
ibm.com/redbooks

Hierarchical File 
System Usage Guide

Nigel Morton
Toru Yamazaki

Rama Ayyar
Dirk Gutschke
Barry Kadleck

Masato Miyamoto

Learn how to manage HFS data

Optimize HFS performance

Set up sysplex sharing

http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/




International Technical Support Organization SG24-5482-01

Hierarchical File System Usage Guide

September 2000



© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

Second Edition (September 2000)

This edition applies to Version 1, Release 5 of DFSMS/MVS, Program Number 5695-DF1 for use with Version 2
Release 7 of OS/390 or higher.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix C,
“Special notices” on page 307.

Take Note!



Contents

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
The team that wrote this redbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Comments welcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii

Chapter 1. Introduction to the Hierarchical File System . . . . . . . . . . . . . . . .1
1.1 HFS overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Structure of an HFS data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

1.2.1 HFS track capacities on a 3380 and 3390 volume . . . . . . . . . . . . . . . .2
1.2.2 Index structure of an HFS data set . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.2.3 Index updates through shadow writes . . . . . . . . . . . . . . . . . . . . . . . .10
1.2.4 Sync process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

1.3 New enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.3.1 DFSMS/MVS 1.5 enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.3.2 OS/390 2.9 enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.3.3 Non-SMS HFS data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
1.3.4 DFSORT support of HFS data sets . . . . . . . . . . . . . . . . . . . . . . . . . .15

Chapter 2. Introduction to OS/390 UNIX System Services . . . . . . . . . . . . .17
2.1 Required USS operation level to use HFS. . . . . . . . . . . . . . . . . . . . . . . . .17

2.1.1 Minimum mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.1.2 Sockets-only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.1.3 Full-function mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

2.2 UNIX System Services and related address spaces . . . . . . . . . . . . . . . . .19
2.3 UNIX file system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

2.3.1 UNIX file system structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.3.2 Recommended file system structure . . . . . . . . . . . . . . . . . . . . . . . . .22

2.4 HFS and UNIX System Services security . . . . . . . . . . . . . . . . . . . . . . . . .24
2.4.1 UNIX file security overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2.4.2 UNIX users and superuser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2.4.3 UNIX groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.4.4 UNIX file security with the OS/390 Security Server (RACF) . . . . . . . .29

Chapter 3. HFS externals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.1 SMS considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3.1.1 Basic SMS terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.1.2 Defining SMS constructs for HFS data sets . . . . . . . . . . . . . . . . . . . .35
3.1.3 Data class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.1.4 Storage class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
3.1.5 Management class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
3.1.6 Storage group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
3.1.7 ACS routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

3.2 Non-SMS considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
3.2.1 Non-SMS availability management . . . . . . . . . . . . . . . . . . . . . . . . . .52
3.2.2 Non-SMS space management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

3.3 HFS PARMLIB and command enhancements . . . . . . . . . . . . . . . . . . . . . .56
3.3.1 BPXPRMxx options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
3.3.2 TSO MOUNT command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
© Copyright IBM Corp. 1999, 2000 iii



3.3.3 TSO UNMOUNT command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.4 SETOMVS system command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.5 confighfs shell command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.6 Displaying the SYNC interval settings . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Requirements and restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.4.1 Restrictions for executable files (object modules) . . . . . . . . . . . . . . 74
3.4.2 Additional dependencies, issues, restrictions, and requirements . . . 74

Chapter 4. Allocating and mounting HFS data sets. . . . . . . . . . . . . . . . . . 77
4.1 Allocating an HFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Multi-volume allocation considerations. . . . . . . . . . . . . . . . . . . . . . . 78
4.1.2 Guaranteed space considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.1.3 SMS definition examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.1.4 Using ISPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.1.5 Using DD statement in a batch job . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.6 Miscellaneous allocation methods . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.7 Using ISHELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.1.8 Summary of HFS data set allocations . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Mounting an HFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.1 Before mounting HFS data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2.2 TSO MOUNT and UNMOUNT commands . . . . . . . . . . . . . . . . . . . . 93
4.2.3 ISPF ISHELL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.4 OMVS mountx and unmountx shell commands . . . . . . . . . . . . . . . . 98
4.2.5 After mounting HFS data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2.6 Adding MOUNT Statements to BPXPRMxx . . . . . . . . . . . . . . . . . . . 99
4.2.7 Status of mounted HFS data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 5. Managing HFS data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1 DFSMSdss dump and restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Dump processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.2 Restore processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 DFSMShsm backup and migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.1 Common DFSMShsm functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2.2 Backup processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.3 Recovery and restore of HFS data sets . . . . . . . . . . . . . . . . . . . . . 123
5.2.4 Migrating and recalling an HFS data set . . . . . . . . . . . . . . . . . . . . 125

5.3 Recovering files and directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.3.1 Copytree utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.2 Consistency checking of a file system . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Additional space management topics. . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4.1 Releasing unused space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4.2 Deleting or removing an HFS data set . . . . . . . . . . . . . . . . . . . . . . 131
5.4.3 Transporting an HFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 Increasing the size of an HFS data set . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.5.1 Increasing the file system size using DFSMSdss . . . . . . . . . . . . . . 133
5.5.2 IDCAMS ALTER to add candidate volumes . . . . . . . . . . . . . . . . . . 137
5.5.3 USS confighfs command to change file system size . . . . . . . . . . . 139

5.6 Displaying the file system size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.6.1 Using the df UNIX command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.6.2 Using the UNIX confighfs command. . . . . . . . . . . . . . . . . . . . . . . . 145
5.6.3 ISPF data set information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.6.4 TSO ISHELL — file system attributes . . . . . . . . . . . . . . . . . . . . . . 147
5.6.5 ISMF data set information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
iv Hierarchical File System Usage Guide



5.7 Moving and displaying the ownership for a shared HFS . . . . . . . . . . . . .148
5.8 Installing service to products in the HFS . . . . . . . . . . . . . . . . . . . . . . . . .150
5.9 Snapshot and DFSMSdss COPY considerations . . . . . . . . . . . . . . . . . . .150

Chapter 6. Tivoli Storage Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
6.1 Introduction to Tivoli Storage Manager . . . . . . . . . . . . . . . . . . . . . . . . . .153

6.1.1 Why use Tivoli Storage Manager?. . . . . . . . . . . . . . . . . . . . . . . . . .153
6.1.2 Tivoli Storage Manager components . . . . . . . . . . . . . . . . . . . . . . . .154

6.2 Installing the Tivoli Storage Manager USS client . . . . . . . . . . . . . . . . . . .155
6.2.1 Ordering the client software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
6.2.2 Initial installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
6.2.3 Customizing the client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
6.2.4 Using the Tivoli Storage Manager client . . . . . . . . . . . . . . . . . . . . .158
6.2.5 TSM server considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
6.2.6 HFS file sharing considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

6.3 Data management strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
6.3.1 DFSMSdss and Tivoli Storage Manager . . . . . . . . . . . . . . . . . . . . .163
6.3.2 Disaster recovery considerations. . . . . . . . . . . . . . . . . . . . . . . . . . .164

6.4 Performance considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
6.4.1 Tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
6.4.2 Reorganizing HFS for performance . . . . . . . . . . . . . . . . . . . . . . . . .165

Chapter 7. Sharing and serialization for HFS data sets . . . . . . . . . . . . . .167
7.1 Serialization considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

7.1.1 ENQ usage for shared HFS (OS/390 2.9 and higher) . . . . . . . . . . .171
7.1.2 Serialization by DFSMSdss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

7.2 Sharing considerations (OS/390 2.8 and below) . . . . . . . . . . . . . . . . . . .174
7.2.1 Mount integrity (write protection) enhancements . . . . . . . . . . . . . . .175

7.3 HFS sysplex sharing (OS/390 2.9 and above) . . . . . . . . . . . . . . . . . . . . .179
7.3.1 Function shipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
7.3.2 Sysplex sharing considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

Chapter 8. Optimizing HFS performance . . . . . . . . . . . . . . . . . . . . . . . . . .185
8.1 HFS performance restructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

8.1.1 HFS deferred writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
8.1.2 HFS caching and buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
8.1.3 Performance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

8.2 RMF reporting enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
8.2.1 New RMF reports for HFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
8.2.2 Setting up RMF Monitor III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
8.2.3 HFS Postprocessor report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
8.2.4 Setting up RMF Monitor II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197

8.3 Optimizing HFS performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
8.3.1 SYNCDEFAULT and SYNC setting . . . . . . . . . . . . . . . . . . . . . . . . .199
8.3.2 VIRTUAL and FIXED setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
8.3.3 fsync call considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204

8.4 Sysplex and HFS sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
8.4.1 XCF overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
8.4.2 Locally mounted versus remotely mounted HFS . . . . . . . . . . . . . . .205
8.4.3 How shared HFS affects mount times . . . . . . . . . . . . . . . . . . . . . . .205

8.5 Distributed File System considerations . . . . . . . . . . . . . . . . . . . . . . . . . .206
8.6 Using the copytree utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
v



Chapter 9. Implementing HFS for selected applications . . . . . . . . . . . . . 209
9.1 Understanding your backup needs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
9.2 UNIX System Services (OS/390 2.8 and before) . . . . . . . . . . . . . . . . . . 210

9.2.1 Recommended HFS structure and management (UNIX) . . . . . . . . 210
9.2.2 Recommended HFS allocations (UNIX) . . . . . . . . . . . . . . . . . . . . . 212

9.3 UNIX System Services (OS/390 2.9 and later) . . . . . . . . . . . . . . . . . . . . 212
9.4 Domino for S/390. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

9.4.1 Recommended HFS structure and management (Domino). . . . . . . 214
9.4.2 Recommended HFS allocations (Domino) . . . . . . . . . . . . . . . . . . . 217

9.5 WebSphere for OS/390 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.5.1 Recommended HFS structure and management (WebSphere) . . . 218

9.6 OS/390 Network File System Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.7 Other applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Chapter 10. HFS sysplex sharing implementation . . . . . . . . . . . . . . . . . . 221
10.1 How HFS sysplex sharing works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

10.1.1 Sysplex root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
10.1.2 Version HFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
10.1.3 System specific HFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
10.1.4 OS/390 2.9 system without HFS sysplex sharing . . . . . . . . . . . . . 226
10.1.5 Single system image with read-only root . . . . . . . . . . . . . . . . . . . 227
10.1.6 Multiple systems on different releases . . . . . . . . . . . . . . . . . . . . . 228
10.1.7 System joins sysplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.1.8 System leaves sysplex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10.2 Implementation of HFS sysplex sharing . . . . . . . . . . . . . . . . . . . . . . . . 232
10.2.1 Step 1 - Create OMVS couple data set . . . . . . . . . . . . . . . . . . . . 232
10.2.2 Step 2 - Define the OMVS couple data sets to XCF . . . . . . . . . . . 234
10.2.3 Step 3 - Create sysplex root HFS. . . . . . . . . . . . . . . . . . . . . . . . . 235
10.2.4 Step 4 - Create system specific HFS . . . . . . . . . . . . . . . . . . . . . . 236
10.2.5 Step 5 - Update BPXPRMxx parmlib member . . . . . . . . . . . . . . . 238
10.2.6 Step 6 - Dynamically add the OMVS couple data sets to XCF . . . 240
10.2.7 IPL the systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
10.2.8 Implementation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

10.3 How to add another system to the sysplex for HFS sharing . . . . . . . . . 243
10.3.1 Change in ls command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
10.3.2 Automount facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
10.3.3 Special files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
10.3.4 Cloning systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Appendix A. Miscellaneous implementation topics . . . . . . . . . . . . . . . . . .245
A.1 The pax, tar and cpio commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245

A.1.1 Using pax to back up and restore files. . . . . . . . . . . . . . . . . . . . . . . . . .245
A.1.2 Using tar to back up and restore files . . . . . . . . . . . . . . . . . . . . . . . . . .246
A.1.3 Using cpio to back up and restore files . . . . . . . . . . . . . . . . . . . . . . . . .247

A.2 Automount facility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
A.2.1 Customizing the automount facility . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
A.2.2 Changing which data sets get automounted . . . . . . . . . . . . . . . . . . . . .254
A.2.3 Stopping the automount facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255

Appendix B. Sample JCL and output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257
B.1 HFS data set related information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257

B.1.1 D OMVS,F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257
B.1.2 df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257
B.1.3 df -P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258
vi Hierarchical File System Usage Guide



B.1.4 ISPF information for root HFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
B.1.5 ISPF information for HFS OMVS.SC63.USERS. . . . . . . . . . . . . . . . . . 259
B.1.6 ISPF information for HFS OMVS.STYRES1.HFS3. . . . . . . . . . . . . . . . 259
B.1.7 confighfs / . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
B.1.8 confighfs /u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
B.1.9 confighfs /u/guts output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

B.2 Sample DFSMSdss jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
B.2.1 Logical DUMP without ALLDATA(*) . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
B.2.2 RESTORE with RENAMEU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
B.2.3 Logical DUMP with ALLDATA(*) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
B.2.4 RESTORE to a preallocated HFS with REPLACE . . . . . . . . . . . . . . . . 264
B.2.5 Physical DUMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
B.2.6 RESTORE (physical) with RENAMEU . . . . . . . . . . . . . . . . . . . . . . . . . 268

B.3 DFSMSdss multi-volume processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
B.3.1 DUMP of root HFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
B.3.2 RESTORE to multi-volume HFS data set using MAKEMULTI . . . . . . . 270
B.3.3 RESTORE to multi-volume HFS data set using VOLCOUNT(N((02)) . 271
B.3.4 RESTORE to multi-volume HFS data set using VOLCOUNT(ANY) . . . 272
B.3.5 RESTORE to preallocated multi-volume HFS. . . . . . . . . . . . . . . . . . . . 273

B.4 Increasing the size of an HFS data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
B.4.1 Using confighfs -x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
B.4.2 Using confighfs -xn and IDCAMS ALTER ADDVOLUMES. . . . . . . . . . 277

B.5 Shared HFS - DFSMSdss dump from client . . . . . . . . . . . . . . . . . . . . . . . . . 281
B.5.1 Mounting the HFS on system SC65 . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
B.5.2 Displaying the ownership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
B.5.3 Displaying the ENQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
B.5.4 Performing the DFSMSdss logical dump . . . . . . . . . . . . . . . . . . . . . . . 282

B.6 Recovery samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
B.6.1 Corrupt metadata recovery (example 1) . . . . . . . . . . . . . . . . . . . . . . . . 284
B.6.2 Corrupt metadata recovery (example 2) . . . . . . . . . . . . . . . . . . . . . . . . 290
B.6.3 Lost volume recovery (example 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Appendix C. Special notices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Appendix D. Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
D.1 IBM Redbooks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
D.2 IBM Redbooks collections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
D.3 Other resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
D.4 Referenced Web sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

How to get IBM Redbooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313
IBM Redbooks fax order form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317

IBM Redbooks review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325
vii



viii Hierarchical File System Usage Guide



Figures

1. HFS overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. 3390 track capacity table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. 3380 track capacity table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
4. Index structure overview (with a single-level attribute directory) . . . . . . . . . . . . 4
5. Metadata in a AD page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
6. Second level AD index overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
7. Structure of a new allocated HFS data set on a 3390 volume . . . . . . . . . . . . . . 7
8. Sample structure of a used HFS data set on a 3390 volume. . . . . . . . . . . . . . . 8
9. Sample structure of an empty HFS data set on a 3390 volume. . . . . . . . . . . . . 9
10. Shadow writing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
11. Overview of sync daemon processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
12. UNIX System Services and related address spaces . . . . . . . . . . . . . . . . . . . . 19
13. Example of the UNIX file system directory structure . . . . . . . . . . . . . . . . . . . . 20
14. Example of recommended OS/390 HFS structure . . . . . . . . . . . . . . . . . . . . . . 23
15. Sample id command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
16. Sample ls -l command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
17. Flow chart for checking file security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
18. Overview of allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
19. Storage class definitions, Page 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
20. Storage class definitions, Page 2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
21. Overview of ACS routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
22. Example of the FILESYSTYPE statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
23. Example of MOUNT statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
24. Example of ROOT statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
25. Example of TSO MOUNT command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
26. Example of TSO UNMOUNT command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
27. Example of SETOMVS system command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
28. Query HFS limits ( confighfs -l ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
29. Query global HFS statistics (confighfs -q ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
30. Query file system statistics (confighfs pathname) . . . . . . . . . . . . . . . . . . . . . . 70
31. Sample 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
32. Sample 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
33. Sample 3 and sample 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
34. Sample 5 and sample 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
35. Sample 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
36. Sample 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
37. Sample 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
38. Sample 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
39. Sample 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
40. Sample 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
41. TSO MKDIR command example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
42. TSO MOUNT command example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
43. TSO UNMOUNT command example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
44. mountx and unmountx shell command examples . . . . . . . . . . . . . . . . . . . . . . 98
45. chmod and chown shell command examples . . . . . . . . . . . . . . . . . . . . . . . . . 99
46. df shell command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
47. DISPLAY OMVS,F operator command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
48. ISHELL mount table option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
49. DFSMSdss dump in a shared-HFS environment . . . . . . . . . . . . . . . . . . . . . . 105
50. Logical DFSMSdss dump and restore without ALLDATA(*) . . . . . . . . . . . . . 108
© Copyright IBM Corp. 1999, 2000 ix



51. Logical DFSMSdss dump and restore with ALLDATA(*) . . . . . . . . . . . . . . . .109
52. Physical DFSMSdss dump and restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
53. DFSMShsm multi-systems backup in OS/390 2.8 or below . . . . . . . . . . . . . .122
54. DFSMShsm multi-systems backup in OS/390 2.9 . . . . . . . . . . . . . . . . . . . . .123
55. Sample output of a df -P command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
56. Sample output from a confighfs command . . . . . . . . . . . . . . . . . . . . . . . . . . .146
57. Tivoli Storage Manager components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
58. Example dsm.opt file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
59. Example dsm.sys file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
60. Example Include/Exclude list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
61. Setting environment variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
62. Typical TSM command line interface output . . . . . . . . . . . . . . . . . . . . . . . . . .159
63. The TSM PICK Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
64. The TSM GUI front end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
65. TSM Login panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
66. TSM Backup - tree view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
67. Sharing a file system in read-only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
68. Sharing a file system in read/write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
69. Sharing restriction with systems before OS/390 2.9 . . . . . . . . . . . . . . . . . . . .169
70. Sharing restriction for systems outside the participating group. . . . . . . . . . . .169
71. Sharing an HFS in read-only mode in a sysplex . . . . . . . . . . . . . . . . . . . . . . .170
72. Enqueues for shared HFS in read/write mode . . . . . . . . . . . . . . . . . . . . . . . .172
73. Enqueues for shared HFS in read-only mode. . . . . . . . . . . . . . . . . . . . . . . . .172
74. Cross system sharing restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
75. Sharing without write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176
76. Write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
77. Sharing with write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178
78. Shared HFS overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
79. VFS and PFS relationship in read/write mode . . . . . . . . . . . . . . . . . . . . . . . .180
80. VFS and PFS relationship in read-only mode . . . . . . . . . . . . . . . . . . . . . . . . .181
81. Shared HFS couple data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
82. Recovering a file system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
83. HFS task and component structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186
84. Example of sync daemon and system crash. . . . . . . . . . . . . . . . . . . . . . . . . .187
85. Restructuring of file and index caching and buffering . . . . . . . . . . . . . . . . . . .188
86. Small file performance improvements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
87. Single user read/write CPU time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
88. Single user read/write elapsed time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
89. Example of ERBRMFxx for Monitor III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
90. Example of REPORTS command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
91. Example of HFS global statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
92. Example of HFS file system statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
93. RMF Monitor II Primary Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
94. Monitor II I/O Report Selection Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
95. Monitor II HFS Report Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
96. Monitor II HFS File System Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
97. Effect of various sync interval lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
98. HFS structure with OS/390 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
99. Recommended UNIX System Services HFS allocations . . . . . . . . . . . . . . . .212
100.HFS data sets structure of Domino for S/390 installation . . . . . . . . . . . . . . . .214
101.Logical file structure for Domino for S/390 . . . . . . . . . . . . . . . . . . . . . . . . . . .214
102.Recommended Domino for S/390 HFS allocations . . . . . . . . . . . . . . . . . . . .217
103.HFS data sets structure of WebSphere for OS/390 . . . . . . . . . . . . . . . . . . . .218
x Hierarchical File System Usage Guide



104.Where the OS/390 NFS server fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
105.Sysplex root structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
106.Structure of Version HFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
107.Set up of the Version HFS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
108.System Specific HFS Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
109.Structure of HFS before OS/390 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
110.Single OS/390 2.9 system with a read-only root . . . . . . . . . . . . . . . . . . . . . . 228
111.The first system in the sysplex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
112.Two systems in sysplex sharing same version HFS . . . . . . . . . . . . . . . . . . . 230
113.Two systems and two versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
114.XCF and the Couple data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
115.BPXPRMxx and HFS systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
116.Automount facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
117.Example of /etc/auto.master file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
118.Example of /etc/u.map file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
119.Result of using <uc_name> in MapName file . . . . . . . . . . . . . . . . . . . . . . . . 252
120.Specific entry in a MapName file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
xi



xii Hierarchical File System Usage Guide



Tables

1. HFS track and cylinder capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. File access type and permission bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3. Default permission bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4. Data class assignment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5. Summary of sample HFS allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6. HFS performance improvement following copytree reorganization . . . . . . . . 166
7. HFS serialization - enqueue usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8. RMF field descriptions - HFS global statistics . . . . . . . . . . . . . . . . . . . . . . . . 194
9. RMF field descriptions - HFS file system statistics . . . . . . . . . . . . . . . . . . . . 196
© Copyright IBM Corp. 1999, 2000 xiii



xiv Hierarchical File System Usage Guide



Preface

This IBM Redbook provides technical information that helps you to implement
and manage the hierarchical file system (HFS) available for OS/390 UNIX
System Services (USS).

This redbook is intended for experienced S/390 storage administrators who are
familiar with system managed storage and DFSMS/MVS storage management
functions.

First, it introduces basic HFS concepts, including evolutionary functional
enhancements available in DFSMS/MVS Version 1 Release 5 and OS/390 USS
for storage administrators.

Then, it discusses all the information you need to use and manage your HFS
environment efficiently and effectively, such as HFS externals, storage
management techniques, sharing rules, and performance guidelines.

Finally, it covers implementation considerations for selected OS/390 USS
applications, such as Lotus Domino and WebSphere.

This redbook particularly applies to DFSMS/MVS 1.5 (program number
5695-DF1) for use with OS/390 2.7 and later.

We hope this redbook helps you establish your own HFS environment.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

We would like to thank the authors of the first edition of this book, Toru Yamazaki
and Masato Miyamoto.

Nigel Morton is a project leader at the International Technical Support
Organization, San Jose Center. He has a degree in Computer Science from
Cambridge University and joined IBM UK in 1977 and has 20 years experience
with storage hardware and software. Before joining the ITSO in 1999, Nigel
worked at the Product Introduction Solutions Consultancy, Hursley, UK as a
program manager.

Nigel may be reached at mortonn@us.ibm.com.

Rama Ayyar is a Senior IT Specialist with IBM Australia in Sydney. Rama holds a
master’s degree in Computer Science from the Indian Institute of Technology,
Kanpur, India. He has 17 years experience with MVS, storage management,
RACF and configuration management software and 27 years experience in the
computer industry.

Dirk Gutschke is an IT Specialist working in the IBM Global Services PSS
Software Support Center in Mainz, Germany. He provides level-2 technical
support to customers and IBM personnel in the Central Region in EMEA. He has
worked at IBM for 10 years. His areas of expertise include DFSMS/MVS with
particular focus on PDSE and HFS.
© Copyright IBM Corp. 1999, 2000 xv



Barry Kadleck is a Senior IT Specialist based in IBM Hursley Park, United
Kingdom. He has worked at IBM for 15 years, specializing in ADSM (now Tivoli
Storage Manager) for the last five years. He currently supports Early Support
Programs for Tivoli Storage Solutions Products for customers throughout EMEA.

Thanks to the following people for their invaluable contributions to this project:

Jeffrey Berger
IBM Storage Systems Division

Michael Bull
IBM Storage Systems Division

Douglas Johnston
IBM Storage Systems Division

John Thompson
IBM Storage Systems Division

Simon Williams
IBM Australia

Michael Scott
IBM Storage Systems Division

Neil Shah
IBM Global Services

Dave Levish
IBM Software Solutions Division

William Schoen
IBM S/390 Software Development

Cecilia Lewis
IBM Storage Systems Division

Hirofumi Morita
IBM Japan

Mike Ebbers
International Technical Support Organization, Poughkeepsie Center

Robert Haimowitz
International Technical Support Organization, Poughkeepsie Center

Richard Conway
International Technical Support Organization, Poughkeepsie Center

Tricia Jiang
Tivoli Storage Solutions Product Line

Emma Jacobs
International Technical Support Organization, San Jose Center

Yvonne Lyon
International Technical Support Organization, San Jose Center
xvi Hierarchical File System Usage Guide



Particular thanks are due to Gabrielle Velez from the ITSO in Rochester who
edited this book.

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in“IBM Redbooks review” on page 325 to the
fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xvii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html


xviii Hierarchical File System Usage Guide



Chapter 1. Introduction to the Hierarchical File System

This chapter provides an overview of the hierarchical file system (HFS) and lists
the enhancements provided in DFSMS/MVS version 1 release 5 and in OS/390
version 2 release 9.

1.1 HFS overview

An HFS data set is an MVS data set that contains a POSIX-compliant hierarchical
file system, which is a collection of files and directories organized in a
hierarchical structure that can be accessed using the OS/390 UNIX System
Services (USS).

The file systems within HFS data sets have a tree structure based on a root
directory with various subdirectories with files contained within directories. The
files within an HFS data set are identified by their path and file names.

HFS is used by UNIX System Services and its applications such as ftp, NFS,
WebSphere Application Server for OS/390, Domino/390, and Component Broker.

HFS data sets were introduced in MVS/ESA with DFSMS/MVS Version 1
Release 2, together with support for OpenEdition MVS. The support for HFS data
sets was rewritten for DFSMS/MVS Version 1 Release 5 to increase the
performance of an HFS.

Figure 1 illustrates the relationship between DFSMS/MVS HFS services and
OS/390 USS.

Figure 1. HFS overview

DFSMS/MVS Version 1 Release 5 is a base element of OS/390 Version 2
Release 7.

O S / 3 9 0 S y s t e m

U N I X S y s t e m
S e r v i c e s

D F S M S / M V S
H F S S e r v i c e s

A c c e s s
M e t h o d s

V S A M n o n
V S A M

A p p l _ 2A p p l _ 1

H F S
© Copyright IBM Corp. 1999, 2000 1



These are the basic characteristics of an HFS data set:

• DFSMS/MVS provides access to the files of data within an HFS data set.

• DFSMS/MVS provides storage management capabilities, such as
backup/recovery and migration/recall for HFS data sets.

• HFS data sets can expand into multiple volumes (this support was provided in
DFSMS/MVS 1.5). The single volume restriction for HFS data sets has been
removed. HFS data sets can now span up to 59 volumes, with up to 255 total
extents for all volumes, and up to 123 extents per volume.

• HFS data sets no longer must be SMS managed. Now, it is possible to
allocate non-SMS managed HFS data sets.

