

Figure 242. ClearCase create sample project
Chapter 9. Software Configuration Management 317

 ❑Leave the default (“no” radio button selected) and click Next. The Step 3

panel, where you can add component baselines, is displayed (Figure 243).

Figure 243. ClearCase create sample project (step 3)

 ❑Click Add, and the Add Baseline dialog is displayed. Select the

Studio_INITIAL baseline (Figure 244).

Figure 244. ClearCase create sample project: add baseline

 ❑Click OK, and repeat the Add action for the Rose component.
318 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Note that the actions performed in the previous steps provided you with

an opportunity to choose a different starting point for your project.
Although we only had an initial baseline, you could already have a

production or tested baseline.

These standard baselines can be configured per installation and can be

created by the project leader or SCM role.

Work from developers performed in private work areas (streams) can be

moved to a shared work area (integration stream) that can be baselined at

meaningful moments in time. This is a powerful concept to “stage” your

development project.

These baselines can be the starting point for the developer’s work areas

(views).

Also, note that rebasing is sometimes required to incorporate other

people’s work or to incorporate versions of artifacts from baselines created

after you baselined your work area. Thus, for example, you might

incorporate a production version of a component in your view while you

are still working with a tested version.

 ❑After adding the two components, click Next to get to the step 5 panel.

Note that this panel provides you with the opportunity to select if the

activities of this project are to be managed by ClearQuest.

 ❑Click Finish to have the project defined. The result in the project explorer

is shown in Figure 245.

Figure 245. ClearCase project explorer after project creation
Chapter 9. Software Configuration Management 319

Create a view
The next step is to create a view. As indicated in “ClearCase” on page 306, a

view is a ClearCase object that represents a work area for one or more

developers.

By now you should be familiar with navigating in ClearCase. Furthermore,
we will stick to the defaults all the way. So this task is only documented in

text without screen captures. We recommend that you read the panels,
though.

 ❑In the Exploring ClearCase Projects window, select the project, right

mouse click, and choose New -> Stream.

 ❑In the Create a Development View panel, click OK to open a dialog for all
the view options.

 ❑Step 1: The project is preselected; just click Next.

 ❑Step 2: Select Reuse a Development Stream, and click Next.

 ❑Step 3: Select Create a Development View, accept the proposed name, and

click Next.

 ❑Step 4: Accept the proposed drive to connect to this view, and click Finish.

 ❑Click OK on the Confirm panel.

 ❑Click OK again to terminate the dialog.

The resulting project explorer window is shown in Figure 246.

Figure 246. ClearCase project explorer project complete

Let’s discuss some aspects of what happened during the creation of the view.
320 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 247 shows the Windows explorer after the creation of the views.

Figure 247. Windows Explorer view on views

Notice these views are linked as disks with letters starting backward from Z.
The last view is expanded and you can see that there are three subfolders

reflecting the project and the defined components.

These folders provide you with a dynamic view on the content of the real
storage, that is, the VOBs in the ClearCase_Storage folder, which is located

on your installation drive (for example, C:\ClearCase_Storage\VOBs).

In a normal distributed installation, these real VOBs will be placed on a

secure ClearCase server somewhere in the network, and you would not see

them. If you explore the content of these folders, you will see that the project

folder contain information on the processes.

The other folders are empty for now. The next task at hand is to get

development data into one of these folders, namely the Studio folder.
Chapter 9. Software Configuration Management 321

Enable ClearCase to the WebSphere Studio environment
Before you can populate the view, and in particular the Studio folder, you

have to make sure that WebSphere Studio can operate through the views.

Note: Consulting the WebSphere Studio help files will not help you much,
because the description there is quite cryptic! Instead, follow these

instructions:

 ❑In WebSphere Studio select Tools -> Preferences.

 ❑Select the Check Out tab.

 ❑Fill-in the appropriate drive and component name (Figure 248).

If you have accepted the defaults when creating the views, it is likely that

your view is connected on “Z” as well. If not, change this accordingly.

Figure 248. WebSphere Studio Tools Preferences: Check-Out

Now you are ready to let the SCM interface populate ClearCase with the

project artifacts. Currently, the integration of WebSphere Studio with third

party SCM tools is exploiting Microsoft’s Software Configuration Control
(SCC) API.

The current thinking is that this proprietary API will be replaced by a

standard committee endorsed standard such as Web-based Distributed

Authoring and Versioning (WebDAV). For more information on WebDAV, see:

http://www.webdav.org <== WebDAV Resources
http://www.alphaworks.ibm.com/tech/DAV4J <== WebSphere DAV for Java
322 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Bring the projects artifacts under ClearCase control
To bring the project development artifacts under ClearCase control now takes

only a few steps:

 ❑Open the project in WebSphere Studio first.

 ❑Select the project and Project -> Version Control (Figure 249). Note that

WebSphere Studio has identified that ClearCase is present on the

machine and presents you with a choice.

Figure 249. WebSphere Studio project version control

 ❑Select ClearCase, and processing begins. ClearCase prompts you to enter

an activity. Typically this is the development task at hand; in our case the

development of the Redbook samples (Figure 250).

Figure 250. WebSphere Studio project version control activity prompt

 ❑Enter a new activity name and click OK. Processing takes quite a while to

bring all the Studio components into the ClearCase repository.

This was pretty easy, wasn’t it? And this is the way it should be!
Chapter 9. Software Configuration Management 323

What is an activity?
ClearCase groups and relates changes and associated versions to an activity.
The project leader or SCM role can use these activities to move the changes

associated with these activities and integrate them in the integration stream.
Moreover, ClearQuest can be used to drive the activities that might need

changes applied to various components through a defined process and track

these throughout the development cycle.

In a normal life project, the project leader would now promote the defined

artifacts to a production baseline, which could be the starting point for new

development and maintenance. We are not changing anything, so we will
stick to this initial baseline.

WebSphere Studio with external SCM
After processing has finished, you can tell from the WebSphere Studio

window that the project artifacts are now controlled by external SCM,
because black locks are displayed now behind the folders (Figure 251).

Figure 251. WebSphere Studio external version control GUI identification

In the next section, you will see that the use of SCM underlying WebSphere

Studio is transparent (after set up, of course, which is one more reason to

have a special SCM role who takes care of this without the developers

needing to bother with it.)
324 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Working from WebSphere Studio
Working with WebSphere Studio means modifying artifacts with Studio

tools. Each operation requires checking-out an artifact for modification, then

checking-in this artifact when done.

Check-out
There is not much difference in the way developers would work with the

development artifacts, as opposed to the situation when the check-outs are

made to a shared disk. Refer to “Checking-out and checking-in files” on

page 237 for more information.

The big difference, obviously, is that the external SCM is now taking care of
locking and versioning.

Because of the fact that we have implemented ClearCase with UCM, the

developers have to specify an activity when they want to work with a

development artifact. This is illustrated in Figure 252. Installations that are

set up without UCM do not prompt the user for this.

Figure 252. WebSphere Studio project external version control check-out

Check-in
Another difference occurs when a developer wants to check-in an artifact the

developer has been working on. At check-in time, a pop-up panel is

presented. (Figure 253). The two options are obvious. We suggest that you

select the second check box, because it does make sense to record why you are

creating a new version.
Chapter 9. Software Configuration Management 325

Figure 253. WebSphere Studio Project external version control check-in

Dependency relationships
If the artifact you want to operate on has dependencies, you will be asked if
you want to preserve this relationship in the sense that the associated

artifacts can be locked for the same activity as well.

Note that undo check-out is not implementing this behavior.

New artifacts and import from VisualAge for Java
If you define new artifacts, ClearCase prompts you to define the newly

created artifact. This also means that on importing artifacts from VisualAge

for Java, ClearCase prompts you to define the artifact.

Working with files directly
You can operate directly on the source files that are visible in the Studio

component folders (from the Windows explorer). If you right-click on a file in

these folders, you have more ClearCase functionality available to you than in

the WebSphere Studio IDE. (This integration is limited by the capabilities of
the SCC API.)

The pop-up menu listing the available functions is illustrated in Figure 254.
326 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 254. ClearCase direct functions from Windows Explorer

As far as we have explored, there is no limitation imposed on the capabilities

you have within WebSphere Studio when working with ClearCase, as

opposed to working on a project that is not controlled by ClearCase.

Note that implementations of other external SCM tools could well be

different. It is up to the SCM tool vendor to decide which SCC capabilities to

implement.

Reflections on SCM procedures
In “SCM aspects” on page 302, we indicated that you should have procedures

in place to make sure that the developers operate on the correct version and

deliver the right version.

Although we have provided some procedural guidelines for the interaction

between VisualAge for Java and WebSphere Studio, this clearly is a moving

target. These procedures will change as soon as you are implementing more

and more SCM functionality. And, moreover, they are tool dependent as well.

This makes it difficult to write down explicit procedures for each case. If you

would only deploy the ClearCase tool for versioning, without the project

approach (UCM), the procedures would differ from a situation in which UCM

is used, and it would differ from a situation when ClearQuest is implemented

as well.

When other technologies are introduced and other associated development

roles are identified, everything could change again.

We suggest that this calls for a pragmatic approach that avoids too much

overhead. In particular, the developers want to produce artifacts instead of
paperwork. The SCM role should make this happen by crafting a good E2E

SCM design and implementing supporting tools.
Chapter 9. Software Configuration Management 327

WebSphere Studio and ClearCase in the broader SCM context
We started this chapter by defining and talking about aspects of SCM. In this

last part of the chapter, we briefly comment on some of the other aspects in

the context of the tools we used.

Build and deploy
In “Publishing stages and publishing targets” on page 247, we explain that

WebSphere Studio has publishing capabilities.

At various moments within the development life cycle, it is required to deploy

or redeploy the changed content of a Web site to the server where it should

run. It is likely that this action needs to be synchronized with performing

builds, creating baselines, and deploying (or publishing) actions.

We suggest that you exploit ClearCase to create a baseline, perform builds to

create the baseline, and trigger the deployment/publishing operations. This

can be done, because WebSphere Studio has APIs enabling you to trigger

various publishing actions.

Activities and change management
If development teams are growing beyond just a few developers who can

shout at each other, functions are required to track tasks and gather all
changed artifacts together in project baselines.

This is even more true if, at the same time, the number of different roles and

the number of associated tools were to increase. One way of accomplishing

this is to use an integrated toolset providing those capabilities. ClearCase

combined with ClearQuest, both of which play an integral role within the

UCM approach, provide such integrated capabilities.

Rational Rose
Thus far we have not mentioned the Rose component that we created in

addition to the Studio component.

We created this component to illustrate that it is easy to expand our sample

implementation of ClearCase to other areas of the overall development effort

and the associated roles. A systems analyst or designer using Rational Rose

can exploit the ClearCase/ClearQuest combination for SCM functionality as

well.
328 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

This way, we can expand the implementation to cover the whole proposed

toolset for Topology 1 oriented development efforts (see Figure 229 on page

304).

Note that this is not limited to Rational and IBM development tools.

In fact, we know that there are more tools involved during the development

process, such as documentation tools, discussion tools, and database tools. In

Figure 255 we added some of these aspects to the Topology 1 tool diagram.

Figure 255. Topology 1 tools used during source code implementation

If the IBM/Rational alliance delivers an MVS (USS) version of
ClearCase/ClearQuest, this toolset is well positioned to be able to manage

Topology 2 development efforts from an E2E SCM perspective.

Rational
ClearCase/ClearQuest

VisualAge for
Java

Web
Server

Application
Server

Create and debug
servlets, Java beans
and other Java classes

Deploy controller and
business logic code
(servlets, beans and classes)

WebSphere
Studio Page

Designer

Deploy view code

(HTML, JSP and image files)

Create HTML and
JSP view code

WebSphere
Studio

Create,
then keep in sync

Edit HTML
and JSP files

Publish

Check files in and out,
manage PROJECT baselines

NetObjects
Fusion

Publish and
review initial
prototype

Rational
Rose

Use design artifacts to
generate initial controller
and business logic code

Import initial Java code for
controller and business logic

Import
initial
prototype

Use for initial
prototyping

SCM role

Trigger Publish action
through build/make

ClearCase provides multi-user
multi-project environment

Other tools used during
development process.
Word/Notes/Test/DB......
Chapter 9. Software Configuration Management 329

Epilog
If we look at Figure 226 on page 299, we indeed have barely scratched the

surface in this chapter by covering only the implementation part of the

process.

Our intention was to provide the reader with an example of how an

important SCM aspect, version control, can be implemented with existing

tools.

Looking at the environment created, we have the feeling that you will
appreciate the functionality and integration provided. Furthermore, we

argued that the implementation provided can be quickly expanded to cover

more roles, more processes, and more SCM functions.

Besides this pragmatic objective, we conveyed the message that SCM is an

important matter and should be handled accordingly (by SCM professionals

having an SCM role in the development process.)

You really should target creating a firm E2E SCM implementation, building

on top of the foundation we laid, to be successful in developing and deploying

e-business applications at a pace needed by the business.
330 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

10 Web application
design with servlets
and JSPs
In this chapter we present a short overview of a guideline for designing Web

applications consisting of servlets, JSPs, and JavaBeans.

Application structure
The general structure of a well-architected user interaction in a Web

application is shown in Figure 256.
© Copyright IBM Corp. 2000 331

Figure 256. Web application design overview

The major parts of such a design are discussed in the sequence of the flow of
the application.

HTLM
page
with
Form

Servlet

DB2

Data
Beans

View
Beans

Result
JSPs

CICS

MQ

Application
Server

other

Command
Beans

HTTP Server

1

2

3

4
56

7

8

9

332 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

HTML page
The input page for each step is either a static HTML page or a dynamic

HTML page created from a previous step. The HTML page contains one or

multiple forms that invoke a servlet for processing of the next interaction.

Input data can be validated through JavaScript in the HTML page or passed

to the servlet for detailed validation.

Servlet
The servlet gets control from the Application Server to perform basic control
of flow. The servlet validates all the data, and returns to the browser if data

is incomplete or invalid.

For valid data, processing continues. The servlet sets up and calls command

beans that perform the business logic.

The servlet initializes the view beans and registers them with the request

block so that the JSPs can find the view beans.

Depending on the results of the command beans, the servlet calls a JSP for

output processing and formatting.

Command beans
Command beans control the processing of the business logic. Business logic

may be imbedded in the command bean, or the command bean delegates

processing to back-end or enterprise systems, such as relational databases,
transaction systems (CICS, MQSeries, IMS, and so forth).

A command bean may perform one specific function, or it may contain many

methods, each for a specific task. Command beans may be called Task

Wrappers in such a case.

Results of back-end processing are stored in data beans.

Data beans
Data beans hold the results of processing that was performed by the

command bean or by back-end systems. For example, a data bean could

contain an SQL result or the communication area of a CICS transaction.

Data beans may not provide the necessary methods for a JSP to access the

data; that is where the view beans provide the function.
Chapter 10. Web application design with servlets and JSPs 333

View beans
View beans provide the contract between the output producing JSPs and the

data beans that contain the dynamic data to be displayed in the output.

Each view bean contains one or multiple data beans and provides tailored

methods so that the JSP has access to the data stored in the data beans.

JSPs
The JSPs generate the output for the browser. In many cases that output

again contains forms to enable the user to continue an interaction with the

application.

JSPs use tags to declare the view beans. Through the view beans, the JSP

gets access to all the dynamic data that must be displayed in the output.

Model-View-Controller
This design follows the Model-View-Controller design pattern:

 ❑The JSPs (and HTML pages) provide the view.

 ❑The servlet is the controller.

 ❑The command beans represent the model.

The data beans contain the data of the model, and the view beans are helper

classes to provide a data channel between the view and the model.

The servlet (controller) interacts with the model (the command beans) and

the view (the JSPs). The servlet controls the application flow.

Detailed information
For detailed information about Web application design, refer to:

 ❑The patterns for e-business described in Chapter 12, “Using Patterns for

e-business to build the PDK” on page 347.

 ❑The redbook: Patterns for e-business: User to Business Patterns for

Topology 1 and 2 using WebSphere Advanced Edition, SG24-5864.
334 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Part 2 Pattern
Development
Kit: a sample
application

We will now walk you through a complete application. This application has

been created to demonstrate a recommended design pattern.

We will take you through the purpose of the application, the design decisions

involved, and then finally cover how to run it under both development and

production environments.

Throughout this Part, the Pattern Development Kit will be referred to as the

PDK.
© Copyright IBM Corp. 2000 335

336 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

11 Pattern
Development Kit
overview
In this chapter we will provide a brief overview of the Pattern Development

Kit (PDK). We will then walk you through the application’s front-end.

The underlying design of the application is discussed in Chapter 12, “Using

Patterns for e-business to build the PDK” on page 347.

For detailed information about design patterns used in the PDK, refer to

Patterns for e-business: User to Business Patterns for Topology 1 and 2

using WebSphere Advanced Edition, SG24-5864.
© Copyright IBM Corp. 2000 337

Background
The Patterns for e-business aim to communicate in a highly accessible

fashion the business patterns, systems architecture (application and runtime

topologies), product mappings, and guidelines required for different classes of
applications. For the User-to-Business patterns there is also an associated

Pattern Development Kit, which provides sample application code to

illustrate effective use of those patterns.