• HFS data sets can be shared in read/write mode between systems in a
Sysplex (the support was provided in OS/390 2.9).

• HFS data sets, not HFS files, have the following requirements and restrictions:

- Non-SMS managed HFS data sets are supported but must be cataloged
and single volume only.

- They cannot be processed by standard open, end-of-volume, or access
methods; POSIX system calls must be used instead. There is one
exception: please refer to 3.4.2.6, “Processing HFS files with a sequential
access method” on page 75.

- They are supported by standard DADSM create, rename, and scratch
functions.

- They are supported by DFSMShsm for dump/restore and migrate/recall.
DFSMSdss is used as the data mover.

- They are not supported by IEBCOPY or the DFSMSdss COPY function.

- Partial release for HFS data sets is not supported, since the DADSM
PARTREL function no longer supports HFS data sets.

1.2 Structure of an HFS data set

All HFS data sets are stored on DASD volumes with fixed 4 KB blocks (4,096
bytes). These 4 KB physical blocks are also known as pages.

1.2.1 HFS track capacities on a 3380 and 3390 volume
Figure 2 shows the 3390 track capacity table (without keys). This table shows that
12 pages fit on one track for an HFS data set located on a 3390 volume.

Refer to Using 3390 in an MVS Environment,GC26-4574, for additional
information regarding 3390 Direct Access Storage Devices (DASD).

Tivoli Storage Manager (formerly ADSM) can be used to back up, recover,
archive or retrieve individual files or groups of files held in an HFS data set.

Note
2 Hierarchical File System Usage Guide



Figure 2. 3390 track capacity table

According to the track capacity table for a 3390 volume in 3380 track
compatibility mode, shown in Figure 3, one track of an HFS data set on a 3380 (or
a 3390 in 3380 track compatibility mode) can hold 10 4KB pages.

Figure 3. 3380 track capacity table

This information may be helpful to calculate space and to interpret the different
kinds of file size representation captured in 5.6, “Displaying the file system size”
on page 143. Table 1 summarizes the maximum capacity for an HFS data set per
tracks or cylinders for 3380 and 3390 volumes.

Table 1. HFS track and cylinder capacity

3380 3390

Size in KB * Size in Pages * Size in KB * Size in Pages *

1 Track 40 10 48 12

1 Cylinder 600 150 720 180

1 Volume 1,593,000 *** 398,250 *** 2,404,080 ** 601,020 **

* includes data(files), index (AD) and directory
** 3390 Model3 (3,339 Cylinder per Volume)
*** 3380k (2,655 Cylinder per Volume)

___________________ _________ __________________ __________________
| Data Length Range | Percent | Maximum Track | Maximum Cylinder |
| | Space | Capacity * | Capacity * |
| Min Max | Used * | Records Bytes | Records Bytes |
|___________________|_________|__________________|__________________|
| 27 999 56 664 | 100.0 | 1 56 664 | 15 849 960 |

... ... ... ... ... ... ...
| 4 137 4 566 | 88.6 | 11 50 226 | 165 753 390 |
| 3 769 4 136 | 87.6 | 12 49 632 | 180 744 480 |
| 3 441 3 768 | 86.4 | 13 48 984 | 195 734 760 |

... ... ... ... ... ... ...
|___________________|_________|__________________|__________________|
* Calculations are made using maximum size record in range.

___________________ _________ __________________ __________________
| Data Length Range | Percent | Maximum Track | Maximum Cylinder |
| | Space | Capacity * | Capacity * |
| Min Max | Used * | Records Bytes | Records Bytes |
|___________________|_________|__________________|__________________|
| 23 477 47 476 | 100.0 | 1 47 476 | 15 712 140 |

... ... ... ... ... ... ...
| 4 277 4 820 | 91.3 | 9 43 380 | 135 650 700 |
| 3 861 4 276 | 90.0 | 10 42 760 | 150 641 400 |
| 3 477 3 860 | 89.4 | 11 42 460 | 165 636 900 |

... ... ... ... ... ... ...
|___________________|_________|__________________|__________________|
* Calculations are made using maximum size record in range.
Chapter 1. Introduction to the Hierarchical File System 3



1.2.2 Index structure of an HFS data set
HFS data sets, provided by DFSMS/MVS, contain the HFS file structure. This
structure is a framework of directories and files called a file system.

Figure 4 provides an overview of the index structure of an HFS data set. The
terms used in the following topics will be discussed again in 8.2, “RMF reporting
enhancements” on page 192.

Figure 4. Index structure overview (with a single-level attribute directory)

This structure is maintained internally by different kinds of pages:

• Attribute directory (AD) pages

The attribute directory is an internal hierarchical structure, implemented as a
B-tree (a balanced tree where balancing minimizes the tree depth and so
speeds up searching), which contains attribute information about individual file
system objects such as HFS files, as well as attributes of the file system itself.

The AD also provides the connection to the individual data pages that
represent the files or directories inside an HFS. These connections are
represented by a map called a fragment parcel map (FPM) — see callouts (3)
and (5) within Figure 4.

• Name directory (Root ND) and subname directory (subdirectory ND)
pages

The name directory pages represent the external hierarchical directory of a file
system. The ND also provides the connection between the individual file and
directory names and the file sequence number (FSN).

An HFS data set has one root ND page that is anchored at the AD — see
callout (1). Every directory below the root ND is represented by its own

Attribute Directory Page

dir1->FSN4 (inode)

file1
->FSN8 (inode)

FSN=4

FSN=8

attributes

FPM

attributes

FPM

Data/File pages

file1

page 1 of 3
2 of 3

3 of 3

1

logical connection

root ND

sub-ND

5

4

2

3

Name Directory Pages
4 Hierarchical File System Usage Guide



subdirectory ND. These subdirectory NDs are also addressed by an FSN
provided by their parent ND — see callout (2). The associated AD entries
(located by the FSN) provide the logical connection to the subdirectory ND
pages — see callout (3).

• Data pages

The data pages contain the data of the individual files in a file system (HFS
files). A file may contain data or an executable program. HFS files are tracked
internally by a file sequence number (FSN) — see callout (4). This number
may be displayed by using the USS Command ls -i (list inode). The AD
provides the connection to the data pages — see callout (5).

The attribute, name, and name directory information is also referred to as
metadata. Refer to Figure 5.

Figure 5. Metadata in a AD page

The AD, ND, and subdirectory ND are index structured (refer to Figure 6).

As files and directories are added to an HFS, the first level page AD or ND will
eventually become full. When this happens, another level is added to the
directory (this is known to as new top processing). The second level page is now
the root page and it contains pointers to the first level page. In a similar fashion, if
a second level index becomes full, another level is again added and the directory
now has three levels. Only the first (lowest) level pages contain metadata. The
second and higher level pages contain pointers to pages at lower levels. The first
level pages are also known as the sequence set pages. The higher level pages
are known as the index set pages. The highest level page is called the root page
of the index.

For example, as shown in Figure 6 (second level AD structure), note that the root
page contains no metadata, only pointers to the first (lowest) level pages.

M e t a d a t a i n a L e v e l - 1 A D

F S N = 8
a t t r i b u t e i n f o r m a t i o n , s u c h a s :

- a n d m o r e
- p e r m i s s i o n b i t s

- l a s t m o d i f i c a t i o n t i m e
- f i l e s i z e

- c r e a t i o n t i m e

F P M

F S N = 9
- p o i n t e r t o p a g e s
Chapter 1. Introduction to the Hierarchical File System 5



Figure 6. Second level AD index overview

The space in an HFS data set that is used for index information is obtained from
the same storage (extents on a disk volume) that is available to the files
themselves (data pages). This means that data pages and index pages are
combined together in the same extents on a DASD volume.

Pages from deleted files (data pages) or index pages are available for reuse after
the last connection to the file has been dropped.

The space used on a volume will only be formatted as the space is needed. This
applies to the space for newly allocated HFS data sets, as well as the space for
new extents. In DFSMS/MVS 1.4, the space was always formatted on a track
boundary. In DFSMS/MVS 1.5, individual pages are fomatted rather than a
complete track. The rest of the track is erased.The number of formatted pages
will be stored inside the HFS data set. This value is also referred to as the high
formatted relative frame number (HFRFN). The HFRFN is handled as a high
watermark. This means that the HFRFN will not be decreased by deleting files or
directories in a file system, because it represents the high formatted, not the high
used, number of pages.

You can use the new UNIX system services confighfs command to display the
current value of the HFRFN. See 3.3.5, “confighfs shell command” on page 68 for
more information about confighfs, and B.1, “HFS data set related information” on
page 257, for sample output.

The backup and restore processing (done by DFSMSdss and DFSMShsm) is
related to the HFRFN. Refer to Chapter 5, “Managing HFS data sets” on page

1 s t A D P a g e ( L e v e l - 1 )

F S N = 4

F S N = 8

a t t r i b u t e s
F P M

a t t r ib u t e s
F P M

2 n d A D P a g e ( L e v e l - 1 )

F S N = 1 2

F S N = 1 4

a t t r i b u t e s
F P M

a t t r i b u t e s
F P M

R o o t A D P a g e ( L e v e l - 2 )

lo g i c a l c o n n e c t i o n

The HFRFN reflects the high watermark of formatted pages of an HFS data set
and not the number of used pages inside an HFS data set.

It will not be decreased if files or directories are deleted.

Important information
6 Hierarchical File System Usage Guide



103 for more detailed information regarding HFS storage management provided
by DFSMSdss and DFSMShsm.

1.2.2.1 Structure of a newly allocated HFS data set on DASD
An HFS data set always occupies at least five pages of storage. These five
metadata pages are created at the same time as the data set.

Figure 7 illustrates the structure of a newly allocated HFS data set on a 3390
volume.

Figure 7. Structure of a new allocated HFS data set on a 3390 volume

1.2.2.2 Sample structure of a used HFS data set on DASD
Figure 8 shows a possible structure of an HFS data set stored on a 3390 volume.
Directory pages, data pages and free pages are within the same extent.
Unformatted space (pages) will be formatted automatically when they are
needed.

HFS data set

1st track

2nd track

3rd track

high
formatted

high
allocated

n track

FREEFREEDIR DIR DIR DIRDIR FREE FREE FREE FREE FREE

= unformatted space on volume

DIR = attribute, name or subname directory page

FREE = unused, but already formatted page
Chapter 1. Introduction to the Hierarchical File System 7



Figure 8. Sample structure of a used HFS data set on a 3390 volume

1.2.2.3 Sample of an empty HFS data set on DASD
The next figure shows an empty HFS data set. In this case, empty means that all
files and all directories within that particular file system were deleted. However,
the HFS data set still contains index (AD) pages. These pages are required to
hold information about the HFS data set itself. Within the lifetime of an HFS data
set, the AD pages will be split and merged together, but they will not be merged to
the logical top of the HFS data set.

For example, as shown on Figure 9, index pages could reside on the last
formatted track of an HFS data set.

 DIR

FILE

= attribute, name or subname directory page

= data page 

FREE

= unformatted space on volume 

= unused, but already formatted page 

HFS data set

FILE9FILE9FILE9

FILE6FILE6 FILE6 FILE6 FILE7 FILE8 FILE8 FILE8 FILE8

FILE9

  DIR

 DIR  DIR

FILE3FILE3 FILE3 FILE3 FILE2

 DIR  DIR  DIR  DIR

FREE FREE FREEFREEFREE

1st track

2nd track

3rd track

high formatted

high 

allocated

n track

 DIR

FREEFREEFREE

FREE

FREE

FILE1 FILE1FILE1 FILE1 FILE1 FILE1 FILE1

4th track

5th track

 DIR

FILE2FILE2 FILE6 FILE1FILE1FILE6FILE6FILE6FILE2 FILE2

FILE6
8 Hierarchical File System Usage Guide



Figure 9. Sample structure of an empty HFS data set on a 3390 volume

Notes:

1. To reduce the space of an HFS data set below the high fomatted page, you
can copy all files and directories individually into a new HFS data set by using
UNIX commands. See the OS/390 V2R9.0 UNIX System Services User's
Guide, SC28-1891, for additional information regarding copying files and
directories.

2. Another possibility is that you can use the copytree utility provided by OS/390
USS. Copytree is a utility that can run under TSO or the shell, and is used to
make a copy of a file hierarchy preserving all file attributes. It can be
downloaded from an OS/390 UNIX System Services Internet page:

http://www.s390.ibm.com/oe/bpxa1ty2.html

Or, you can use:

http://www.s390.ibm.com/oe/

Select Tools & Toys —> OS/390 Unix Tools.

You will also find additional information regarding copytree in 5.3.1, “Copytree
utility” on page 127.

3. Or, as in this example, if the HFS data set is empty, you can allocate a new
HFS data set.

4. Space reclamation was changed in DFSMS/MVS 1.5. In regard to both ADs
and NDs, logic was added to merge pages together and return the now
unused pages to the HFS for other files or directories to use. For NDs, there is
also a function that will collapse the index down to a single level if it is empty.
This process happens at every sync interval (the sync value can vary for each

DIR DIR DIR DIRDIR FREEFREE FREE FREE FREE FREE FREE

FREEFREE FREE FREE FREE FREEFREE FREEFREEFREEFREEFREE

FREEFREE FREE FREE FREE FREEFREE FREEFREEFREEFREE DIR

FREEFREE FREE FREE FREE FREEFREE FREEFREEFREEFREEDIR

1st track

2nd track

3rd track

n track

n-1 track

n-2 track FREEFREE FREE FREE FREE FREEFREE FREEFREEFREEFREEFREE

HFS data set

high formatted

high
allocated

DIR

FILE

FREE

= unformatted space on volume

= attribute, name or subname directory page

= data page

= unused, but already formatted page
Chapter 1. Introduction to the Hierarchical File System 9



individual HFS data set) for any HFS that requires an update to one of its files
or directories. See 1.2.4, “Sync process” on page 11 for more details about the
sync process.

1.2.3 Index updates through shadow writes
Every modification to the external file structure in an HFS will result in a change
to the index (the internal hierarchical structure or AD), too.

For example, when you create new files or directories, or if you delete existing
files or directories in an HFS, this will cause changes to the index as well as the
data.

DFSMS/MVS HFS services use a shadowing process to update the index (AD)
structure with new information. This means, if a sequence set page of the index
structure must be changed, then a copy will be created instead of updating the
current one. Afterwards, this copy page will be connected to its parent page
within the index structure.

As the index (AD and ND) is maintained in a hierarchical tree structure, every
change to a sequence set page in a B-tree results in a change to its parent pages
(until the root page is reached), too. See Figure 10 for an example.

One benefit of the shadow write update technique is: if the top (last) write is not
performed, data remains consistent at the previous update level. This prevents
an HFS data set from being damaged if, for example, a system crash occurs
during the sync process. Updates may be lost, but the HFS will not be corrupted.

After the top is written to disk, all of the old pages that were replaced with new
pages are freed for reuse.

An important point to note about this process is that, during the time that the
index (AD) is being updated, the index temporarily requires the use of extra
pages from the file system. This means that the file system must never be
completely filled. The index usually holds some pages in reserve to make sure it
has room to complete updates.

Figure 10. Shadow writing

root
page

sequence
set page

= current index page

= new shadowed index page

= current index pointer

= new index pointer

= processing direction

gfgf
10 Hierarchical File System Usage Guide



1.2.4 Sync process
In DFSMS/MVS 1.4 and older releases, HFS buffer management was performed
in the SYSBMAS address space, which is also primarily used by PDSE services.
The index information was cached in a data space called SYSBMFDS. Any
changes to the index were directly written to DASD under the user’s task control
block.

Beginning with DFSMS/MVS 1.5, HFS buffer management is performed within
OMVS by a new function called the sync daemon. Figure 11 provides an overview
of sync daemon processing.

Figure 11. Overview of sync daemon processing

Now, every change inside an HFS will be cached in storage first (1). The cached
buffers which have been modified will be marked for processing by the sync
daemon. The sync daemon will be called, for example, every 60 seconds to write
the modified cached data to DASD (2). This 60 second period is referred to as the
sync interval. Changes are visible immediately. For example, they don’t have to
be written out to be seen.

The sync interval can be defined in parmlib member BPXPRMxx through the
FILESYSTYPE statement for all HFS data sets in an OS/390 UNIX system or at
mount time for a specific HFS data set.

Refer to "UNIX System Services Assembler Callable Services: sync (BPX1SYN)
— Schedule File System Updates" in the book OS/390 V2R9.0 UNIX System
Services Assembler Callable Services,SC28-1899. Also refer to "PFS Operations
vfs_sync" in the book OS/390 V2R9.0 UNIX System Services File System
Interface Reference, SC28-1909. Both functions write to disk (harden) all the
changed data in a buffer cache for files in a mounted file system.

The shadowing process requires free pages in an HFS data set. Therefore, an
HFS should never be completely filled.

Important Information

DASD volume

HFSDSPnn data space

'/'

HFS data set

sync daemon

OMVS address space

1.

2.
SMS managed
DASD volume
Chapter 1. Introduction to the Hierarchical File System 11



In DFSMS 1.5, four new data spaces (associated with address space OMVS) are
used to cache the index and data buffers. The data space SYSBMFDS
associated with the address space SYSBMAS will no longer be used to cache
HFS index or data pages. The new data space names are HFSDSP01,
HFSDSP02, HFSDSP03 and HFSDSP04.

The amount of virtual storage, and the number of fixed pages used for caching,
can be influenced or limited by BPXPRMxx PARMLIB settings, too.

The benefits of sync daemon processing are:

• Improved performance.

• Less expensive index shadow writes.

• If the system crashes between two sync processes, you still have a consistent
HFS data set structure — including index, directory and data files — which
was written at the previous sync.

However, you will lose the data residing in the cache that had been modified
since the previous sync interval. This means you could miss newly created
files, and newly removed files will still be present.

Application programs can issue an fsync() call which makes a synchronous
I/O request to the OMVS kernel, then all the other metadata pages on the
same HFS data set will be synchronously hardened.

See 8.1.1, “HFS deferred writes” on page 185 for further details regarding the
sync process.
12 Hierarchical File System Usage Guide



1.3 New enhancements

There were significant enhancements to HFS functions in DFSMS/MVS 1.5 and
in OS/390 2.9. Most recently, PTFs have become available to allow the allocation
and use of non-SMS managed HFS data sets.

Users affected: Users of DFSMS HFS 1.5.

Problem description:

When an HFS file system encounters an Out of Space condition during SYNC
processing, producing message IGW022S in the LOGREC and on the console,
and then gives a return code of 00000085x with a reason code of 5Bxx0E37x
for any further file function requests, it is necessary to extend the file system.
The file system can be extended via the confighfs shell command, but it then
still requires the file system to be unmounted and remounted. Also, any file
system updates which occurred since the last successful SYNC are lost.

If the HFS SYNC processing is not able to acquire enough available pages in
the file system to create a copy of all the index pages which must be modified
to commit the file system changes which have been made since the last SYNC,
the index updates are lost, losing the file system changes. The file system is
flagged as in error and this flag can only be reset by unmounting the file
system.

Problem conclusion:

The HFS SYNC process has been modified to capture and maintain the state
of the index update in memory when the Out of Space failure occurs. If
confighfs is used to successfully extend the file system (for example, confighfs
-x <amount> <filesys>) and the extent was large enough to accommodate the
pages required to perform the index update, confighfs reinvokes the SYNC
process to complete its update and then resets the HFS Out of Space Error
flag. It will not be necessary to unmount and remount the file system to use it
further. Once the error flag is reset, all file system functions will work properly
again.

If the extend amount is not large enough to provide the amount of space
required to complete the SYNC process, confighfs will issue the following
response:

Inadequate space added to HFS. At least another <nn> tracks required.

Note: This fix only applies for the case when the IGW022S message indicates
an Error Loc: EXTEND value. If it indicates an Error Loc: ARPN value (that is, the
failure occurred in the middle of ARPN), it will continue to function as it did prior
to this update by resetting back to the last SYNC point and requiring an
unmount followed by a mount.

APAR OW43822
Chapter 1. Introduction to the Hierarchical File System 13



1.3.1 DFSMS/MVS 1.5 enhancements
DFSMS/MVS 1.5, which was made available in March 1999, introduces the
following major enhancements to HFS:

• Performance improvements

It improves performance by implementing deferred I/O and new cache
management. See 1.2.4, “Sync process” on page 11, and Chapter 8,
“Optimizing HFS performance” on page 185, for more details.

• Multi-volume support

An HFS can now be a multi–volume data set. This support simplifies the
implementation of certain OS/390 USS applications, such as Domino/390.
See Chapter 4, “Allocating and mounting HFS data sets” on page 77 for more
information.

• Mount integrity improvement (write protection)

An HFS data set maintains an internal time stamp. The time stamp is set when
a system mounts an HFS in read/write mode and is verified by every sync or
index read. If the time stamp no longer matches the mount time then no
update will be done to the HFS. Chapter 7, “Sharing and serialization for HFS
data sets” on page 167 explains this in more detail.

• New PARM parameters in BPXPRMxx PARMLIB member

You can set three new optional parameters in the FILESYSTYPE HFS
statement of the BPXPRMxx PARMLIB member:

- The SYNCDEFAULT(t) parameter specifies the number of seconds, t, to
be used as a default for the sync daemon interval.

- The VIRTUAL(max) parameter specifies the maximum amount of virtual
storage (in megabytes) that HFS data and metadata buffers should use.
The default is 50% of real storage available to the system at HFS
initialization time.

- The FIXED(min) parameter specifies the amount of virtual storage (in
megabytes) that is fixed at HFS initialization time and remains fixed even if
HFS activity drops to zero.

See 3.3.1, “BPXPRMxx options” on page 56, and 3.3.2, “TSO MOUNT
command” on page 63 for more information.

• New confighfs shell command

Interactive shell users can use the confighfs shell command to query the HFS
limits set in the BPXPRMxx PARMLIB member and change them dynamically.
Superuser authority is required to change the limits. See 3.3.5, “confighfs shell
command” on page 68 for more information.

1.3.2 OS/390 2.9 enhancements
OS/390 2.9 provides the capability for sysplex users to access data throughout
the file hierarchy. Before OS/390 2.9, users logged onto one system in a sysplex
had write access only to the file systems associated with their own system. See
also Chapter 7, “Sharing and serialization for HFS data sets” on page 167 for
more details.
14 Hierarchical File System Usage Guide



1.3.3 Non-SMS HFS data sets
In response to customer demand for simpler maintenance procedures and easier
system cloning, HFS data sets no longer need to be SMS managed. As a result of
this new support, SMS management is now optional when allocating a HFS data
set. This support is shipped as PTFs for DFSMS/MVS 1.4 and 1.5 and the PTFs
affect these system components:

• DFSMSdfp
• DFSMSdss
• DFSMShsm
• TSO/E
• ISPF
• MVS Base Control Program (Allocation component)

There are restrictions associated with this support. See 3.2, “Non-SMS
considerations” on page 51 for additional information regarding the support of
non-SMS managed HFS data sets.

1.3.4 DFSORT support of HFS data sets
The PTF for APAR PQ35111 is a small programming enhancement for DFSORT
release 14. Among many other functions, it provides the ability for DFSORT to
use HFS files for both sort input and output.

In addition to this redbook, please refer to Appendix D, “Related publications”
on page 309, for a selection of titles, which contain information about HFS.

Note
Chapter 1. Introduction to the Hierarchical File System 15



16 Hierarchical File System Usage Guide



Chapter 2. Introduction to OS/390 UNIX System Services

The term OS/390 UNIX System Services (USS) and its abbreviation OS/390
UNIX are new names for what was previously known as OpenEdition in earlier
levels of OS/390 and MVS.

The system programmer or data administrator must manage the hierarchically
organized data that the system and its users will use. This overall structure of
data is called the hierarchical file system (HFS). It consists of the root file system
and all the file systems that are added to it.

This chapter provides background information about USS to help the system
programmer or data administrator understand the logical view of HFS.

2.1 Required USS operation level to use HFS

UNIX System Services provides three levels of operation. To use HFS, you must
set up the full-function mode of USS.

This topic summarizes each operation level and the tasks for setup.

The OMVS parameter in the IEASYSxx PARMLIB member lets you specify one
or more BPXPRMxx PARMLIB members that are used to specify the initial
PARMLIB settings for the kernel of UNIX system services.

Activation of kernel services is available in three levels:

• Minimum mode
• Sockets-only mode
• Full-function mode

Note: As of OS/390 Version 2 Release 7, activation of kernel services is available
in two levels: minimum mode or full-function mode.

2.1.1 Minimum mode
If you do not specify OMVS= in the IEASYSxx PARMLIB member or if you specify
OMVS=DEFAULT, then kernel services start in minimum mode when the system
is IPLed. The minimum mode is intended for installations that do not plan to use
the kernel services.

In minimum mode:

• Many services are available, but some functions, such as TCP/IP sockets,
which require other system customization, may not work.

• TCP/IP sockets (AF_INET) are not available.

• A Temporary File System (TFS) is used. A TFS is an in-storage file system,
therefore, no physical DASD data set needs to exist or to be mounted.

The TFS is initialized and primed with a minimum set of files and directories.
Any data written to this file system is not written to DASD.

The TFS is initialized with these directories and files:

- / (root directory)
- /bin directory
© Copyright IBM Corp. 1999, 2000 17



- /etc directory
- /tmp directory
- /dev directory
- /dev/null file

There are no executables in the TFS (that is, you will not find the shell and
utilities). Do not attempt to install UNIX System Services Application Services in
the TFS, since no data will be written to DASD.

This is the minimum requirement for applications to be able to use kernel
services.

In the minimum mode, you do not need to install or customize SMS, or customize
the security product, to work with kernel services.

If the default is set up, you do not need to define users who want to run an
application that uses APIs. For example, you would not need to assign a UID to
an application that wants to use C pthread functions.

2.1.2 Sockets-only mode
For a sockets-only level of kernel services that is more than the minimum, but
that does not need SMS or the shell and other UNIX utilities (such as rlogin), you
can create a BPXPRMxx PARMLIB member containing some definitions.

The BPXPRMxx PARMLIB member:

• Takes the default minimum mode and uses the TFS.

• Sets up the DOMAIN NAME specifications for the communication server
socket connections.

Whether or not you can run in minimum mode when using sockets depends on a
number of factors. If you are using only AF_UNIX sockets, you should be able to
run in minimum mode. However, if you are using AF_INET sockets, it will depend
on which transport provider you are using:

• TCP/IP requires the use of a file system, it cannot be run in minimum mode.

• Other AF_INET providers, such as OESTACK, do not require a file system.
Those can be run in minimum mode.

For each transport provider you specify in the FILESYSTYPE or
SUBFILESYSTYPE statements in your BPXPRMxx PARMLIB member, you need
to check whether a file system is required.

2.1.3 Full-function mode
If an active BPXPRMxx PARMLIB member specifies FILESYSTEM TYPE(HFS),
then the kernel services start in the full-function mode when the system is IPLed.
The important point to remember is that you have to set up the full-function mode
of USS to use HFS.

To use the full-function mode, you need to:

• Set up BPXPRMxx PARMLIB definitions
• Set up the SMS subsystem
• Set up the hierarchical file systems (HFS)
• Install UNIX System Services Application Services
18 Hierarchical File System Usage Guide



• Set up the security product definitions for OS/390 UNIX
• Set up the users’ access and their individual file systems

2.2 UNIX System Services and related address spaces

This topic summarizes the functions of the address spaces which comprise USS.

Figure 12 shows a diagram of USS running under OS/390 after you have
completed setting up full-function mode.

Figure 12. UNIX System Services and related address spaces

The address spaces and functions are described here:

• OMVS: OMVS is the address space that initializes the kernel.

Prior to DFSMS/MVS 1.5, HFS buffer management was processed in the
SYSBMAS address space, which was also used by PDSE. Beginning with
DFSMS/MVS 1.5, HFS buffer management is processed in OMVS with a new
function, the sync daemon.

For more information about the sync daemon, please refer to 8.1.1, “HFS
deferred writes” on page 185.

• BPXOINIT: Beginning with OS/390 1.3, BPXOINIT is the started procedure
that runs the initialization process. BPXOINIT is also the job name of the
initialization process. Prior to OS/390 1.3, the initialization process was
created through an APPC allocate and the job name was OMVSINIT.

The BPXOINIT address space has two categories of function:

1. It behaves as PID(1) of a typical UNIX system. This is the parent of /etc/rc,
and it inherits orphaned children so that their processes are cleaned up
using normal code in the kernel. This task is also the parent of any MVS
address space that is dubbed and not created by fork or spawn. Therefore,
TSO commands and batch jobs will have a parent PID of 1.

HFS data setsHFS data sets
on SM S volum eson SM S volum es

/

O S/390OS/390

O M VSO M V S
(kernel)(kernel)

TSOTSO
USERUSER

'IBM USER ''IBM USER '
UID=0UID=0

TSOTSOBP X O IN ITB PX O IN IT

W LMW LM

BPXA SB PXAS
Chapter 2. Introduction to OS/390 UNIX System Services 19



2. Certain functions that the kernel performs need to be able to make normal
kernel calls. This address space is used for these activities; for example,
mmap() and user ID alias processing.

• BPXAS: Prior to OS/390 1.4, APPC/MVS transaction initiators provided
address spaces when programs used the fork() or spawn() C functions or
callable services. Now, the Workload Manager (WLM) creates the address
spaces.

The BPXAS will now be used to create the WLM-managed address spaces.
When using the WLM, you do not need to do any tuning or issue any
commands.

• WLM: When programs issue the fork() or spawn() C functions or OS/390
callable services, WLM provides a new address space to the BPXAS address
space.

• TSO and TSO user: A TSO user who has superuser authority (uid=0) is
needed to install and customize USS environments.

2.3 UNIX file system overview

This topic provides background information about the UNIX file system, the
hierarchical file system.

2.3.1 UNIX file system structure
The hierarchical file system consists of:

• Hierarchical file system (HFS) files, which contain data or programs. A file
containing a load module or shell script or REXX program is called an
executable file. Files are stored in directories.

• Directories, which contain files, other directories, or both. Directories are
arranged hierarchically, in a structure that resembles an upside-down tree,
with the root directory at the top and the branches at the bottom. The root is
the first directory for the file system at the peak of the tree and is designated
by a slash (/). Figure 13 is an example of a UNIX root directory, containing a
typical set of subdirectories.

• Additional local or remote file systems, which are mounted on directories of
the root file system or of additional file systems.

Figure 13. Example of the UNIX file system directory structure

To the OS/390 system, the file hierarchy is a collection of HFS data sets. Each
HFS data set is a mountable file system. The root file system is the first file

/

tmpetcdev libsamples usru varbin

Root Directory
20 Hierarchical File System Usage Guide



system mounted. Subsequent file systems can be logically mounted on a
directory within the root file system or on a directory within any mounted file
system.

Except for the direction of the slashes, the hierarchical file system is similar to a
Disk Operating System (DOS), Windows, or an OS/2 file system.

When you install OS/390 USS, you define the root file system using the ROOT
statement in the BPXPRMxx member of SYS1.PARMLIB.

The BPXPRMxx PARMLIB member contains the parameters that control OS/390
UNIX System Services processing and the file system. The system uses these
values when initializing UNIX System Services.

The root file system is the starting point for the overall HFS file structure. It
contains the root directory and any related HFS files or subdirectories.

As of DFSMS/MVS 1.5, HFS data sets can span up to 59 volumes, with up to 255
total extents for all volumes, and up to 123 extents per volume, if secondary
extents are specified in the allocation. JCL is typically used to create new HFS
data sets by specifying DSNTYPE=HFS on the DD statement. For more
information about the new multi-volume support, see 4.1.1, “Multi-volume
allocation considerations” on page 78. In addition, it is not always necessary for a
secondary space to be specified for an HFS allocation. More extents can be
dynamically added later by using the confighfs command if no secondary space
exists for an HFS.

HFS file data is byte-oriented, unlike most MVS data sets, which are
record-oriented. The OS/390 shell and utilities typically impose a line orientation
on the byte-oriented files. A line is a stream of bytes terminated with a <newline>
character. A line terminated by a <newline> character is sometimes referred to as
a record. So, there is a single <newline> character between every pair of
adjacent records. Text files use the <newline> character to delimit lines; binary
files do not.

Input and output (I/O) for HFS files is typically performed through the use of a
data stream. Despite the differences between them, you can copy HFS files into
MVS data sets, and MVS data sets into HFS files, using special TSO commands
like OCOPY, OGET and OPUT. For more information about these commands, see
OS/390 V2R9.0 UNIX System Services Command Reference, SC28-1892.

A BPXPRMxx member is provided in SYS1.PARMLIB. Within this member, the
root HFS in the single file system is referred to by:

ROOT FILESYSTEM(’OMVS.OS390R7.ROOT’ )
TYPE(HFS)
MODE(RDWR)

For a detailed description of the BPXPRMxx parameters, see OS/390 V2R9.0
UNIX System Services Planning, SC28-1890, and OS/390 V2R9.0 MVS
Initialization and Tuning Reference, SC28-1752.

Important Information
Chapter 2. Introduction to OS/390 UNIX System Services 21



You can access HFS files and manipulate data from application programs using
defined C functions. You can also access HFS files using standard MVS access
methods. Refer to DFSMS/MVS Version 1 Release 5 Using Data Sets,
SC26-4922.

2.3.2 Recommended file system structure
Beginning with OS/390 2.6, IBM recommends that you install all OS/390
elements and features into a consolidated root file system, instead of having
separate product-related HFS data sets mounted on respective directories. This
makes maintaining and cloning of the file system easier, and it also simplifies the
MOUNT statements in the BPXPRMxx PARMLIB member.

In addition, we recommend the root file system is set up so that it does not
require frequent changes. To this end, we recommend maintaining separate file
systems for each of these directories:

• /etc — This directory contains customization data. Keeping this information in
its own mountable file system will allow you to propagate customized data
when migrating from release to release. In addition, you can be assured that
IBM products will only create directories under this directory, therefore, not
affecting your customization.

• /var — This directory contains dynamic data used internally by products and
by elements and features of OS/390. Any files or directories needed are
created during execution of code. An example of this is caching data. In
addition, you can be assured that IBM products will only create directories or
files when code is executed.

• /tmp — This directory contains temporary data used by products and
applications. IBM products will not install any files into this directory. You have
the option of mounting a Temporary File System (TFS) on /tmp.

• /u — Name each user home directory /u/userid, where userid is the user ID
in lowercase.

• /dev — This directory contains character-special files that are used when
logging into the OMVS shell environment and also during c89 processing.
Beginning with OS/390 2.7, /dev is shipped as an empty file and the
necessary files are created when the system is IPL’d, and on a demand basis.

Figure 14 shows a single HFS containing a typical UNIX directory structure, with
separate HFS data sets mounted at appropriate directory mount points. Note that
/u and /tmp may be set up differently than normal HFS data sets to make use of
the TFS and the AUTOMOUNT features of OS/390 UNIX System Services.

For more information about how to allocate HFS data sets, see 4.1, “Allocating an
HFS” on page 77.

For more information about the AUTOMOUNT feature, see A.2, “Automount
facility” on page 248.
22 Hierarchical File System Usage Guide



Figure 14. Example of recommended OS/390 HFS structure

Keep system HFS data sets separate from user HFS data sets by creating
separate SMS storage groups to segregate the HFS data sets or by allocating
non-SMS managed HFS data sets on separate volumes. For more information
about SMS considerations, see 3.1, “SMS considerations” on page 33.

For users, you should logically mount other file systems (HFS data sets) on the
root file system, and have your users place their directories and files in the
mounted file systems. You may want to allocate one large data set for each
organization within a company. Separate mountable user file systems offer
several advantages:

• They improve storage management because the system administrator need
only allocate data sets large enough to accommodate the needs of individual
users.

• They enable failure isolation because the system administrator can unmount
the user file system that caused an error without affecting other users' data or
causing OS/390 USS to fail.

• They relieve the contention for system resources that could occur by having
multiple users in a single file system.

u

U
HFS

/

tmp

libsamples usr

var

bin

Root Directory

TMP
HFS

OS/390 HFS

u

U
HFS

VAR
HFS

etc

ETC
HFS

AutomountTFS

dev

DEV
HFS

A BPXPRMxx member is provided in SYS1.PARMLIB. Within this member, the
HFS mounted on ’/etc’ is referred to by:

MOUNT FILESYSTEM('OMVS.OS390R7.ETC')
MOUNTPOINT('/etc')
TYPE(HFS)
MODE(RDWR)

For a detailed description of the BPXPRMxx parameters, see OS/390 V2R9.0
UNIX System Services Planning, SC28-1890, and OS/390 V2R9.0 MVS
Initialization and Tuning Reference, SC28-1752.

Important Information
Chapter 2. Introduction to OS/390 UNIX System Services 23



The number of mounted file systems is only limited by the number of allocations
that can be done in the address space. You can logically mount these user file
systems to an empty directory (mount point) in the root file system using the TSO
MOUNT command. Use the TSO UNMOUNT command to unmount a file system.

For more information about MOUNT operations, see 4.2, “Mounting an HFS” on
page 91.

2.4 HFS and UNIX System Services security

UNIX System Services (USS) is tightly integrated with the OS/390 Security
Server (RACF).

The system programmer or data administrator must know the concepts of UNIX
and USS security to manage the individual hierarchical file system (HFS) files
(not data sets). It is especially important to understand the concept of a
superuser.

This topic provides some background information about UNIX and USS security.
It also provides information about HFS security.

2.4.1 UNIX file security overview
On UNIX systems, each user needs an account that is made up of a user name
and a password. UNIX uses the /etc/passwd file to keep track of user names and
encrypted passwords for every user on the system (this file is not used in OS/390
USS). Internally, the UNIX operating system uses a numeric ID to refer to a user,
so in addition to user name and password, the /etc/passwd file also contains a
numeric ID called the user identifier or UID.

UNIX operating systems differ, but generally these UIDs are unsigned 16-bit
numbers, ranging from zero to 65,535. OS/390 UNIX System Services supports
UID numbers up to 2,147,483,647.

2.4.2 UNIX users and superuser
There is no convention for assigning UID numbers to users other than 0 (zero),
which has special significance in that it indicates a superuser. Superusers have
special powers and privileges under UNIX, so care must be exercised as to who
can gain access to a UID of 0 (zero). If the OS/390 Security Server (RACF) is
installed, it offers some features that can be activated to gain more control over
superusers. OS/390 Security Server also has capabilities to allow superuser-type
access for some specific services for specific users.

The UID is the actual number that the operating system uses to identify the user.
User names are provided for convenience, as an easy way for us to remember
our sign-on to the UNIX system. If two users are assigned the same UID, UNIX
views them as the same user, even if they have different user names and
passwords. Two users with the same UID can freely read and write each other′ s
files and can kill each other′ s processes.

Note: Assigning the same UID to multiple users is generally not recommended.
24 Hierarchical File System Usage Guide



2.4.3 UNIX groups
UNIX systems also use the concept of groups, where you group together many
users who need to access a set of common files, directories, or devices. Like
user names and UIDs, groups have both group names and group identification
numbers (GIDs). Each user belongs to a primary group that is stored in the
/etc/passwd file on UNIX systems (this file is not used in OS/390 USS). OS/390
UNIX System Services supports GID numbers up to 2,147,483,647.

There is no convention for assigning GID numbers, and unlike UIDs, number 0
(zero) has no special significance.

A user’s UID and GID values can be displayed using the UNIX id command.
Figure 15 shows an id command used to display UID and GID information for a
user STYRES2 whose current connect group is ITSOSJ.

Figure 15. Sample id command

The terms in Figure 15 have the following meanings:

67157: UID

STYRES2: User name associated with UID 67157

2: GID

ITSOSJ: Group name associated with GID 2

Along with the user name, encrypted password, UID, and GID, the /etc/passwd
file also contains:

• The user’s full name

• The user’s home directory (the directory where users generally store their own
files and directories)

• The file name of the shell program (also called a shell script) that is executed
when the user initially logs in.

In UNIX systems, general information about each file, such as the file size and
last modification date, is stored with the files in the file system. Included with this
general information is security information about the file, such as:

• The owner (UID)
• The group (GID)
• Unix access controls (permission bits)

File security information can be displayed using a UNIX command such as ls -l

(ls = list file and directory attributes; -l = displays permissions, links, owner,
group, size, time stamps and name). Figure 16 shows an ls -l command to
display information about a file called mytext, and the result of that command.

STYRES2 @ SC64:/>id
uid=67157(STYRES2) gid=2(ITSOSJ)
Chapter 2. Introduction to OS/390 UNIX System Services 25



Figure 16. Sample ls -l command

The terms in Figure 16 have the following meanings:

-rwxr--r--: Permission bits

1: Number of links to the file

STYRES2: Name of the file owner

ITSOSJ: Name of the group that owns the file

2617: Size of the file represented in bytes

Jun 15 22:13: Date and time the file was last changed

mytext: Name of the file

2.4.3.1 Permission bits
All UNIX files have three types of permissions:

• Read (displayed as r)
• Write (displayed as w)
• Execute (displayed as x)

For every UNIX file, read, write and execute (rwx) permissions are maintained for
three different types of file user:

• The file owner
• The group that owns the file
• All other users

The permission bits are stored as three octal numbers (3 bits for each type of file
user) totalling nine bits. When displayed by commands, such as ls -l, a
ten-character field is shown, consisting of nine for permission, preceded by one
for file type (see the example in Figure 16).

Permission bit structure: The structure of the ten-character field is tfffgggooo,
where:

t The type of file or directory. Valid values are:

- File
c Character special file
d Directory
l Symbolic link
p FIFO special file

fff The OWNER permissions, as explained in Table 2.

ggg The GROUP permissions, as explained in Table 2.

ooo The OTHER (or sometimes referred to as WORLD permissions), as
explained in Table 2.

STYRES2 @ SC64:/u/styres2>ls -l mytext
-rwxr--r-- 1 STYRES2 ITSOSJ 2617 Jun 15 22:13 mytext
26 Hierarchical File System Usage Guide



Table 2. File access type and permission bits

Octal value bits: There are many places in UNIX where permission bits are also
displayed as a representation of their octal value. When shown this way, a single
digit is used to represent an rwx setting.

The meaning associated with the single digit is:

0 No access (---)

1 Execute-only access (--x)

2 Write-only access (-w-)

3 Write and execute (-wx)

4 Read-only access (r--)

5 Read and execute access (r-x)

6 Read and write access (rw-)

7 Read, write, and execute access (rwx)

Pos. Char. Access
Type

Permission for File Permission for
Directory

1 r Read Permission to read or print the
contents.

Permission to read, but
not search, the contents.

2 w Write Permission to change, add to,
or delete from the contents.

Permission to change,
add, or delete directory
entries.

3 x Execute
or Search

Permission to run the file. This
permission is used for
executable files.

For OWNER, the third position
can also be displayed as:

-s to indicate an executable file
with set-user-ID set.
-S to indicate a non-executable
file with set-user-ID set.

For GROUP, the third position
can also be displayed as:

-s to indicate an executable file
with set-group-ID set.
-S to indicate a non-executable
file with set-group-ID set.

For OTHER, the third position
can also be displayed as:

-t to indicate an executable file
with sticky bit set.
-T to indicate a non-executable
file with sticky bit set.

Permission to search the
directory.

any - No access
Chapter 2. Introduction to OS/390 UNIX System Services 27



Permission bit examples: remembering that each file always has permission
bits for owner, group and other, it is usual to see three-digit numbers representing
the permission bits of a file. For example, some typical file permission settings
are:

666 Owner(’6’=’rw-’) group(’6’=’rw-’) other(’6’=’rw-’)

700 Owner(’7’=’rwx’) group(’0’=’---’) other(’0’=’---’)

755 Owner(’7’=’rwx’) group(’5’=’r-x’) other(’5’=’r-x’)

777 Owner(’7’=’rwx’) group(’7’=’rwx’) other(’7’=’rwx’)

User settings: A user may set permission bits for any combination at any level of
access. For example, if a user wanted to have read, write, and execute access to
one of his/her own files, but not allow access to anyone else, the permission bits
would be set to 700, which the ls -l command would display as -rwx------.

2.4.3.2 Default permissions set by OS/390
When you first create a file or directory, OS/390 sets default read, write, and
execute (rwx) permissions.

Table 3 shows the default permissions set by the system.

Table 3. Default permission bits

Using To Create a Default Permissions

mkdir shell command Directory owner=rwx
group=rwx
other=rwx

In octal form: 777

MKDIR TSO command Directory owner=rwx
group=r-x
other=r-x

In octal form: 755

JCL with no PATHDISP
specified

Directory or File owner=---
group=---
other=---

In octal form: 000

ISPF editor, OEDIT
and oedit command

File owner=rwx
group=---
other=---

In octal form: 700

vi editor File owner=rw-
group=rw-
other=rw-

In octal form: 666

ed editor File owner=rw-
group=rw-
other=rw-

In octal form: 666
28 Hierarchical File System Usage Guide



If you want to control the permissions that a program can set when it creates a file
or directory, you can set a file mode creation mask using the umask command.
See OS/390 V2R9.0 UNIX System Services Command Reference, SC28-1892
for more details on the umask command.

2.4.4 UNIX file security with the OS/390 Security Server (RACF)
With OS/390 UNIX System Services, the concept of user accounts is the same as
for any UNIX system, but the method of storing this account information is
different. RACF, when used with OS/390 UNIX System Services, integrates the
UNIX account information with the existing MVS account and system information
to provide a central secure database in which to store all security information.

Each UNIX user must have a UID and GID assigned to them. These UIDs and
GIDs are used by UNIX System Services to control or check access to files and
processes. UNIX System Services security functions are implemented in RACF
partially as modifications to existing RACF functions, and partially as new RACF
functions. The security functions provided include user validation, file access
checking, and privileged user checking.

UNIX System Services users are defined with RACF commands. When a job
starts or a user logs on, the user ID and password are verified by existing MVS

Redirections (>) File owner=rw-
group=rw-
other=rw-

In octal form: 666

cp command File Sets the output file permissions to the
input file permissions.

OCOPY command File Permission bits for a new file are specified
with the ALLOCATE command, using the
PATHMODE keyword, prior to entering the
OCOPY command. If the PATHMODE
keyword is omitted, the default is:

owner=---
group=---
other=---

In octal form: 000

OPUT or OPUTX
command

File For a text file:
owner=rw-
group=---
other=---

In octal form: 600

For a binary file:
owner=rwx
group=---
other=---

In octal form: 700

Using To Create a Default Permissions
Chapter 2. Introduction to OS/390 UNIX System Services 29



and RACF functions. When an address space requests a UNIX System Services
function for the first time, RACF:

1. Verifies that the user is a valid UNIX System Services user. The user has been
assigned a UID.

2. Verifies that the user’s current connect group is a valid UNIX System Services
group. The current connect group has been assigned a GID.

3. Initializes the control blocks needed for subsequent security checks.

When the first initialization is done, file security checking is started. RACF:

1. Checks whether a started task has trusted or privileged attributes. If a started
task has those attributes, it is treated like superuser.

2. Checks whether the user is superuser (uid=0).

3. Checks whether the UID of the user is UID of owner of the file. The owner
permission is used by user. If owner permission bit is 0, user’s file access is
denied.

4. Checks whether the GID of the user is GID of owner of the file. The group
permission is used by user. If group permission bit is 0, user’s file access is
denied.

5. Checks whether the other permission is not 0. If other permission is 0, user’s
file access is denied.

Figure 17 shows the flow chart for checking file security.

Figure 17. Flow chart for checking file security

uid =
ow n er?

yes

n o

grou p
p erm iss ion

gid =
o w ner-g ?

yes

n o

yes

yes

T ru ste d
p riv ileg ed ?

uid = 0?
yes

n o

n o

yes

othe r
p erm iss ion

ow ne r
pe rm ission

A ccess p erm itted

S ta rt f ile secu rity ch eck in g

n o

yes

A ccess d en ied

A ccess d en ied

A ccess d en ied

n o

n o
30 Hierarchical File System Usage Guide



Note: RACF does not perform security level checking for a started task that
has the RACF privileged and trusted attribute. A started task with the
privileged or trusted attribute is treated like a superuser (uid=0).

The RACF database contains, among other things, user profiles and group
profiles. Associated with these user and group profiles is a new segment called
the OMVS segment.

For a user, the OMVS segment contains the user identifier (UID), initial directory
path name (HOME), and initial program to execute after logon (PROGRAM). To
display this information, the OMVS keyword should be appended to the RACF LU

TSO command. For example, to display the OMVS segment for user STYRES2,
the following command should be used:

The NORACF keyword prevents the standard non-OMVS related information
from being displayed.

For a group, the OMVS segment contains the group identifier (GID). To display
this information, the OMVS keyword should be appended to the RACF LG TSO

command. For example, to display the OMVS segment for group OMVSGRP, the
following command should be used:

Refer to OS/390 V2R9.0 UNIX System Services Planning, SC28-1890, and
OS/390 V2R8.0Security Server Command Language Reference, SC28-1919, if
you need to define the RACF environment required to install and run UNIX
System Services.

-----------------------------------------------------------------------

ISPF Command Shell

Enter TSO or Workstation commands below:

===> lu styres2 omvs noracf

USER=STYRES2

OMVS INFORMATION
----------------
UID= 0000067157
HOME= /u/styres2
PROGRAM= /bin/sh

-----------------------------------------------------------------------

ISPF Command Shell

Enter TSO or Workstation commands below:

===> lg omvsgrp omvs noracf

OMVS INFORMATION
----------------
GID= 0000000001
Chapter 2. Introduction to OS/390 UNIX System Services 31



32 Hierarchical File System Usage Guide



Chapter 3. HFS externals

This chapter provides HFS related information about non-SMS and SMS
managed HFS data sets, BPXPRMxx PARMLIB member statements, new USS
commands, and HFS requirements and restrictions.

3.1 SMS considerations

Storage Management Subsystem (SMS) volume selection is handled in the same
manner for HFS data sets as for other system managed data sets in an SMS
environment.

We do not explain how to implement SMS nor how to manage system managed
data sets in general in this redbook. However, we will describe some common
SMS terms for those who are not familiar with SMS. Refer to 3.1.1, “Basic SMS
terms” on page 33.

See DFSMS/MVS DFSMSdfp Storage Administration Reference,SC26-4920, for
additional information regarding SMS, and see the redbook OS/390 Version 2
Release 6 UNIX System Services Implementation and Customization,
SG24-5178, for a sample SMS implementation.

Information regarding HFS data sets and SMS is provided in subsequent 3.1.3,
“Data class” on page 36 through 3.1.7, “ACS routines” on page 46.

Note: Non-SMS managed HFS data sets are supported in DFSMS/MVS 1.4 and
1.5 after PTFs have been installed. However, at the present time, these non-SMS
managed HFS data sets must be cataloged at mount time and must be single
volume data sets.

3.1.1 Basic SMS terms
SMS, introduced by MVS/DFP 3.1, provides a range of data and space
management functions. SMS improves storage space use, controls external
storage centrally, and lets you manage storage growth. SMS makes it easier to
convert to new device types and takes advantage of what available hardware can
do. With SMS, you can move toward system-managed storage.

SMS manages an installation's storage according to the currently active storage
management policy. Through the Interactive Storage Management Facility ISMF,
you define an installation storage management policy in an SMS configuration.
An SMS configuration contains:

• Base configuration information
• Classes and groups
• Automatic class selection (ACS) routines
• Volume selection

Base configuration
The base configuration identifies the systems that the SMS configuration
manages. These systems constitute an SMS complex:

• SMS complex: A system or a collection of systems that share a common
configuration including a common ACDS and a common communication data
© Copyright IBM Corp. 1999, 2000 33



set (COMMDS) pair. The SMS configuration supports up to 32 system names,
system group names, or both.

The base configuration also contains installation defaults.

You can define more than one control data set, but only one at a time controls
SMS. Each control data set defined for SMS is called a source control data set
(SCDS). The control data set that is in effect at a given time is the active control
data set (ACDS).

An SMS configuration can contain multiple constructs of each type. Data sets
managed by SMS are called system-managed. Each system-managed data set
or object must reside in a storage group. The system-managed data sets must
have a storage class, and might also have a management class and a data class.
You can assign the same name to various SMS classes and a storage group. For
example, a data class and a storage class can have the same name.

Classes and groups
SMS classes and groups are lists of traits and characteristics that are associated
with or assigned to data sets, objects and volumes. An SMS configuration can
contain the following five types of classes and groups:

• Storage group (SG) allows you to define a list of volumes and manage them
as if they were one large, single volume. SMS applies the properties you
assign to a storage group to all the volumes within the storage group.

• Management class (MC) allows you to define different levels of migration,
backup and retention services. Through management class, you can
associate a level of service with a data set or object that is independent of the
physical location of the data set or object. Also, you can identify an object
characteristic that might trigger a class transition.

• Storage class (SC) allows you to define different levels of performance and
availability services. Through storage class, you can separate the level of
service for a data set or object from physical device characteristics. You can
also separate the level of service for an object with different storage classes
used to place objects at various levels of the storage hierarchy.

• Data class (DC) allows you to define allocation defaults. Through the data
class, you can simplify and standardize the allocation of new data sets.

• Aggregate Group allows you to define groups of data sets for the purpose of
backing up or recovering all data sets in a group in a single operation.

Automatic class selection routines
ACS routines determine the SMS classes and storage groups for data sets and
objects. You can also use ACS routines to control the transition of data sets and
objects to and from SMS management.

Volume Selection
SMS classifies all volumes in the selected storage groups into four volume
categories during volume selection process:

• Primary: Volumes that meet all the specified criteria in the storage class in
addition to the volumes being online and below the maximum space used
threshold. Both the volume status and storage group status are enabled.
Volume selection starts from this list.
34 Hierarchical File System Usage Guide



• Secondary: Volumes that do not meet all the criteria for primary volumes. If
there are no primary volumes, SMS selects from the secondary volumes.

• Tertiary: Volumes are marked tertiary if the number of volumes in the storage
group is less than the number of volumes requested. If there are no secondary
volumes available, SMS selects from the tertiary candidates.

• Rejected: Volumes that do not meet the required specifications
(ACCESSIBILITY = CONTINUOUS, AVAILABILITY = STANDARD or
CONTINUOUS, ENABLED or QUIESCED, ONLINE...). These volumes are
marked rejected and are not candidates for selection.

Refer to 6.6, "Understanding Volume Selection" in DFSMS/MVS DFSMSdfp
Storage Administration Reference, SC26-4920, for detailed information on
volume selection.

3.1.2 Defining SMS constructs for HFS data sets
In the DFSMS environment, you use SMS classes and groups to set service
requirements, performance goals, and data definition models for your installation.
You use the ISMF to create the appropriate classes and groups, and ACS
routines to assign them to data according to your installation's policies.