For more information visit the Patterns for e-business Web site at

http://www.ibm.com/software/developer/web/patterns/.

Application description
The PDK allows you to view some interplanetary weather data, although we

should probably stress that the data is not completely authentic! The

application behind the PDK is fairly straightforward, as it is merely a vehicle

for demonstrating the patterns that have been used.

In the full version of the PDK, the weather data will be retrieved from a

number of back-end systems and transports including DB2, MQ Series,
CICS, and IMS.

However, for the purposes of this book, we are dealing with a subset of the

application. We communicate with the SecureWay Directory for logon, but we

do not connect to any of the subsystems. The infrastructure to connect to the

other back-end systems exists in the code, but to keep this application simple,
the systems themselves have not been included.

We modified the code to return dummy data to simulate IMS, CICS, and

MQSeries.

Application walkthrough
To give you a better understanding of the application, we will first do a

walkthrough using the functionality of the PDK. To be able to do this on your

own machine, you will need to complete the instructions found in Chapter 13,
“Running the PDK in WebSphere” on page 363.
338 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Welcome page
The starting page of the PDK (Figure 257) is merely a front door to the

application. From here you can click on the jigsaw piece graphic to go through

to the PDK’s home page.

Figure 257. Application welcome page

Home page
This page provides a very brief description of the PDK, including a quick

overview of the two topologies being used. For more details on these

topologies and the design patterns behind them, refer to Chapter 12, “Using

Patterns for e-business to build the PDK” on page 347.

Available links
From this page (Figure 258) you can navigate to the two levels of application

that are supported in this book:
Chapter 11. Pattern Development Kit overview 339

 ❑Topology 1: Access to relational database on the Web server

 ❑Topology 2: Access to back-end enterprise systems (CICS, MQSeries, IMS)

If you choose one of these two links from the left-hand frame, then the

application appears in the right-hand pane.

Figure 258. The application’s home page

In the screen captures that follow, we only show the right frame. The left

frame does not change during the application run.
340 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Topology 1 — historical data
This application allows you to retrieve any historical weather data that has

been stored about the planets. At the top of this page is the application itself,
while beneath is a description of what is happening behind the scenes. For

more details on this, see “Design techniques used” on page 353.

Select a planet, enter a valid date range and click on Submit (Figure 259).
You should then be returned all the valid weather data on that planet for the

given time period.

Figure 259. Topology 1: input page

If you enter any invalid data into the fields, (including not completing a

field), then an appropriate error message is returned. Also, if there is no

weather data available for the date range that you provided, then a separate

page will appear.

Returned data
If your request for data is successful, the application returns the data in one

of two formats:

 ❑XML

 ❑HTML table
Chapter 11. Pattern Development Kit overview 341

XML

If your browser is XML enabled, then the weather data is returned in an

XML format (Figure 260). Although this may not look particularly nice at

this stage, it provides the browser with greater flexibility about how it may

wish to display this information. You could have a designer create an

appropriate XSL style sheet, and combine this with the output to create

nicely formatted HTML.

For more information about XML and its uses, refer to the redbook “The XML

Files: Using XML and XSL with IBM WebSphere 3.0”, SG24-5479.

Internet Explorer 5.0 is currently the only mainstream browser that is

XML-enabled.

Figure 260. Topology 1: output for XML enabled browsers

HTML table
For other browsers that are not XML enabled, the weather data is displayed

as an HTML table (Figure 261).
342 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 261. Topology 1: output for all other browsers

Topology 2 -— visit planets
This part of the PDK has security applied to it, so when you first follow the

Topology 2 link, you are asked if you accept the certificate that is being sent.
As we trust the owners of this application (and its certificate), we choose to

accept it. Depending on the browser, you have to go through a few warning

dialogs before being allowed to accept that certificate.

Logon
When you are passed any certificate-related queries, you are prompted by the

logon page (Figure 262). Here you need to enter the details of a user on the

system.

To make things easier, a valid user ID (jadams) and password (password)
combination are already listed on this page, to the right of the input fields.
Enter these values in the fields and click on the Submit button.
Chapter 11. Pattern Development Kit overview 343

Figure 262. Topology 2: logon

Validated logon
The user ID and password are validated against the LDAP directory. Based

on the type of user, the allowed menu options are retrieved from the database

and displayed in the response (Figure 263).1

Figure 263. Topology 2: weather readings options

From here, you can follow the three options:

 ❑Use an IMS connector to retrieve new weather readings from an IMS

system.

 ❑Use CICS and MQSeries connectors to retrieve new weather readings

from CICS and MQSeries products.

 ❑Use an EJB to save the new weather readings in a DB2 table.

1 If logon is not successful, make sure that the SecureWay Directory server has been started.
344 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

IMS connector
The real PDK application ships with an IMS simulator. For our purpose, we

did not install the IMS simulator, and we modified the code to return dummy

data (Figure 264).

Figure 264. Topology 2: IMS result

CICS and MQSeries connector
The real PDK application ships with MQSeries, but CICS is simulated. For

our purpose, we modified the code to return dummy data (Figure 265).

Figure 265. Topology 2: CICS and MQSeries result
Chapter 11. Pattern Development Kit overview 345

EJB
The real PDK application ships with an Enterprise JavaBean that stores the

collected new weather readings in a DB2 table. For our purpose, we did not

install the EJB, and we modified the code to not invoke the EJB (Figure 266).

Figure 266. Topology 2: EJB result

This is the full extent of the PDK application which has been implemented

for this book.
346 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

12 Using Patterns for
e-business to build
the PDK
This chapter discusses the design of some of the applications contained in the

Pattern Development Kit (PDK). In doing so, we provide a brief introduction

to how you can use Patterns for e-business to build an e-business application.

We will go through the different types of Patterns for e-business, and then

focus in on the pattern that is used in the PDK. In our explanation of the

pattern, we will work through the different steps required in creating the

overall application architecture used in our examples.

This chapter is not intended to be a complete guide to using Patterns for

e-business. For more information, visit the Patterns for e-business Web site

at http://www.ibm.com/software/developer/web/patterns/.

For detailed information about design patterns used in the PDK refer to

Patterns for e-business: User to Business Patterns for Topology 1 and 2

using WebSphere Advanced Edition, SG24-5864.
© Copyright IBM Corp. 2000 347

Benefits of Patterns for e-business
Patterns for e-business can be used to assist you when designing and

building an e-business application. They give you starting templates upon

which to build your solution, saving you from having to architect your

application from scratch. They can both speed up the design process and aid

you in making sure that you have considered all relevant architectural tiers.
By using Patterns for e-business, you can utilize the experience of others,
while also customizing the solution to your own needs.

It is worth noting that these patterns should be used in conjunction with a

proven development methodology to help ensure customer requirements are

fully met.

Applying Patterns for e-business
When using Patterns for e-business, we apply a top-down approach. Starting

at a higher, more abstract level, we decide on the type of business the

application is for. We then take this pattern and begin to drill down through

the levels until we reach the physical products that will underlay the

application’s actual implementation.

The steps involved are:

1. Choose a business pattern.

2. Choose a related logical pattern.

3. Choose a related physical pattern.

4. Design your solution.

We will now follow through these steps as if we were using them to create the

PDK application. As a result, we will not show all the options available at

each step. For the full set of expanded options, refer to the Patterns for

e-business Web site.

Choose a business pattern
Business patterns are used to describe the interaction between the different

participants in an e-business application. Those participants can be physical
users, data, or businesses.
348 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The following are some well-defined business patterns:

 ❑User-to-business

 ❑User-to-online buying

 ❑Business-to-business

 ❑User-to-data

 ❑User-to-user

 ❑Application integration

We will be looking more closely at the user-to-business pattern. For more

information on the others, please refer to the Patterns for e-business Web

site.

User-to-business pattern
This pattern is used to deal with cases of users (internal or external),
interacting with existing enterprise transactions or data. It is commonly used

in situations where the enterprise handles goods and services that are not

normally listed in, or sold from a catalog. It basically covers all
user-to-business transactions not covered by the User-to-Online Buying

pattern.

Common business scenarios
Scenarios that easily fit under this pattern include:

 ❑Convenience banking

 ❑Discount brokerage (online share-trading)

Choose a related logical pattern
Once you have selected the appropriate business pattern for your scenario,
you need to then look at the associated logical patterns and decide which best

suits your application.

Logical patterns (or topologies) allow you to describe how the applications

within your solution will interact. They also describe the runtime

infrastructure required to deliver the necessary functionality.

There are two logical patterns you will need to make selections from:

 ❑Logical application topology

 ❑Logical runtime topology
Chapter 12. Using Patterns for e-business to build the PDK 349

Logical application topology
This topology is primarily focused on showing the shape of the application, its

logic and associated data. They are not concerned with showing things like

middleware, or file location.

The PDK utilizes the user-to-business application topologies 1 and 2. We will
describe topology 2 in more depth, as topology 1 is really just a subset of this.
However, if you refer back to the Patterns for e-business Web site, you will be

able to see the other variations in full.

User-to-business application topology 2
This solution is referred to as Web-centric. While focusing on a clean

separation between the presentation and application logic, it allows for one

or more point-to-point connections to back-end legacy applications or

databases (Figure 267).

Figure 267. U2B application topology 2

Logical runtime topology
The runtime topology identifies the different nodes which are responsible for

your functional requirements. It also begins to place those nodes in

conceptual locations.

User-to-business runtime topology 2
This runtime topology (Figure 268) is used in conjunction with the

user-to-business application topology 2.
350 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 268. U2B runtime topology 2

Choose a related physical pattern
So far, what we have discussed has been platform-independent. It is now

time to apply these patterns to a physical platform.

Applying the product mapping
For the purposes of the PDK, we apply the chosen topologies to the UNIX and

NT platforms (Figure 269).
Chapter 12. Using Patterns for e-business to build the PDK 351

Figure 269. U2B runtime topology 2 product mapping

Once again, variations upon this are available, and you should refer to the

Patterns for e-business Web site for more information.
352 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The next steps
We now have a good idea of the underlying architecture to our application.
All that is left is to actually create it! We will not be going into detail about

the design decisions involved in creating the PDK. However, in the next

section (“Design techniques used”), we will discuss two of the techniques that

are commonly used throughout.

Design techniques used
To provide robust and scalable software, the PDK has based its solution

design around some universally-accepted design techniques. The two

prominent ones are:

 ❑Model-View-Controller framework

 ❑Command design patterns

The Model-View-Controller framework
When designing an application, you first need to understand the structure of
how your various components are going to interact. Taking the information

from the Logical Patterns above and what we know about Web applications,
we can begin to develop a general picture of how things may work (Figure

270).

Figure 270. The structure of Web interactions

Interaction
Control

Page
Construction

Business
Logic

Browser
Clients
Chapter 12. Using Patterns for e-business to build the PDK 353

Those who are familiar with this structure will begin to see that it very

closely resembles the well-known Model-View-Controller (MVC) framework.
As its name suggests, it is made up of three components:

 ❑The model is responsible for the underlying data, and transactions that

can be associated with it. This is the business logic.

 ❑The view is responsible for displaying the data. This is the page

construction.

 ❑The controller is responsible for decoupling the interactions between the

model and the outside world. This is the interaction control and need have

no knowledge of how the View works.

The benefits of using MVC
This separation of business logic from the user interface allows you greater

flexibility in your application. If your user interface (the Web pages) must

change in look and feel, then the other segments of the application need not

be heavily affected, if at all.

Also, the very fact that you can split your application into three fairly distinct

sections, each requiring different skills, allows you to better manage your

development cycle and team.

This separation into model, view, and controller sections can be clearly seen

in the final designs of the PDK (see “The design for the PDK” on page 355).

The Command bean design pattern
Design patterns have been well-recognized for a number of years now, and

they provide useful templates for solutions to common problems. For more

information on the Command pattern and design patterns in general, refer to

the book “Design Patterns - Elements of Reusable Object-Oriented Software”,
by Gamma, Helm, Johnson and Vlissides.

The Command pattern is a type of behavioral design pattern, which means it

is concerned with how objects relate to and communicate with each other.

Where is it used?
The Command pattern is useful in scenarios where it is necessary to issue

requests to an object without knowing anything about the operation being

requested or how that operation is carried out. For example, in a menu

system each menu item triggers a command request, but the menu item need

not know anything about the request, except for when it must be triggered.
354 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

How is it implemented?
This pattern is commonly implemented by making all your commands objects

of a defined class (Command) which responds to an execute method. The

object that requests the command merely needs to populate the command

object with any required data, and then simply call the execute method. This

enables the calling object to succeed in its task, while knowing little about

the command it is actually calling.

What are the benefits
This pattern provides an extra level of decoupling within your application. As

the calling object is protected from knowing how or what the command is, it

is more robust should changes to this command be required. The command

could achieve its task in a completely different way from how it was first

envisaged (for example, retrieving data from a new database as opposed to a

legacy application), and the calling object would not have to be changed. This

provides you with a much more flexible product in the long term.

Implementing the command pattern will make things easier if you wished to

implement a logging system for the commands, or even the ability to

roll-back your commands in a clean and simple manner.

Also, in the shorter term, the use of the Command pattern can help you break

up development into its separate components, and allow you to focus your

team into specific areas.

The design for the PDK
The PDK combines the patterns and techniques described above into a real
application. To give you a clearer understanding of how this works, we will
now break down the design of topology 1 and topology 2. These are the two

parts of PDK that are included with this book.

To make full use of the following descriptions and illustrations, you should

use them in combination with Chapter 11, “Pattern Development Kit

overview” on page 337, which walks you through the running of topology 1

and 2.

Topology 1
The part of the PDK referred to as topology 1 is responsible for doing a

database query based on user input, and displaying the result back to the

user. Also, it carries out a database update, storing the user’s query.
Chapter 12. Using Patterns for e-business to build the PDK 355

Stage A
Figure 271 displays the component flow of topology 1. In particular, it shows

how the Command pattern is used.

Figure 271. Topology 1 component flow: stage A

Interaction steps
1. The user selects Topology 1 from the home page.

2. The Web server returns a JSP form requesting some input parameters.

3. The form data is posted to the controller servlet which validates it.

4. The controller servlet instantiates the command bean responsible for

retrieving the search results and sets its properties with the appropriate

data.

5. The controller servlet calls the command bean’s execute method.

6. The command bean retrieves historical data from the database and stores

the results in a historical data bean.

7. The controller servlet initializes and sets the properties for a second

command bean responsible for storing the user’s query request in a

journal table.

8. The controller servlet calls the second command bean’s execute method.

9. The servlet stores the historical data bean on the request object.

10.The servlet invokes a JSP to display the results. The servlet determines if
the browser can display XML and depending on the result, a different JSP

is used.

Form

Error Page

Results
Page

Home
Page

Form
Incomplete

Page

Command
Beans

Controller
Servlet DB2

Data
Bean

View
Beans

5

6

42

1

3

9

7
8

11

10
356 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

11.The JSP uses a related view bean to retrieve the historical data from the

request object, and to format it appropriately for output.

Topology 2
Topology 2 consists of a multiple stage process. The first stage is responsible

for authenticating the user via LDAP using SecureWay Directory, and the

second stage retrieves available menu options from the database, based on

that user’s employee type. The steps that follow retrieve data from enterprise

resources.

Stage B
Figure 272 displays the component flow of topology 2 stage B.

Figure 272. Topology 2 component flow: stage B

Interaction steps
1. The user selects Topology 2 from the home page.

2. An SSL connection is established between the user’s browser and the Web

server.

3. The user is presented with a HTML logon form requesting a user name

and password.

Home
Page

Error Page

653

1

9

7

8

Logon
Page

2

Command Bean

(B)

LDAP

Logon
Page

Incorrect /
Retry

Correct

Exception

SessionData

(C)

4 Controller
Servlet

Controller
Servlet
Chapter 12. Using Patterns for e-business to build the PDK 357

4. The user completes the form and posts it to the controller servlet (B).

5. The controller servlet instantiates a command bean which is responsible

for authenticating the user based on the form data.

6. The command bean binds to LDAP to authenticate the user.

7. The servlet then retrieves the employee type for that user and stores it as

session data.

8. After the user is authenticated, a second controller servlet (C) responsible

for retrieving the list of menu options is called by the first controller

servlet. The list returned is based on the user's employee type.

Stage C
Figure 273 displays the component flow of topology 2 stage C.

Figure 273. Topology 2 component flow: stage C

Interaction steps
1. The controller servlet (C) in this interaction is called by the controller

servlet (B) in the previous step.

2. The servlet retrieves the user’s profile (the employee type) from the

session.

3. The servlet instantiates a command bean, set the properties and invokes

the execute method. The command bean is cached in the session object.

Error Page

6

5

3

1

4

7

Return
Result
Page

2

Command Bean

(C)

DB2
Session
Data

Exception

Pooled
Connection

(B)

View
Bean

8

Controller
Servlet

Controller
Servlet
358 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

4. The command bean, in its execute method, obtains a DB2 connection from

the pool and queries the database for the required data.

5. The servlet stores the menu options returned on the request object.

6. The servlet then calls the output JSP to display the results.

7. The JSP interrogates the view bean to display the results to the user.

8. The view bean retrieves the menu options from the request object, and

formats them appropriately.

Stages D through F retrieve data from enterprise resources. We do not

describe these in as much detail as the previous stages; rather, we just show

an overview diagram for each stage.

Stage D
Stage D (Figure 274) interacts with CICS and MQSeries systems.

Figure 274. Topology 2 component flow: stage D

Stage E
Stage E (Figure 275) interacts with IMS and DB2 systems.
Chapter 12. Using Patterns for e-business to build the PDK 359

Figure 275. Topology 2 component flow: stage E

Stage F
Stage F (Figure 276) interacts with DB2 through an Enterprise JavaBean.

Figure 276. Topology 2 component flow: stage F
360 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

In Summary
We have now discussed the design used in the PDK, and walked through the

different steps that make up some of its applications.

For more information on the PDK, and for the full set of applications it

contains, please refer to Patterns for e-business: User to Business Patterns

for Topology 1 and 2 using WebSphere Advanced Edition, SG24-5864.

For more information on Patterns for e-business, refer to the Patterns for

e-business Web site:

http://www.ibm.com/software/developer/web/patterns/
Chapter 12. Using Patterns for e-business to build the PDK 361

362 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

13 Running the PDK in
WebSphere
This chapter describes how to install the Pattern Development Kit

application for use under WebSphere Application Server and IBM HTTP

Server.

Much of the installation process has been automated by using CMD files.
While it would have been possible to merge these CMD files into a more

seamless process, we have chosen to break out the installation steps as much

as possible, thus allowing us to discuss the details of each step.

The installation instructions provided in this chapter are intended to be

followed sequentially.
© Copyright IBM Corp. 2000 363

Extracting the resources
The Pattern Development Kit source files are provided in the 5755pdk.zip file.
Extract the file to the root directory of your hard disk. When extracted, your

top-level directory structure should look like this:

d:\sg245755\pdk\...

All scripts (.cmd files) to configure the application can be found in the

\pdk\cmd directory. All scripts to reset the changes made to configure the

application can be found in the \pdk\cmdReset directory.

To run a script, double-click on the file in the Windows NT Explorer.

Tailoring the installation system
There are a number of configuration steps that you have to complete before

executing further scripts in the installation process. The steps in this section

make the required modifications to the XML configuration files used by

WebSphere Application Server to support the sample code.

User ID
The DB2 database is accessed through the user ID USERID with password

password (in lower case). Define such a user ID in your Windows NT system.

Set up environment parameters
The first script that you have to edit sets up environment variables used by

other scripts during the installation process.

Open the itsoEnv.cmd file in a text editor. Configure each line in this file

according to the product installation directories on your computer. A typical
configuration may look like this:

set NODENAME=fundy
set IBMHTTPSERV=C:\Program Files\IBM HTTP Server
set IBMKEYMAN=C:\Program Files\IBM\GSK
set WSAPPSERV=C:\WebSphere\AppServer
set VAJAVARES=C:\IBMVJava\ide\project_resources\

IBM WebSphere Test Environment
set ITSOTOPO=D:\SG245755\Pdk
364 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

The nodename variable is case-sensitive, so make sure that you enter it in

lowercase, identical to the WebSphere Application Server topology view.

Be careful and verify for each product that the information entered in this

step is correct.

Tailor the XML files
Now you have to tailor the XML files that are used to configure the

application server.

Run the script tailorXMLfiles.cmd.

This script uses the Notepad editor to display a number of XML configuration

files that you have to update with information specific to your computer

setup. Save the changes for each edited file.

Edit db2jdbcdriver.xml
The db2jdbcdriver.xml file defines DB2 driver information used by WebSphere

data sources for the PDK.

Replace the Xs with the host name that you specified in the itsoEnv.cmd file,
ensuring that it is in lower case:

<node-name>XXXXXXXX</node-name>

Also, change the following line to reflect the correct path to the db2java.zip

file on your computer.

<jdbc-zipfile-location>C:\SQLLIB\java\db2java.zip</jdbc-zipfile-location>

Edit securehost.xml
The securehost.xml file defines a second host, in addition to the default_host.

Toward the end of this file, you need to specify the host aliases for your

computer by replacing the lines marked by X with appropriate values. The

configuration specified in this file is used when a secure request is made via

HTTPS in the topology two example.

<alias-list>
<alias>xxxxxxxx.almaden.ibm.com:443</alias>
<alias>xxxxxxxx:443</alias>
<alias>xxx.xxx.xxx.xxx:443</alias>
<alias>127.0.0.1:443</alias>
<alias>localhost:443</alias>

</alias-list>
Chapter 13. Running the PDK in WebSphere 365

In the first two aliases, use the computer host name entered in the
itsoEnv.cmd file. In the third alias, specify the IP address of the host computer.
To obtain the IP address, type the following in a command prompt on the host

computer (the host is our local machine in this case):

ping <hostname>

You should be presented with a number of lines of return data from the ping

command as shown below. Enter this IP address into the third alias line.

Reply from 9.1.151.36: bytes=32 time<10ms TTL=128

The default port used by the HTTPS protocol is :443. You should not have to

change this value.

Edit webapptopologyone.xml
The webapptopolgyone.xml file is responsible for updating the WebSphere

Application Server to reflect the correct paths to the source code and

HTML/JSP files required by the topologyone Web application. These changes

are necessary, as the topology application runs under Web applications called

topologyone and topologytwo, rather than running under the default_app

Web application provided by default in WebSphere Application Server.

The first change requires that you specify the computer host name in the

line:

<node name="XXXXXXXX" action="update">

Next, locate the lines specified below and change the paths to reflect the

correct path on your machine. This tells the application server where to find

HTML/JSP pages and class files for the application.

<document-root>C:\WebSphere\AppServer\hosts\default_host\topologyone\web
</document-root>
...
<classpath>
<path

value="C:/WebSphere/AppServer/hosts/default_host/topologyone/servlets"/>
</classpath>
...

Locate the text block beginning with:

<servlet name="JSP 1.0 Processor" action="update">

Within this block, find the following lines and change the value attribute of
the <parameter name> tag to the correct path for your machine. This updates

the path used by the JSP engine to locate and compile the applications’ JSPs:
366 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

<init-parameters>
<parameter name="workingDir"

value="C:\WebSphere\AppServer\hosts\default_host\topologyone\web"/>
</init-parameters>

Edit webapptopologytwo.xml
Repeat the instructions for editing webapptopologyone.xml.

Edit start.xml, stop.xml, restart.xml, reset.xml
In these four files, enter the correct host name in the line:

<node name="XXXXXXXX" action="update">

Installing and running the Pattern Development Kit
In the following steps, we will configure the application resources and

database in addition to configuring the IBM HTTP Server and SecureWay

LDAP directory services required by the Pattern Development Kit example.

Restart the HTTP Server
The first script you run stops and then restarts the IBM HTTP Server

service:

RestartHttpServer.cmd

Create a self-signed SSL certificate
This step creates a new SSL certificate which allows the HTTP Server to

perform encrypted communication over HTTPS. The

startIBMKeyManagementUtility.cmd script executes the key management

software provided with the IBM HTTP Server to create and manage the

certificate.

First, you have to create the \key directory underneath the \IBM HTTP Server\

directory to store the key created in the next step:

createSSLKeyDirectory.cmd

Next, you run a script to start the IBM key management software that

enables you to create the certificate:

startIBMKeyManagementUtility.cmd
Chapter 13. Running the PDK in WebSphere 367

In the IBM Key Management window, select Key Database File -> New to

commence the certificate creation process. The New dialog appears (Figure

277). Click the Browse button and locate the d:\..\IBM HTTP Server\key

directory. Enter apachekeyfile.kdb in the Key Database File Dialog and click

the Save button.

Figure 277. Creating a new key file

Click OK in the New dialog to display the Password Prompt dialog (Figure

278). This dialog allows you to enter a password for the Key file. Enter the

same password that you have specified in your WebSphere Application

Server and DB2 configurations for your administrative logon name.

Select the options as shown in Figure 278 and click OK. You should receive a

prompt alerting you that the password has been saved.

Figure 278. Setting options in the Password Prompt dialog

In the main IBM Key Management window, click the drop-down list titled

Signer Certificates and select Personal Certificates from the list. Click the

New Self Signed... button to display the Create New Self-Signed Certificate

dialog. Enter the following values for the specified fields:
368 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 ❑In the Key Label field enter, User-to-Business Design Pattern Certificate.

 ❑In the Version field, ensure that X509 V3 is selected.

 ❑In the Key Size field, select 512.

 ❑In the Common Name field, enter the fully qualified host name of your

computer.

 ❑In the Organization field, enter IBM Hursley.

 ❑In the Organization Unit field, enter ASG.

 ❑In the Country field, ensure the selected country is US.

 ❑In the Validity Period field, ensure the selected period is 365.

Click the OK button in the Create New Self-Signed Certificate dialog.

You will notice that the certificate is added to this list of certificates in the

Personal Certificates category in the main window. You can now exit the IBM

Key Management utility by selecting Key Database File -> Exit.

Create the Web site
This step creates the directory structure under the \IBM HTTP Server\htdocs\

directory and populates these directories with core resources required by the

PDK applications:

createSkeletonWebSite.cmd

The PSK application uses this directory setup:

\IBM HTTP Server\htdocs\U2BTop\
\U2BTop\images
\U2BTop\theme

Configure IBM HTTP Server
The next step modifies the httpd.conf file of the IBM HTTP Server using the

values you provide in this step:

createSkeletonConfig.cmd

The changes.conf file is displayed.

Edit changes.conf
Locate the following line and modify it to reflect your computer’s host name:

ServerName yourHostname
Chapter 13. Running the PDK in WebSphere 369

Locate lines that contain the path of the IBM HTTP Server and change the

path to your installation:

LoadModule ibm_ssl_module "C:/IBM HTTP Server/modules/IBMModuleSSL128.dll"
<Directory "C:/IBM HTTP Server/htdocs/u2btop" >
Keyfile "C:/IBM HTTP Server/key/apachekeyfile.kbd"

Note: Outside the USA you may have to use the IBMModuleSSL56.dll.

Check http.conf
The changes.conf file is appended to the http.conf file of the HTTP server and

then displayed to you. Verify that the changes made to the http.conf file are

correct. In particular, locate the comment block below and check the

subsequent line entries to ensure correct server name and path values are

correctly specified.

#
#==
changes to IBM HTTP Server\conf\http.cnf for User-to-Business Patterns

Restart the IBM Http Server
Following these changes, you must restart by IBM HTTP Server to activate

the new configuration:

restartHttpServer.cmd

Quick test of HTTP Server configuration
To quickly test if the configuration is successful at this point, run the script

appropriate for your Web browser.

For Internet Explorer users, run: startIE5.cmd

For Netscape Navigator users, run: startNetscape.cmd

LDAP configuration
The Pattern Development Kit authenticates users via LDAP directory

services. This step sets up the LDAP services provided with IBM SecureWay

to enable this authentication process to function correctly.

If you have not already installed IBM SecureWay Directory, refer to the

Product Installation chapter for information about this product. At the time

of writing, IBM SecureWay Directory 3.1.1 does not work with DB2 Fixpack 2

and requires DB2 Fixpack 1A, but Version 3.1.1.5 does work.
370 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Start the LDAP directory server
To start the LDAP directory server, run the script:

startLDAPServer.cmd

This will start the IBM SecureWay Directory V3.1 service. When it has

started successfully, display the LDAP configuration panel by launching your

Web browser and entering the URL:

http://<YourHostName>/ldap

In the Logon panel, enter the following values:

 ❑In the User ID field enter, cn=youruserid

 ❑In the Password field, enter, yourpassword

Click the Logon button to display the LDAP configuration options. Select Add

a Suffix from the Suffix node in the tree (Figure 279).

Figure 279. Adding a new suffix to LDAP

Enter the following text in the Suffix DN field:

o=ibm, c=uk
Chapter 13. Running the PDK in WebSphere 371

Click the Add a new suffix button to confirm the new suffix definitions. Next,
from the following confirmation screen, select the restart the server link.

Import the LDIF file
The final step for LDAP configuration is to import the LDIF file. This file

updates the LDAP directory with user information required by the

application:

importLDIFfile.cmd

Create the ITSOTOPO database
To create the DB2 database with all the tables used by the application, run:

createDatabase.cmd

This script launches the DB2 command-line processor and issues the

CREATE DATABASE command. Afterwards the tables are defined and

loaded with initial data. This process may take some time.

You can also reload the tables using the script:

reloadDatabase.cmd

Copy application-specific files
Now you have to create the Web application directories under the default_host

and secure_host directories of the WebSphere Application Server:

createWebAppDirectories.cmd

The directories created by this step are:

d:\WebSphere\AppServer\hosts\default_host\topologyone
d:\WebSphere\AppServer\hosts\secure_host\topologytwo

%WSAPPSERV% = d:\WebSphere\AppServer (in itsoenv.cmd)

Next, you copy the servlet classes and JSPs required by each application step

to the \web and \servlet directories for each host:

copyWebAppFiles.cmd
372 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Import the XML configurations into WebSphere
To complete the installation, you run the scripts that import the XML

configuration files generated by previous steps into the WebSphere

Application Server.

First, you start the WebSphere Application Server service, if it is not

running:

startWebSphereAdmin.cmd

Next, you start (or restart) the default server in WebSphere Application

Server. The process of initializing the default server in WebSphere may take

some time, so allow a minute or two after executing this step before moving

on to subsequent steps:

startWebSphereServer.cmd

Now, you run the scripts responsible for importing the XML files that

configure the WebSphere Application Server to run the example applications.
Follow this sequence:

wasJDBCDriver.cmd
wasDataSources.cmd
wasVirtualHost.cmd
wasWebAppOne.cmd
wasWebAppTwo.cmd

Restart the default server node in WebSphere Application Server to enable

the changes made by the previous scripts:

startWebSphereServer.cmd

Now, you start the WebSphere Administration Console:

startWebSphereClient.cmd

You should be able to expand the Topology in the Administration Console to

view the configuration changes that have been made during this installation

process.

Run the application
The installation is complete. You can run the Pattern Development Kit

application by executing the script appropriate for your browser:

startIE5.cmd
startNetscape.cmd
Chapter 13. Running the PDK in WebSphere 373

You should see the main page as shown in Figure 257 on page 339. Click the

Continue image to start using the application.

Follow the application as described in Chapter 11, “Pattern Development Kit

overview” on page 337.

Resetting changes
We have included a number of script files that reset the configuration

changes made during the setup of the Pattern Development Kit example.
Run these scripts if you want to undo the changes or if you have made a

mistake and want to restart the installation process:

resetHTTPServer.cmd <== reset the IBM HTTP Server configuration
resetWebSphere.cmd <== reset the WebSphere configuration
resetDatabase.cmd <== remove the ITSOTOPO database from DB2
374 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

14 Running the PDK in
VisualAge for Java
In this chapter, we describe how to install the Pattern Development Kit to

run under the WebSphere Test Environment in Visual Age for Java.

This chapter assumes that you have completed the installation for the

WebSphere Application Server detailed in Chapter 13, “Running the PDK in

WebSphere” on page 363. As a minimum, the ITSOTOPO database must be

created and loaded with data.

Most of the configuration is performed to files in directories in the

WebSphere Test Environment path, which is usually:

d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment\...

Where appropriate, we use the abbreviation of <WTE> to indicate this path.
© Copyright IBM Corp. 2000 375

Automatic configuration
You can perform an automatic update of the necessary configuration files for

this application. Using the automatic configuration is the easiest way to

configure the Pattern Development Kit to run in the WebSphere Test

Environment. If you do not want to automate this process, you could make all
changes manually as described in “Manual configuration” on page 378.

Running the configuration script
Provided in the\Pdk\Cmd directory is the script that performs most of the

WebSphere Test Environment configuration:

setupVaJava.cmd

The functions performed by this script are:

 ❑Back up the default.servlet_engine file as default.servlet_engine.save in the

<WTE> directory.

 ❑Create the following directories under the WebSphere Test Environment:

\hosts\default_host\topologyone\web
\hosts\default_host\topologyone\servlets
\hosts\default_host\topologytwo\web
\hosts\default_host\topologytwo\servlets
\temp\Jsp1_0\topologyone
\temp\Jsp1_0\topologytwo

 ❑Copy the preconfigured default.servlet_engine file from the \Pdk\VaJava

directory to the <WTE> directory. The new file contains web-group

configuration information for the two topology Web applications.

 ❑Copy preconfigured .webapp files provided with the kit to the \servlets

directory for each Web application.:

<WTE>\hosts\default_host\topologyone\servlets\topologyone.webapp
<WTE>\hosts\default_host\topologytwo\servlets\topologytwo.webapp

 ❑Copy the error.jsp page to the web subdirectory of each Web application.

 ❑Copy the SnoopServlet.class to the servlets subdirectory for topology 2.

 ❑Copy the HTML files and images from the PDK to the default_app

application:

\hosts\default_host\default_app\web\U2BTop\...

 ❑Copy the JSPs from the PDK to the Web application’s web subdirectory.

 ❑Copy the .servlet files used in topologytwo to the <WTE> directory.
376 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Prepare a project and import the Java code
Start VisualAge for Java and create a new project named ITSO Pattern

Development Kit.