Figure 18 provides an overview of allocation in an SMS environment.

Figure 18. Overview of allocation

You can specify a value of HFS as the Data Set Name Type attribute on the ISMF
Data Class Define and Data Class Alter panels. The Data Class List panel
indicates whether selected data sets are HFS data sets.

HFS data sets should have a separate data class. You must assign a valid
storage class in the SC ACS routine. Otherwise, the HFS data set will be
allocated as a non-SMS data set. HFS data sets should also be placed in a pool
(DASD) storage group.

IS H E L L J C L

S M S
c la s s e s

TS O A llo c a te
IS P F /P D F

A C S
ro u tin e s

A llo c a t io n

H F S

S G H F S S G A B C S G X Y Z n o n S M S
Chapter 3. HFS externals 35



ACS routines allow the HFS value if the &DSNTYPE read-only variable is also
provided.

3.1.3 Data class
A data class (DC) defines what the data looks like and contains attributes that
correspond to parameters that can be coded on JCL DD statements, TSO
ALLOCATE commands, or requests for dynamic allocation. It is a collection of
allocation and space attributes used to create a data set. You define data classes
for data sets that have similar attributes. When end users allocate a data set and
refer to a DC, SMS allocates the data set using the attribute values of its
associated DC.

You can also specify space attributes such as Avgrec, Avg Value, Primary and
Secondary for space to be allocated in this DC. Therefore, you do not need to
specify track and cylinder space requests on your allocation request.

• The AVGREC field shows whether space is allocated in bytes (U), kilobytes
(K), or megabytes (M).

• The AVG VALUE field shows the length, in bytes, of each record.

• The PRIMARY and SECONDARY fields show the number of kilobytes,
megabytes, or bytes allocated for primary and secondary storage.

You can define a data set organization such as HFS in a data class definition. You
can create two DC definitions for HFS data set allocation:

1. A data class definition for single volume allocation, as shown:

Data Set Name Type: The Data Set Name Type field defines the format of
data sets created using this data class.

For example, you can define a new Data Class with the name HFS. The only
data class attribute you need to specify is Data Set Name Type = HFS to
allocated an HFS data set.

DATA CLASS DEFINE Page 3 of 3
Command ===>

SCDS Name . . . : SYS1.SMS.SCDS
Data Class Name : HFS

To DEFINE Data Class, Specify:
Data Set Name Type . . . . . . HFS (EXT, HFS, LIB, PDS or blank)
If Ext . . . . . . . . . . . (P=Preferred, R=Required or blank)
Extended Addressability . . . N (Y or N)
Record Access Bias . . . . . (S=System, U=User or blank)

Reuse . . . . . . . . . . . . . N (Y or N)
Initial Load . . . . . . . . . R (S=Speed, R=Recovery or blank)
Spanned / Nonspanned . . . . . (S=Spanned, N=Nonspanned or blank)
BWO . . . . . . . . . . . . . . (TC=TYPECICS, TI=TYPEIMS, NO or blank)
Log . . . . . . . . . . . . . . (N=NONE, U=UNDO, A=ALL or blank)
Logstream Id . . . . . . . . .
Space Constraint Relief . . . . N (Y or N)
Reduce Space Up To (%) . . . (0 to 99 or blank)
36 Hierarchical File System Usage Guide



2. A data class with the name HFSMULTI for multi-volume HFS data set
allocation:

Volume Count: Use the Volume Count field to specify the maximum number
of volumes that can be used to store the HFS data set. Of course, you also
need to specify Data Set Name Type = HFS to allocate an HFS (multi-volume)
data set.

Note: When a storage group does not contain enough volumes to satisfy the
volume count, all volumes in the storage group are flagged as tertiary.

3.1.4 Storage class
A storage class (SC) is a list of storage objectives and requirements. Each SC
represents a list of services that are available to data sets having similar access
requirements. A SC does not represent any physical storage, but rather provides
the criteria that SMS uses in determining an appropriate location to place a data
set.

In general, SMS attempts to select a location that meets or exceeds the specified
objective, but SMS does not guarantee response time. You should be careful in
specifying any attributes that are not reflected by your current configuration.

3.1.4.1 Defining Performance Objectives
In the performance objectives fields of the Storage Class Define panel, you can
request millisecond response (MSR) times and indicate the bias of both direct
and sequential access data sets. All of the performance attributes are optional.

If you leave all MSR and bias fields blank (direct and sequential), SMS ignores
device performance during volume selection.

The MSR serves two purposes in SMS.

• First, it is used as the performance objective for selecting candidate volumes
for new data set placement. During a new data set allocation, SMS searches
for a volume that meets or closely matches this objective. If no volume
satisfies the objective, then SMS attempts to find a volume that comes closest

DATA CLASS DEFINE Page 2 of 3
Command ===>

SCDS Name . . . : SYS1.SMS.SCDS
Data Class Name : HFSMULTI
To DEFINE Data Class, Specify:
Retpd or Expdt . . . . . . (0 to 9999, YYYY/MM/DD or blank)
Volume Count . . . . . . . 3 (1 to 59 or blank)
Add'l Volume Amount . . . (P=Primary, S=Secondary or blank)

Imbed . . . . . . . . . . . (Y, N or blank)
Replicate . . . . . . . . . (Y, N or blank)
CIsize Data . . . . . . . . (1 to 32768 or blank)
% Freespace CI . . . . . . (0 to 100 or blank)

CA . . . . . . (0 to 100 or blank)
Shareoptions Xregion . . . (1 to 4 or blank)

Xsystem . . . (3, 4 or blank)
Compaction . . . . . . . . (Y, N, T, G or blank)
Media Interchange
Media Type . . . . . . . (1, 2, 3, 4 or blank)
Recording Technology . . (18, 36, 128 or blank)
Chapter 3. HFS externals 37



to matching it. If more than one MSR is explicitly or implicitly specified, the
storage class and associated device MSRs are averaged and compared.

• Second, if the data is placed on a volume attached through an IBM 3990
Storage Control with cache, and cache is enabled for that volume, the MSR is
used to determine if caching is mandatory, optional, or should be inhibited for
the data set.

3.1.4.2 Defining Availability
The Availability field shows whether this storage class can provide uninterrupted
processing after a device failure.

Depending on the value in the availability field, SMS selects (or prefers) simplex
(like traditional 3390), array (like RAMAC or ESS) and/or dual copy volumes
during SMS volume selection process.

NOPREF is the default. Simplex and array DASD are equally considered for
volume selection. Dual copy volumes are not candidates for selection.

3.1.4.3 Defining Accessibility
The storage class accessibility attribute defines the function of the hardware
supporting point-in-time copy, using either concurrent copy or virtual concurrent
copy.

NOPREF (N) is the Default. Point-in-time copy capability is ignored during
volume selection.

3.1.4.4 Defining Guaranteed Space
You can allocate space for single volume and multi-volume data sets before the
job step runs by specifying a storage class with a Guaranteed Space attribute.
SMS fails the request if sufficient space is not available. You can also use the
Guaranteed Space attribute to allocate a data set on specific volumes.

For a multi-volume system-managed data set, primary space is preallocated on
all the volumes. The first volume becomes the primary volume. All remaining
volumes become candidate volumes with preallocated space.

Refer to 4.1, “Allocating an HFS” on page 77 for further information.

For example, if you specify an SC attribute, such as AVAILABILITY, which does
not match any of the installed devices, then the volumes are placed into the
secondary volume category and SMS may prefer one DASD volume over
another. Therefore, the allocation of the HFS data sets are not spread equally
over all volumes in selected storage groups.

If you want to spread allocations across volumes of different devices, or devices
with different features, use the following parameter settings in the assigned SC.

Storage Class Parameters:

• MSR = blank
• BIAS = blank
• ACCESSIBILITY = NOPREF
• AVAILABILITY = NOPREF

Note: Dual copy volumes are not candidates for selection.
38 Hierarchical File System Usage Guide



• GUARANTEED SPACE = N

Pages 1 and 2 of a sample storage class definition are shown in Figure 19 and
Figure 20:

Figure 19. Storage class definitions, Page 1 of 2

Figure 20. Storage class definitions, Page 2 of 2

3.1.4.5 Non-SMS storage class
By definition, a data set with a storage class is system-managed. If you want to
have non-SMS HFS data sets, we recommend that you define a storage class
called NONSMS with the defaults.

You may use this storage class in an allocation request and your storage class
ACS routine should exit with a null storage class when the NONSMS storage
class has been requested in accordance with your installation standards. This will
give you a non-managed HFS data set.

3.1.5 Management class
A management class (MC) is a named list of data set migration, backup and
retention attribute values. DFSMShsm uses the attributes of the MC associated

STORAGE CLASS ALTER Page 1 of 2
Command ===>

SCDS Name . . . . . : SYS1.SMS.SCDS
Storage Class Name : OPENMVS
To ALTER Storage Class, Specify:
Description ==> OE STORAGE CLASS

==>
Performance Objectives
Direct Millisecond Response . . . . (1 to 999 or blank)
Direct Bias . . . . . . . . . . . . (R, W or blank)
Sequential Millisecond Response . . (1 to 999 or blank)
Sequential Bias . . . . . . . . . . (R, W or blank)
Initial Access Response Seconds . . (0 to 9999 or blank)
Sustained Data Rate (MB/sec) . . . (0 to 999 or blank)
Availability . . . . . . . . . . . . N (C, P ,S or N)
Accessibility . . . . . . . . . . . N (C, P ,S or N)
Backup . . . . . . . . . . . . . . (Y, N or Blank)
Versioning . . . . . . . . . . . . (Y, N or Blank)

STORAGE CLASS ALTER Page 2 of 2
Command ===>

SCDS Name . . . . . : SYS1.SMS.SCDS
Storage Class Name : OPENMVS

To ALTER Storage Class, Specify:

Guaranteed Space . . . . . . . . . N (Y or N)
Guaranteed Synchronous Write . . . N (Y or N)
CF Cache Set Name . . . . . . . . (up to 8 chars or blank)
CF Direct Weight . . . . . . . . . (1 to 11 or blank)
CF Sequential Weight . . . . . . . (1 to 11 or blank)
Chapter 3. HFS externals 39



with a data set to manage storage. A management class is optional for
system-managed data sets.

The MC definition is divided into several sections. For HFS processing, we will
discuss only three sections:

• Defining management class expiration attributes (page 1 of 5)
• Defining management class migration attributes (page 2 of 5)
• Defining management class backup attributes (page 2 of 5)

3.1.5.1 Expiration attributes and retention limit
You use expiration attributes to determine the action for HFS data set expiration
and deletion. DFSMShsm deletes expired data sets during automatic space
management processing. Expiration attributes are required values that indicate
when an HFS data set becomes eligible for expiration.

If all the EXPIRE AFTER DAYS NON-USAGE, EXPIRE AFTER DATE/DAYS and
RETENTION LIMIT fields have NOLIMIT as the value, the data sets never expire.

Partial Release: Use the Partial Release field to specify whether allocated but
unused space can be released for data sets in this management class. However,
since PARTREL is not supported for HFS data sets, you need to specify PARTIAL
RELEASE = N.

See 5.4.1, “Releasing unused space” on page 130 for more information.

3.1.5.2 Migration attributes
Primary Days Non-usage: The Primary Days Non-usage attribute represents
the minimum number of days that must elapse since the last access before a data
set is eligible for normal migration.

Level 1 Days Non-usage: If the Level 1 Days Non-usage field has specified
NOLIMIT, data sets cannot migrate to Level 2 automatically, but they can do so by
command, or remain on Level 1 for an unlimited period.

If you do not want to migrate data sets that belong to a particular management
class, specify NONE in the Command or Auto Migrate field. The data sets remain
on primary storage until they expire.

MANAGEMENT CLASS DEFINE Page 1 of 5
Command ===>

SCDS Name . . . . . . : SYS1.SMS.SCDS
Management Class Name : HFS

To DEFINE Management Class, Specify:

Description ==>
==>

Expiration Attributes
Expire after Days Non-usage . . NOLIMIT (1 to 9999 or NOLIMIT)
Expire after Date/Days . . . . . NOLIMIT (0 to 9999, yyyy/mm/dd or

NOLIMIT)

Retention Limit . . . . . . . . . NOLIMIT (0 to 9999 or NOLIMIT)
40 Hierarchical File System Usage Guide



Notes:

• From a performance point of view, if you plan to migrate HFS data sets,
migrate them only to level 1 (DASD) storage. Recalling an HFS data set that
was migrated to tape could adversely affect performance because of the time
required to physically mount the volume.

• If your HFS data sets reside on RVA volumes, which are already compressed
by more than the factor that DFSMShsm or the CPU can compress, we
suggest that you eliminate automatic migration to ML1. You can leave data for
longer periods of time on the primary volumes, or save some space, and then
migrate directly to ML2.

In this sample, the HFS data sets will be migrated to ML1 volumes after 90 days,
but they will not be migrated to ML2 volumes.

3.1.5.3 Backup attributes
Number of Backup Versions: The Number of Backup Versions fields specify the
maximum number of backup versions to retain for a data set.

Retain Days Only Backup Versions: The Retain days only Backup Version
(Data Set Deleted) field indicates how many days to keep the most recent backup
version of a deleted data set, starting from the day DFSMShsm detects it has
been deleted.

Retain Days Extra Backup Versions: The Retain days extra Backup versions
field indicates how many days to keep backup versions other than the most
recent one, starting from the day backups were created. It only applies when
more than one backup version exists, and when a data set has low activity.

Admin or User command Backup: The Admin or User command Backup field
indicates if both the end user and the storage administrator can issue command
backups of the data sets in this management class, if only the storage
administrator can, or if neither of them can.

MANAGEMENT CLASS DEFINE Page 2 of 5
Command ===>

SCDS Name . . . . . . : SYS1.SMS.SCDS
Management Class Name : HFS

To DEFINE Management Class, Specify:

Partial Release . . . . . . . . . N (Y, C, YI, CI or N)

Migration Attributes
Primary Days Non-usage . . . . 90 (0 to 9999 or blank)
Level 1 Days Non-usage . . . . NOLIMIT (0 to 9999, NOLIMIT or blank)
Command or Auto Migrate . . . . BOTH (BOTH, COMMAND or NONE)

GDG Management Attributes
# GDG Elements on Primary . . . (0 to 255 or blank)
Rolled-off GDS Action . . . . . (MIGRATE, EXPIRE or blank)
Chapter 3. HFS externals 41



Auto Backup: The Auto Backup field is required, and has a default value of Y. If
you specify Y in the Auto Backup field, the remaining fields on this panel are
required. Otherwise, the remaining fields are optional.

Backup Copy Technique: The Backup Copy Technique field specifies whether
or not concurrent copy should be used during data set backup processing.

We used the default settings for the backup attributes. Depending on your backup
policy, you may change the defaults.

3.1.6 Storage group
Storage groups (SG) represent the physical storage managed by SMS. This
storage can be collections of DASD volumes, volumes in tape libraries, optical
devices, or virtual input/output (VIO) storage. For HFS data set allocations, you
can only use an storage group of DASD volumes. A storage group, used together
with storage classes, separates the logical requirements for accessing data from
the physical requirements to store the data. You can set up storage group
attributes to specify how the system should manage the storage group.

3.1.6.1 Storage group considerations
• You use the SG ACS routine to assign a new data set to a storage group. You

can assign multiple candidate storage groups. In this case, the system
chooses a specific storage group from your list. Storage group definitions are
not apparent to users.

• Two storage groups cannot share a DASD volume. You must define an entire
volume to a single pool-type storage group. Also, a data set can only reside in
one pool-type storage group. A data set can span volumes within a single
pool-type storage group, but it cannot span volumes belonging to several
pool-type storage groups.

• Although not required, we recommend that you define pool-type storage
groups so that they only contain devices of the same geometry. The device
geometry is the track size and number of tracks per cylinder for the device.

By defining pool storage groups so that the device geometry is the same for all
volumes in the storage group, you can ensure that volumes of the same

MANAGEMENT CLASS DEFINE Page 3 of 5
Command ===>

SCDS Name . . . . . . : SYS1.SMS.SCDS
Management Class Name : HFS

To DEFINE Management Class, Specify:
Backup Attributes
Backup Frequency . . . . . . . . 1 (0 to 9999 or blank)
Number of Backup Vers . . . . . . 2 (1 to 100 or blank)
(Data Set Exists)

Number of Backup Vers . . . . . . 1 (0 to 100 or blank)
(Data Set Deleted)

Retain days only Backup Ver . . . 60 (1 to 9999, NOLIMIT or blank)
(Data Set Deleted)

Retain days extra Backup Vers . . 30 (1 to 9999, NOLIMIT or blank)
Admin or User command Backup . . BOTH (BOTH, ADMIN or NONE)
Auto Backup . . . . . . . . . . . Y (Y or N)
Backup Copy Technique . . . . . . S (P=Conc Preferred, R=Conc
42 Hierarchical File System Usage Guide



geometry are available when multi-volume data sets need to extend to new
volumes.

For example, if you have 3380 and 3390 devices, you should define at least
two storage groups: one containing 3380 devices, and another containing
3390 devices.

Since 3390 devices in 3380 track compatibility mode are geometrically the
same as 3380 devices, you can combine these devices in a single storage
group. Because the 3390 devices are in 3380 track compatibility mode, the
access methods see them as 3380 devices.

• Although you should separate devices according to geometry, you do not need
to separate them according to capacity. For example, you can combine all
models of the 3390 into a single SG. The only effect that the different
capacities have is on volume thresholds. See SML Managing Storage Groups,
SC26-3125 for information on selecting appropriate threshold levels.

• Devices of the same geometry can have different performance characteristics.
These devices coexist in the same storage group, and enhanced volume
selection for SMS manages data set placement accordingly. With enhanced
volume selection, even devices with vastly different performance
characteristics can reside in the same storage group.

• If a data set has a management class that specifies automatic backup or
migration, you must direct the data set to a storage group that is eligible to be
processed for automatic backup or migration.

See DFSMS/MVS DFSMSdfp Storage Administration Reference, SC26-4920,
and SML Managing Storage Groups, SC26-3125, for more information about
planning and implementing storage groups.

There is no requirement to create your own storage group for HFS data sets. If
you have already implemented a storage management policy, you can use your
existing policy to manage HFS data sets.

However, if you have not implemented a storage management policy, we suggest
that you create a separate set of storage groups for HFS data sets. Doing this
provides benefits such as:

• Causing less impact on performance from other OS/390 applications, for
example, to reduce queuing on the UCB.

• Simplifying multi-volume processing.

• Directing the backup processing to the system which has mounted the HFS.

• Separating your USS data (HFS files) from other OS/390 applications.

The storage group Auto Migrate and Auto Backup parameters specify whether the
volumes in this storage group are eligible to be processed automatically. The
management class assigned to the data sets residing on the volumes determines
whether and how to process the data sets on the volume. In contrast, if you set
Auto Migrate or Auto Backup to NO in the storage group attributes, the volumes in
the storage group are not processed and the data sets residing in the storage
group are neither migrated nor backed up.

After a storage group has been set up, volumes can be defined for this storage
group.
Chapter 3. HFS externals 43



3.1.6.2 Auto Migrate
Use the AUTO MIGRATE field to specify whether data sets on volumes in this
storage group can be moved to migration level 1 DASD or migration level 2 tape
by the primary space management and interval migration functions of
DFSMShsm.

During primary space management, which is run daily, DFSMShsm moves data
sets until the space allocated on each volume drops to or below the MIGR LOW
value, or no more data sets on the volume are eligible to be migrated.

In its hourly interval migration, DFSMShsm moves eligible data sets from each
volume with allocation at or above the MIGR HIGH value, until the allocation
reaches the MIGR LOW value.

Possible values for the auto migrate attribute are:

Y Data sets are eligible for primary space management migration. If
SETSYS INTERVALMIGRATION has been specified in DFSMShsm,
the data sets are also eligible for interval migration.

N Data sets are not eligible for automatic migration.

I Data sets are eligible for primary space management and interval
migration.

P Data sets are eligible for primary space management but not interval
migration.

When AUTO MIGRATE is I, migration is done when the space used exceeds the
half way mark between the MIGR HIGH and MIGR LOW thresholds.

3.1.6.3 Auto Backup
Use the Auto Backup field to specify whether all the volumes in the SG are
eligible for automatic backup. If the volumes are eligible for automatic backup,
each data set on the volume will be backed up according to the backup attributes
of its management class. If you specify that the volumes are not eligible for
automatic backup, the backup attributes for the data sets on those volumes will
be ignored. Specify Y if your volumes in this SG are eligible for automatic backup.

3.1.6.4 Backup Sys/Sys Group Name
The Backup Sys/Sys Group Name field shows the name of the system or system
group where the automatic backup function will be processed. All data sets in the
storage group are eligible to be backed up by the system or system group
specified.

Note: You should specify the name of the system that has mounted the HFS R/W
in the Backup Sys/Sys Group Name field. The backup will be performed on the
same system which has the HFS currently mounted in R/W mode. Refer to 5.2,
“DFSMShsm backup and migration” on page 115 for more information about HFS
and DFSMShsm.

3.1.6.5 Auto Dump
In Auto Dump, you specify whether you want automatically to dump all the DASD
volumes in this storage group. It is an optional field which ISMF primes with the
value N (No).
44 Hierarchical File System Usage Guide



Note: We suggest that you do not use AUTODUMP Y. This will result in
DFSMShsm full volume dump processing, which invokes DFSMSdss physical
volume dump. DFSMSdss physical dump does not quiesce mounted HFSs in the
dump data set. Although no error indication will be given during dump processing,
a subsequent restore may result in a damaged or unusable HFS. Refer to 5.1,
“DFSMSdss dump and restore” on page 103 for more information about HFS and
DFSMSdss.

3.1.6.6 Allocation/migration Threshold
Use the HIGH and LOW values of Allocation/migration Threshold to optimize the
use of DASD space in a pool storage group. SMS tries to stay below the HIGH
value when choosing a volume on which to allocate a new data set. DFSMShsm
uses a threshold to determine whether to run the interval migration function.
When utilization meets or exceeds the threshold, DFSMShsm migrates data sets
until volume utilization is below the LOW value, or there are no more data sets
eligible for migration.

In addition, DFSMShsm uses the LOW threshold during its daily primary space
management function. If the amount of allocated space exceeds the LOW
threshold, data sets are deleted or migrated until the LOW threshold is met.

If Auto Migrate is Y and SETSYS INTERVALMIGRATION has been specified in
DFSMShsm, DFSMShsm checks hourly to see if the HIGH value has been
reached. If AUTO MIGRATE is I, DFSMShsm checks the space used to see if it
exceeds the half way mark between the HIGH and LOW values. If it does,
DFSMShsm starts interval migration.

Both the HIGH and LOW values represent the percentage of DASD space to be
used. A HIGH value is required and has a default of 85. A LOW value is required
if AUTO MIGRATE is Y, I or P. If LOW is specified, it must be less than or equal to
HIGH.

3.1.6.7 Guaranteed Backup Frequency
Use the Guaranteed Backup Frequency field to specify the maximum number of
days that can elapse between incremental data set backups being taken. During
this backup period, a backup copy of each data set within the storage group is
available. This field is valid only for pool-type storage groups.

You must provide a backup frequency when AUTO BACKUP is set to YES. When
AUTO BACKUP is NO, backup frequency is optional.

Specify NOLIMIT if your data sets in the SG are backed up according to
management class specifications.

The use of guaranteed backup frequency means that you can recover a volume
from incremental backup tapes only. No full volume dump is used and the use of
guaranteed backup frequency limits the number of backup tapes that are
mounted for recovery. This technique is good for HFS data sets because there is
no DFSMSdss physical dump processing involved.

You must specify GBF=1 if you want to get at least one DFSMShsm backup
version per day. See 5.2.2, “Backup processing” on page 118 for more
information regarding DFSMShsm backup consideration.
Chapter 3. HFS externals 45



3.1.6.8 DEFINE SMS Storage Group Status
Use the DEFINE SMS Storage Group Status ISMF panel to designate the
relationship or status between storage groups and the systems in a complex.
Initially, all of the status fields are set to ENABLE. Refer to DFSMS/MVS
DFSMSdfp Storage Administration Reference, SC26-4920, for further information
about the meanings of the storage group status field.

The following screen shows a sample ISMF panel for POOL STORAGE GROUP
DEFINE.

3.1.7 ACS routines
You use ACS routines to assign class and storage group definitions to data sets
as well as to HFS data sets.

Through ISMF, you can create and maintain as many as four ACS routines in an
SCDS, one for each type of SMS class and one for storage groups.

Figure 21 shows the order in which ACS routines are processed. Data will
become system-managed if the storage class routine assigns a storage class to
the data set or if a user-specified SC is assigned to the data set. For HFS data
sets that are to be system-managed, a storage class must be assigned.

A storage group must be assigned by the ACS routine, because that is the only
way to specify a SG.

POOL STORAGE GROUP DEFINE
Command ===>

SCDS Name . . . . . : SYS1.SMS.SCDS
Storage Group Name : HFS
To DEFINE Storage Group, Specify:
Description ==>

==>
Auto Migrate . . Y (Y, N, I or P) Migrate Sys/Sys Group Name . .
Auto Backup . . Y (Y or N) Backup Sys/Sys Group Name . .
Auto Dump . . . N (Y or N) Dump Sys/Sys Group Name . . .

Dump Class . . . (1 to 8 characters)
Dump Class . . . Dump Class . . .
Dump Class . . . Dump Class . . .

Allocation/migration Threshold: High . . 85 (1-99) Low . . 50 (0-99)
Guaranteed Backup Frequency . . . . . . NOLIMIT (1 to 9999 or NOLIMIT)

DEFINE SMS Storage Group Status . . .... N (Y or N)
46 Hierarchical File System Usage Guide



Figure 21. Overview of ACS routines

The ACS language contains a number of read-only variables, which you can use
to analyze new data allocations. For example, you can use the read-only variable
&DSN to make class and group assignments based on data set name, or &LLQ to
make assignments based on the low-level qualifier of the data set or object
collection name.

You cannot alter the value of read-only variables. You use the four read-write
variables (&DATACLAS, &STORCLAS, &MGMTCLAS and &STORGRP) to
assign the class or storage group you determine for the data set, based on the
routine you are writing. You may only set a read-write variable in its own ACS
routine.

For a detailed description of the ACS language and its variables, see
DFSMS/MVS DFSMSdfp Storage Administration Reference, SC26-4920.

3.1.7.1 Sample ACS routine definitions for HFS data set allocations
The following are sample ACS routine definitions for HFS data set allocation
together with two example batch job streams which allocate HFS data sets.

Note: We extracted only that information from the different ACS routines that is
relevant for HFS data set allocations.

In our sample ACS routines, all data sets which meet one of the following
conditions will be allocated as HFS data sets:

• Pre-assigned data class of HFS. Refer to DDNAME2 (single volume) on page
50.

• Pre-assigned data class of HFSMULTI. Refer to DDNAME5 (multi-volume) on
page 50.

• DSNTYPE=HFS. Refer to DDNAME1 and DDNAME4 on page 50.

• Low level qualifier (&LLQ), starting with HFS. Refer to DDNAME3 and
DDNAME6 on page 50.