Load the following features into the Workbench:

 ❑IBM WebSphere Test Environment
 ❑IBM Enterprise Access Builder Library
 ❑Connector HOD
 ❑Connector IMS TOC
 ❑Connector MQSeries
 ❑IBM Common Connector Framework
 ❑IBM Java Record Library

Import the Java source files from the two directories:

\SG245755\Pdk\Was\topologyone\servlets
\SG245755\Pdk\Was\topologytwo\servlets

Alternatively, you can import the 5755pdk.dat repository file and then load

the project or the packages into the Workbench.

Servlet engine configuration
The steps in this section configure the servlet engine in the WebSphere Test

Environment. If you have chosen to do an automatic installation, you should

complete these steps after running the setupVaJava.cmd script.

This setup is described in “WebSphere Test Environment — multiple Web

applications” on page 215, and is repeated here in abbreviated format.

Modify ServletEngine properties
The first step is to modify the properties of the ServletEngine class in the

WebSphere Test Environment. This step configures the ServletEngine class

with class path and IDE version information and tells the ServletEngine

which path it should consider as its application server root directory.

Locate the following class in the Visual Age for Java workbench:

com.ibm.servlet.engine.ServletEngine

In the properties dialog for this class, make the following changes:

 ❑In the Program tab edit the command-line field to read:

-serverRoot "d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment"
Chapter 14. Running the PDK in VisualAge for Java 377

 ❑Edit the Properties field by adding the property:

ivj.version=3.02

 ❑In the Class Path tab edit the Extra directories path and copy all the

entries from the com.ibm.servlet.SERunner class. (See Figure 164 on page

218.)

 ❑Edit the Project path and select Connector IMS TOC, Connector

MQSeries, IBM Common Connector Framework, IBM Enterprise Access

Builder Library, IBM Java Record Library, and the ITSO Pattern

Development Kit.

Manual configuration
If you want to configure the WebSphere Test Environment manually to gain a

more thorough understanding of the setup process, follow the manual
configuration steps provided in this section.

First, complete the steps detailed in “Servlet engine configuration” on

page 377 to configure the servlet engine. Then move on to complete the

remaining steps in this section.

The files for manual configuration are contained in the \Pdk\VaJava directory.

Configure the Web applications
The PDK consists of two Web applications that must be configured in

VisualAge for Java as described in “WebSphere Test Environment —

multiple Web applications” on page 215. The steps are:

 ❑Update the default.servlet_engine file and add two

<websphere-webgroups> for the two Web applications.

 ❑Create directories for the two Web applications:

<WTE>\hosts\default_host\topologyXXX\servlets
<WTE>\hosts\default_host\topologyXXX\web
<WTE>\temp\Jsp1_0\topologyXXX

 ❑Copy the error.jsp file into the web subdirectory of each application.

 ❑Copy the HTML and image files to the default application web

subdirectory:

<WTE>\hosts\default_host\default_app\web\U2BTop

 ❑Copy the JSPs to the Web application web subdirectory:

<WTE>\hosts\default_host\topologyXXX\web
378 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 ❑Copy .servlet files to the <WTE> directory.

 ❑Copy the topologyXXX.webapp configuration files to the servlets

subdirectories of each application. One example is shown in Figure 280.

Figure 280. Web application configuration file

<?xml version="1.0"?>
<webapp>
 <name>topologyone</name>
 <description>Pattern Development Kit Topology One</description>
 <error-page>/ErrorReporter</error-page>
<servlet>

<name>histData</name>
<description>Topology One Historical Data Servlet</description>
<code>com.ibm.hursley.asg.ws.skeleton.topologyone.sectiona.

RetrieveHistoricalDataServlet</code>
<servlet-path>/histData</servlet-path>
<autostart>false</autostart>
</servlet>

<servlet>
 <name>ErrorReporter</name>

......
 </servlet>
<servlet>
 <name>invoker</name>

......
 </servlet>
<servlet>
 <name>jsp</name>

......
 <init-parameter>
 <name>scratchdir</name>
 <value>$server_root$/temp/JSP1_0/topologyone</value>
 </init-parameter>

......
 </servlet>
<servlet>
 <name>file</name>

......
 </servlet>
</webapp>
Chapter 14. Running the PDK in VisualAge for Java 379

Running the application
Because we configured multiple Web applications, we have to use the

ServletEngine (and not SERunner) to start the WebSphere Test

Environment.

Start the ServletEngine
Run the ServletEngine class to start the WebSphere Test Environment.
Check the Console window to ensure that the Web applications are loaded

successfully.

To run the application, enter the following URL in a browser:

http://localhost:8080/U2BTop/indexVAJ.html

We have two copies of the HTML files because the VisualAge for Java Test

Environment does not support the HTTPS protocol for the topology 2

application.

Running without SecureWay LDAP
To run topology 2 without an active LDAP server, you can modify the

SecurityServlet class (com.ibm.hursley.asg.ws.skeleton.topologytwo.sectionb).

If logon fails, a CommandException is thrown and an error page is displayed.
To bypass the exception, locate the performTask method and scroll to the

bottom. You should find this code fragment:

} catch (CommandException e) {
/*
 * Call the logonError page - inform the user
 */
getServletConfig().getServletContext().getRequestDispatcher

("sectionB/logonError.jsp").forward(req, res);

// if SecureWay is not installed
// comment out above statement and use code below

//String employeeType = "1";
//boolean create = true;
//HttpSession session = req.getSession(create);
//session.putValue("skeleton.userType", employeeType);
//RequestDispatcher rd = getServletContext().getRequestDispatcher

("/menuOptions");
//rd.forward(req, res);

}
380 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Deactivate the call to the logonError.jsp and uncomment the code that

simulates a successful logon. This enables you to get to the remaining

functions of the application.

Resetting changes
To reset any configuration changes made by the installation process, run:

resetVaJava.cmd

You should only run this script if you have performed an automatic

installation. If you have performed a manual installation, you must manually

reverse the change made to the configuration.
Chapter 14. Running the PDK in VisualAge for Java 381

382 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

15 Developing the PDK
using WebSphere
Studio
This chapter describes how to build topology 1 and topology 2 of the Pattern

Development Kit in the WebSphere Studio environment, so that it can be

further extended to include additional functionality.

We show how to build the PDK application as a project in the WebSphere

Studio environment, how to integrate with VisualAge for Java, and how to

deploy changes to the WebSphere Application Server environment.
© Copyright IBM Corp. 2000 383

Overview
The Pattern Development Kit (PDK) topology 1 and topology 2 examples

included with this book are structured to deploy directly into the WebSphere

Application Server environment. The step-by-step instructions in Chapter

13, “Running the PDK in WebSphere” on page 363, provide the information

on how to deploy directly to the WAS environment, through executing a

series of scripts which build and configure the PDK in the WAS environment.

The PDK is meant to provide useful examples of fully functioning Web

applications that demonstrate important architectural and design concepts,
in addition to important servlet interaction techniques that we discussed in

Chapter 4, “Servlets” on page 41. The PDK is also meant to be extensible, in

that it can be customized to add additional functionality, and perhaps provide

a framework for a possible solution.

In this chapter, we show you how to load these topology examples into the

WebSphere Studio environment, so that you can further extend the code to

test out other configurations that you may want. We describe two scenarios,
including one where we integrate with VisualAge for Java.

We recognize that this looks like reverse engineering. We do not necessarily

endorse this as a common development process; however, you may find the

information in this chapter useful when you want to port a Web application

into WebSphere Studio for future development and management.

You can follow the steps outlined here to gain experience with setting up a

WebSphere Studio project, or you can work with the Studio archive file

ITSO Pattern Development Kit.war that we provide in Sg245755\pdk\studio.
See “Opening an archive” on page 293 on how to work with an archive file to

preserve the publishing targets.
384 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Building the WebSphere Studio project
This section describes the configuration of the PDK in the WebSphere Studio

environment.

Creating the WebSphere Studio project
Create a new project in WebSphere Studio named ITSO Pattern Development
Kit. By default, you get servlet and theme folders. The final state is shown in

Figure 281.

Figure 281. Pattern Development Kit WebSphere Studio project
Chapter 15. Developing the PDK using WebSphere Studio 385

Create the project folders
All the base code is available in subdirectories was and website of
d:\SG245755\pdk. Here are the steps to arrive at the project layout. Use the

Insert -> File and Insert -> Folder menu options and click on the Use existing

tab:

 ❑Insert a new folder named u2btop.

 ❑Insert the HTML files from website\htdocs into the u2btop folder.

 ❑Insert a new folder under u2btop (use existing) and select

website\htdocs\images.

 ❑Insert a new folder under u2btop (use existing) and select

website\htdocs\theme.

 ❑Insert a new folder (use existing) and select was\topologyone.

 ❑Insert a new folder (use existing) and select was\topologytwo.

 ❑Insert a new folder named servletconfig under topologytwo. We want to

publish the .servlet files separately from the servlets. Move the three

.servlet files from topologytwo\servlets to topologytwo\servletconfig.

 ❑Remove the theme folder in the project, we have one under u2btop.

This completes the project layout, that is, the left half of Figure 281.

Define the publishing stages
We want to publish to VisualAge for Java (WebSphere Test Environment)
and to WebSphere Application Server; therefore we require two publishing

stages.

Create the Test publishing stage
We use the Test stage as the publishing view for the VisualAge for Java

WebSphere Test Environment. Select the Test publishing view (Project ->

Publishing Stage -> Test).

 ❑The default server is http://localhost. We want the Test stage for

VisualAge for Java. Insert a new server (Insert -> Server) called

http://localhost:8080.

 ❑Move all the existing folders in the publishing view from localhost to

localhost:8080, and delete the localhost server.

 ❑Insert a new folder named webapp.

 ❑Move the topologyone and topologytwo folders into the webapp folder.

 ❑Delete the original servlets folder in the publishing view.
386 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Create the WebSphere publishing stage
By default, Studio provides an empty Production stage. Rather than using

the empty stage, we create a new tailored stage.

 ❑Create a new publishing stage. Select Project -> Customize Publishing

Stages and enter the name WebSphere and click Add.

 ❑Copy the Test stage to the WebSphere stage. Select Project -> Copy

Publishing Stage and copy from Test to WebSphere. This is easier than

creating manually.

 ❑Switch to the WebSphere stage (Project -> Publishing Stage ->

WebSphere).

 ❑Insert a new server named http://localhost (or your target host name).

 ❑Move all folders from localhost:8080 to localhost.

 ❑Delete the localhost:8080 server.

 ❑Check that the folder structure is identical to the Test stage.

This folder structure mirrors the layout of a Web application in WebSphere.

Configure the WebSphere publishing targets
We have to set up the target directories for publishing the files from Studio to

WebSphere Application Server.

Select the localhost server and Properties, then click on Define Publishing

Targets. Click on Add to define four new targets and set the path for each

target to the proper directory:

topologyone servlets: <WAS>\hosts\default_host\topologyone\servlets
topologyone web: <WAS>\hosts\default_host\topologyone\web
topologytwo servlets: <WAS>\hosts\secure_host\topologytwo\servlets
topologytwo web: <WAS>\hosts\secure_host\topologytwo\web
html: E:\IBM HTTP Server\htdocs\U2BTop
servlet: <WAS>\hosts\default_host\topologyone\servlets

<WAS> is d:\WebSphere\AppServer

We do not use the servlet target (because we have our own), but it should

point to a valid directory.

Assign publishing targets to folders
In the publishing views, select the individual folders listed below and

Properties. On the Publish page, select the check box Publish this folder to a

publishing target, and select the correct target from the drop-down list:
Chapter 15. Developing the PDK using WebSphere Studio 387

Folder Publishing target
U2BTop html
web (in webapp\topologyone) topologyone web
web (in webapp\topologytwo) topologytwo web
servlets (in webapp\topologyone) topologyone servlets
servlets (in webapp\topologytwo) topologytwo servlets
servletconfig (in webapp\topologytwo) topologytwo servlets

Configure the Test publishing targets
We have to set up the target directories for publishing the files from Studio to

the VisualAge for Java WebSphere Test Environment.

Select the localhost:8080 server, define five new publishing targets, and set

the path for each target to the proper directory:

topologyone servlets: <WTE>\hosts\default_host\topologyone\servlets
topologyone web: <WTE>\hosts\default_host\topologyone\web
topologytwo servlets: <WTE>\hosts\default_host\topologytwo\servlets
topologytwo web: <WTE>\hosts\default_host\topologytwo\web
servletconfig: <WTE>\
html: <WTE>\hosts\default_host\default_app\web\U2BTop
servlet: <WTE>\hosts\default_host\topologyone\servlets

<WTE> is d:\IBMVJava\IDE\project_resources\IBM WebSphere Test Environment

Assign publishing targets to folders
In the publishing views, select the individual folders listed below and

Properties. On the Publish page, select the check box Publish this folder to a

publishing target, and select the correct target from the drop-down list:

Folder Publishing target
U2BTop html
web (in webapp\topologyone) topologyone web
web (in webapp\topologytwo) topologytwo web
servletconfig (in webapp\topologytwo) servletconfig
servlets (in webapp\topologyone) topologyone servlets
servlets (in webapp\topologytwo) topologytwo servlets

We do not want to publish the servlets folders because we import the Java

source into the Workbench of VisualAge for Java. Select the servlets folder

and remove the mark from the Publish this folder to a publishing target.
388 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Interfacing with VisualAge for Java
WebSphere Studio provides for two-way communication with VisualAge for

Java, and we can use VisualAge to manage changes to the Java code.

VisualAge for Java setup
We assume (and recommend) that VisualAge for Java will be your primary

tool for maintaining these Java files. For successful cooperation between

Studio and VisualAge for Java, check that:

 ❑VisualAge for Java is running.

 ❑The VisualAge for Java project named ITSO Pattern Development Kit has

been defined as described in Appendix C, “Using the additional material”

on page 417.

 ❑The Remote Access to Tool API service in VisualAge for Java has been

started (Window -> Options -> Remote Access to Tool API).

Initial loading of files from VisualAge for Java
In Studio, you can use the Insert -> File -> From External Source to initially

pull files into our Studio project from VisualAge. However, there is a

limitation to this method. When pulling from VisualAge, you can only pull at

the file level, not the package or project level. Therefore, because the PDK

examples have many files, it would be extremely tedious to have to select the

files individually, by class name, and insert them into the Studio package.

Therefore we loaded the files from the file system.

Updating from VisualAge for Java
Here are the steps to update Studio files for VisualAge for Java:

 ❑Select one or multiple files in a Studio folder. For Java code, always select

both the source (.java) and the class files, otherwise you have to compile

the source yourself afterwards.

 ❑Select Project -> VisualAge for Java -> Update from VisualAge (Figure

282).
Chapter 15. Developing the PDK using WebSphere Studio 389

Figure 282. Updating from VisualAge for Java

You will not get a status window indicating if the update was successful or

not. The new code is in checked-out status (red check mark). You can consult

the check_out directory in the file system to verify that the code is there.

When satisfied, check-in the file to replace the master copy.

Editing Studio files with VisualAge for Java
You can choose to associate VisualAge for Java as an editor for your Java

files. Here are the steps:

 ❑Register VisualAge for Java as a tool. Select Tools -> Tools Registration

(Figure 283).

 ❑Find the .class file extension (not the .java extension).
390 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Figure 283. Tool registration for .class files

Click on Edit and the Edit object type dialog is displayed. Select the Editing

Applications tab, find VisualAge for Java, and click Add (Figure 284).

Figure 284. Adding VisualAge for Java as an editor
Chapter 15. Developing the PDK using WebSphere Studio 391

Managing changes between Studio and VisualAge for Java
We recommend that you only edit your files using the VisualAge for Java

editor. This way, your files should not get out of sync, as VisualAge for Java

always has the most update-to-date version.

To edit a Java source file, select its class file and Edit with -> VisualAge for

Java. (Note that you get an error prompt if you select the .java file.)

This will launch a VisualAge for Java class browser window, but it does not

give focus to the window. You must switch to the class browser window

yourself. You make the changes in VisualAge for Java and you save the

changes, however, saving does not automatically update the files in Studio.

You have to reselect the .class and .java files, and update again from

VisualAge for Java to pull the changes back into Studio.

Note that the files to be edited must exist in VisualAge for Java, that is, you

must have sent the files to VisualAge for Java before.
392 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Managing the Studio project
After importing the Web site with HTML, servlets, and JSPs, we want to

manage the project in WebSphere Studio.

Integrity checking for broken links
You can check the integrity of the project that was imported by running Tools

-> Check Project Integrity. This produces a report in a browser window. The

report shows many broken links (Figure 285).

Figure 285. Project integrity report

......

......
Chapter 15. Developing the PDK using WebSphere Studio 393

Broken links
When you import an existing site into WebSphere Studio, you get broken

links if the site uses servlet aliases, or has hard-coded fully qualified

references from one file to another.

The broken links in the PDK can be categorized into three categories:

 ❑Servlets invoked through a short alias name (instead of the full class

name)

 ❑JSP specifications in servlet configuration files (.servlet)

 ❑JSPs called from the HTML files.

We cannot fix these broken links because of the way the application is set up.

Fixing broken links
Let construct a broken link that we can fix. Assume that the index.html file

points to an image that does not exist (splashBAD.jpg).

In such a case, the Relations view displays a broken link. Select the broken

link and Edit Link from the pop-up menu (Figure 286). Enter the correct

name (u2btop\images\splash5.jpg) and click OK to fix the link.

Figure 286. Fixing broken links
394 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Publishing files
In this section, we describe how to publish the files to WebSphere and

VisualAge for Java.

Publishing to WebSphere Application Server
If you have successfully tested the PDK application in the WebSphere

Application Server environment, then it is recommended that you test the

WebSphere publishing stage.

Note. This process overwrites files in the WebSphere environment. You may

want to back up the WebSphere target directory, for example:

d:\WebSphere\AppServer\hosts\default_host\topologyone

Make sure that all parts are checked-in. Select the WebSphere publishing

view. Select File -> Publish whole project (or use the pop-up menu).

The Publishing Options dialog is displayed (Figure 287). Walk through all the

option pages, then publish the project.

Figure 287. Publishing options

You are prompted with a number of dialogs:

 ❑Files that have broken links (select all the files and continue with OK).

 ❑Folders that must be created.

 ❑Class files that have time stamps older than the Java source file.
Chapter 15. Developing the PDK using WebSphere Studio 395

Publishing report
After the publishing process completes, an HTML Publishing Report for the

project and publishing stage is displayed in the browser (Figure 288).

Figure 288. Publishing report

The publishing report contains details about all the published files and all
the activities, such as creating directories.

Verify that the code has been placed in the correct WebSphere Application

Server directories.

......
396 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Publishing to VisualAge for Java
Switch the publishing view to the Test stage and repeat the publishing

process. Verify that the files are placed into the correct directories of the

WebSphere Test Environment.

Suppress publishing of servlet class files
For testing, you want to import the Java source into VisualAge for Java. You

can suppress the publishing of the servlet class files by deleting the servlets

folder.

You are prompted with a dialog before the action is performed. Select Delete

from current stage (do not select Delete from current stage and disk).

Publishing selected folders
A better approach may be to select only individual folders for publishing,
instead of the whole project. Select the u2btop, webapp\topologyXXX\web,
and webapp\topologytwo\servletconfig folders and Publish selected folders

from the pop-up menu.

Editing files
You can edit the HTML and JSP files using the Page Designer. However, you

will notice that these files were not created with WebSphere Studio, and the

Page Designer does not display the beans that are used in the JSPs.

In the JSPs, the <jsp:usebean> tag is placed before the <HTML> tag, with

the effect that the bean is not displayed with the yellow (J) mark. If you

switch to the source view and move the <jsp:usebean> tag below the

<HTML> tag, you will see the (J) marker when returning to the normal view.

We suggest that you open a few JSPs and HTML files to study the normal
and source code views in the Page Designer.
Chapter 15. Developing the PDK using WebSphere Studio 397

398 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Appendixes
© Copyright IBM Corp. 2000 399

400 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

A JSP tag syntax
In this appendix we review the JSP tag syntax.

JSP tag syntax summary
See Table 19 for a summary of the all tags available in JSP 1.0.

Table 19. Summary of JSP tag syntax

Tag Description Syntax

Output
Comment

Generates a

comment that is sent

to the client in the

viewable page source

<!- - comment [<%= expression %>]
-->

Hidden

Comment
Documents the JSP

page, but is not sent
to the client

<%- - comment --%>

Declaration Declares variables or

methods valid in the

page scripting

language

<%! declarations %>
© Copyright IBM Corp. 2000 401

Expression Contains an

expression valid in

the page scripting

language

<%= expression %>

Scriptlet Contains a code

fragment valid in the

page scripting

language

<% code fragment %>

Include

Directive
Includes a file of text
or code in the JSP

source file
<%@ include file="relativeURL" %>

Page Directive Defines attributes

that apply to an

entire JSP page

<%@ page [language="java"]
[extends="package.class"]
[import= "{ package.class |

package.*} , ..."]
[session="true | false"]
[buffer="none | 8kb | size kb"]
[autoFlush="true | false"]
[isThreadSafe="true | false"]
[info="text"]
[errorPage="relativeURL"]
[contentType="mimeType

[; charset=characterSet]" |
"text/html; charset=ISO-8859-1"]

[isErrorPage="true | false"] %>

Taglib Directive Defines a tag library

and prefix for the

custom tags used in

the JSP page

<%@ taglib uri="URIToTagLibrary"
prefix="tagPrefix" %>

custom tag:
< tagPrefix:name attribute="value"

+ ... />
< tagPrefix:name attribute="value"

+ ... > other tags
</ tagPrefix:name >

jsp:forward Forwards a client

request to an HTML

file, JSP file or

servlet for processing

<jsp:forward
page="{ relativeURL |

<%= expression %> }" />

jsp:getProperty Gets the value of a

Bean property so

that you can display

it in a JSP page

<jsp:getProperty
name="beanInstanceName"
property="propertyName" />

Tag Description Syntax
402 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

jsp:setProperty Sets a property value

or values in a bean
<jsp:setProperty

name="beanInstanceName"
{ property="*" |

property="propertyName"
[param="parameterName"] |

property="propertyName"
value="{string |

<%= expression %> }"}/>

jsp:include Includes data in a

JSP page from

another file, without

parsing the data

<jsp:include
page="{ relativeURL |

<%= expression %> }"
flush="true" />

jsp:plugin Downloads a Java

plugin to the client

Web browser to

execute an applet or

Bean

<jsp:plugin type="bean | applet"
code="classFileName"
codebase="classFileDirName "
[name="instanceName"]
[archive="URIToArchive, ... "]
[align="bottom | top | middle |

left | right"]
[height="displayPixels"]
[width="displayPixels"]
[hspace="leftRightPixels"]
[vspace="topBottomPixels"]
[jreversion="JREVersion | 1.1"]
[nspluginurl="URLToPlugin"]
[iepluginurl="URLToPlugin"] >

[<jsp:params>
[<jsp:param name="parameterName"

value="parameterValue" />]
</jsp:params>]

[<jsp:fallback> text message for
user </jsp:fallback>]

</jsp:plugin>

jsp:useBean Locates or

instantiates a Bean

with a specific name

and scope.

<jsp:useBean id="beanInstanceName"
scope="page | request | session |

application"
{ class="package.class" |

type="package.class " |
class="pkg.cls" type="pkg.cls" |
beanName=" { package.class |

<%= expression %> } "
type="package.class "}

{ /> | > other tags </jsp:useBean> }

Tag Description Syntax
Appendix A. JSP tag syntax 403

WebSphere specific tags
WebSphere Application Server offers a number of tags in addition to the

standard tags in the JSP 1.0 specification

Table 20 describes WebSphere specific extensions to the JSP 1.0 syntax.

Table 20. IBM extensions to JSP for variable data

Tag Description Syntax

tsx:getProperty The IBM extension

implements all of the

<jsp:getProperty>

function and adds the

ability to introspect a

database bean that was

created using the IBM

extension <tsx:dbquery>

or <tsx:dbmodify>.

<tsx:getProperty name="bean_name"
 property="property_name" />

tsx:repeat Use the <tsx:repeat>

syntax to iterate over a

database query results

set or a repeating

property in a JavaBean.

<tsx:repeat index=name
start=starting_index
end=ending_index>

</tsx:repeat>

tsx:dbconnect Use the <tsx:dbconnect>

syntax to specify

information needed to

make a connection to a

JDBC or an ODBC

database. The

<tsx:dbconnect> syntax

does not establish the

connection. Instead, the

<tsx:dbquery> and

<tsx:dbmodify> syntax

are used to reference a

<tsx:dbconnect> in the

same JSP file and

establish the connection.

<tsx:dbconnect
id="connection_id"
userid="db_user"
passwd="user_password"
url="jdbc:protocol:database"
driver="database_driver_name"

</tsx:dbconnect>
404 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

WebSphere Application Server also extends three JSP 1.0 tags by adding the

"language" attribute as shown in Table 21. This enables you to use different

scripting syntax for different elements of your JSP.

Table 21. WebSphere scripting language extensions (XML format only)

tsx:userid and

tsx:passwd
Instead of hardcoding

the user ID and

password in the

<tsx:dbconnect>, you can

use <tsx:userid> and

<tsx:passwd> to accept
user input for the values

and then add that data

to the request object

where it can be accessed

by a JSP that requests

the database connection.

<tsx:dbconnect
id="connection_id"
<userid>

<%= request.
getParameter("userid") %>

</userid>
<passwd>

<%= request.
getParameter("passwd") %>

</passwd>
url="jdbc:protocol:database"
driver="database_driver_name"

</tsx:dbconnect>

tsx:dbquery Use the <tsx:dbquery>

syntax to establish a

connection to a database,
submit database queries,
and return the results

set.

<tsx:dbquery id="query_id"
connection="connection_id"
limit="value" >

</tsx:dbquery>

tsx:dbmodify Use the <tsx:dbmodify>

syntax to establish a

connection to a database

and then add records to a

database table.

<tsx:dbmodify
connection="connection_id" >

</tsx:dbmodify>

Syntax

<jsp:scriptlet language="language_name">

<jsp:expr language="language_name">

<jsp:declaration language="language_name">

Tag Description Syntax
Appendix A. JSP tag syntax 405

406 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

B Utility servlet and
utility JSP
In this appendix we list the source code and output of a utility servlet,
ServletEnvironmentSnoop, and of a utility JSP, WebPaths.jsp.

These utilities can be run in WebSphere to display useful information about

the current configuration, the request block, and the servlet environment.

The ServletEnvironmentSnoop can also run in the VisualAge for Java

WebSphere Test Environment.
© Copyright IBM Corp. 2000 407

Utility servlet
The ServletEnvironmentSnoop utility servlet lists information about the

current servlet environment and the current user request and session

information.

ServletEnvironmentSnoop servlet source
Class declaration

package itso.servjsp.servletapi;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletEnvironmentSnoop extends HttpServlet {

Initialization
public void init(ServletConfig srvCfg) throws ServletException {

super.init(srvCfg);
}

Service
public void service(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.println("<HTML><TITLE>ServletEnvironmentSnoop</TITLE><BODY>");
out.println("<H2>Servlet API Example -

ServletEnvironmentSnoop</H2><HR>");
getReqInfo(req, out);
getReqHeaderNames(req, out);
getReqParmValues(req, out);
getReqCookies(req, out);
getReqAttributeNames(req,out);
getInitParms(req, out);
getHttpSessionInfo(req, out);
getServletContextAttributes(req, out);
out.println("</BODY></HTML>");
out.close();

}
408 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Request information
public void getReqInfo(HttpServletRequest req, PrintWriter out)

throws ServletException, IOException {
out.println("<H4>Basic Request Information</H4>");
out.println("This is basic information retrieved from the request

object.<P>");
out.println("Request method: " + req.getMethod() + "
");
out.println("Request URI: " + req.getRequestURI() + "
");
out.println("Request protocol: " + req.getProtocol() + "
");
out.println("Request scheme: " + req.getScheme() + "
");
out.println("Servlet path: " + req.getServletPath() + "
");
out.println("Servlet name: " + req.getServerName() + "
");
out.println("Servlet port: " + req.getServerPort() + "
");
out.println("Path info: " + req.getPathInfo() + "
");
out.println("Path translated: "+req.getPathTranslated()+"
");
out.println("Character encoding:"

+ req.getCharacterEncoding()+"
");
out.println("Query string: " + req.getQueryString() + "
");
out.println("Content length: " + req.getContentLength() + "
");
out.println("Content type: " + req.getContentType() + "
");
out.println("Remote user: " + req.getRemoteUser() + "
");
out.println("Remote address: " + req.getRemoteAddr() + "
");
out.println("Remote host: " + req.getRemoteHost() + "
");
out.println("Authorization scheme: "+req.getAuthType()+"
");
out.println("<HR>");

}

Request header names
public void getReqHeaderNames(HttpServletRequest req, PrintWriter out) {

Enumeration e = req.getHeaderNames();
out.println("<H4>Request Header Information</H4>");
out.println("This is information passed in on the request header

(http)<P>");
if(e.hasMoreElements()) {

while(e.hasMoreElements()) {
String name = (String)e.nextElement();
out.println(""+name+": "+req.getHeader(name)+"
");

}
}
else out.println("There are no request headers.");
out.println("<HR>");

}

Appendix B. Utility servlet and utility JSP 409

Request parameters
public void getReqParmValues(HttpServletRequest req, PrintWriter out) {

out.println("<H4>Request Parameter Names/Values</H4>");
out.println("Contains the name/value pairs of the information sent in

on the request<P>");
Enumeration e = req.getParameterNames();
if (e.hasMoreElements()) {

out.println("<H4>Servlet parameters
(Single Value style):</H4>"); //ex, regular fields.

while (e.hasMoreElements()) {
String name = (String) e.nextElement();
out.println(""+name+": "+req.getParameter(name)+"
");

}
}
else out.println("
No request parameters");
e = req.getParameterNames();
if (e.hasMoreElements()) {

out.println("<H4>Servlet parameters
(Multiple Value style):</H1>"); //ex, checkbox's

while (e.hasMoreElements()) {
String name = (String) e.nextElement();
String vals[] = (String[]) req.getParameterValues(name);
if (vals != null) {

out.print("" + name + ": ");
out.println(vals[0]);
for (int i = 1; i < vals.length; i++)

out.println(" " + vals[i]);
}
out.println("
");

}
}
out.println("<HR>");

}

Request attributes
public void getReqAttributeNames(HttpServletRequest req, PrintWriter out) {

Enumeration e = req.getAttributeNames();
out.println("<H4>Request Attribute Information</H4>");
if(e.hasMoreElements()) {

while(e.hasMoreElements()) {
String name = (String)e.nextElement();
out.println(""+name+": "+req.getAttribute(name)+"
");

}
}
else out.println("There are no request attributes");
out.println("<HR>");

}

410 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Cookies
public void getReqCookies(HttpServletRequest req, PrintWriter out) {

out.println("<H4>Cookie Information</H4>");
out.println("These are the cookies passed in on the request.

Will be null if client cookies disabled<P>");
Cookie[] cookies = req.getCookies();

if(cookies != null && cookies.length > 0) {
out.println("<H4>Client cookies</H4>");
for(int i=0; i<cookies.length; i++) {

out.println("" + cookies[i].getName() + ": " +
cookies[i].getValue() + "
");

}
}

else out.println("Cookies are null");
out.println("<HR>");

}

Initialization parameters
public void getInitParms(HttpServletRequest req, PrintWriter out) {

Enumeration e = getServletConfig().getInitParameterNames();
out.println("<H4>ServletConfig Initialization Information</H4>");
out.println("This is basic information retrieved from the ServletConfig

file
");
out.println("(usually BigRequestHandler.servlet, if exists)<P>");
if (e != null) {

while (e.hasMoreElements()) {
String param = (String) e.nextElement();
out.println(""+param+": "+getInitParameter(param)+"
");

}
}
else out.println("ServletConfig is null");
out.println("<HR>");

}

Session information
public void getHttpSessionInfo(HttpServletRequest req, PrintWriter out) {

HttpSession session = req.getSession(false);
out.println("<H4>HttpSession information</H4>");
out.println("Will be null if session information is not utilized<P>");
if(session != null) {

out.println("Session ID: " + session.getId() + "
");
out.println("Requested Session ID: " +

req.getRequestedSessionId() + "
");
out.println("Last accessed time: " +

new Date(session.getLastAccessedTime()).toString() + "
");
out.println("Creation time: " +

new Date(session.getCreationTime()).toString() + "
");
Appendix B. Utility servlet and utility JSP 411

String mechanism = "unknown";
if(req.isRequestedSessionIdFromCookie()) {

mechanism = "cookie";
}
else if(req.isRequestedSessionIdFromURL()) {

mechanism = "url-encoding";
}
out.println("Session-tracking mechanism: " + mechanism +

"
");
String[] vals = session.getValueNames();
if(vals != null) {

out.println("Session values:
");
for(int i=0; i<vals.length; i++) {

String name = vals[i];
out.println("" + name + ": " + session.getValue(name) +

"
");
}

}
}
else out.println("Session object is null");
out.println("<HR>");

}

Context attributes
public void getServletContextAttributes(HttpServletRequest req,

PrintWriter out) {
Enumeration e = getServletContext().getAttributeNames();
out.println("<H4>ServletContext attributes</H4>");
out.println("Contains information about the environment the servlet is

running under<P>");
if(e.hasMoreElements()) {

while(e.hasMoreElements()) {
String name = (String)e.nextElement();
out.println("" + name + ": " +

getServletContext().getAttribute(name) + "
");
}

}
out.println("<HR>");

}

412 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

ServletEnvironmentSnoop servlet output
The output HTML page of the servlet is shown here without the browser

frame.