N e w d a t a s e t
a l lo c a t io n

D a ta C la s s
A C S R o u t in e

S t o r a g e G r o u p
A C S R o u t in e

M a n a g e m e n t C la s s
A C S R o u t in e

S t o r a g e C la s s
A C S R o u t in e

D a ta C la s s
A C S R o u t in e

D F S M S h s m o r
D F S M S d s s
c o n v e r s io n o f
e x is t in g d a ta s e t

n o n S M S

S G H F S

n u l l
Chapter 3. HFS externals 47



Data class ACS routine
The DC ACS routine assigns a data class of HFS or HFSMULTI to all data sets
that meet one of the following conditions:

• DATACLAS of HFS or HFSMULTI is pre-assigned
• DSNTYPE=HFS is specified
• The LLQ of data set names starts with HFS

Note: The benefit of explicitly assigning the HFS data class to allocations that
have already defined DSNTYPE=HFS is that the HFS data set will always be
SMS managed, due to our definitions in the SC ACS routine.

For example, if we remove the part,

WHEN (&DSNTYPE EQ 'HFS') DO SET &DATACLAS EQ 'HFS' END

in the DC ACS routine, and we try to allocate an HFS data set with a name other
than HFS* or OMVS*, (in our sample SMS environment), the SC ACS routine
routes the allocation to non-SMS managed volumes, although we have specified
DSNTYPE=HFS in the JCL. The allocation will give us a non-SMS managed HFS
data sets which may not be what we want.

Storage class ACS routine
All data sets with a high level qualifier (HLQ) starting with OMVS or HFS will be
given the OPENMVS storage class. All data sets which have a data class of HFS
or HFSMULTI will also be given the OPENMVS storage class.

Note:

1. Ensure that you assign a valid storage class in the storage class ACS routine
for your HFS data set allocations. Otherwise, the HFS data set will be
allocated as a non-SMS data set.

2. Non-SMS managed HFS data sets are supported. However, these non-SMS
managed HFS data sets must be cataloged at mount time and can only be
single volume data sets.

FILTLIST HFS_DATA_SET INCLUDE(HFS*)

SELECT
WHEN (&DATACLAS= 'HFS')
DO
SET &DATACLAS = 'HFS'

END
WHEN (&DATACLAS= 'HFSMULTI' )
DO
SET &DATACLAS = 'HFSMULTI'

END
WHEN (&DSNTYPE EQ 'HFS')
DO
SET &DATACLAS EQ 'HFS'

END
WHEN (&LLQ EQ &HFS_DATA_SET)
DO
SET &DATACLAS EQ 'HFS'

END
48 Hierarchical File System Usage Guide



Management class ACS routine
The HFS management class will be assigned to all data sets that have already
been assigned the OPENMVS storage class.

Storage group ACS routine
The OPENMVS storage group will be assigned to all data sets that are
associated with the OPENMVS storage class.

Sample batch job allocations based on the ACS routine definitions

FILTLIST OMVS INCLUDE(OMVS.**,HFS.**)
FILTLIST HFSDC INCLUDE('HFS','HFSMULTI')

IF &HLQ = &OMVS
THEN DO
SET &STORCLAS = 'OPENMVS'

EXIT
END

IF &DATACLAS = &HFSDC
THEN DO
SET &STORCLAS = 'OPENMVS'

EXIT
END

IF &STORCLAS EQ 'OPENMVS'
THEN DO
SET &MGMTCLAS = 'HFS'

EXIT
END

SELECT
WHEN (&STORCLAS = 'OPENMVS')
SET &STORGRP = 'OPENMVS'
Chapter 3. HFS externals 49



Part 1 of 2 (single-volume HFS data set allocation):

Part 2 of 2 (multi-volume HFS data set allocation):

//ALLOC1 EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//****************************************************************/
//* #1 DSNTYPE=HFS */
//****************************************************************/
//DDNAME1 DD DSN=STYRES1.DATA.SET1,
// DISP=(NEW,CATLG),
// UNIT=(SYSDA),
// SPACE=(TRK,(2,2,1)),
// DSNTYPE=HFS
//****************************************************************/
//* #2 DATACLAS=HFS */
//****************************************************************/
//DDNAME2 DD DSN=STYRES1.DATA.SET2,
// DISP=(NEW,CATLG),
// UNIT=(SYSDA),
// SPACE=(TRK,(2,2,1)),
// DATACLAS=HFS
//****************************************************************/
//* #3 DSN LLQ = HFS* */
//****************************************************************/
//DDNAME3 DD DSN=STYRES1.USER.HFS3,
// DISP=(NEW,CATLG),
// UNIT=(SYSDA),
// SPACE=(TRK,(2,2,1))

//ALLOC1 EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//****************************************************************/
//* #4 MULTIVOLUME DSNTYPE=HFS */
//****************************************************************/
//DDNAME4 DD DSN=STYRES1.MULTIVOL.DATA.SET4,
// DISP=(NEW,CATLG),
// UNIT=(SYSDA,3),
// SPACE=(TRK,(2,2,1)),
// DSNTYPE=HFS
//****************************************************************/
//* #5 MULTIVOLUME DATACLAS=HFSMULTI */
//****************************************************************/
//DDNAME5 DD DSN=STYRES1.MULTIVOL.DATA.SET5,
// DISP=(NEW,CATLG),
// UNIT=(SYSDA,3),
// SPACE=(TRK,(2,2,1)),
// DATACLAS=HFSMULTI
//****************************************************************/
//* #6 MULTIVOLUME DSN LLQ = HFS* */
//****************************************************************/
//DDNAME6 DD DSN=STYRES1.USER.MULTIVOL.HFS6,
// DISP=(NEW,CATLG),
// UNIT=(SYSDA,3),
// SPACE=(TRK,(2,2,1))
50 Hierarchical File System Usage Guide



All six allocations in the above samples result in an HFS data set allocation. Table
4 shows which DC was assigned to the HFS data set and whether or not the HFS
data set was allocated as a multi-volume HFS data set. All HFS data sets were
given the OPENMVS storage class, the HFS management class and assigned to
the OPENMVS storage group.

Table 4. Data class assignment results

3.2 Non-SMS considerations

HFS data sets need no longer be SMS managed. As a result of this new support,
SMS management is now optional when allocating an HFS data set.

This support is shipped via PTFs for DFSMS/MVS 1.4 and 1.5 and changes
DFSMSdfp, DFSMSdss, DFSMShsm as well as TSO/E, ISPF and BCP
(Allocation). Please see information APAR II12221 regarding the required
maintenance to allocate non-SMS managed HFS data sets. We recommend that
you contact your local IBM Support Center.

You may also need to change your current processes and policies to allow
non-SMS managed HFS data sets:

• Ensure that your storage class ACS routine allows non-SMS managed HFS
data sets.

• Specify VOL=SER=xxxxxx and UNIT parameters in JCL.

The usage of non-SMS managed HFS data sets provides the following benefits:

• It can simplify maintenance procedures and system cloning processing.

• They can reside on the SYSRES volume.

However, there are some restrictions associated with this support:

• To mount an non-SMS managed HFS data set, it must be cataloged.

Allocation assigned DC Multi-volume

#1 HFS No

#2 HFS No

#3 HFS No

#4 HFS Yes

#5* HFSMULTI Yes

#6 HFS Yes

* Note: no VOLCOUNT specified in UNIT statement

You can only mount cataloged non-SMS managed HFS data sets.

You can only mount single volume non-SMS managed HFS data sets.

Important information
Chapter 3. HFS externals 51



• You can create uncataloged HFS data sets, but you will not be able to mount
them until they are cataloged.

• You will not be able to mount multi-volume non-SMS managed HFS data sets.

You should not assume that the support for non-SMS HFS data sets is a
recommendation to move away from SMS management of HFS data. Exploitation
of automated storage management by setting appropriate values in the data,
storage and management classes for HFS data sets is still of great value. The
support is intended to be use for system data sets and as a convenience for sites
who have not yet implemented system-managed storage.

3.2.1 Non-SMS availability management
DFSMShsm manages non-SMS storage using policies that are either
system-wide or apply at a volume level. All the data sets on a volume are
managed by the same policy, whether for number of days between backups or
number of versions retained. This is in contrast to the much more flexible use of
policies at a data set level for system-managed data. The differences from
processing of SMS managed storage are:

• Uncataloged data sets can be backed up and recovered.

• Users can specify the volume to which a data set is to be recovered.

• Volumes to be dumped or backed up are individually identified to DFSMShsm.

• System-wide settings are held in SYS1.PARMLIB member ARCCMDxx.

Availability management of non-SMS managed storage uses the same
techniques for management as those for SMS managed storage. Although the
functions performed are similar, the policies for availability management of
non-SMS managed storage are specified differently. System-wide policies are set
in the DFSMShsm parmlib member ARCCMDxx. Volume-level settings are set in
ADDVOL commands which are normally included in ARCCMDxx. Because no
storage group or management class definitions are available to define how to
manage the volumes and which volumes to manage, there are some parameters
that we must set:

• How frequently data sets are to be backed up.

For SMS managed data sets, you can specify a different backup frequency for
each management class. This lets you have as many different backup
frequencies as you have management classes. For non-SMS managed
storage, you can specify only one backup frequency for all volumes processed
by any one processor. You can, however, change the backup frequency of
individual non-SMS managed data sets with the (H)ALTERDS command.

The FREQUENCY parameter of the SETSYS command controls the backup
frequency for the data sets processed by each processor. For the example,
the following command allows DFSMShsm to backup an HFS data set once a
day:

SETSYS FREQUENCY(1)

If you do not specify this parameter on any SETSYS command, the
DFSMShsm default is zero, meaning that a data set will be eligible for backup
each time that volume backup runs.

• How many versions to keep for each backed up data set.
52 Hierarchical File System Usage Guide



For non-SMS managed storage, the number of backup versions to retain is a
system-wide specification. As with SMS managed storage, depending on the
record length used to define the BCDS, DFSMShsm can maintain up to 29, or
up to 100, backup versions of any data set. Refer to the DFSMShsm
Implementation and Customization Guide, SH21-1078, for details.

Within that upper limit, the VERSIONS parameter of the SETSYS command
controls the number of backup versions to be retained. For the example, the
following command specifies a maximum number of five backup versions that
DFSMShsm can keep for any one HFS data set:

SETSYS VERSIONS(5)

If you do not specify this parameter on any SETSYS command, the
DFSMShsm default is 2.

The SETSYS VERSIONS parameter is used to specify the number of backup
versions for all your non-SMS managed data sets. A DFSMShsm-authorized
user, however, can specify the VERSIONS parameter of the ALTERDS
command to change that number of backup versions for a specific HFS data
set. An unauthorized user can specify the VERSIONS parameter of the
HALTERDS command to change that number of backup versions for a specific
HFS data set with the same high-level qualifier as the unauthorized user.

• Which volumes are to be backed up automatically.

For non-SMS managed storage, you can identify each individual volume that
DFSMShsm backs up automatically by specifying the AUTOBACKUP
parameter on the ADDVOL command for that volume.

For example, you can add following commands to the ARCCMDxx member on
the system that will do the backup processing for the non-SMS managed
volumes:

ADDVOL GP0001 UNIT(3390) PRIMARY(AUTOBACKUP)

Add the following commands to the ARCCMDxx member for those processors
that should not perform the backup:

ADDVOL GP0001 UNIT(3390) PRIMARY(NOAUTOBACKUP)

• Which volumes are to be dumped automatically.

As with volumes to be backed up, you must identify the non-SMS managed
volumes to be dumped automatically.

Note: We suggest that you do not use AUTODUMP with HFS data sets. This
will result in DFSMShsm full volume dump processing, which invokes
DFSMSdss physical volume dump. DFSMSdss physical dump does not
quiesce mounted HFSs while dumping them. Although no error indication will
be given during dump processing, a subsequent restore may result in a
damaged or unusable HFS. Refer to 5.1, “DFSMSdss dump and restore” on
page 103 for more information about HFS and DFSMSdss.

You also must define a backup cycle if you want to use DFSMShsm incremental
backup (for both SMS managed and non-SMS managed data).

The BACKUP parameter of the DEFINE command specifies a backup cycle that
specifies the days on which the processor does automatic backup processing.
You can also specify the day to start the cycle so that the cycle does not change
Chapter 3. HFS externals 53



with each re-initialization of DFSMShsm. For example, the command to be added
to the ARCCMDxx member in each processor is:

DEFINE BACKUP(YYYYYYN CYCLESTARTDATE(95/01/06))

The command establishes a 7-day cycle that begins on date 95/01/06 which was
a Monday. Thus, backup processing is done on every day except Sunday.

DFSMShsm stores the date you specify with CYCLESTARTDATE as the date the
backup cycle began.

3.2.2 Non-SMS space management
We will only describe some basics that are relevant for DFSMShsm migration
processing for HFS data sets. For a complete description, please refer to:

• DFSMShsm Storage Administration Guide, SH21-1076
• DFSMShsm Storage Administration Reference, SH21-1075

DFSMShsm manages non-SMS managed storage on a volume basis. Non-SMS
managed volumes that are to be automatically managed by DFSMShsm are
known as primary volumes. All the data sets on a volume are managed to the
same specification, whether for days-not-used on the primary volume, age for
deletion, or permission for automatic migration. In addition, DFSMShsm chooses
the volume to receive the recalled data sets based on any volume pools you have
defined, as well as the characteristics given to the volumes when you define
them.

Differences between processing for SMS managed and non-SMS managed data
sets are as follows:

• Two additional management options are defined for non-SMS managed
volumes:

- Deletion (delete by age)

This is done by expiration specifications in the management class for SMS
managed data sets.

- Retirement (delete if backed up)

It is extremely unlikely that you would choose either of these options for HFS
data sets.

• Level 1 to level 2 migration is controlled on a system-wide basis rather than on
a data set basis.

• Target volumes for recall are selected by DFSMShsm rather than by
DFSMSdfp ACS routines.

• Volumes are individually identified to DFSMShsm.

To manage non-SMS managed storage, you must define system-wide
parameters to define how you want space management to be done. Again, you
use the SETSYS, ADDVOL, and DEFINE commands that were described in the
previous section. You cannot define storage groups or management classes. In
addition, you define parameters to control the following functions:

• Specify the minimum age when data sets should migrate if no age is specified
when the volume is defined to DFSMShsm in the ADDVOL command.
54 Hierarchical File System Usage Guide



DAYS (days) is an optional parameter specifying the number of contiguous
days a data set must remain unreferenced before the data set is eligible for
migration. DFSMShsm uses this parameter to migrate data sets from primary
volumes to migration level 1 volumes. For example:

SETSYS DAYS(7)

The value specified by the DAYS parameter of the SETSYS command is used
only if no value is specified for the MIGRATE parameter of the ADDVOL
command. An ADDVOL command with the MIGRATE(0) parameter specified
also causes SETSYS DAYS to determine the migration age.

If you do not specify this parameter on any SETSYS command, the
DFSMShsm default is one day if DFSMShsm is running in a single processing
unit environment or two days if DFSMShsm is running in a multiple processing
unit environment.

• Specify when data sets become eligible for level 1 to level 2 migration.

For non-SMS managed storage, the age at which data sets become eligible
for migration from level 1 to level 2 is the same for all non-SMS managed data
sets in the system. The MIGRATIONLEVEL1DAYS parameter of the SETSYS
command specifies the minimum time that a data set must remain unused on
the combination of level 0 and level 1 before it becomes eligible to migrate to
migration level 2. For example:

SETSYS MIGRATIONLEVEL1DAYS(31)

If you do not specify this parameter with any SETSYS command, the
DFSMShsm default is 60 calendar days.

• Specify recall characteristics for primary volumes.

For non-SMS managed data sets, DFSMShsm selects the type of volume to
which a data set can be recalled. The characteristics for a volume to be
eligible to receive recalled data sets are the same for all non-SMS managed
data sets in the system. The RECALL parameter of the SETSYS command
specifies the general volume destinations for the recalled data sets.

See the DFSMShsm books mentioned above for more information.

• Define primary volumes to DFSMShsm.

The ADDVOL command defines non-SMS managed volumes to DFSMShsm
and is not used for SMS managed volumes.

Here is an example of an ADDVOL command added to the ARCCMDxx
member:

ADDVOL GP0001 UNIT(3390) PRIMARY(AUTOMIGRATION -
AUTORECALL MIGRATE(12)) THRESHOLD(95 80)

The AUTOMIGRATION subparameter specifies that DFSMShsm is to perform
automatic volume space management on the volume.

The AUTORECALL subparameter specifies that the volume is generally
available as a recall volume.

The MIGRATE subparameters specify the management technique for the
volume. In this example, DFSMShsm migrates the data sets that have not
been opened for 12 days. If you do not specify a value for the number of days
with the MIGRATE subparameter, DFSMShsm uses the value specified with
the DAYS parameter of the SETSYS command.
Chapter 3. HFS externals 55



The THRESHOLD parameter in these ADDVOL commands operates in the
same way as the THRESHOLD attribute in the storage groups. See 3.1.6,
“Storage group” on page 42.

• Define pools of volumes.

To ensure that recalled non-SMS managed data sets go to the correct
volumes, you should organize your non-SMS managed volumes into pools.
You can define either pools that accept only specified data set names during
recall or pools that accept for recall any data set that migrated from them.

See the DFSMShsm books mentioned above for more details.

Finally, you can prevent migration for named data sets by using the SETMIG
command. Although it is unlikely that your HFS data sets will be inactive, it is
good practice to prevent migration for the data sets that hold the root and key
parts of the file system. Migration may be sensible for data sets containing an
individual user’s file systems. You can issue the SETMIG command for
fully-qualified data set names or for groups of data sets by using a high-level
qualifier.

3.3 HFS PARMLIB and command enhancements

The following sections describe the enhancements to the BPXPRMxx PARMLIB
member and the new USS confighfs command.

3.3.1 BPXPRMxx options
BPXPRMxx contains the parameters that control the OS/390 UNIX System
Services (OS/390 UNIX) environment, the hierarchical file system (HFS), and
sockets file systems (AF_UNIX and AF_INET). The system uses these values
when initializing the kernel.

OS/390 UNIX services are started during initialization. To specify which
BPXPRMxx PARMLIB member to start with, the operator can include OMVS=xx
in the reply to the IPL message or can include OMVS=xx in the IEASYSxx
PARMLIB member.

If OMVS=xx is not specified in the reply to the IPL message and is not in the
IEASYSxx member, or if OMVS=DEFAULT is specified, defaults are used for
each parameter and OMVS is initialized with minimal functions. If the operator
specifies OMVS=xx in the IPL reply to the message, it overrides the OMVS=xx
specified in IEASYSxx.

For additional information about BPXPRMxx options, refer to:

• OS/390 V2R9.0 UNIX System Services Planning, SC28-1890
• OS/390 V2R9.0 MVS Initialization and Tuning Reference, SC28-1752

3.3.1.1 FILESYSTYPE statement
In the FILESYSTYPE statement, specify the TYPE of the file system to be
started. BPXPRMxx can contain more than one FILESYSTYPE statement, such
as HFS, TFS, or NFS. There are many more types available, but we will cover
only the HFS type in this topic. The syntax is:

FILESYSTYPE TYPE(type_name)
ENTRYPOINT(entry_name)
56 Hierarchical File System Usage Guide



PARM('parm')

The parameters are:

• TYPE: Specifies the name of the file system type that is to control the file
system.

TYPE is a required parameter. The name is 1 to 8 characters; the system
converts the name to uppercase.

Specify HFS for a hierarchical file system.

• ENTRYPOINT(entry_name): Specifies the name of the load module
containing the entry point into the file system type.

ENTRYPOINT is a required parameter. The name is 1 to 8 characters; The
system converts the name to uppercase.

For TYPE(HFS), the ENTRYPOINT must be GFUAINIT.

The system attaches the GFUAINIT load module during OMVS initialization.

• PARM('parameter'): Provides a parameter to be passed directly to the file
system type. The parameter format and content are specified by the file
system type.

PARM is an optional parameter. The parameter is up to 1024 characters long;
the characters can be in uppercase, lowercase, or both.

The parameter must be enclosed in single quotes.

The following parameters are introduced with DFSMS 1.5 to control the Sync
Process and HFS buffer usage. They are only valid for an HFS with an
ENTRYPOINT of GFUAINIT.

Note: If a syntax error is found in any of these three parameters
(SYNCDEFAULT, VIRTUAL, or FIXED), an error message is issued and all
three parameters are set to the default values.

The following parameters are supported by an HFS:

SYNCDEFAULT(t),VIRTUAL(max),FIXED(min)

- SYNCDEFAULT(t): t specifies the number of seconds used as a default
for the sync daemon interval. When the sync daemon is active, the
modified metadata that is cached in storage for a file system, is written
(hardened) to disk. Setting t to 0 indicates that the file system should write
metadata synchronously with syscall requests. This means any changes to
the metadata will not be deferred, they will be immediately written to disk
as it was done in DFSMSdfp 1.4 and older systems.

Sync interval values are rounded up to the next 30-second value. For
example, specifying 31 seconds results in a sync interval of 60 seconds.

The maximum value that can be specified for t is 65535. Values between
65535 and 99998 are rejected.

With OS/390 2.8 and later, you can add physical file systems dynamically.

Note
Chapter 3. HFS externals 57



A value of 99999 means that the sync daemon is not to be run. Any
deferred changes will be written at unmount time or at explicit sync of the
file system or during inact processing.

Default: 60 seconds

See 1.2.4, “Sync process” on page 11 for more information regarding the
sync process.

- VIRTUAL(max): max specifies the maximum amount of virtual storage (in
megabytes) that HFS data and metadata buffers should use. You cannot
specify a maximum value less than 32M. If less than 32M is specified, an
information message is issued, and max is set to 32M. The maximum limit
can be changed dynamically by invoking the confighfs OMVS shell
command.

See 3.3.5, “confighfs shell command” on page 68 and OS/390 UNIX
System Services Command Reference, SC28-1892 for more information
about the confighfs OMVS shell command.

Note: HFS may temporarily exceed the limit set in max to avoid failure of a
file read or write request, but the amount of space used is reduced to the
max specification or less as soon as possible.

Default: 50% of real storage available to the system at HFS initialization
time.

- FIXED(min): min specifies the amount of virtual storage (in megabytes)
that is fixed at HFS initialization time and permanently remains fixed even if
HFS activity drops to zero. min must be less than or equal to
VIRTUAL(max). The benefit of FIXED is to avoid the overhead of page
fixing and unfixing needed for I/O.

min cannot exceed 50% of the real storage available to the system. If the
allowed amount of storage is exceeded, an informational message is
issued and min is set to 50% of real storage. The minimum limit can be
changed dynamically by invoking the confighfs OMVS shell command.

For more information about the confighfs OMVS shell command, see:

• Section 3.3.5, “confighfs shell command” on page 68
• OS/390 V2R9.0 UNIX System Services Command Reference,

SC28-1892.

Note: HFS will continue to fix additional buffers temporarily, as needed,
during I/O requests. In addition, HFS will unfix storage and go below
FIXED(min) if there is a pageable storage shortage in the system.

Default: 0

We recommend that for systems dedicated to HFS usage, the value for
FIXED should be equal to the value of VIRTUAL, up to 50% of real storage
capacity.

Figure 22 is an example of the FILESYSTYPE statement.
58 Hierarchical File System Usage Guide



Figure 22. Example of the FILESYSTYPE statement

3.3.1.2 SYSPLEX statement (OS/390 2.9 and above)
The SYSYPLEX statement is:

SYSPLEX(YES|NO)

For OS/390 UNIX System Services, the SYSPLEX statement specifies whether a
system should join the SYSBPX XCF group to share HFS resources across the
sysplex. If SYSPLEX(YES) is specified, the system participates in shared HFS. If
SYSPLEX(NO) is specified, the system does not participate in shared HFS. If the
SYSPLEX statement is not provided, the default is SYSPLEX(NO).

Also, to participate in sharing HFS data sets, the systems must be at OS/390 2.9
level or later. For more information on shared HFS, see “Shared HFS in a
Sysplex“ in OS/390 V2R9.0 UNIX System Services Planning, SC28-1890.

Note: You cannot adjust the SYSPLEX field dynamically. There is no SETOMVS,
SET OMVS, or SETOMVS RESET=(xx) capability. To change the value of
SYSPLEX, you must re-IPL the system.

Default: NO

3.3.1.3 VERSION statement (OS/390 2.9 and above)
The VERSION statement is:

VERSION('nnnn')

The VERSION statement applies only to systems that are exploiting shared HFS.
VERSION allows multiple releases and service levels of the binaries to coexist
and participate in sharing HFS data sets. A directory with the value nnnn
specified on VERSION is dynamically created at system initialization under the
sysplex root and is used as a mount point for the version HFS. This directory,
however, is only dynamically created if the sysplex root HFS is mounted
read/write.

Note: nnnn is a case-sensitive character string no greater than 8 characters in
length. It indicates a specific instance of the version HFS. The most appropriate
values for nnnn are the name of the target zone, &SYSR1, or another qualifier
meaningful to the system programmer. For example, if the system is at OS/390
2.9, you could specify REL9 for VERSION.

When SYSPLEX(YES) is specified, you must also specify the VERSION
parameter.

The VERSION value is substituted in the content of symbolic links that contain
$VERSION. For scenarios describing the use of the version HFS, see “Shared
HFS in a Sysplex“ in OS/390 V2R9.0 UNIX System Services Planning,
SC28-1890.

FILESYSTYPE TYPE(HFS) /* Type of file system to start */
ENTRYPOINT(GFUAINIT) /* Entry Point of load module */
PARM('SYNCDEFAULT(90)')
Chapter 3. HFS externals 59



When testing or changing to a new maintenance level (PTF level), the VERSION
value can be changed dynamically by using the SETOMVS command:

SETOMVS VERSION='string'

You can also change the settings of this parameter via SET OMVS=(xx) and
SETOMVS RESET=(xx) parmlib specifications.

Note: We do not recommend changing VERSION dynamically if you have any
users logged on or running applications; Replacing the system files for these
users may be disruptive.

3.3.1.4 MOUNT statement
Specifies a file system that OS/390 UNIX is logically to mount as the root file
system or another file system. The MOUNT statement is optional; The
BPXPRMxx member can contain one or more MOUNT statements.

MOUNT FILESYSTEM('fsname') or DDNAME(ddname)
TYPE(type_name)
MOUNTPOINT('pathname')
MODE(access)
PARM('parameter')
SETUID|NOSETUID
AUTOMOVE|NOAUTOMOVE
SYSNAME(sysname)

The parameters are:

• FILESYSTEM('file_system_name'): The name of the file system. The name
must be unique in the system.

Either FILESYSTEM or DDNAME is required; do not specify both. The name
is 1 to 44 characters; The characters can be in uppercase, lowercase, or both.
The name must be enclosed in single quotation marks. An HFS data set name
must conform to the rules for MVS data set names.

• DDNAME(ddname): The ddname on the JCL DD statement that defines the
file system. To use the DDNAME parameter, a DD statement for the HFS
dataset containing the mountable file system should be placed in the OMVS
cataloged procedure.

Either FILESYSTEM or DDNAME is required; Do not specify both. The name
is 1 to 8 characters; the system converts the ddname to uppercase.

• TYPE(type_name): Specifies the name of a file system type identified in a
FILESYSTYPE statement. The TYPE(type_name) parameter must be the
same as the TYPE(type_name) parameter on a FILESYSTYPE statement.

TYPE is a required parameter. The name is 1 to 8 characters; The system
converts the name to uppercase.

• MOUNTPOINT('pathname'): Specifies the pathname of the directory onto
which the file system is to be mounted.

Mount point restrictions are:

- The mount point must be a directory.

- Any files in the directory are not accessible while the file system is
mounted.