Servlet API example — ServletEnvironmentSnoop
Basic Request Information

This is basic information retrieved from the request object.
Request method: GET
Request URI:

/itsoservjsp/servlet/itso.servjsp.servletapi.ServletEnvironmentSnoop
Request protocol: HTTP/1.1
Request scheme: http
Servlet path: /servlet/itso.servjsp.servletapi.ServletEnvironmentSnoop
Servlet name: 127.0.0.1
Servlet port: 80
Path info: null
Path translated: null
Character encoding: iso-8859-1
Query string: null
Content length: 0
Content type: null
Remote user: null
Remote address: 127.0.0.1
Remote host: null
Authorization scheme: null

Request Header Information
This is information passed in on the request header (http)
accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
accept-encoding: gzip, deflate
accept-language: en-us
connection: Keep-Alive
cookie: calledCount=2; sesessionid=GOL4ZAQAAAAAACIJBEE2GNA
host: 127.0.0.1
referer: http://127.0.0.1/itsoservjsp/itsoservjsp.html
user-agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)

Request Parameter Names/Values
Contains the name/value pairs of the information sent in on the request
No request parameters

Cookie Information
These are the cookies passed in on the request.
Will be null if client cookies disabled
Client cookies
calledCount: 2
sesessionid: GOL4ZAQAAAAAACIJBEE2GNA
Appendix B. Utility servlet and utility JSP 413

Request Attribute Information
There are no request attributes

ServletConfig Initialization Information
This is basic information retrieved from the ServletConfig file
(usually BigRequestHandler.servlet, if exists)

HttpSession Information
Will be null if session information is not utilized
Session ID: GOL4ZAQAAAAAACIJBEE2GNA
Requested Session ID: GOL4ZAQAAAAAACIJBEE2GNALast accessed time:

Wed Mar 29 09:15:08 PST 2000
Creation time: Wed Mar 29 08:45:25 PST 2000
Session-tracking mechanism: cookie
Session values:
usersession: itso.servjsp.servletapi.SaveServletStats@22a0c0
vectorBean: itso.servjsp.jspsamples.VectorBean@3f7065
DateDisplayBean: itso.servjsp.jspsamples.DateDisplayBean@278631

ServletContext Attributes
Contains information about the environment the servlet is running under
javax.servlet.context.tempdir:

E:\WebSphere\AppServer\temp\default_host\itsoservjsp
calledCount: 2
com.ibm.servlet.engine.webapp.WebAppServletRegistry:

com.ibm.servlet.engine.webapp.WebAppServletRegistry@350247
com.ibm.websphere.servlet.event.ServletContextEventSource:

com.ibm.servlet.engine.webapp.WebAppEventSource@34f729

com.ibm.websphere.servlet.application.classpath:
E:/WebSphere/AppServer/lib/ibmwebas.jar;E:/WebSphere/AppServer/properties;E
:/WebSphere/AppServer/lib/servlet.jar;E:/WebSphere/AppServer/lib/webtlsrn.j
ar;E:/WebSphere/AppServer/lib/lotusxsl.jar;E:/WebSphere/AppServer/lib/ns.ja
r;E:/WebSphere/AppServer/lib/ejs.jar;E:/WebSphere/AppServer/lib/ujc.jar;D:/
SQLLIB/java/db2java.zip;E:/WebSphere/AppServer/lib/repository.jar;E:/WebSph
ere/AppServer/lib/admin.jar;E:/WebSphere/AppServer/lib/swingall.jar;E:/WebS
phere/AppServer/lib/console.jar;E:/WebSphere/AppServer/lib/tasks.jar;E:/Web
Sphere/AppServer/lib/xml4j.jar;E:/WebSphere/AppServer/lib/x509v1.jar;E:/Web
Sphere/AppServer/lib/vaprt.jar;E:/WebSphere/AppServer/lib/iioprt.jar;E:/Web
Sphere/AppServer/lib/iioptools.jar;E:/WebSphere/AppServer/lib/dertrjrt.jar;
E:/WebSphere/AppServer/lib/sslight.jar;E:/WebSphere/AppServer/lib/ibmjndi.j
ar;E:/WebSphere/AppServer/lib/deployTool.jar;E:/WebSphere/AppServer/lib/dat
abeans.jar;E:/WebSphere/AppServer/classes;E:/JDK11~1.7/lib/classes.zip;E:/W
ebSphere/AppServer/lib/jsp10.jar;E:\WebSphere\AppServer\hosts\default_host\
itsoservjsp\servlets

com.ibm.websphere.servlet.application.host: default_host
com.ibm.websphere.servlet.application.name: itsoservjsp
414 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Utility JSP
The WebPaths utility JSP only runs in the default application of WebSphere

Application Server. Be sure to place the file into the Web server directory, for

example:

d:\IBM HTTP Server\htdocs

WebPaths.jsp source
The source code of this JSP is very long and therefore not listed here. You can

find the code in sg245755\SampCode\itsoservjsp\web\WebPaths.jsp.

WebPaths.jsp output
The output HTML page consists of serveral parts. Some of the ouptut is

shown here.

Output if no optional test URL is entered:
Appendix B. Utility servlet and utility JSP 415

Output with an optional test URL:

Output with and without optional test URL:
416 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

C Using the additional
material
This redbook also contains additional material on the Internet. See the

appropriate section below for instructions on using or downloading each type

of material.

Locating the additional material on the Internet
The CD-ROM, diskette, or Web material associated with this redbook is also

available in softcopy on the Internet from the IBM Redbooks Web server.
Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG245755/

Alternatively, you can go to the IBM Redbooks Web site at:

http://www.redbooks.ibm.com/

Select the Additional materials and open the directory that corresponds with

the redbook form number.
© Copyright IBM Corp. 2000 417

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this redbook includes the

following:

File name Description
5755samp.zip Sample code used in Part 1
5755pdk.zip Pattern Development Kit of Part 2
readme.txt Description and updates

System requirements for downloading the Web material
The following system configuration is recommended for downloading the

additional Web material.

Hard disk space: 10 MB minimum
Operating System: Windows NT
Processor: 233 Mhz or better

366 MHz with WebSphere Application Server

Memory: 128 MB

256 MB with WebSphere Application Server

How to use the Web material
Create a subdirectory (folder) on your workstation and copy the contents of
the Web material into this folder.

Unzip the 5755samp.zip and 5755pdk.zip files onto a hard drive. This creates

the directory structure:

SG245755
sampcode

subdirectories for servlet and JSP samples (Part 1)
pdk

subdirectories for Pattern Development Kit (Part 2)

Pattern Development Kit
The usage of the PDK files is described in Part 2, “Pattern Development Kit:
a sample application.”

See Chapter 13, “Running the PDK in WebSphere” on page 363, Chapter 14,
“Running the PDK in VisualAge for Java” on page 375, and Chapter 15,
“Developing the PDK using WebSphere Studio” on page 383 for detailed

instructions.
418 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Servlet and JSP sample files
The rest of this chapter describes how to use the servlet and JSP sample files.

Directory structure
The sample files are provided in subdirectories of SG245755\sampcode as shown

in Table 22.

Table 22. Servlet and JSP sample file directory structure

If you want to use the copyVajava.cmd or copyWebSphere.cmd files provided

in the cmd subdirectory to set up the VisualAge for Java WebSphere Test

Environment or the WebSphere Application Server, you have to tailor the

itsoenv.cmd with the correct directory names.

Directory Description

cmd Command files that can be used to install the samples:
itsoenv.cmd <=== tailor first
copyVajava.cmd <=== copy files to VA Java
copyWebSphere.cmd <=== copy files to WebSphere

itsoservjsp
web
servlet

Source for servlet and JSP examples
- HTML and JSP

- Java and class files of the itso.servjsp.xxxxx packages

wte Configuration files for the servlet engine of the VisualAge for Java

WebSphere Test Environment:
default.servlet_engine

Configuration file for the itsoservjsp Web application:
itsoservjsp.webapp

project_
resources

Project resource files for VisualAge for Java WTE. A subdirectory

contains the .servlet files for the ITSO Servlet JSP Redbook

project.

repository VisualAge for Java repository files:
5755samp.dat <=== servlet and jsp samples
5755pdk.dat <=== PDK application

wasxml XML files to load definitions into WebSphere Application Server:
itsoservjsp.xml (and others)

studio

itso\....

Archive files for WebSphereStudio projects:
ITSO Servlet JSP Redbook, ITSO Servlet JSP Redbook Total

Java program to load photos into EMP_PHOTO table.
Appendix C. Using the additional material 419

Test preparation
This section provides the steps necessary to configure and run the servlet and

JSP examples, using either the WebSphere Application Server (as discussed

in Chapter 6, “WebSphere Application Server” on page 123) or the VisualAge

for Java WebSphere Test Environment (as discussed in Chapter 7,
“Development and testing with VisualAge for Java” on page 167).

The sample files that are distributed must be placed into the proper

directories for testing under WebSphere and VisualAge for Java.

Web application
You can either test the servlets in the default application, or you can set up a

separate Web application.

We suggest that you set up a Web application called itsoservjsp. Some of the

code assumes that such a Web application exists. Instructions for setting up

the Web application are in “Creating your own Web application” on page 135

(for WebSphere) and in “WebSphere Test Environment — multiple Web

applications” on page 215 (for VisualAge for Java).

WebSphere
Set up the directories manually or use the copyWebsphere.cmd file:

d:\WebSphere\AppServer\hosts\default_host\itsoservjsp\web
d:\WebSphere\AppServer\hosts\default_host\itsoservjsp\servlets

Copy HTML and JSP files from sg245755\sampcode\itsoservjsp\web\ to the web

subdirectory, and copy servlet class and configuration (.servlet) files from

sg245755\sampcode\itsoservjsp\servlets\ to the servlets subdirectory.

The XML files in the wasxml subdirectory can be used to load the itsoservjsp

Web application into WebSphere Application Server:

jdbcdriver.xml <== load JDBC driver
datasource.xml <== load data source
itsoservjsp.xml <== load Web application
start.xml, stop.xml <== start/stop App server
xmlImport.cmd <== cmd to load xml files

exportWebapp.xml <== xml to export Web application
xmlExportWebapp.cmd <== cmd to run the export

Refer to “XML configuration interface” on page 162 for instructions on how to

use XML files.
420 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

VisualAge for Java
Set up the directories manually or use the copyVajava.cmd file:

d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment\
\hosts\default_host\itsoservjsp\web
\hosts\default_host\itsoservjsp\servlets

Store HTML and JSP files in the web subdirectory, and store utility servlet

class files (SnoopServlet, ServletEngineConfigDumper) in the servlets

subdirectory. The itsoservjsp.webapp configuration file must be in the

servlets subdirectory as well.

Import the Java source code from sg245755\sampcode\itsoservjsp\servlets\ into

the ITSO Servlets JSP Redbook project. Alternatively, you can import the

information from the sg245755\sampcode\repository\5755samp.dat file into the

VisualAge for Java repository and load the project into the Workbench.

Before invoking the examples, configure the ServletEngine as described in

“Configuring the ServletEngine class” on page 217 and start the class to

bring up the WebSphere Test Envrionment.

WebSphere Studio project
You can set up a WebSphere Studio project from the archive file

ITSO Servlet JSP Redbook.war provided in the Studio folder. This project is

described in Chapter 8, “Development with WebSphere Studio” on page 227.

We also provide an archive file for a project that contains all the sample code

(ITSO Servlet JSP Redbook Total.war).

See instructions in “Opening an archive” on page 293 on how to create a new

project from an archive file and how to preserve the publishing target

locations.
Appendix C. Using the additional material 421

Servlet configuration files
Several servlets require servlet configuration files (.servlet). These files must

be found in the class path by WebSphere or the WebSphere Test

Environment.

WebSphere Application Server
Put the servlet configuration files into the directory

d:\WebSphere\AppServer\hosts\default_host\application\servlets\package

where application is either the default_app or the tailored application, such

as itsoservjsp. Build the package subdirectories according to the full class

name, for example, itso\servjsp\servletapi:

...\host\default_host\itsoservjsp\servlets\itso\servjsp\servletapi\

VisualAge for Java WebSphere Test Environment
The servlet configuration files (.servlet) must be in a directory that is part of
the class path of the SERunner or ServletEngine class.

You can copy the files into either of these directories

d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment\package\
d:\IBMVJava\ide\project_resources\yourproject\package\

where yourproject is ITSO Servlet JSP Redbook, and build the package

subdirectories according to the full class name (itso\servjsp\servletapi):

...\project_resources\ITSO Servlet JSP Redbook\itso\servjsp\servletapi\

You can also put the servlet configuration files under the servlets directory,
but then you have to add the servlets directory to the class path of SERunner

or ServletEngine:

d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment\
hosts\default_host\yourapplication\servlets\

Note: If a servlet is invoked from an HTML file by the short alias name, then

the .servlet file must be placed into a root directory of the class path and not

in the package subdirectory. For example:

HTML: <form method="post" action="/itsoservjsp/simple">

.servlet: d:\WebSphere\AppServer\hosts\default_host\itsoservjsp\servlets
422 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Testing the servlets and JSPs
We provide an HTML file named itsoserv.html that can be used to invoke the

sample servlets and JSPs:

http://hostname/itsoservjsp/itsoservjsp.html <=== WebSphere
http://hostname:8080/itsoservjsp/itsoservjsp.html <=== VisualAge Java

Figure 289 shows the HTML file as it appears in a browser.

Figure 289. HTML to invoke servlets and JSPs

You can also start individual examples by direct URL, such as

http://hostname:8080/itsoservjsp/servlet/itso.servjsp.servletapi.Xxxxxxx

Read the instructions on how to set up files required by individual examples.
Appendix C. Using the additional material 423

Basic servlet examples
The following servlets are part of the basic servlet examples (see “Basic

servlet examples” on page 47):

 ❑SimpleHttpServlet (Figure 34 on page 48): This servlet can be run with no

additional environmental setup.

 ❑HTMLFormGenerator (Figure 39 on page 51): This servlet can be run

with no additional setup.

 ❑HTMLFormHander (Figure 42 on page 54): Not called directly through

the Servlet Launcher, it is the target of HTML page generated in

HTMLFormGeneratingServlet above.

 ❑SimpleCounter (Figure 44 on page 57): This servlet can be run with no

additional setup. You can reload the page multiple times from the browser

to see the counter incremented.

 ❑SimpleInitServlet (Figure 45 on page 59): This servlet requires as input

the SimpleInitServlet.servlet configuration (Figure 46 on page 60). See

“WebSphere Studio project” on page 421 for the location of this file.

 ❑ServletEnvironmentSnoop (“Utility servlet” on page 408): This servlet can

be run with no additional setup.

Additional servlet examples
These servlets are part of the additional examples (see “Additional servlet

examples” on page 62):

 ❑CookieServlet (Figure 48 on page 63): This servlet requires no additional
setup, other than to be invoked from a cookie-enabled browser. It requires

multiple invocations to demonstrate the results. If you have two browsers

installed (for example, IE and Netscape), you can demonstrate that the

state is maintained by users. This is because each browser maintains its

own cookies, so it is treated as two different users.

 ❑URLServlet (Figure 49 on page 64): This servlet requires no additional
setup, but as in the cookie servlet above, requires multiple invocations to

demonstrate results.

 ❑PersistentCounter (Figure 51 on page 66): This servlet requires a

PersistenCounter.servlet file (Figure 50 on page 65). See “WebSphere

Studio project” on page 421 for the location of this file. To adequately test

this servlet, you have to start and stop the servlet runner. This servlet

stores the state in a file, called statsfile.ser, in:

d:\IBMVJava\ide\project_resources\IBM WebSphere Test Environment <== VA Java
c:\Winnt\system32 <== WebSphere
424 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 ❑UserSessionCounter (Figure 53 on page 69): This servlet requires no

additional setup, but requires multiple invocations to demonstrate

results.

 ❑JDBCInitServlet (Figure 54 on page 70): This servlet requires a

configuration file, but because it inherits from SimpleInitServlet, it will
use the file from the superclass, unless we explicitly create one for this

servlet. This servlet also assumes that DB2 has been installed, and the

SAMPLE database created. The user ID and password in the
SimpleInitServlet.servlet (or JDBCInitServlet.servlet) file may have to be

changed to match your specific installation.

 ❑SHTMLServlet (Figure 57 on page 73): The .shtml extension must be

associated with the JSP 0.91 compiler.

In WebSphere, if the jsp support servlet is specified as 0.91, you can add

the *.shtml extension to the Servlet Web Path List.

If the jsp support servlet is for 1.0, then you have to create an additional
servlet in the Web application. Name it jsp91, for example, with the class

name com.ibm.servlet.jsp.http.pagecompile.PageCompileServlet, and the

Web path list *.shtml (default_host/itsoservjsp/*.shtml).

You can define the target servlet of the <SERVLET> tag as well and call it

by NAME, or you can call the target servlet by CODE (class name).

For VisualAge for Java you have to define the JSP 0.91 support servlet

(com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet) in the

Web application (itsoservjsp.webapp file) and associate it with *.shtml.

<servlet>
<name>jsp91</name>
<description>JSP support servlet</description>
<code>com.ibm.ivj.jsp.debugger.pagecompile.IBMPageCompileServlet</code>
<init-parameter>

<name>workingDir</name>
<value>$server_root$/temp/default_app</value>

</init-parameter>
<init-parameter>

<name>jspemEnabled</name> <value>true</value>
</init-parameter>
<init-parameter>

<name>scratchdir</name>
<value>$server_root$/temp/JSP1_0/default_app</value>

</init-parameter>
<init-parameter>

<name>keepgenerated</name> <value>true</value>
</init-parameter>
<autostart>true</autostart>
<servlet-path>*.shtml</servlet-path>

</servlet>
Appendix C. Using the additional material 425

Servlet interaction techniques
These servlets are part of the servlet interaction techniques (see “Servlet

interaction techniques” on page 73). Many of these servlets require a calling

HTML page to properly invoke the results. These are included in the

instructions below:

 ❑Servlet filtering: The first servlet writes an output of mime-type text/Deb.
This output is routed to the second servlet.