- Only one mount can be active at any time for a mount point.
60 Hierarchical File System Usage Guide



- A file system can be mounted at only one directory at any time.

MOUNTPOINT is required. The pathname is up to 1023 characters long; The
characters can be in uppercase, lowercase, or both. The pathname must be
enclosed in single quotation marks.

• MODE(access): Specifies access to the mounted file system by all users:

- READ: Users can only read the file system being mounted.
- RDWR: Users can read and write in the file system being mounted.

Default: RDWR

• PARM('parameter'): Provides a parameter to be passed directly to the file
system type. The parameter format and content are specified by the file
system type.

PARM is an optional parameter. The parameter is up to 1024 characters long;
The characters can be in uppercase, lowercase, or both. The parameter must
be enclosed in single quotation marks.

The following parameters are introduced with DFSMS/MVS 1.5 to control the
Sync Process (refer to 1.2.4, “Sync process” on page 11) and Write Protection
(refer to 7.2, “Sharing considerations (OS/390 2.8 and below)” on page 174).
They are only valid for an HFS with an ENTRYPOINT of GFUAINIT.

PARM('SYNC(t),NOWRITEPROTECT')

- SYNC(t): t is a numeric value that specifies the number of seconds that
should be used to override the sync interval default for this file system
during a specific mount. If SYNC is not specified at mount time, then the
sync interval default value will be used (a value of 60 seconds). The same
rules apply to the argument to the SYNC keyword at mount time as apply to
the argument of the SYNCDEFAULT keyword at HFS initialization time. For
more information on the SYNCDEFAULT keyword, see OS/390 UNIX
System Services Planning, SC28-1890.

- NOWRITEPROTECT: The HFS has a write protection mechanism that
adds some overhead to HFS processing. This overhead can be avoided by
turning off the write protection by specifying NOWRITEPROTECT in the
PARM field of the MOUNT command. See 7.2, “Sharing considerations
(OS/390 2.8 and below)” on page 174 for more details.

• SETUID|NOSETUID: SETUID specifies that the setuid() and setgid() mode bit
on an executable file will be supported.

NOSETUID specifies that the setuid() and setgid() mode bit on an executable
file will not be supported. The UID or GID will not be changed when the
program is executed and the APF and Program Control extended attributes
are not honored. The entire HFS is uncontrolled.

Default: SETUID

• AUTOMOVE | NOAUTOMOVE: These are valid for OS/390 2.9 and later
releases.

The AUTOMOVE and NOAUTOMOVE parameters apply only in a sysplex
where systems are participating in shared HFS. The AUTOMOVE and
NOAUTOMOVE parameters indicate what happens if the system that owns a
file system goes down. AUTOMOVE indicates that ownership of the file
system automatically changes to another system participating in sysplex HFS
sharing. NOAUTOMOVE indicates that ownership of the file system is not
Chapter 3. HFS externals 61



moved if the owning system goes down; As a result, the file system becomes
inaccessible.

For file systems that are mostly used by Distributed File System (DFS) clients,
consider specifying NOAUTOMOVE on the MOUNT statement. By doing so,
the file systems will not change ownership if the system is suddenly recycled,
and they will be available for automatic re-export by DFS. This is
recommended, because a file system can only be exported by the DFS server
on the system that owns the file system. Once a file system has been exported
by DFS, it cannot be moved until it has been unexported from DFS. When
recovering from system outages, you need to weigh sysplex availability
against availability to the DFS clients. When an owning system recycles and a
DFS-exported file system has been taken over by one of the other systems,
DFS cannot automatically re-export that file system. The file system will have
to be moved from its current owner back to the original DFS system— the one
that has just been recycled— and then exported again.

Default: AUTOMOVE

• SYSNAME(sysname): This parameter is valid for OS/390 2.9 and later
releases.

For systems participating in sysplex HFS sharing, SYSNAME specifies the
particular system on which a mount should be performed. This system will
then become the owner of the file system mounted. This system must be
IPLed with SYSPLEX(YES).

Default: The name of the system, if IPLed with SYSPLEX(YES), that the
mount is processed on.

Note: In OS/390 2.9 and later, to ensure that the root is always available, use
the defaults for SYSNAME and AUTOMOVE.

For additional information, see "MOUNT" in OS/390 V2R9.0 UNIX System
Services Planning, SC28-1890.

Figure 23 is an example of the MOUNT statement.

Figure 23. Example of MOUNT statement

3.3.1.5 ROOT statement
Specifies a file system that OS/390 UNIX is logically to mount as the root file
system.

ROOT FILESYSTEM('fsname') or DDNAME(ddname)
TYPE(type_name)
MODE(access)
PARM('parameter')
SETUID|NOSETUID
AUTOMOVE|NOAUTOMOVE
SYSNAME(sysname)

The parameters are the same as for the mount statement. Refer to 3.3.1.4,
“MOUNT statement” on page 60 for parameter explanations.

MOUNT FILESYSTEM('OMVS.STYRES1.HFS3')
MOUNTPOINT('/u/guts')
TYPE(HFS) MODE(RDWR)
PARM('SYNC(120),NOWRITEPROTECT')
62 Hierarchical File System Usage Guide



Figure 24 is an example of the ROOT statement.

Figure 24. Example of ROOT statement

3.3.2 TSO MOUNT command
For hierarchical file systems, you can use the MOUNT command to logically
mount, or add, a mountable file system to the file system hierarchy. You can
unmount any mounted file system using the UNMOUNT command.

Note: A mount user must have UID 0 or at least have READ access to the
BPX.SUPERUSER FACILITY class.

Syntax:

MOUNT FILESYSTEM(file_system_name)
MOUNTPOINT(pathname)
TYPE(file_system_type)
MODE(RDWR|READ)
PARM(’parameter_string’)
SETUID|NOSETUID
WAIT|NOWAIT
SECURITY|NOSECURITY
AUTOMOVE|NOAUTOMOVE
SYSNAME(sysname)

The syntax of some of the following parameters has already been given for the
MOUNT statement. Refer to 3.3.1.4, “MOUNT statement” on page 60 for these
parameter explanations.

The parameters are:

• FILESYSTEM(file_system_name): Specifies the name of the file system to
be added to the file system hierarchy.

file_system_name

For the hierarchical file system (HFS), this is the fully qualified name of the
MVS HFS data set that contains the file system.

The file system name specified must be unique among previously mounted
file systems. The file system name supplied is changed to all uppercase
characters. You can enclose it in single quotes, but they are not required.

If FILESYSTEM('''file_system_name''') is specified, the file system name
will not be translated to uppercase.

• MOUNTPOINT(pathname): See explanation on page 60.

• TYPE(file_system_type): See explanation on page 60.

• PARM(’parameter’)

- SYNC(t)
- NOWRITEPROTECT

• SETUID|NOSETUID

ROOT FILESYSTEM('HFS.OS390R7.&SYSNAME..&SYSR1..ROOT')
TYPE(HFS) /* TYPE OF FILE SYSTEM */
MODE(RDWR) /* (OPTIONAL) CAN BE READ OR RDWR. */
PARM('SYNC(30)')
Chapter 3. HFS externals 63



• WAIT|NOWAIT: Specifies whether to wait for an asynchronous mount to
complete before returning.

- WAIT: Specifies that MOUNT is to wait for the mount to complete before
returning. WAIT is the default.

- NOWAIT: Specifies that if the file system cannot be mounted immediately
(for example, a network mount must be done), then the command will
return with a return code indicating that an asynchronous mount is in
progress.

• SECURITY|NOSECURITY: Specifies whether security checks are to be
enforced for files in this file system.

- SECURITY: Specifies that normal security checking will be done.
SECURITY is the default.

- NOSECURITY: Specifies that security checking will not be enforced for
files in this file system. A user may access or change any file or directory in
any way.

Security auditing will still be performed if the installation is auditing successes.
The SETUID, SETGID, APF, and Program Control attributes may be turned on
in files in this file system, but they will not be honored while it is mounted with
NOSECURITY.

• AUTOMOVE | NOAUTOMOVE

• SYSNAME(sysname)

Figure 25 is an example of the TSO MOUNT command.

Figure 25. Example of TSO MOUNT command

Refer to 4.2.2, “TSO MOUNT and UNMOUNT commands” on page 93, and
OS/390 V2R9.0 UNIX System Services Command Reference, SC28-1892, for
more information on the TSO MOUNT command.

3.3.3 TSO UNMOUNT command
The UNMOUNT command removes a file system from the file system hierarchy.
The alias for this command is UMOUNT.

Note: An UNMOUNT user must have UID 0 or at least have READ access to the
BPX.SUPERUSER FACILITY class.

The UNMOUNT command format is as follows:

UNMOUNT FILESYSTEM(file_system_name)
DRAIN | FORCE | IMMEDIATE | NORMAL |
REMOUNT(RDWR | READ) | RESET

The parameters are:

MOUNT FILESYSTEM('NIGELR2.TEST.HFS')
MOUNTPOINT('/u/guts')
TYPE(HFS) MODE(RDWR)
PARM('SYNC(120),NOWRITEPROTECT')
NOAUTOMOVE
SYSNAME(SC65)
64 Hierarchical File System Usage Guide



• FILESYSTEM(file_system_name): Specifies the name of the file system to
be removed from the file system. The name supplied is changed to all
uppercase characters. This operand is required.

file_system_name

For the hierarchical file system (HFS), this is the fully qualified name of the
MVS HFS data set that contains the file system. The file system name
supplied is changed to all uppercase characters.

Specify the name of the file system exactly as it was specified when the file
system was originally mounted. You can enclose it in single quotes, but
they are not required. If FILESYSTEM('''file_system_name''') is specified,
the file system name will not be translated to uppercase.

• DRAIN: Specifies that an unmount drain request is to be made. The system
will wait for all use of the file system to be ended normally before the unmount
request is processed or until another UNMOUNT command is issued.

Note: UNMOUNT can be specified with IMMEDIATE to override a previous
UNMOUNT DRAIN request for a file system. If this is used in the foreground,
your TSO session waits until the UNMOUNT request has completed. The
<ATTN> (or <PA1>) key does not terminate the command.

• FORCE: Specifies that the system is to unmount the file system immediately.
Any users accessing files in the specified file system receive failing return
codes. All data changes to files in the specified file system are saved, if
possible. If the data changes to the files cannot be saved, the unmount
request continues and data is lost.

Note: An UNMOUNT IMMEDIATE request must be issued before you can
request an UNMOUNT FORCE of a file system. Otherwise, UNMOUNT
FORCE fails.

• IMMEDIATE: Specifies that the system is to unmount the file system
immediately. Any users accessing files in the specified file system receive
failing return codes. All data changes to files in the specified file system are
saved. If the data changes to files cannot be saved, the unmount request fails.

• NORMAL: Specifies that if no user is accessing any of the files in the
specified file system, the system processes the unmount request. Otherwise,
the system rejects the unmount request. This is the default.

• REMOUNT(RDWR|READ): Specifies that the specified file system be
remounted, changing its mount mode. REMOUNT takes an optional argument
of RDRW or READ. If you specify either argument, the file system is
remounted in that mode if it is not already in that mode. If you specify
REMOUNT without any arguments, the mount mode is changed from RDWR
to READ, or READ to RDWR.

• RESET: A reset request stops a previous UNMOUNT DRAIN request.

Figure 26 is an example of the TSO UNMOUNT command.

Figure 26. Example of TSO UNMOUNT command

UNMOUNT FILESYSTEM('OMVS.STYRES1.HFS5')
Chapter 3. HFS externals 65



Refer to 4.2.2, “TSO MOUNT and UNMOUNT commands” on page 93, and
OS/390 V2R9.0 UNIX System Services Command Reference, SC28-1892, for
more information on the TSO UNMOUNT command.

3.3.4 SETOMVS system command
Use the SETOMVS command to change dynamically the options that OS/390
UNIX System Services currently is using. These options are originally set in the
BPXPRMxx parmlib member at the time of initially program loading (IPL'ing) the
system. For more information on the BPXPRMxx parmlib member, see OS/390
V2R9.0 UNIX System Services Planning, SC28-1890 or 3.3.1, “BPXPRMxx
options” on page 56.

Note: in this chapter, we only cover the options that are related to HFS
processing, for example the new SETOMVS EXTENSIONS for shared HFS data
sets in a sysplex. For a complete description of SETOMVS command, see
OS/390 V2R9.0 MVS Systems Commands, GC28-1781.

Parameters AUTOMOVE=YES|NO, FILESYS=filesys, FILESYSTEM=filesystem,
FROMSYS=sysname, MOUNTPOINT=mountpoint, SYSNAME=sysname|*, and
VERSION='nnnn', which are described in this section, are parameters that are
used in a sysplex environment where systems are exploiting shared HFS. For
more information on shared HFS in a sysplex, see OS/390 V2R9.0 UNIX System
Services Planning, SC28-1890 or Chapter 7, “Sharing and serialization for HFS
data sets” on page 167.

SETOMVS VERSION='string'
SETOMVS FILESYS

,FILESYSTEM=filesystem
,AUTOMOVE=YES|NO
,SYSNAME=sysname|* or

SETOMVS FILESYS
,FILESYSTEM=filesystem
,AUTOMOVE=YES|NO or

SETOMVS FILESYS
,FILESYSTEM=filesystem
,SYSNAME=sysname|* or

SETOMVS FILESYS
,MOUNTPOINT=mountpoin
,AUTOMOVE=YES|NO
,SYSNAME=sysname|* or

SETOMVS FILESYS
,MOUNTPOINT=mountpoin
,AUTOMOVE=YES|NO or

SETOMVS FILESYS
,MOUNTPOINT=moun poin
,SYSNAME=sysname|* or

SETOMVS FILESYS
,FROMSYS=sysname
,SYSNAME=sysname|*

Note: FILESYSTEM, MOUNTPOINT, and FROMSYS are mutually exclusive
parameters. When you specify FILESYS, you must supply only one of these three
parameters.

• AUTOMOVE=YES|NO: The AUTOMOVE | NOAUTOMOVE parameters apply
only in a sysplex where systems are participating in shared HFS. The
AUTOMOVE and NOAUTOMOVE parameters indicate what happens if the
66 Hierarchical File System Usage Guide



system that owns a file system goes down. AUTOMOVE indicates that
ownership of the file system automatically changes to another system
participating in shared HFS. NOAUTOMOVE indicates that ownership of the
file system is not moved if the owning system goes down; As a result, the file
system becomes inaccessible. AUTOMOVE is the default.

Note: AUTOMOVE is not allowed when moving multiple file systems. Also, in
OS/390 2.9 and later, to ensure that the root is always available use the
default for AUTOMOVE.

• FILESYS: In a sysplex environment, this parameter alerts the parser that
commands which change mount attributes are forthcoming. For examples on
the use of this parameter when making move or change requests, see OS/390
V2R9.0 UNIX System Services Planning, SC28-1890.

- FILESYSTEM=filesystem: In a sysplex environment, FILESYSTEM is the
45 character alphanumeric field that denotes the name of the file system to
be changed or moved. This file system name may be in the following form:
'OMVS.USER.JOE'. FILESYSTEM, MOUNTPOINT, and FROMSYS are
mutually exclusive parameters.

For examples on the use of this parameter when making move or change
requests, see OS/390 V2R9.0 UNIX System Services Planning,
SC28-1890.

- FROMSYS=sysname: In a sysplex environment, this parameter indicates
the system where all the file systems will be moved from. The file systems
will be moved to the system identified by the sysname keyword.
FILESYSTEM, MOUNTPOINT, and FROMSYS are mutually exclusive
parameters.

- MOUNTPOINT=mountpoint: In a sysplex environment, MOUNTPOINT is
the mountpoint specification. For example:

'/usr/d1'

It is case sensitive. This is the mountpoint where the filesystem is mounted.
If specified, the file system associated with this mountpoint will be moved
or changed. FILESYSTEM, MOUNTPOINT, and FROMSYS are mutually
exclusive parameters.

For examples on the use of this parameter when making move or change
requests, see OS/390 V2R9.0 UNIX System Services Planning,
SC28-1890.

• SYSNAME=sysname|*: sysname is the one to eight character alphanumeric
name of a system participating in shared HFS. This system must be IPLed
with SYSPLEX(YES). sysname specifies the particular system on which a
mount should be performed. This system will then become the owner of the
file system mounted. If * (asterisk) is specified, it represents any other
randomly selected system taking part in shared HFS. The asterisk
specification is not available with the FROMSYS parameter.

For examples of the use of this parameter when making move or change
requests, see "Shared HFS in a Sysplex" in OS/390 UNIX System Services
Planning.

• VERSION = 'nnnn': Please see 3.3.1.3, “VERSION statement (OS/390 2.9
and above)” on page 59 for more information regarding the VERSION
statement.
Chapter 3. HFS externals 67



In the example in Figure 27, system SC64 will become the owner of file system
’NIGELR2.TEST.HFS’.

Figure 27. Example of SETOMVS system command

3.3.5 confighfs shell command
The USS confighfs command introduced in DFSMS/MVS 1.5 gives interactive
shell users the ability to invoke vfs_pfsctl HFS functions. The vfs_pfsctl function
is used to pass control information to the PFS (Physical File System).

The pfsctl (physical file system control — (BPX1PCT)) is a callable service that
forwards a command and argument to a physical file system. The meaning of the
command and argument are specific to the physical file system and are defined
by the physical file system, such as HFS.

The confighfs command is located at path /usr/lpp/dfsms/bin.

For an HFS you can specify:

confighfs [-l] [-v n] [-f n] [-q] [pathname] [-x[n] size pathname]

The options are:

-l Query HFS buffer storage limits.

-v n Set virtual buffer storage max to n (where n is in MB). Requires
superuser authority.

-f n Set fixed buffer storage min to n (where n is in MB). Requires
superuser authority.

-q Query your HFS global statistics.

pathname Query file system statistics for the file system containing each of the
path names specified.

-x size pathname

Extend the specified file system, where size is the amount to be
extended suffixed by the extend unit of M, T, or C (for megabytes,
tracks, or cylinders), and pathname is a full or simple pathname to a
file or directory in the file system to extend. This requires superuser

SETOMVS FILESYS,FILESYSTEM='NIGELR2.TEST.HFS',SYSNAME=SC64

In a shared HFS sysplex (OS/390 2.9 and higher), you need to issue the
confighfs command from the owning system. If you issue the confighfs from a
client system, you receive a message like:

Error issuing PFSCTL: RC=0 ERRNO=129(81) REASON=5B360105: HFS is not mounted.

The confighfs command calls the PFS directly. On a client system, the PFS
does not know anything about the file system. See 7.3, “HFS sysplex sharing
(OS/390 V2R9 and above)” on page 164 for additional information regarding
HFS sysplex sharing.

Note
68 Hierarchical File System Usage Guide



authority. Note that this size overrides the secondary allocation (if any)
for the HFS.

-xn size pathname

Extend the specified file system to a new volume with the same rules
as above. This requires superuser authority.

The following are internal debug options:

-dn Prints incoming and outgoing pfsctl buffers (where n is 0, 1, or 2).

-t Skips issuing the pfsctl.

3.3.5.1 confighfs output description
Figure 28 is an example of the query HFS limits (confighfs -l ).

Figure 28. Query HFS limits ( confighfs -l )

The data returned for the HFS limits option is:

• Maximum virtual storage: Specifies the limit for HFS I/O buffers.

• Minimum fixed storage: Specifies the value of minimum fixed storage.

Figure 29 is an example of the query global HFS statistics (confighfs -q ).

Figure 29. Query global HFS statistics (confighfs -q )

The data returned for the HFS statistics option is:

• Virtual Storage: Specifies the total amount (in pages and MB) of virtual
storage assigned to HFS I/O buffers.

• Fixed Storage: Specifies the total amount (in pages and MB) of permanently
fixed storage assigned to HFS I/O buffers.

STYRES1 @ SC64:/usr/lpp/dfsms/bin>confighfs -l
HFS Limits
Maximum virtual storage: _______393(MB)
Minimum fixed storage: _________0(MB)

STYRES1 @ SC64:/usr/lpp/dfsms/bin>confighfs -q
HFS Statistics
( 07/06/99 9:10pm )
Virtual storage: _______677(pages)

_2.6445313(MB)
Fixed storage: _________0(pages)

_________0(MB)
Lookup cache hit: _________________257
Lookup cache miss: _________________103
1st data page hit: _________________784
1st data page miss: __________________90

Pool Size #DS BP_pages Fixed Already_fixed Not_already_fixed
1 ____1 __1 _______133 _________0 _________0 ______2104
2 ____4 __1 ________16 _________0 _________0 ________18
3 ___16 __1 ________80 _________0 _________0 ________18
4 ___64 __1 _______448 _________0 ________46 ________38
Chapter 3. HFS externals 69



• Lookup cache hit: The number of times the metadata for a file was found in
virtual storage (cache) during file lookup.

• Lookup cache miss: The number of times the metadata for a file was not
found in virtual storage (cache) during file lookup so I/O was required.

• 1st data page hit: The number of times the first page of a data file was
requested and found in virtual storage (cache).

• 1st data page miss: The number of times the first page of a data file was
requested and not found in virtual storage (cache) thus I/O was required.

• Pool Number: Buffer pool ID. Designates one of the four HFS buffer pools.

• Size: Buffer size for this pool (in pages).

• #DS: Number of data spaces comprising this buffer pool.

• BP_pages: Number of pages in this buffer pool currently in use.

• Fixed: Number of permanently fixed pages in this buffer pool.

• Already_fixed: Number of times a buffer was already fixed prior to an I/O
request in this buffer pool. This is a counter which is never decremented.

• Not_already_fixed: Number of times a buffer was not already fixed prior to an
I/O request in this buffer pool. This is a counter which is never decremented.

Figure 30 is an example of the query file system statistics (confighfs pathname).

Figure 30. Query file system statistics (confighfs pathname)

The data returned for the file system statistics option is:

STYRES1 @ SC64:/usr/lpp/dfsms/bin>confighfs /
Statistics for file system HFS.OS390R7.SC64.O37RB1.ROOT
( 07/06/99 9:05pm )
File system size:____158040

_617.34375(MB)
Used pages: ____146706

_573.07031(MB)
Attribute pages: ______1882

_7.3515625(MB)
Cached pages: _________1

0.00390625(MB)
Seq I/O reqs: __________________40
Random I/O reqs: ___________________0
Lookup hit: _________________196
Lookup miss: __________________71
1st page hit: _________________199
1st page miss: __________________40
Index new tops: ___________________0
Index splits: ___________________0
Index joins: ___________________1
Index read hit: ________________1800
Index read miss: __________________24
Index write hit: _________________194
Index write miss:___________________0
RFS flags __________________82(HEX)
RFS error flags: ___________________0(HEX)
High foramt RFN: _______________23E4F(HEX)
Member count: _______________17916
Sync interval: __________________30(seconds)
70 Hierarchical File System Usage Guide



• File system size: Amount of storage allocated to this HFS file system (in
pages and MB).

• Used pages: Amount of storage internally used within HFS for data files,
directories and HFS internal structures (in pages and MB).

• Attribute pages: Amount of storage used for the attribute directory(AD). This
number is included in the Used pages field (in pages and MB).

Note: The attribute directory is the internal HFS structure (index) which
contains attribute information about individual file system objects as well as
attributes of the file system itself.

• Cached pages: Amount of data buffer storage cached by the file system (in
pages and MB).

• Seq I/O reqs: Number of sequential file data I/O requests which have been
issued.

Note: A sequential I/O is one of a series of I/Os to read or write a data file,
where the first I/O started at the first byte of the file and each subsequent I/O
was for the next sequential set of bytes. This is not meant to imply that actual
disk I/O was required; the data may have resided in cache.

• Random I/O reqs: Number of random file data I/O requests that have been
issued.

Note: A random I/O is an I/O that does not read or write the start of a file, and
was not preceded by an I/O that read or wrote the immediately preceding set
of bytes. This is not meant to imply that actual disk I/O was required; the data
may have resided in cache.

• Lookup hit: m Number of times the metadata for a file was found in virtual
storage (cache) during file lookup.

• Lookup miss: Number of times the Metadata for the file was not found in
virtual storage (cache) during file lookup and an index call was necessary
which may have resulted in an I/O.

• 1st page hit: The number of times the first page of a data file was requested
and found in virtual storage (cache).

• 1st page miss: The number of times the first page of a data file was
requested and was not found in virtual storage (cache), thus, I/O was
required.

• Index new tops: The number of times the index expanded to the point where
an additional level was necessary.

• Index splits: The number of index page splits.

• Index joins: The number of index page joins.

• Index read hit: The number of index read hits.

• Index read miss: The number of index read misses.

• Index write hit: The number of index write hits.

• Index write miss: The number of index write misses.

• RFS flags: HFS internal information.

• RFS error flags: HFS internal information.

• High format RFN: High formatted relative frame number (HFRFN).
Chapter 3. HFS externals 71



• Member count: Number of nodes in the file system.

Note: Please refer to APAR OW39886 (USS confighfs COMMAND SHOWS
INCORRECT MEMBER COUNT), if your member count is incorrect (too high).

• Sync interval: Sync daemon interval.

3.3.5.2 confighfs examples
To set virtual and fixed HFS buffer limits to 128MB and 32MB, respectively:

confighfs -v 128 -f 32

To extend the file system for your current directory by 100 cylinders:

confighfs -x 100c

If you need to get statistics for the file systems containing /tmp (as well as root or
the current directory), you would enter the following:

confighfs / /tmp

Please refer to Appendix B, “Sample JCL and output” on page 257 for further
samples.

3.3.6 Displaying the SYNC interval settings
You can use the MVS system command D OMVS,F to display the current
settings.

You can also use the USS confighfs command to display the sync interval setting
for an individual HFS.

The following screen shows the different sync values returned by confighfs,
based on the examples in 3.3.1, “BPXPRMxx options” on page 56.

D OMVS,F
BPXO044I 15.04.56 DISPLAY OMVS 113
OMVS 000F ACTIVE OMVS=(GU)
TYPENAME DEVICE ----------STATUS----------- MODE QJOBNAME QPID
TFS 6 ACTIVE RDWR
NAME=/TMP
PATH=/tmp
MOUNT PARM=-s 500

HFS 5 ACTIVE RDWR
NAME=OMVS.STYRES1.HFS3
PATH=/u/guts
MOUNT PARM=SYNC(120),NOWRITEPROTECT

HFS 4 ACTIVE RDWR
NAME=OMVS.SC64.VAR
PATH=/var

HFS 3 ACTIVE RDWR
NAME=OMVS.SC64.USERS
PATH=/u

HFS 2 ACTIVE RDWR
NAME=OMVS.SC64.ETC
PATH=/etc

HFS 1 ACTIVE RDWR
NAME=HFS.OS390R7.SC64.O37RA1.ROOT
PATH=/
MOUNT PARM=SYNC(30)
72 Hierarchical File System Usage Guide



Notes:

1. We eliminated the lines of the confighfs output that are not relevant for the
sync.

2. The sync interval of the root file system was set by the ROOT statement in
BPXPRMxx.

3. The sync interval of HFS data set OMVS.SC64.ETC was derived from the
SYNCDEFAULT parameter of the FILESYSTYPE statement.

4. The sync interval of HFS data set OMVS.STYRES1.HFS3 was derived from
the SYNC parameter of the associated MOUNT statement.

5. The sync values are always rounded to the next 30-second interval. You will
see the values that you have specified and not the adjusted values.

You can also use the confighfs -l command to display the current storage limits of
an HFS.