We do not know how to tailor VisualAge for Java to make this work.

For WebSphere you have to define the two servlets with their Web paths,
for example, FilterFirst, default_host/itsoservjsp/filterFirst. Then you

define the filter for the Web application on the Advanced properties page:

Mime Type: text/Deb
Servlet Web Path: FilterSecond

Note that the servlet Web path is the name of the second servlet

(FilterSecond), not the Web path name (filterSecond). We could not make

it work with the Web path name.

Test the second servlet by itself (http://hostname/itoservjsp/filterSecond),
then run the first servlet to verify the filtering.

 ❑Servlet chaining: The two servlets, ChainerFirst and ChainerSecond,
have to run in sequence.

For VisualAge for Java you have to update to the default_app.webapp file

for the chainer servlet as described in “Servlet chaining” on page 212.

For WebSphere you have to define the two servlets with their Web paths,
for example, default_host/itsoservjsp/chainFirst. Then you define the

ChainerServlet (in com.ibm.websphere.servlet.filter) where you define an

init parameter in the Advanced properties page:

chainer.pathlist: /chainFirst /chainSecond

Invoke the ChainerServlet as http://host/itsoservjsp/chainer.

 ❑Response redirection: Requires the HTMLFormHandlerRedirect.html file to be in

the resource path and must be invoked from a cookie-enabled browser. It

requires multiple invocations to demonstrate the results. If you have two

browsers installed (for example, IE and Netscape), you can demonstrate

that the state is maintained by users. This is because each browser

maintains its own cookies, so it is treated as two different users.

 ❑Request dispatching - forward: The HTMLFormGeneratorDispatcher1

creates the HTML form that invokes the HTMLFormHandlerDispatcher1,
which calls the DispatcherForward servlet.
426 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

 ❑Request dispatching - include: The HTMLFormGeneratorDispatcher2

creates the HTML form that invokes the HTMLFormHandlerDispatcher2,
which calls the DispatcherInclude servlet.

 ❑ResourceHandler: This servlet requires the two HTML files

ResourceHandlerHTML.html and HTMLFormHandlerRedirect.html.

 ❑UserSessionCounterSetter and UserSessionCounterGetter: These two

servlets work together.

 ❑ContextSetAttribute and ContextGetAttribute: These two servlets work

together.

JSP testing
To test the JSPs in VisualAge for Java, you have to import the Java source

files of the servlets and beans that are used by the JSPs into the Workbench.
As a minimum you have to import:

itso.servjsp.jspsamples <== import this package
itso.servjsp.servletapi.SHTMLServlet <== import this class

Run individual JSPs from the HTML menu or invoke them through the

browser with:

http://hostname/itsoservjsp/filename.jsp <=== WebSphere
http://hostname:8080/itsoservjsp/filename.jsp <=== VisualAge Java

Note that the JSPs are compiled on first usage after you start the WebSphere

Test Environment, therefore the initial access is always slow.

Special instructions
The JspSqlTsx.jsp file must be updated with correct user ID and password to

access the DB2 sample database.
Appendix C. Using the additional material 427

428 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

D Special notices
This publication is intended to help WebSphere and VisualAge for Java

developers build Web server applications using servlets, JSPs, and HTML.
The information in this publication is not intended as the specification of any

programming interfaces that are provided by WebSphere Application Server,
WebSphere Studio, and VisualAge for Java Enterprise. See the

PUBLICATIONS section of the IBM Programming Announcement for

WebSphere Application Server, WebSphere Studio, and VisualAge for Java

Enterprise for more information about what publications are considered to be

product documentation.

References in this publication to IBM products, programs or services do not

imply that IBM intends to make these available in all countries in which

IBM operates. Any reference to an IBM product, program, or service is not

intended to state or imply that only IBM's product, program, or service may

be used. Any functionally equivalent program that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the

equipment specified, and is limited in application to those specific hardware

and software products and levels.
© Copyright IBM Corp. 2000 429

IBM may have patents or pending patent applications covering subject

matter in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to the

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk,
NY 10504-1785.

Licensees of this program who wish to have information about it for the

purpose of enabling: (i) the exchange of information between independently

created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM

Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and

conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any

formal IBM test and is distributed AS IS. The information about non-IBM

("vendor") products in this manual has been supplied by the vendor and IBM

assumes no responsibility for its accuracy or completeness. The use of this

information or the implementation of any of these techniques is a customer

responsibility and depends on the customer's ability to evaluate and

integrate them into the customer's operational environment. While each item

may have been reviewed by IBM for accuracy in a specific situation, there is

no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments

do so at their own risk.

Any pointers in this publication to external Web sites are provided for

convenience only and do not in any manner serve as an endorsement of these

Web sites.

Any performance data contained in this document was determined in a

controlled environment, and therefore, the results that may be obtained in

other operating environments may vary significantly. Users of this document

should verify the applicable data for their specific environment.

This document contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples

contain the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses

used by an actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific

information relative to the implementation of the PTF when it becomes
430 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

available to each customer according to the normal IBM PTF distribution

process.

The following terms are trademarks of the International Business Machines

Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet

Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of
Tivoli Systems Inc., an IBM company, in the United States, other countries,
or both. In Denmark, Tivoli is a trademark licensed from Kjøbenhavns

Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other

countries.

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and/or other

countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United

States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of
Intel Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries

licensed exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic

Transaction LLC.

IBM � AIX
AS/400 CICS
DB2 DB2 Universal Database
MQSeries OS/2
OS/390 S/390
SecureWay System/390
TXSeries VisualAge
WebSphere Wizard
Appendix D. Special notices 431

Other company, product, and service names may be trademarks or service

marks of others.
432 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

E Related publications
The publications listed in this section are considered particularly suitable for

a more detailed discussion of the topics covered in this redbook.
© Copyright IBM Corp. 2000 433

IBM Redbooks publications
For information on ordering these publications see “How to get IBM

Redbooks” on page 437.

 ❑Patterns for e-business: User to Business Patterns for Topology 1 and 2

using WebSphere Advanced Edition, SG24-5864

 ❑Servlet/JSP/EJB Design and Implementation Guide, SG24-5754

(to be published)
 ❑The XML Files: Using XML and XSL with IBM WebSphere 3.0, SG24-5479

 ❑VisualAge Generator WebSphere Transactions using Generated JSPs and

JavaBeans, SG24-5636.
 ❑WebSphere Version 3 Performance Tuning Guide, SG24-5657

 ❑WebSphere Application Servers: Standard and Advanced Editions,
SG24-5460

 ❑VisualAge for Java Version 3 Persistence Builder with GUIs, Servlets, and

Java Server Pages, SG24-5426

 ❑IBM WebSphere and VisualAge for Java Database Integration with DB2,
Oracle, and SQL Server, SG24-5471

 ❑Developing an e-business Application for the IBM WebSphere Application

Server, SG24-5423

 ❑The Front of IBM WebSphere, Building e-business User Interfaces,
SG24-5488

 ❑Enterprise JavaBeans Development Using VisualAge for Java, SG24-5429

 ❑VisualAge for Java Enterprise Version 2: Data Access Beans - Servlets -
CICS Connector, SG24-5265

 ❑Programming with VisualAge for Java Version 2, SG24-5264, published by

Prentice Hall, ISBN 0-13-021298-9, 1999 (IBM form number SR23-9016)

 ❑VisualAge for Java Enterprise Version 2 Team Support, SG24-5245
 ❑Java Thin Client Systems: With VisualAge Generator - In IBM WebSphere

Application Server, SG24-5468.

 ❑Using VisualAge for Java Enterprise Version 2 to Develop CORBA and

EJB Applications, SG24-5276
 ❑VisualAge Java-RMI-Smalltalk, The ATM Sample from A to Z, SG24-5418

 ❑Using VisualAge UML Designer, SG24-4997
 ❑Application Development with VisualAge for Java Enterprise, SG24-5081

 ❑Managing Your Java Software with IBM SecureWay On-Demand Server

Release 2, SG24-5846
 ❑Creating Java Applications with NetRexx, SG24-2216
434 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

IBM Redbooks collections
Redbooks are also available on the following CD-ROMs. Click the CD-ROMs

button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs

offered, updates and formats.

Other resources
These publications are also relevant as further information sources:

 ❑Java Servlet Programming, Jason Hunter with William Crawford,
published by O’Reilly, ISBN 1-56592-391-X.

 ❑Developing JavaBeans with VisualAge for Java Version 2, SC34-4735

 ❑Design Patterns: Elements of Reusable Object-Oriented Software, Erich

Gamma, Richard Helm, Ralph Johnson, and John Vlissides, published by

Addison-Wesley Professional Computing Series, ISBN 0-201-63361, 1995

(IBM form number SR28-5629)

 ❑Managing the Software Process, Watts S. Humphrey, published by

Addison-Wesley, ISBN 0-201-18095-2.

CD-ROM Title Collection Kit

Number
System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
Appendix E. Related publications 435

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Referenced Web sites
These Web sites are also relevant as further information sources:

 ❑http://www.ibm.com/software/webservers/httpservers

 ❑http://www.ibm.com/software/webservers/appserv

 ❑http://www.ibm.com/software/webservers/studio

 ❑http://www.ibm.com/software/ad/vajava

 ❑http://www.ibm.com/software/data/db2/udb

 ❑http://www.ibm.com/software/network/directory

 ❑http://www.ibm.com/software/developer/web/patterns

 ❑http://www.ibm.com/java/jdk/download

 ❑http://www.alphaWorks.ibm.com/tech/bsf

 ❑http://www.alphaworks.ibm.com/tech/DAV4J

 ❑http://java.sun.com/products/servlet

 ❑http://java.sun.com/products/jsp

 ❑http://www.webdav.org
436 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also

read redpieces and download additional materials (code samples or diskette/CD-ROM images) from

this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few

chapters will be published this way. The intent is to get the information out much quicker than the

formal publishing process allows.

 • E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this
site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing

the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed and

written by the ITSO technical professionals; click the Additional Materials button. Employees may

access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 437

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
438 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Glossary

API application programming interface

ASP Active Server Pages

CGI Common Gateway Interface

CICS Customer Information Control
System

DBMS database management system

DLL dynamic link library

E2E end-to-end

EJB Enterprise JavaBeans

GUI graphical user interface

HOD host-on-demand

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business Machines

Corporation

IDE integrated development

environment

IMS Information Management System

ITSO International Technical Support
Organization

JAR Java archive

JDBC Java Database Connectivity

JDK Java Developer’s Kit

JFC Java Foundation Classes

JSDK Java Servlet Development Kit

JSP JavaServer Pages

JVM Java Virtual Machine

LDAP Lightweight Directory Access

Protocol

MVC model-view-controller

PDK Pattern Development Kit

RAD rapid application development
© Copyright IBM Corp. 2000
RDBMS relational database management

system

RMI Remote Method Invocation

SCC software configuration control

SCM software configuration

management

SCMS source code management systems

SQL structured query language

SSL secure socket layer

TCP/IP Transmission Control
Protocol/Internet Protocol

UCM Unified Change Management

UDB Universal Database

UOW unit of work

USS UNIX System Services

URL uniform resource locator

VCE visual composition editor

VOB versioned object base

WAS WebSphere Application Server

WML Wireless Markup Language

WTE WebSphere Test Environment

WWW World Wide Web

XML eXtensible Markup Language
439

440 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

Index

A
additional material 417
Administrative Console 31, 126
administrative repository 126
AdminServer 30
alias

DB2 23
Apache 12
API

servlet 43, 92
application server 129
application topology 350
architectural patterns 298
archive 293
attribute 86
authentication mechanism 154

B
BLOB 284, 290
breakpoint 201
broken links 393
build management 297

C
change

management 297
request tracking 297

check-in 238
check-out 238
CICS connector 345
class path 137, 142
ClearCase 171, 296, 306
ClearQuest 306, 307
code assist 184
Command bean 333
Command Center 22
comments

JSP 102
configuration

WebSphere Test Environment 210
connection

manager 146
© Copyright IBM Corp. 2000
pools 145
Console 176, 194
cookie 62, 68

D
Database Wizard 229, 265, 283
DataSource 125, 146
datastore 314
DateDisplayBean 114
DB2

Command Center 22
installation 21
ITSOTOPO database 372
overview 16
SAMPLE database 22
SecureWay Directory database 37
WAS database 29

Debugger 177, 202
debugging 201
declaration 101
default method groups 156
Default Server 32, 129
default.servlet_engine 211, 215
default_app 131
default_app.webapp 211, 216
default_host 133
developer role 299
Distributed Debugger 16

installation 26
document root 137
driver

JDBC 117, 145

E
enterprise application 150

security 155
Enterprise JavaBean 96, 346
environment variable 143
expression

JSP 102, 402

F
features 181
form

action 52, 107
call servlet 241
441

method 52
forward

JSP 108
FTP site 417

G
GenericServlet 49

H
HTML form generator servlet 51
HTML form processing servlet 53
HTML source

Page Designer 242
HTTP request handling utility servlet 61
HTTP Server 4, 367

administration 20
installation 19
overview 12
PDK configuration 369

HTTPS 133
HttpServlet 46
HttpServletRequest 46, 93
HttpServletResponse 46
HttpSession 67, 74

I
impact analysis 298
IMS connector 345
include

JSP 101, 108
installation 17

ClearCase 309
DB2 21
Distributed Debugger 26
HTTP Server 19
JDK 18
SecureWay Directory 35
VisualAge for Java 24
WebSphere Application Server 26
WebSphere Studio 33

itsoservjsp.webapp 216

J
Java Development Kit

see JDK
Java virtual machine 129
java.net 79

JavaBean 96
in JSP 244
Wizard 229, 276

JavaScript 96
JavaServer Pages

see JSP
javax.servlet 43, 48
javax.servlet.http 43, 48
JDBC

driver 117, 125, 145
servlet 70

JDK 27
JNDI 117
JNI 142, 143
join 260, 282
JSP

.91 specification 122
1.0 specification 122
call JSP 111
call servlet 107
comment 102, 401
compile problem 287
DateDisplay 106
dbconnect 116
dbmodify 118
dbquery 117
declaration 101, 401, 405
directive 99
display GIF 285
Execution Monitor 25, 206
expr 405
expression 102, 402
flow 97
forward 108, 402
getProperty 113, 244, 402
include 72, 101, 108, 402, 403
insert JavaBean 244
interactions 107
iterate 121
JspSqlTsx 120, 427
keep Java source 148
life-cycle 98
overview 96
page 99, 402
plugin 403
repeat 119
sample files 419
scriptlet 102, 402, 405
setProperty 115, 403
442 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

setting the version in WebSphere Application

Server 147
setting version in VisualAge for Java 197
setting version in Web application 135
setting version in WebSphere Studio 232
source code in Page Designer 274
specification 97
tag syntax 401
taglib 101, 402
URL 107
useBean 111, 121, 244, 403
utility 122, 407
WebPaths 415
WebSphere extensions 103, 116
WebSphere Studio generated source code 274
WebSphere Test Environment 197

K
keep generated Java code for JSP 148
key management 367

L
LDAP 16, 344, 357, 370, 380
log files 165

M
method groups 156
methods

addDateHeader 93
addHeader 93
addIntHeader 93
callPage 110
destroy 45
doGet 45, 47
doPost 45, 47
forName 79
forward 81
getAttribute 90
getContextPath 93
getHeaders 93
getInitParameter 59
getLocale 93
getParameter 55
getParameterNames 55
getResource 84
getResourceAsStream 84
getServlet 79

getServletConfig 47, 79
getServletContext 79
getServletInfo 47
getServletName 93
getSession 68
getUserPrinciple 93
getValue 68
include 81
init 45, 46
isSecure 93
isUserInRole 93
newInstance 79
performTask 52
println 50
putValue 68
sendError 80
sendRedirect 79
service 45, 46
setAttribute 86, 90
setContentType 50
toString 113

MIME type 74, 213
Model-View-Controller 185, 353
MQSeries connector 345

N
NetObjects

BeanBuilder 14
ScriptBuilder 14

node 128

O
Object Level Trace 26
ObjectInputStream 65
ObjectOutputStream 65
outer join 282
ownership 224