3.4 Requirements and restrictions

HFS data sets have the following requirements and restrictions:

• They must be system (SMS) managed, reside on DASD volumes managed by
the system, and cataloged.

Note: Non-SMS managed HFS data sets are now supported in DFSMS/MVS
1.4 and 1.5. However, at the present time, these non-SMS managed HFS data
sets must be cataloged at mount time, and must be single volume data sets.

STYRES1 @ SC64:/usr/lpp/dfsms/bin>confighfs /
Statistics for file system HFS.OS390R7.SC64.O37RA1.ROOT
( 06/23/99 3:20pm )
...
Sync interval: __________________30(seconds)

STYRES1 @ SC64:/usr/lpp/dfsms/bin>confighfs /etc
Statistics for file system OMVS.SC64.ETC
( 06/23/99 3:21pm )
...
Sync interval: __________________90(seconds)

STYRES1 @ SC64:/usr/lpp/dfsms/bin>confighfs /u/guts
Statistics for file system OMVS.STYRES1.HFS3
( 06/23/99 3:27pm )
...
Sync interval: _________________120(seconds)

STYRES1 @ SC64:/usr/lpp/dfsms/bin>confighfs -l
HFS Limits
Maximum virtual storage: _______393(MB)
Minimum fixed storage: _________0(MB)
Chapter 3. HFS externals 73



• They cannot be processed by standard open, end-of-volume, or access
methods; POSIX system calls must be used instead. For exceptions refer to
3.4.2.6, “Processing HFS files with a sequential access method” on page 75.

• They are supported by standard DADSM create, rename, and scratch.

• They are supported by DFSMShsm for dump/restore and migrate/recall and
DFSMSdss is used as the data mover.

• They are not supported by the IEBCOPY or the DFSMSdss COPY function.

• RELEASE of HFS data sets is no longer supported, since the DADSM
PARTREL function no longer supports HFS data sets.

• The maximum number of files that are supported in an HFS data set is 2**48.
Each directory and each file counts against this number. There is no per
directory maximum; everything counts against the total for the whole HFS.

• For DFSMS/MVS 1.5 and OS/390 2.7, the maximum number of concurrent
mounts may reach about 8000. For DFSMS/MVS 1.5 with earlier releases of
OS/390, the limit is likely to be lower, depending on the number of
multi-volume HFS data sets. Roughly 1K of storage is used below the line for
each mounted file system in the SWA. This can mean that you run out of
virtual storage before the TIOT is filled and see a non-restartable wait state of
07E. You can reduce the chance of this happening by allowing automounts to
time out, thereby releasing the storage for reuse.

With DFSMS/MVS 1.4, the normal TIOT size of 32K gives a maximum of 1635
concurrent mounts. A 64K TIOT allows a maximum of 3270 concurrent
mounts.

The TIOT size is controlled by using the ALLOCxx member in PARMLIB.

• A multi-volume HFS can span up to 59 volumes and has 255 extents with up
to 123 extents per volume.

3.4.1 Restrictions for executable files (object modules)
• Although you can use the binder to create executable files in a hierarchical file

system data set, you cannot create overlay modules. Also, if the executable
file you are creating has the same name as an existing file in the data set, the
existing file is replaced, even if it is not executable, and even if you specify
that existing files should not be replaced.

• Executable files in an HFS data set cannot have alternate entry points. Any
alternate entry points specified are considered true aliases.

• When saving an executable file in an HFS data set, the binder does not take
the save or stow exits.

• Checkpoints cannot be taken in steps that are using OS/390 UNIX System
Services.

3.4.2 Additional dependencies, issues, restrictions, and requirements
Here are additional requirements concerning software, hardware, maintenance,
and processing.

3.4.2.1 Software dependencies
OS/390 2.5, or higher, is required for installations to realize the HFS performance
benefits associated with the changes in DFSMS/MVS 1.5.
74 Hierarchical File System Usage Guide



A new FMID (HDZ11EH) is included on the DFSMS/MVS product tape to install
DFSMS/USS — an extension to the OS/390 Unix System Services provided for
this new support. A separate FMID is required in this case because it must be
applied to the system as part of Wave 2 of the OS/390 installation rather than in
Wave 1, which includes only the basic elements. After DFSMS and USS are
installed, no additional user action is required, as the function becomes
integrated with OS/390 UNIX System Services.

3.4.2.2 Hardware dependencies
There are no hardware dependencies.

3.4.2.3 Maintenance issues
It is very important that you apply all the maintenance listed in APAR II11833, the
DFSMS/MVS 1.5 program directory, and in the Preventive Service Planning
Bucket (PSP; Upgrade ID ’MVSDFSMS1507)).

Note from Information APAR II11833: The following maintenance (listed in
Information APAR II11833) is required for the noted DFSMS/MVS 1.5
components. Severe errors have been encountered without this maintenance.
This list should be used in addition to the information in the MVSDFSMS 'bucket',
and maintenance noted in the DFSMS 1.5 Program Directory.

3.4.2.4 Coexistence issues
Previous releases of DFSMS/MVS cannot mount HFS data sets that span more
than one volume. Toleration PTFs must be installed on lower-level systems that
share HFS data with DFSMS/MVS 1.5 systems to ensure the integrity of
multi-volume HFS data sets.

Single volume HFS data sets created on a DFSMS/MVS 1.5 system are still
accessible on previous releases. However, applying toleration PTFs are still
recommended to avoid IMF abends due to the write protection feature.

It is also very important that you have all toleration and all HIPER maintenance
installed on any systems that are sharing the HFS data sets. The maintenance is
referenced in the DFSMS 1.5 Program Directory and in the Preventive Service
Planning Bucket (Upgrade ID: MVSDFSMS150).

3.4.2.5 Processing restrictions
A colony address space is one that OS/390 UNIX starts in order to run certain
types of physical file systems. This is indicated by the presence of the ASNAME()
parameter on the FILESYSTYPE statement that defines the PFS. It is rare for
HFS to get started in a colony address space. You should be aware, however,
that with the changes introduced by this support, HFS should not be allowed to
run in a colony address space.

3.4.2.6 Processing HFS files with a sequential access method
You can access HFS files by using BSAM, QSAM and VSAM access methods.

For BSAM and QSAM, the HFS file is accessed as if it were a single volume,
physical sequential data set residing on DASD. For VSAM, the HFS file is
accessed as an ESDS. Since HFS files are not actually stored as physical
sequential data sets or ESDSs, some processing restrictions might apply, and
certain macros and services might have incompatibilities when HFS files are
processed.
Chapter 3. HFS externals 75



You can access an HFS file via BSAM or QSAM (DCB DSORG=PS) or VSAM
(simulated as an ESDS) by specifying PATH=pathname on the JCL DD
statement, SVC 99, or TSO ALLOCATE command.

The following types of HFS files are supported:

• Regular files
• Character special files (null files only)
• FIFO special files
• Symbolic links

The following types of HFS files are not supported:

• Directories
• External links

Data can reside on a system other than the one the user program is running on
without using shared DASD. The other system can be MVS or non-MVS. NFS
transports the data.

Since HFS files are not actually stored as physical sequential data sets or
ESDSs, the system cannot simulate all the characteristics of a sequential data
set. Because of this, there are certain macros and services which have
incompatibilities or restrictions when dealing with HFS files. For example, DSCBs
and UCBs do not exist for HFS files, therefore, any service which relies on a
DSCB or UCB for information may not work with these files.

With traditional MVS data sets, other than VSAM linear data sets, the system
maintains record boundaries. That is not true with byte-stream files such as HFS
files.

Examples of VSAM restrictions are:

• No CI access (MACRF=CNV)
• Only one string
• Only synchronous requests
• Certain SHOWCB requests return dummy values.

Refer to topic 3.7.11 Accessing HFS Files Via BSAM and QSAM in the book
DFSMS/MVS Version 1 Release 5 Using Data Sets, SC26-4922. Also, see
DFSMS/MVS Macro Instructions for Data Sets, SC26-4913. Information APAR
II09184 provides similar information.
76 Hierarchical File System Usage Guide



Chapter 4. Allocating and mounting HFS data sets

This chapter shows you how to allocate and mount an HFS data set.

4.1 Allocating an HFS

As with other types of MVS data sets, there are various methods available to
allocate an HFS data set. To allocate an HFS data set, you need to specify a Data
Set Name Type (DSNTYPE). DSNTYPE=HFS indicates an HFS data set.

Two ways are available to specify the Data Set Name Type:

• Direct specification of Data Set Name Type = HFS during allocations. These
provide a way to directly specify Data Set Name Type = HFS. For example:

- ISPF option 3.2.A Data Set Utility - Allocate new data set.
- DD statement in a batch job.

• Indirect specification by assigning an SMS data class in ACS routines that
have specified a Data Set Name Type = HFS. Depending on your ACS
routines, for example, you can assign a data class by explicitly specifying a
DATACLAS parameter, or you can derive the data class from a data set name.

The indirect method is available for all kinds of allocation, because the data
class ACS routine will always be executed.

Some sample indirect allocation methods are:

- ISPF option 3.2.A Data Set Utility - Allocate new data set.
- DD statement in a batch job.
- TSO ALLOCATE command.
- IDCAMS ALLOCATE.

The direct and indirect methods are also available for multi-volume HFS data set
allocation. Most methods provide a way to directly specify a volume count. Or,
you can assign a data class in your ACS routines that also indirectly provides a
volume count.

If you are not familiar with the standard MVS allocation methods, you can also
use the OS/390 ISPF shell (ISHELL) to allocate a single or multi-volume (only
indirectly by data class) HFS data set.

HFS data sets should usually be SMS managed, therefore a valid storage class
must be assigned in the storage class ACS routine for SMS managed HFS data
set allocations. Otherwise, the HFS data set will be allocated as a non-SMS data
set.

Note: Non-SMS managed HFS data sets are now supported. However, at the
present time, these non-SMS managed HFS data sets must be cataloged at
mount time and may not be multi-volume.

HFS data sets can be allocated by tracks, cylinders, or any other SMS-supported
method (AVGREC, blocks, and so on). You can achieve very small performance
improvement and storage savings by minimizing the number of extents in your
HFS data sets.
© Copyright IBM Corp. 1999, 2000 77



See 1.2.2, “Index structure of an HFS data set” on page 4 for further information
about the size and the structure of an HFS data set.

4.1.1 Multi-volume allocation considerations
For an SMS managed data set, the system uses the storage class attributes and
the storage group to select one or more volumes for the data set. For a new SMS
managed data set, you can either specify the name of a storage class on the
STORCLAS parameter, or you can allow an ACS routine to assign a storage
class to the data set. Note that an ACS routine can override the storage class
specified through STORCLAS.

4.1.1.1 Specific volume requests for system-managed DASD data sets
You can specify one or more volume serial numbers on the VOLUME parameter if
the storage administrator has specified GUARANTEED_SPACE=YES in the
storage class. In this case, SMS uses the volumes you explicitly specify. If it
cannot, the allocation fails. See 4.1.2, “Guaranteed space considerations” on
page 78 for more information.

4.1.1.2 Non-specific volume requests for system-managed DASD data sets
If you specify GUARANTEED_SPACE=NO in the storage class, then SMS
chooses the volumes for allocation, ignoring any VOL=SER statements specified
on JCL. Primary space on the first volume is preallocated. NO is the default.

You can omit the VOLUME parameter to make a nonspecific volume request for a
new system-managed data set. SMS selects the volume to be used for the data
set.

4.1.1.3 Requesting volumes
To allocate a multi-volume data set, you can specify one of the following:

• A data class that has a volume count greater than one
• A volume count greater than one on the VOLUME or UNIT parameter
• Two or more volume serial numbers

Note: An HFS can have up to a maximum of 255 extents. However, in practice, the
actual maximum number will range from 251 to 255 extents. To extend an HFS data
set, DADSM is called to obtain additional extents. DADSM will return the requested
secondary space amount within one to five extents. Since there is no way to request
that DADSM limit the number of extents returned to a number less than five, HFS
must ensure that any call to DADSM will not cause the number of extents in the data
set to exceed the 255 limit. Therefore, HFS will call DADSM to extend the data set
only if the current number of extents is 250 or below. This is compatible with the logic
used by VSAM.

4.1.2 Guaranteed space considerations
You can preallocate space for single volume and multi-volume HFS data sets
before the job step runs by specifying a storage class with a GUARANTEED
SPACE attribute. SMS fails the request if sufficient space is not available.

For a multi-volume system-managed data set, primary space is preallocated on
each of the volumes. The first volume becomes the primary volume. All remaining
volumes become candidate volumes with preallocated space. When the primary
78 Hierarchical File System Usage Guide



extent on the last volume becomes full, the system attempts to create secondary
extents on the last volume.

4.1.2.1 Preallocating space for multi-volume data sets
The following JCL allocates a multi-volume HFS data set on volumes selected by
SMS. Storage class GSPACE must have GUARANTEED SPACE=YES. This
example allocates 100MB on each of four volumes. When all of the allocated
space is used for the data set on all volumes, the secondary space is allocated
only on the last volume.

The ISPF data set information panel illustrates that four extents were allocated.
The current allocation shows 400 MB (100MB on each of four volumes).

If you press enter on the ISPF data set information panel, then you will see the
four selected VOLSERs.

Note: ISPF option 3.4 shows a ’+’ to indicate a data set is multi-volume if the data
set was allocated with the ability to span volumes. Option 3.2 shows the data set
as multi-volume if data has actually been written to two or more volumes. This is

For HFS data sets with GUARANTEED SPACE=YES, secondary extents are
allocated only on the last volume of the multi-volume data sets. All volumes
except the last one will have only primary extents.

Important Information

//ALLOC1 EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//****************************************************************/
//* NON-SPECIFIC GUARANTEED SPACE MULTIVOLUME ALLOCATION */
//****************************************************************/
//DDNAME1 DD DSN=STYRES1.MULTIVOL.GSPACE.HFS,
// DISP=(NEW,CATLG),
// STORCLAS=GSPACE,
// UNIT=(3390,4),
// SPACE=(1,(100,50,1)),AVGREC=M,
// DSNTYPE=HFS

Data Set Name . . . : STYRES1.MULTIVOL.GSPACE.HFS

General Data Current Allocation
Management class . . : MCDB22 Allocated megabytes : 400
Storage class . . . : GSPACE Allocated extents . : 4
Volume serial . . . : MHLV09 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . : HFS
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 5
Record length . . . : 0 % Utilized . . . . : 1
Block size . . . . : 0 Number of members . : 1
1st extent megabytes: 100
Secondary megabytes : 50
Data set name type : HFS
Chapter 4. Allocating and mounting HFS data sets 79



not consistent. Refer to APAR OW37267; ISPF will be changed in the next
release to be consistent.

For HFS data sets, secondary extents are allocated only on the last volume of the
multi-volume data sets. All volumes except the last one will have only primary
extents. The process is as follows:

1. 100MB is used on the first volume.

2. If more space is needed, 100MB of primary space is used on the second
volume.

3. The same process is repeated on each volume.

4. Finally, additional secondary space is allocated on the last volume, if sufficient
room is available. In this case, the system will attempt to allocate 500MB of
space each time extend is attempted. This will continue until either the extent
limit is reached or the volume is full. In this example, you may get up to 123
extents on the final volume and only the primary allocation on the first three
volumes.

Note: If you allocate an HFS data set using the same JCL, with the exception of
the STORCLAS statement, you do not perform a GUARANTEED SPACE request.
In this case, only one extent (100MB) on the first (primary) volume will be
allocated, and three candidate volumes will be added to the associated catalog
entry. ISPF current allocation shows (just after allocating the HFS data set):

• Allocated megabytes: 100
• Allocated extents: 1

However, without GUARANTEED SPACE, the maximum number of extents is
between 251 and 255 (123 extents on the first and second volume and five to
nine extents on the third volume. For more information, see 4.1.1, “Multi-volume
allocation considerations” on page 78.).

4.1.2.2 Honoring specific volume requests
In addition to preallocating space for multi-volume HFS data sets, you can use
the GUARANTEED SPACE attribute to let SMS honor a request for single or
multiple volumes explicitly specified by the user. For example, you can allow

Data Set Information
C .----------- Volume Information -----------.
| |

D | Command ===> | HFS
| |

G | All allocated volumes: | llocation
| More: + | d megabytes : 400
| Number of volumes allocated: 4 | d extents . : 4
| | dir. blocks : NOLIMIT
| MHLV09 MHLV03 MHLV07 MHLV05 |
| |
| | tilization
| | es . . . . : 5
| F1=Help F3=Exit F12=Cancel | ed . . . . : 1
.------------------------------------------. f members . : 1
1st extent megabytes: 100
Secondary megabytes : 50
Data set name type : HFS
80 Hierarchical File System Usage Guide



users to preallocate a multi-volume HFS data set on specific volumes. SMS
insures that all the specified volumes are in the same storage group and also that
the storage group containing the volumes is one of the storage groups assigned
to the storage group ACS routine. You can also use the GUARANTEED SPACE
attribute to allocate space specifically on volumes within the same storage group
as shown on the next screens.

The sample shows JCL preallocating space for a multi-volume data set on
volumes SBOX13, SBOX14, SBOX15 and SBOX16 if the storage class GSPACE
has GUARANTEED SPACE = YES:

ISPF data set information shows that four extents were allocated. The current
allocation is 200 cylinders (50 cylinders on each of the four volumes).

You will see the four VOLSERs when you press enter on the ISPF data set
information panel.

//ALLOC1 EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//****************************************************************/
//* SPECIFIC GUARANTEED SPACE MULTIVOLUME ALLOCATION */
//****************************************************************/
//DDNAME1 DD DSN=STYRES1.MULTIVOL.GSPACE.HFS2,
// DISP=(NEW,CATLG),
// STORCLAS=GSPACE,
// VOL=SER=(SBOX13,SBOX14,SBOX15,SBOX16),
// SPACE=(CYL,(50,25,1)),
// DSNTYPE=HFS

Data Set Name . . . : STYRES1.MULTIVOL.GSPACE.HFS2

General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 200
Storage class . . . : GSPACE Allocated extents . : 4
Volume serial . . . : SBOX13 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . : HFS
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 5
Record length . . . : 0 % Utilized . . . . : 1
Block size . . . . : 0 Number of members . : 1
1st extent cylinders: 50
Secondary cylinders : 25
Data set name type : HFS
Chapter 4. Allocating and mounting HFS data sets 81



Note: For HFS data sets, secondary extents are allocated only on the last volume
of the multi-volume data sets. All volumes except the last one will have only
primary extents.

If you specify NO for GUARANTEED SPACE, then SMS chooses the volumes for
allocation, ignoring any VOL=SER statements specified on JCL. Primary space
on the first volume is preallocated. NO is the default for guaranteed space.

End users can allocate space on specific volumes for a data set if you:

• Create at least one storage class with the GUARANTEED SPACE attribute.

• Ensure the user is authorized to the storage class with the GUARANTEED
SPACE attribute.

• Write a storage group ACS routine that assigns a storage group containing the
volumes explicitly specified by the user (optional).

• Ensure all volumes explicitly specified by the user belong to the same storage
group by directing an allocation which is assigned a GUARANTEED SPACE
storage class to all the storage groups in the installation.

• Ensure the requested space is available since there is no capability in SMS to
allow specific volume requests except with the GUARANTEED SPACE
attribute.

• Ensure availability and accessibility specifications in the storage class can be
met by the specified volumes.

4.1.3 SMS definition examples
The following examples are based on the SMS constructs defined and explained
in 3.1.2, “Defining SMS constructs for HFS data sets” on page 35.

We summarize the SMS definitions used in the later examples:

• DATACLAS=HFS defines a single volume HFS data set (DSNTYPE=HFS).

• DATACLAS=HFSMULT defines a multi-volume HFS data set (DSNTYPE=HFS
and VOLCOUNT=3)

Data Set Information
C .----------- Volume Information -----------.
| |

D | Command ===> | HFS2
| |

G | All allocated volumes: | llocation
| More: + | d cylinders : 200
| Number of volumes allocated: 4 | d extents . : 4
| | dir. blocks : NOLIMIT
| SBOX13 SBOX14 SBOX15 SBOX16 |
| |
| | tilization
| | es . . . . : 5
| F1=Help F3=Exit F12=Cancel | ed . . . . : 1
.------------------------------------------. f members . : 1
1st extent cylinders: 50
Secondary cylinders : 25
Data set name type : HFS
82 Hierarchical File System Usage Guide



• STORCLAS=OPENMVS with minimum definitions to spread allocations
across volumes (no Performance Objective (no MSR values);
ACCESSIBILITY=NOPREF; ACCESSIBILITY=NOPREF; GUARANTEED
SPACE=NO).

• STORCLAS=GSPACE same as STORCLAS=OPENMVS with the exception
that GUARANTEED SPACE allocation is allowed (GUARANTEED
SPACE=YES).

• MGTMCLAS=HFS with PARTREL=NO ; AUTO BACKUP=YES and BACKUP
COPY TECHNIQUE=STANDARD)

• STORAGE GROUP=OPENMVS with AUTO MIGRATE=YES; AUTO
BACKUP=YES and AUTO DUMP=NO.

• For indirect allocations:

The data class ACS routine assigns the HFS data class (with
DSNTYPE=HFS) based on the following rules:

- Pre-assigned DC of HFS (single volume).
- DSNTYPE=HFS
- Low level qualifier (LLQ) starting with HFS
- Pre-assigned DC of HFSMULTI (multivolume) assigns DC HFSMULTI.

The storage class ACS routine assigns the OPENMVS storage class if:

- The HLQ of DSNAME is OMVS or HFS.
- DC HFS or HFSMULTI is defined.

4.1.4 Using ISPF
You can use the ISPF Data Set Utility (option 3.2) to allocate single volume or
multi-volume HFS data sets. Depending on your ACS routines, you can use the
direct or indirect method to specify DSNTYPE=HFS.

4.1.4.1 Single volume (using ISPF)
The following screen (Sample 1) shows an example of how to directly allocate an
HFS data set:

1.) Select option A or M to allocate a new HFS data set.
Chapter 4. Allocating and mounting HFS data sets 83



Figure 31. Sample 1

2.) Enter your space values and specify DSNTYPE=HFS.

After you have pressed enter to allocate the HFS data set, you can just press
enter (blank - data set information) again to verify your new HFS data set
allocation. If allocation was successful, the Data Set Name Type field will show
HFS. Note that minimally, an SC must be assigned to this HFS data set for it to be
system-managed.

Menu RefList Utilities Help
-----------------------------------------------------------------------------

Data Set Utility
Option ===> a

A Allocate new data set C Catalog data set
R Rename entire data set U Uncatalog data set
D Delete entire data set S Data set information (short)

blank Data set information M Allocate new data set
V VSAM Utilities

ISPF Library:
Project . .
Group . . .
Type . . . .

Other Partitioned, Sequential or VSAM Data Set:
Data Set Name . . . 'Stryes1.user.hfs.data.set
Volume Serial . . . (If not cataloged, required for option "C")

Allocate New Data Set
Command ===>

More: +
Data Set Name . . . : STRYES1.USER.HFS.DATA.SET

Management class . . . (Blank for default management class)
Storage class . . . . (Blank for default storage class)
Volume serial . . . . (Blank for system default volume) **
Device type . . . . . (Generic unit or device address) **
Data class . . . . . . (Blank for default data class)
Space units . . . . . cyls (BLKS, TRKS, CYLS, KB, MB, BYTES

or RECORDS)
Average record unit (M, K, or U)
Primary quantity . . 5 (In above units)
Secondary quantity 5 (In above units)
Directory blocks . . 0 (Zero for sequential data set) *
Record format . . . . U
Record length . . . . 0
Block size . . . . . 0
Data set name type : HFS (LIBRARY, HFS, PDS, or blank) *
84 Hierarchical File System Usage Guide



Note: If your allocated space differs from the amount of space that you have
requested, first check the Default Device Geometry of your SMS installation.

The Default Device Geometry attribute converts an allocation request from tracks
or cylinders to KBs or MBs when an esoteric unit is used, or when no unit is
given. Through this conversion, uniform space can be allocated on any device
type for a given allocation.

Two variations of UNIT coding are:

• Users specify a generic name, such as 3380 or 3390:

These users have allocation converted to bytes, based on the geometry of that
device.

• Users specify an esoteric name, such as SYSDA:

These users have allocation converted to bytes, based on the Default Device
Geometry attribute.

Refer to DFSMS/MVS V1R5 DFSMSdfp Storage Administration. Reference,
SC26-4920, for more information regarding Default Device Geometry.

4.1.4.2 Multi-volume (using ISPF)
To allocate a new multi-volume HFS data set, you can use the indirect method by
selecting an appropriate data class including DSNTYPE=HFS and a volume
count greater than one.

Note: Currently, ISPF does not support the direct allocation of HFS multi-volume
data sets as is available for other kinds of MVS data sets. You will receive a
message "Invalid combination", if you specify a slash ("/" Allocate Multiple

Volumes) at the ISPF option 3.2 allocation panel to enter more than one volume for
an HFS data set.

The following example (Sample 2) uses a pre-assigned data class, HFSMULTI, to
allocate a multi-volume HFS data set.

Data Set Information
Command ===>

Data Set Name . . . : STRYES1.USER.HFS.DATA.SET

General Data Current Allocation
Management class . . : HFS Allocated cylinders : 5
Storage class . . . : OPENMVS Allocated extents . : 1
Volume serial . . . : SBOX15 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . : HFS
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 5
Record length . . . : 0 % Utilized . . . . : 1
Block size . . . . : 0 Number of members . : 1
1st extent cylinders: 5
Secondary cylinders : 5
Data set name type : HFS
Chapter 4. Allocating and mounting HFS data sets 85



Figure 32. Sample 2

Note: If you do not directly specify a DSNTYPE = HFS, then you need to specify
at least one directory block. The number of directory blocks must be specified to
indicate that this is a partitioned organized data set, but the value has no effect
on allocation. Otherwise, a sequential data set will be allocated.

4.1.5 Using DD statement in a batch job
The DD (data definition) statement in a batch job also provides the ability to
directly allocate a single or multi-volume HFS data set. Nevertheless, you can
also indirectly allocate an HFS data set.

See 3.1.7, “ACS routines” on page 46 for more examples.

4.1.5.1 Single volume (using DD)
The next example screen shows how to allocate a single volume HFS data set
directly, by assigning a DSNTYPE=HFS (Sample 3); and indirectly, by deriving
the DC HFS from the LLQ =HFS* (Sample 4).

Allocate New Data Set
Command ===>

More:
Data Set Name . . . : STRYES1.MULTIVOL.HFS.DATA.SET

Management class . . . (Blank for default management class)
Storage class . . . . (Blank for default storage class)
Volume serial . . . . (Blank for system default volume) **
Device type . . . . . (Generic unit or device address) **
Data class . . . . . . HFSMULTI (Blank for default data class)
Space units . . . . . MB (BLKS, TRKS, CYLS, KB, MB, BYTES

or RECORDS)
Average record unit (M, K, or U)
Primary quantity . . 8 (In above units)
Secondary quantity 4 (In above units)
Directory blocks . . 1 (Zero for sequential data set) *
Record format . . . . U
Record length . . . . 0
Block size . . . . . 0
Data set name type : (LIBRARY, HFS, PDS, or blank) *
86 Hierarchical File System Usage Guide



Figure 33. Sample 3 and sample 4

Note: The number of directory blocks must be specified to allocate an HFS data
set, although the value has no real effect on the allocation.