P
page

JSP 99, 402
Page Designer 6, 229, 238, 273, 285
PageContext 104
PageListServlet 110, 270
Pattern Development Kit

see PDK
Patterns for e-business 338, 348
Index 443

PDK
design 347
overview 337
publishing 395
VisualAge for Java 375
walkthrough 338
WebSphere Application Server 363
WebSphere Studio 383

persistence 57
persistent servlet 65
picture

display in browser 285
POST request 52, 55
PrintWriter 50
process flow

servlet 42
production

publishing stage 250
project

ClearCase 313
integrity 254, 393
publishing 255
relationships 253
VisualAge for Java 171
WebSphere Studio 230

publishing 247
PDK 386
project 255
report 396
stage 248
target 250

PVCS 171

R
rapid application development 170
Rational Rose 328
Redbooks Web server 417
relations view 271
Remote Access to Tool API 291
repository 171, 223
Repository Explorer 178
request 104

attribute 86
dispatching 81, 426
properties 55
scope 86

RequestDispatcher 74, 81
resource

management 225
security 157
usage 84

Resource Analyzer 166
response 104

redirection 79, 426
runtime topology 350

S
sample database

DB2 22
SaveServletStats 65, 67
scope 86, 112
Scrapbook 176
scriptlet 102
SecureWay Directory 4

configuration 38
DB2 database 37
installation 35
LDAP configuration 370
PDK 357

security 149
SERunner 191, 210
server-side include 122
servlet

AllEmpByDept 270
API 43, 92
call JSP 109
ChainerFirst 78, 426
ChainerSecond 78, 426
ChainerServlet 77, 134, 213, 426
chaining 74, 77, 212, 426
configuration file 59, 65, 110, 422
ContextGetAttribute 92, 427
ContextSetAttribute 90, 427
CookieServlet 62, 424
DateDisplayServlet 109
debugging 203
DefaultErrorReporter 134
define in WAS 140
DispatcherForward 82, 426
DispatcherInclude 83, 427
engine 130
File Serving Enabler 158
FilterFirst 76
filtering 74, 75, 213, 426
FilterSecond 76
HTMLFormGenerator 51, 424
444 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

HTMLFormGeneratorDispatcher1 426
HTMLFormGeneratorRedirect 80
HTMLFormHander 424
HTMLFormHandler 53
HTMLFormHandlerDispatcher1 82, 426
HTMLFormHandlerDispatcher2 83
HTMLFormHandlerRedirect 80
IBMPageCompileServlet 197
initialization parameters 58
interaction techniques 73
Invoker 134
JDBCInitServlet 70
JspDebugServlet 198
JspServlet 134
launcher 193
life cycle 44
methods 45
multi-threaded 58
overview 42
PageCompileServlet 134
persistence 57
PersistentCounter 65, 424
process flow 42
ResourceHandler 84, 427
sample files 419
scope 86
ServletEngineConfigDumper 139, 220
ServletEnvironmentSnoop 61, 408, 424
SHTMLServlet 72, 425
SimpleCounter 56, 424
SimpleFileServlet 134
SimpleHttpServlet 47, 141, 190, 203, 424
SimpleInitServlet 58, 424
SnoopServlet 139
tag 72
URL 50
URLServlet 64
UserSessionCounter 68
UserSessionCounterGetter 89, 427
UserSessionCounterSetter 87, 427
utility 407

Servlet Builder 186
ServletConfig 58, 93
ServletContext 73, 84, 90
ServletEngine 191, 217, 377
ServletOutputStream 50
ServletRequest 46, 93
ServletResponse 46
session 67, 104

scope 87
session.xml 212
SHTML 72
simple counter servlet 56
simple HTTP servlet 47
SmartGuide 170
Software Configuration Management 295
SQL Wizard 229, 258, 281
SSL certificate 367

T
taglib directive 101
task wizard 135
TCP/IP 223
team development

VisualAge for Java 223
Test

publishing stage 248
threads 58, 205
tracing 165
tsx

dbconnect 116, 404
dbmodify 118, 405
dbquery 117, 405
getProperty 404
passwd 405
repeat 119, 404
userid 405

U
Unified Change Management 307
URL rewriting servlet 64
user

ID 18
profiles 164
registry 155
session counter servlet 68

UserProfileManager 164
user-to-business pattern 349
utility servlet and JSP 407

V
version management 297
versioning 302
virtual host 132
Visual SourceSafe 171
VisualAge for Java
Index 445

add features 25
development environment 5
installation 24
interface with WebSphere Studio 7, 291, 389
JSP version 197
overview 15, 168
PDK 375
team development 222

W
WAS database 29
Web application 125, 131

create 135
design 331
directories 139
publishing 251
sample 420
WebSphere Test Environment 215

Web path 138
WebSphere Application Server

administration 126
Administrative Console 31, 126
AdminServer 30
Advanced Edition 13
connection pools 145
Default Server 32
Enterprise Edition 14
execution environment 4
installation 26
internal servlets 134
JSP extensions 103, 116
JSP version 134, 135
overview 123
PDK 363
security 149
Standard Edition 13
topology 128
XML configuration 162

WebSphere Studio
archive 293
broken links 393
development environment 6
editing 237
enable ClearCase 322
installation 33
interface with VisualAge for Java 7, 291, 389
JSP version 232
overview 14, 228

PDK 383
project 230
publishing 247
sample application 281
sample project 421
Software Configuration Management 302
Workbench 231

WebSphere Test Environment 25, 169, 191, 208
configuration 210
Web application 215

Workbench
VisualAge for Java 169
WebSphere Studio 231

workspace 172, 223

X
XML

configuration interface 162, 373
servlet configuration file 58
WebSphere Application Server 365

XML-enabled browser 342
446 Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for Java

© Copyright IBM Corp. 2000 447

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5755-00
Servlet and JSP Programming with IBM WebSphere Studio and
VisualAge for Java

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

7/8”- (1.0” spine) -1.5”
460 <-> 788 pages

Servlet and JSP Program
m

ing w
ith IBM

W

ebSphere Studio and VisualAge for Java

®

SG24-5755-00

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
IBM's International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Servlet and JSP
Programming
with IBM WebSphere Studio and VisualAge for Java

Teach yourself
servlet and JSP
programming
techniques

Develop and test
with WebSphere
Studio and VisualAge
for Java

Deploy to WebSphere
Application Server

This IBM Redbook provides you with sufficient information to effectively use
the WebSphere and VisualAge for Java environments to create, manage and
deploy Web-based applications using methodologies centered around
servlet, JavaServer Pages, and JavaBean architectures.

In Part 1 we describe the products used in our environment and provide
instruction on product installation and configuration. Following this, we cover
servlet and JSP programming, which provide you with both a theoretical and
practical understanding of these components, together with working
examples of the concepts described. For execution of the sample code, we
provide information on configuring the WebSphere Application Server and
deploying and running the sample Web applications in WebSphere. Using the
knowledge developed in these chapters, we then provide detailed
information on the development environments offered by VisualAge for Java
and WebSphere Studio. These chapters assist you in using the features
offered by these tools, such as integrated debugging, the WebSphere Test
Environment, Studio Wizards, and publishing of Web site resources. We also
describe how Rational's ClearCase product can be integrated with our
environment for Software Configuration Management.

In Part 2 we describe the Pattern Development Kit sample application,
including installation, configuration, and operation. We also discuss the
application’s use of Patterns for e-business, which presents information on
some of the design decisions employed when creating the application.

This IBM Redbook is intended to be read by anyone who requires both
introductory and detailed information on software development in the
WebSphere environment using servlets and JavaServer Pages. We assume
that you have a good understanding of Java and some knowledge of HTML.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	Sample code on the Internet
	The team that wrote this redbook
	Comments welcome

	Part 1 Web application development
	1 Environment overview
	WebSphere execution environment
	VisualAge for Java development environment
	WebSphere Studio development environment
	VisualAge for Java and WebSphere Studio interactions
	Complete product environment

	2 Product overview
	How the products work together
	IBM HTTP Server
	WebSphere Application Server
	WebSphere Studio
	VisualAge for Java
	Distributed Debugger
	DB2 Universal Database (UDB)
	SecureWay Directory

	3 Product installation
	Starting environment
	Creating a dedicated user ID
	Java Development Kit
	IBM HTTP Server
	Installing the product
	Testing the install

	DB2 Universal Database
	Installing the product
	Testing the installation

	VisualAge for Java
	Installing the product
	Testing the installation
	Existing errors

	Distributed Debugger
	WebSphere Application Server
	Installing the product
	Testing the installation

	WebSphere Studio
	Installing the product
	Testing the installation

	SecureWay Directory
	Incompatibilities with DB2 UDB
	Installing the product
	Configuring SecureWay Directory
	Testing the installation

	What we have achieved

	4 Servlets
	Overview of Java servlets
	Servlet process flow
	The Java Servlet API
	The servlet life cycle

	Basic servlet examples
	Simple HTTP servlet
	HTML form generator servlet
	HTML form processing servlet
	Simple counter servlet
	Servlet initialization parameters
	HTTP request handling utility servlet

	Additional servlet examples
	Cookie servlet
	URL rewriting servlet
	A real persistent servlet — between servlet life-cycle
	User sessions
	User session counter servlet
	JDBC servlet
	Servlet tag with SHTML

	Servlet interaction techniques
	Servlet collaboration: filtering and chaining
	Calling servlets from servlets
	Response redirection
	Request dispatching
	Resource usage
	Sharing of objects in scope

	New features of Java Servlet API 2.2
	Summary

	5 JavaServer Pages
	Overview
	How JavaServer Pages work
	Components of JavaServer Pages
	HTML tags
	JSP directives
	Declarations
	Scriptlets
	Comments
	Expressions
	WebSphere extensions to JSP scripting
	Accessing implicit objects
	Putting it all together

	JSP interactions
	Invoking a JSP by URL
	Calling a servlet from a JSP
	Calling a JSP from a servlet
	Invoking a JSP from a JSP

	Creating dynamic content in JSPs
	Standard JSP tags
	WebSphere-specific tags

	JSP utility example
	Differences between JavaServer Page specification .91�and�1.0

	6 WebSphere Application Server
	WAS overview
	WAS administration
	The administrative repository
	The WebSphere Administrative Console

	WAS Topology
	Node
	Application server
	Servlet engine
	Web application
	Virtual host

	Internal servlets
	Creating your own Web application
	Using the Task Wizard
	Setting up your default error page
	Creating the required Web application directories
	Deploying files to WAS
	Defining servlets
	Start the Web application

	Class loading and reloading
	Changing the application server class path

	Using JNI in WAS
	Creating an application server environment variable

	Setting up connection pools
	Creating a JDBC driver
	Creating a DataSource
	Migrating from the connection manager

	Using JavaServer Pages in WAS
	Adding JSP support to a Web application
	Keeping Java source files from JSP 1.0 compilation

	Security
	How security works in WAS
	Configuring an enterprise application
	Setting up security in WAS

	XML configuration interface
	Exporting configuration data
	Importing configuration data
	Examples

	User profiling
	Troubleshooting
	Tracing within WAS
	Monitoring resources
	Reference information

	7 Development and testing with VisualAge for Java
	VisualAge for Java overview
	Application development with VisualAge for Java
	Rapid application development (RAD)
	Create industrial-strength Java applications
	Maintain multiple editions of programs
	VisualAge for Java components
	Navigating in VisualAge for Java
	Additional VisualAge for Java concepts

	Servlet development
	Rapid servlet development
	The development process
	Developing our first servlet

	WebSphere Test Environment
	VisualAge for Java configuration for WebSphere
	WebSphere Test Environment setup
	Start the WebSphere Test Environment
	What have we accomplished?

	Testing JSPs under WebSphere Test Environment
	VisualAge for Java configuration for JSPs
	Configuring the JSP version used by VisualAge for Java
	Running our first JSP
	Creating and running a JSP

	Debugging servlets and JSPs
	Debugger basics
	Debugging a servlet
	JSP Execution Monitor
	Debugging JSP generated source code

	WebSphere Test Environment — advanced configuration
	Types of resources
	Additional servlet examples
	Resource locations
	The four key configuration files
	Configuration for servlet chaining, filtering, and SHTML

	Developing and testing additional servlet and JSP configurations
	Creating additional servlet examples

	WebSphere Test Environment — multiple Web applications
	Configuring multiple Web applications
	Configuring the ServletEngine class
	Launching ServletEngine
	Using the ServletEngineConfigDumper servlet
	Restoring SERunner

	Configuring and testing servlet and JSP interactions
	Support for JavaBeans
	Team development
	Overview

	Resource management

	8 Development with WebSphere Studio
	WebSphere Studio overview
	The WebSphere Studio IDE
	Creating a project
	Setting the JSP version
	Setting up folders
	Adding files to the project
	Setting the file status

	Editing project resources
	Checking-out and checking-in files
	Invoking Page Designer
	Using forms and input fields
	Calling a servlet
	Preview the form and view HTML source
	Inserting a JavaBean into a JSP
	Modifying JavaBeans and servlets
	Compiling source files

	Publishing stages and publishing targets
	Setting up the Test stage
	Setting up the Production stage
	Publishing to a Web application

	Project relationships and integrity
	Publishing a project
	Testing published files
	WebSphere Studio wizards
	Code produced by the wizards

	SQL Wizard
	Run the SQL Wizard
	Changing the SQL statement

	Database Wizard
	Run the Database Wizard
	Database Wizard generated code
	Run the generated application
	Enhance the application

	JavaBean Wizard
	Run the JavaBean Wizard
	Test the JavaBean Wizard code
	JavaBean Wizard — what for?

	Developing an application in WebSphere Studio
	Create the SQL statement for the employees of a department
	Create the SQL statement for the employee photo
	Generate the code for the employees in a department
	Generate the code for the employee photo
	Change the generated DataSource
	Fixing the problems
	Testing in VisualAge for Java
	Displaying a picture
	Linking the servlets
	Run the application

	Problems
	Resolving parsing problems
	Folders in publishing stages for a Web application
	SQL Wizard generates wrong data type for a BLOB column
	Database Wizard JSP code is compiled within METADATA tag
	JavaBean Wizard generates bad code

	Interfacing to VisualAge for Java
	Setting up the environment
	WebSphere Studio
	Receiving updates from Visual Age for Java
	Sending updates to Visual Age for Java
	Using VisualAge for Java as an editor

	Archiving
	Opening an archive

	Working in a team
	More information and examples

	9 Software Configuration Management
	Introduction
	What is Software Configuration Management?

	SCM for architectural pattern based development
	Developer roles

	Implementing SCM aspects in a WebSphere Studio environment
	SCM aspects
	Choice for Clearcase as physical single point of control

	Rational SCM toolset
	ClearCase
	ClearQuest
	Unified Change Management
	Our approach

	ClearCase in the WebSphere Studio environment
	Installation
	WebSphere Studio and ClearCase considerations
	Setting up a ClearCase project
	Create the project
	Create a view
	Enable ClearCase to the WebSphere Studio environment
	Bring the projects artifacts under ClearCase control
	Working from WebSphere Studio
	Reflections on SCM procedures
	WebSphere Studio and ClearCase in the broader SCM context

	Rational Rose
	Epilog

	10 Web application design with servlets and JSPs
	Application structure
	HTML page
	Servlet
	Command beans
	Data beans
	View beans
	JSPs

	Model-View-Controller
	Detailed information

	Part 2 Pattern Development Kit: a sample application
	11 Pattern Development Kit overview
	Background
	Application description
	Application walkthrough
	Welcome page
	Home page
	Topology 1 — historical data
	Topology 2 -— visit planets

	12 Using Patterns for e-business to build the PDK
	Benefits of Patterns for e-business
	Applying Patterns for e-business
	Choose a business pattern
	Choose a related logical pattern
	Choose a related physical pattern
	The next steps

	Design techniques used
	The Model-View-Controller framework
	The Command bean design pattern

	The design for the PDK
	Topology 1
	Topology 2
	In Summary

	13 Running the PDK in WebSphere
	Extracting the resources
	Tailoring the installation system
	User ID
	Set up environment parameters
	Tailor the XML files

	Installing and running the Pattern Development Kit
	Restart the HTTP Server
	Create a self-signed SSL certificate
	Create the Web site
	Configure IBM HTTP Server
	Restart the IBM Http Server
	Quick test of HTTP Server configuration
	LDAP configuration
	Create the ITSOTOPO database
	Copy application-specific files
	Import the XML configurations into WebSphere
	Run the application

	Resetting changes

	14 Running the PDK in VisualAge for Java
	Automatic configuration
	Running the configuration script
	Prepare a project and import the Java code

	Servlet engine configuration
	Manual configuration
	Running the application
	Resetting changes

	15 Developing the PDK using WebSphere Studio
	Overview
	Building the WebSphere Studio project
	Creating the WebSphere Studio project
	Define the publishing stages

	Interfacing with VisualAge for Java
	VisualAge for Java setup
	Initial loading of files from VisualAge for Java
	Updating from VisualAge for Java
	Editing Studio files with VisualAge for Java

	Managing the Studio project
	Integrity checking for broken links

	Publishing files
	Publishing to WebSphere Application Server
	Publishing report
	Publishing to VisualAge for Java

	Editing files

	Appendixes
	A JSP tag syntax
	JSP tag syntax summary
	WebSphere specific tags

	B Utility servlet and utility JSP
	Utility servlet
	ServletEnvironmentSnoop servlet source
	ServletEnvironmentSnoop servlet output

	Utility JSP
	WebPaths.jsp source
	WebPaths.jsp output

	C Using the additional material
	Locating the additional material on the Internet
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Servlet and JSP sample files
	Directory structure
	Test preparation
	Web application
	WebSphere Studio project
	Servlet configuration files

	Testing the servlets and JSPs
	Basic servlet examples
	Additional servlet examples
	Servlet interaction techniques
	JSP testing

	D Special notices
	E Related publications
	IBM Redbooks publications
	IBM Redbooks collections
	Other resources
	Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks review