4.1.5.2 Multi-volume (using DD)
In the following example screen, Sample 5 shows how to allocate (indirectly) a
multi-volume HFS data set by specifying DSNTYPE=HFS, and a volume count in
the UNIT statement. Sample 6 uses the indirect method to allocate a
multi-volume HFS data set by specifying DATACLAS=HFSMULTI.

Figure 34. Sample 5 and sample 6

Note: The number of directory blocks must be specified to allocate an HFS data
set, although the value has no real effect on the allocation.

4.1.6 Miscellaneous allocation methods
As mentioned before, you can use most allocation methods to indirectly allocate
a single or multi-volume HFS data set indirectly.

//ALLOC1 EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//****************************************************************/
//* SAMPLE #3 SINGLE VOLUME BY USING DSNTYPE=HFS */
//****************************************************************/
//DDNAME1 DD DSN=STYRES1.HFS.DATA.SET3,
// DISP=(NEW,CATLG),
// UNIT=(SYSDA),
// SPACE=(1,(2,2,1)),AVGREC=M,
// DSNTYPE=HFS
//****************************************************************/
//* SAMPLE #4 SINGLE VOLUME DUE TO LLQ OF HFS* */
//****************************************************************/
//DDNAME2 DD DSN=STYRES1.USER.HFS4,
// DISP=(NEW,CATLG),
// UNIT=(SYSDA),
// SPACE=(TRK,(2,2,1))

//ALLOC1 EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//****************************************************************/
//* SAMPLE #5 MULTIVOLUME BY USING VOLCOUNT ON UNIT STATEMENT */
//****************************************************************/
//DDNAME3 DD DSN=STYRES1.MULTIVOL.HFS.DATA.SET5,
// DISP=(NEW,CATLG),
// UNIT=(SYSDA,2),
// SPACE=(CYL,(2,2,1)),
// DSNTYPE=HFS
//****************************************************************/
//* SAMPLE #6 MULTIVOLUME BY USING DATACLAS=HFSMULTI */
//****************************************************************/
//DDNAME4 DD DSN=STYRES1.MULTIVOL.HFS.DATA.SET6,
// DISP=(NEW,CATLG),
// UNIT=(SYSDA),
// SPACE=(TRK,(4,2,1)),
// DATACLAS=HFSMULTI
Chapter 4. Allocating and mounting HFS data sets 87



The next screen provides a few examples for the TSO ALLOCATE command and
IDCAMS ALLOCATE.

4.1.6.1 Single volume (using other methods)
IDCAMS ALLOCATE (Sample 7): The HFS data class will be derived from the
LLQ of the data set name.

Figure 35. Sample 7

The syntax of the TSO ALLOCATE command (Sample 8) is similar to the
IDCAMS ALLOCATE. In this example, we have specified DATACLAS(HFS) to
force an HFS data set allocation.

Figure 36. Sample 8

4.1.6.2 Multi-volume (using other methods)
Sample 9 shows how to allocate an HFS data set by using IDCAMS ALLOC and
specifying a DC HFSMULTI. Instead of specifying DATACLAS(HFSMULTI), you
can also specify parameter UCOUNT(2) to allocate a multi-volume HFS data set.

//STEP EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//**************************************************************************/
//* SAMPLE #7 INDIRECT ALLOCATION DUE TO LLQ OF HFS* */
//**************************************************************************/
//SYSIN DD *
ALLOC -

DSNAME('STYRES1.USER.HFS7') -
NEW CATALOG -
SPACE(5,5) CYLINDERS -
DSORG(PO)

//STEP1 EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//**************************************************************************/
//* SAMPLE #8 INDIRECT ALLOCATION BY SPECIFYING DATACLAS(HFS) */
//**************************************************************************/
//SYSTSIN DD *
ALLOC -

DSNAME('STYRES1.HFS.DATA.SET8') -
NEW -
SPACE(3,2) AVBLOCK(1) AVGREC(M) -
DSORG(PO) -
DATACLAS(HFS)

/*
88 Hierarchical File System Usage Guide



Figure 37. Sample 9

Sample 10 shows a multi-volume allocation for a TSO ALLOCATE command by
explicitly specifying a volume count (UCOUNT(4)).

Figure 38. Sample 10

4.1.7 Using ISHELL
The OS/390 ISPF shell (ISHELL) also provides the ability to allocate a single
volume or multi-volume HFS data set. However, only the indirect method may be
used for a multi-volume HFS.

4.1.7.1 Single volume (using ISHELL)
Using the file system pulldown menu, you can allocate a new HFS data set.

//STEP EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//**************************************************************************/
//* SAMPLE #9 MULTIVOLUME HFS BY SPECIFYING DATACLAS=HFSMULTI */
//**************************************************************************/
//SYSIN DD *
ALLOC -

DSNAME('STYRES1.MULTIVOL.HFS.DATA.SET9') -
NEW CATALOG -
SPACE(20,10) TRACKS -
DSORG(PO) -
DATACLAS(HFSMULTI)

/*

//STEP1 EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//**************************************************************************/
//* SAMPLE #10 MULTIVOLUME DUE TO LLQ HFS* & PARAMETER UCOUNT(4) */
//**************************************************************************/
//SYSTSIN DD *
ALLOC -

DSNAME('STYRES1.USER.MULTIVOL.HFS10') -
NEW -
SPACE(5,5) CYLINDERS -
UCOUNT(4) -
DSORG(PO)

/*
Chapter 4. Allocating and mounting HFS data sets 89



The name of a file system should be a fully qualified name of a data set. Enter the
name of a data set, and the number of cylinders for primary and secondary
allocation.

Sample 11 allocates an HFS data set with only a primary allocation. The HFS will
not automatically be extended if no secondary allocation is specified. This limits
the size of an HFS to the primary allocation amount.

Figure 39. Sample 11

Note: ISHELL specifies DSNTYPE=HFS during the allocation process. but a
valid storage class must be specified either directly or by the storage class ACS
routine if you want the HFS data set to be system-managed.

4.1.7.2 Multi-volume (using ISHELL)
To allocate a multi-volume HFS data set using ISHELL, you can assign a DC
which has already been defined with a volume count > 1. In Sample 12, the
pre-assigned DC HFSMULTI allocates a multi-volume HFS data set on three
volumes (2 candidate volumes).

File Directory Special_file Tools File_systems Options Setup Help
------------------------------------- .-----------------------. ----------

OpenMVS I | 2 1. Mount table... |
| 2. New... |

Enter a pathname and do one of these: | 3. Mount(O)... |
.-----------------------.

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.
More: +

/
________________________________________________________________
________________________________________________________________
________________________________________________________________

File Directory Special_file Tools File_systems Options Setup Help
- .----------------------------------------------------------------.
| Make a File System |
| |

E | File system name . . . . 'STYRES1.USER.HFS.DATA.SET11' |
| Primary cylinders . . . . 5_______ |
| Secondary cylinders . . . 0_______ |
| Storage class . . . . . . ________ |
| Management class . . . . ________ |
| Data class . . . . . . . ________ |

R | |
| F1=Help F3=Exit F6=Keyshelp F12=Cancel |
.----------------------------------------------------------------.
________________________________________________________________
________________________________________________________________
________________________________________________________________
90 Hierarchical File System Usage Guide



Figure 40. Sample 12

4.1.8 Summary of HFS data set allocations
Table 5 summarizes the assigned SMS classes and HFS data set attributes after
allocation.

Table 5. Summary of sample HFS allocations

4.2 Mounting an HFS

After an HFS data set is allocated, you must mount it at a mount point that is off
the root directory in order to make it available.

An HFS data set is a mountable file system. A mountable file system can be
logically mounted to a mount point, which is a directory in another file system,
with a TSO MOUNT command. A mountable file system can be unmounted from

Sample Data class Type of
allocation

Primary
amount

Secondary
amount

Single
or multi-
volume

Volume
count

#1 HFS cylinder 5 5 single 1

#2 HFSMULTI MB 8 4 multi 3

#3 HFS MB 2 2 single 1

#4 HFS track 2 2 single 1

#5 HFS cylinder 2 2 multi 2

#6 HFSMULTI track 4 2 multi 3

#7 HFS cylinder 5 5 single 1

#8 HFS MB 3 2 single 1

#9 HFSMULTI track 20 10 multi 3

#10 HFS cylinder 5 5 multi 4

#11 HFS cylinder 5 0 single 1

#12 HFSMULTI cylinder 25 10 multi 3

File Directory Special_file Tools File_systems Options Setup Help
- .-----------------------------------------------------------------.
| Make a File System |
| |

E | File system name . . . . STYRES1.MULTIVOL.HFS12 |
| Primary cylinders . . . . 25 |
| Secondary cylinders . . . 10 |
| Storage class . . . . . . ________ |
| Management class . . . . ________ |
| Data class . . . . . . . HFSMULTI |

R | |
| F1=Help F3=Exit F6=Keyshelp F12=Cancel |
.-----------------------------------------------------------------.
________________________________________________________________
________________________________________________________________
________________________________________________________________
Chapter 4. Allocating and mounting HFS data sets 91



a mount point with a TSO UNMOUNT command. ISPF user and OMVS shell
users can also perform these tasks using their unique methods.

This topic provides information about what should be done before and after
mounting an HFS and how to mount an HFS. Furthermore, we describe how to
determine the status of mounted HFS data sets.

The restrictions for mounting file systems are:

• The mount point must be a directory. If it is not an empty directory, files in that
directory are not accessible while the file system is mounted.

• Only one file system can be mounted at a directory (mount point) at any one
time.

• If the file system is to be shared by multiple systems, refer to Chapter 7,
“Sharing and serialization for HFS data sets” on page 167.

You can customize the automount facility to mount all user file systems
automatically when they are needed. This is the preferred method to manage
user HFS data sets because it saves administration time. For more information,
refer to A.2, “Automount facility” on page 248.

4.2.1 Before mounting HFS data sets
You must build a directory in the root file system, or elsewhere in the hierarchy,
before mounting an HFS data set. A directory is used as a mount point for a
mountable file system. The mount point should be an empty directory; Otherwise,
its contents will be hidden (not deleted) for the duration of any subsequent
mounts. To build the directory, use one of the following:

• TSO MKDIR command interactively; in an in-stream data set in the JCL, such
as SYSIN; or in a CLIST or REXX exec

• A mkdir OMVS shell command

• The ISHELL directory pull-down

A mount and unmount user must have superuser authority, or at least have
READ access to the BPX.SUPERUSER FACILITY class.

Important Information
92 Hierarchical File System Usage Guide



Figure 41 shows how to make a new directory /u/styres2, by using the TSO
MKDIR command:

Figure 41. TSO MKDIR command example

The permission bits for directory /u/styres2 are set to 755. For more information
about default permissions set by the system, refer to 2.4.3.2, “Default
permissions set by OS/390” on page 28.

4.2.2 TSO MOUNT and UNMOUNT commands
You can use the TSO MOUNT command under a superuser ID to mount the new
file system over the directory of an existing file system.

The MOUNT command format is as follows:

MOUNT FILESYSTEM(file_system_name)
MOUNTPOINT(pathname)
TYPE(file_system_type)
MODE(RDWR|READ)
PARM(parameter_string)
SETUID|NOSETUID
WAIT|NOWAIT
SECURITY|NOSECURITY

See 3.3.2, “TSO MOUNT command” on page 63 for a description of the TSO
MOUNT parameters, including the two new PARM keywords:

PARM(’SYNC(t),NOWRITEPROTECT’)

The UNMOUNT command removes a file system from the file system hierarchy.
The alias for this command is UMOUNT. The UNMOUNT command format is as
follows:

UNMOUNT FILESYSTEM(file_system_name)
DRAIN | FORCE | IMMEDIATE | NORMAL |
REMOUNT(RDWR | READ) | RESET

See 3.3.3, “TSO UNMOUNT command” on page 64 for a description of the TSO
UNMOUNT command.

ISPF Command Shell
Enter TSO or Workstation commands below:

===> MKDIR '/u/styres2'

Place cursor on choice and press enter to Retrieve command

=>
=>
=>
=>
=>
=>
=>
Chapter 4. Allocating and mounting HFS data sets 93



For example, the directory /u/styres2 is a mount point for OMVS.SC64.STYRES2
with read/write mode and sync interval of 120 seconds. Figure 42 and Figure 43
show examples of TSO MOUNT and UNMOUNT commands.

Figure 42. TSO MOUNT command example

Figure 43. TSO UNMOUNT command example

ISPF Command Shell
Enter TSO or Workstation commands below:

===> MOUNT FILESYSTEM('OMVS.SC64.STYRES2') TYPE(HFS)
MOUNTPOINT('/u/styres2') PARM(’SYNC(120)’)

Place cursor on choice and press enter to Retrieve command

=>
=>
=>
=>
=>
=>
=>

ISPF Command Shell
Enter TSO or Workstation commands below:

===> UNMOUNT FILESYSTEM('OMVS.SC64.STYRES2')

Place cursor on choice and press enter to Retrieve command

=>
=>
=>
=>
=>
=>
=>

With OS/390 2.8, there is a new UNIXPRIV class which contains profiles that
allow users to mount (for example) without being a superuser. The profile name
is SUPERUSER.FILESYS.MOUNT.

Prior to OS/390 2.7, TSO MOUNT and UNMOUNT commands can only be
performed with superuser (UID=0) authority or after changing the effective UID
by use of the ISHELL.

For more information about how to set an effective UID in the ISHELL, please
refer to 4.2.3, “ISPF ISHELL” on page 95.

Important Information
94 Hierarchical File System Usage Guide



4.2.3 ISPF ISHELL
You can invoke the ISPF ISHELL by typing the TSO ISHELL command. This is a
panel interface for performing many user and administrator tasks with USS user
IDs and the HFS file system. If you are more comfortable using the ISPF editor
and ISPF pull-down menus, the ISHELL is the tool for you.

Note: You must have an OMVS segment in your RACF profile to use the ISHELL.

If you are not a superuser, but have permission for read access to the facility
class BPX.SUPERUSER, you have to set effective UID (SETEUID) to 0 (zero)
before mounting HFS.

The next example shows how to set effective UID to 0 (zero) in the ISHELL.

From ISPF option 6, type ISHELL, bring the cursor up to the Setup pull-down
menu item and press Enter.

Select option 7, Enable superuser mode, and then press Enter.

File Directory Special_file Tools File_systems Options Setup Help
--------------------------------------------------------------------------

OpenMVS ISPF Shell

Enter a pathname and do one of these:

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.
More: +

/u/styres2
________________________________________________________________
________________________________________________________________
________________________________________________________________

(C) Copyright IBM Corp., 1993. All rights reserved.
Command ===> ______________________________________________________________
F1=Help F3=Exit F5=Retrieve F6=Keyshelp F7=Backward F8=Forward
F10=Actions F11=Command F12=Cancel
Chapter 4. Allocating and mounting HFS data sets 95



You are now set as effectively having UID 0 (zero) and have the authority to
mount and unmount HFS file systems.

The next example shows how to mount and unmount HFS file systems.

In the ISHELL menu screen, bring the cursor up to the File_system directory
pull-down menu item and press Enter.

Select option 3, Mount(O), and then press Enter.

File Directory Special_file Tools File_systems Options Setup Help
------------------------------------------ .----------------------------------.

OpenMVS ISPF S | 7 1. *User... |
| 2. *User list... |

Enter a pathname and do one of these: | 3. *All users... |
| 4. *All groups... |

- Press Enter. | 5. *Permit field access... |
- Select an action bar choice. | 6. *Character Special... |
- Specify an action code or command on | 7. Enable superuser mode(SU) |

.----------------------------------.
Return to this panel to work with a differ .---------------------------------.

| Some choices (*) require |
/u/styres2 | superuser or the "special" |
_______________________________________ | attribute for full function, or |
_______________________________________ | both |
_______________________________________ .---------------------------------.

Command ===> ______________________________________________________________
F1=Help F3=Exit F5=Retrieve F6=Keyshelp F7=Backward F8=Forward
F10=Actions F11=Command F12=Cancel

File Directory Special_file Tools File_systems Options Setup Help
--------------------------------------------------------------------------

OpenMVS ISPF Shell

Enter a pathname and do one of these:

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.
More: +

/u/styres2
________________________________________________________________
________________________________________________________________
________________________________________________________________

(C) Copyright IBM Corp., 1993. All rights reserved.
Command ===> ______________________________________________________________
F1=Help F3=Exit F5=Retrieve F6=Keyshelp F7=Backward F8=Forward
F10=Actions F11=Command F12=Cancel
96 Hierarchical File System Usage Guide



Insert the file system name, type, and new owner, and then press Enter.

The data set, OMVS.SC64.STYRES2 is now mounted on /u/styres2, and the sync
interval is set to 120 seconds.

The owner of mount point directory of /u/styres2 is now automatically set to
STYRES2 by ISHELL’s new owner parameter.

File Directory Special_file Tools File_systems Options Setup Help
------------------------------------- .-----------------------. ----------

OpenMVS I | 3 1. Mount table... |
| 2. New... |

Enter a pathname and do one of these: | 3. Mount(O)... |
.-----------------------.

- Press Enter.
- Select an action bar choice.
- Specify an action code or command on the command line.

Return to this panel to work with a different pathname.
More: +

/u/styres2
________________________________________________________________
________________________________________________________________
________________________________________________________________

Command ===> ______________________________________________________________
F1=Help F3=Exit F5=Retrieve F6=Keyshelp F7=Backward F8=Forward
F10=Actions F11=Command F12=Cancel

File Directory Special_file Tools File_systems Options Setup Help
- .-----------------------------------------------------------------------.
| Mount a File System |
| |

E | Mount point: |
| More: + |
| /u/styres2 |
| ________________________________________________________________ |
| ________________________________________________________________ |
| ________________________________________________________________ |

R | |
| File system name . . OMVS.SC64.STYRES2_________________________ |
| File system type . . HFS_____ |
| New owner . . . . . STYRES2_ |
| |
| Select additional mount options: |
| _ Read-only file system |
| _ Ignore SETUID and SETGID |
| _ Bypass security |
| Mount parameter: |
| SYNC(120)___________________________________________________________ |

C | F1=Help F3=Exit F4=Name F6=Keyshelp F12=Cancel |
.-----------------------------------------------------------------------.

F10=Actions F11=Command F12=Cancel
Chapter 4. Allocating and mounting HFS data sets 97



4.2.4 OMVS mountx and unmountx shell commands
In the shell, the MOUNT and UNMOUNT commands are available as TSO
commands, not shell commands. However, you can also issue those commands
from the shell, using the TSO shell command. Additionally, the mountx and
unmountx REXX programs that can be run from the shell are in the directory
/samples.

In the shell, if you are not superuser but have read access to BPX.SUPERUSER,
you have to use the su command to switch your authority before any mount or
unmount operations.

Type OMVS from ISPF option 6 to enter the shell and execute the commands to
mount and unmount the HFS data set OMVS.SC64.STYRES2.

Figure 44 shows an example of the commands required, including issuing the
/samples/mountx and /samples/unmountx REXX exec from the shell.

Figure 44. mountx and unmountx shell command examples

4.2.5 After mounting HFS data sets
After mounting the new HFS data set, you should enter the shell and set the file
permissions and owners for each file's directory. The chmod command can be
used to set these permissions. The chown command can be used to set the new
owner.

When you mount a new HFS data set for the first time, the permission bits of the
mounted directory are overridden from their original (usually 755) bits to 700.
Therefore, you should change the permission bits after mounting the new HFS.

Unless you mount the new HFS by using ISHELL’s new owner parameter, you
should change the owner name after mounting the new HFS.

Figure 45 shows an example of how to change the file permissions, owner, and
group name for the /u/styres2 directory.

$ su
# /samples/mountx -p’SYNC(120)’ /u/styres2 omvs.sc64.styres2
OMVS.SC64.STYRES2 is now mounted at
/u/styres2
# /samples/unmountx /u/styres2
Unmount complete for OMVS.SC64.STYRES2
#
===>
98 Hierarchical File System Usage Guide



Figure 45. chmod and chown shell command examples

You can also use ISHELL to change these attributes.

If you change these attributes once, you do not need to change them when the
HFS is mounted again later.

4.2.6 Adding MOUNT Statements to BPXPRMxx
To have mountable file systems logically mounted when the system IPLs, add
MOUNT statements to the BPXPRMxx PARMLIB member.

If you want to make the mounting of the OMVS.SC64.STYRES2 data set
permanent, you must add an entry in the BPXPRMxx member of SYS1.PARMLIB.
These mount statements should follow the ROOT statement for the root file
system.

4.2.7 Status of mounted HFS data sets
When the mount operation is done, you can determine if the mount has
completed with one of the following commands:

• The df shell command
• The DISPLAY OMVS,F operator command
• The MOUNT table option on the File Systems pulldown in the ISPF Shell

(accessed by the ISHELL command)

Examples of these commands are shown in Figure 46, Figure 47, and Figure 48.

STYRES2 @ SC64:/u>ls -al
total 80
drwx------ 4 HAIMO SYS1 8192 Jun 17 13:16 .
drwxr-xr-x 13 HAIMO TTY 8192 Mar 5 15:51 ..
drwx------ 2 HAIMO SYS1 8192 Jun 10 18:54 styres2
drwxrwxrwx 2 HAIMO SYS1 8192 Jun 17 13:16 styres3
STYRES2 @ SC64:/u>chmod 755 /u/styres2
STYRES2 @ SC64:/u>chown styres2:itsosj /u/styres2
STYRES2 @ SC64:/u>ls -al
total 80
drwx------ 4 HAIMO SYS1 8192 Jun 17 13:16 .
drwxr-xr-x 13 HAIMO TTY 8192 Mar 5 15:51 ..
drwxr-xr-x 2 STYRES2 ITSOSJ 8192 Jun 10 18:54 styres2
drwxrwxrwx 2 HAIMO SYS1 8192 Jun 17 13:16 styres3
STYRES2 @ SC64:/u>

MOUNT FILESYSTEM(’OMVS.SC64.STYRES2í)
TYPE(HFS)
MOUNTPOINT(’/u/styres2’)
MODE(RDWR)
PARM(’SYNC(120)’)
Chapter 4. Allocating and mounting HFS data sets 99



Figure 46. df shell command

Figure 47. DISPLAY OMVS,F operator command

STYRES2 @ SC64:/>df
Mounted on Filesystem Avail/Total Files Status
/tmp (/TMP) 999797/1000000 127974 Available
/u/styres2 (OMVS.SC64.STYRES2) 7160/7200 4294967294 Available
/var (OMVS.SC64.VAR) 12848/12960 4294967290 Available
/u (OMVS.SC64.USERS) 37368/37440 4294967292 Available
/etc (OMVS.SC64.ETC) 74072/76320 4294967058 Available
/ (HFS.OS390R7.SC64.O37RA1.ROOT)89016/1264320 4294949381 Available
STYRES2 @ SC64:/>
===>

D OMVS,F
BPXO044I 04.27.14 DISPLAY OMVS 693
OMVS 000F ACTIVE OMVS=(7B)
TYPENAME DEVICE ----------STATUS----------- MODE QJOBNAME QPID
TFS 5 ACTIVE RDWR
NAME=/TMP
PATH=/tmp
MOUNT PARM=-s 500

HFS 10 ACTIVE RDWR
NAME=OMVS.SC64.STYRES2
PATH=/u/styres2
MOUNT PARM=SYNC(120)

HFS 4 ACTIVE RDWR
NAME=OMVS.SC64.VAR
PATH=/var

HFS 3 ACTIVE RDWR
NAME=OMVS.SC64.USERS
PATH=/u

HFS 2 ACTIVE RDWR
NAME=OMVS.SC64.ETC
PATH=/etc

HFS 1 ACTIVE RDWR
NAME=HFS.OS390R7.SC64.O37RA1.ROOT
PATH=/
100 Hierarchical File System Usage Guide



Figure 48. ISHELL mount table option

Work with Mounted File Systems

Select one or more file systems with / or action codes.
U=Unmount A=Attributes C=Change mode R=Reset unmount or quiesce
File system name Status Row 1 of 7

_ /TMP Available
_ HFS.OS390R7.SC64.O37RA1.ROOT Available
_ OMVS.SC64.ETC Available
_ OMVS.SC64.STYRES2 Available
_ OMVS.SC64.USERS Available
_ OMVS.SC64.VAR Available

Command ===> ______________________________________________________________
F1=Help F3=Exit F5=Retrieve F6=Keyshelp F7=Backward F8=Forward
F11=Command F12=Cancel
Chapter 4. Allocating and mounting HFS data sets 101



102 Hierarchical File System Usage Guide



Chapter 5. Managing HFS data sets

This chapter provides information about managing HFS data sets. We include
examples of:

• Backup and restore processing of an HFS data set that is mounted read/write
• Recovery processing
• Increasing the file size of an HFS data set
• Converting from single to multi-volume HFS data sets
• Interpreting the different kinds of file size displays

Backup and restore processing for individual files in an HFS by using Tivoli
Storage Manager is also discussed in Chapter 6, “Tivoli Storage Manager” on
page 153. Usage of pax, tar, and cpio USS commands is discussed in A.1, “The
pax, tar and cpio commands” on page 245.

For both SMS managed and non-SMS managed HFS data sets, DFSMShsm can
perform automatic volume backup (by invoking DFSMSdss) and incremental
backup.

Note: The DFSMSdss COPY function is not supported for HFS data sets.

5.1 DFSMSdss dump and restore

To back up and restore an entire HFS data set (not individual files within the HFS
data set), you can use DFSMSdss functions:

1. Use the DFSMSdss DUMP function to dump the file system. The logical dump
processing is the recommended method to dump an HFS data set.

2. Use the DFSMSdss RESTORE function to restore the dumped file system with
a new name (rename). If you want to maintain the original file system name,
you must first unmount the HFS. You can then replace the original HFS data
set during RESTORE.

You can use the MVS D OMVS,F system command to display the currently
mounted HFS data sets.

For additional information regarding DFSMSdss processing and control
statements, refer to:

• DFSMS/MVS V1R5 DFSMSdss Storage Administration Reference,
SC26-4929

• DFSMS/MVS V1R5 DFSMSdss Storage Administration Guide, SC26-4930

5.1.1 Dump processing
DFSMSdss provides four different kinds of backup processing:

• Logical data set dumps
• Physical data set dumps
• Logical volume dumps
• Physical volume dumps

DFSMSdss can perform either logical or physical processing. If you dump a data
set logically, DFSMSdss restores it logically; if you dump it physically, DFSMSdss
restores it physically.
© Copyright IBM Corp. 1999, 2000 103



Logical processing operates against data sets independently of physical device
format. The data sets are located by searching either the catalog or VTOC. If
input volumes are specified through the LOGINDD, LOGINDYNAM, or STORGRP
keywords, then data sets are located by searching the VTOC(s). Otherwise, data
sets are located by searching the catalog.

Physical processing moves data at the track-image level and operates against
volumes, tracks, and data sets. The data sets are located by searching the
VTOC.

The processing method is determined by the keywords specified on the
command. For example, LOGINDYNAM indicates a logical dump and INDYNAM
a physical dump. Each type of processing offers different capabilities and
advantages.

You can select data sets for DFSMSdss processing by filtering on specified
criteria. DFSMSdss can filter on fully qualified or partially qualified data set
names (by using the INCLUDE or EXCLUDE keyword) and on various data set
characteristics (by using the BY keyword; for example BY(DSORG,EQ,HFS)).

You can filter data sets with any of the following commands:

• Logical dump
• Logical restore
• Physical data set dump
• Physical data set restore

With DFSMSdss V1 R5, the new STORGRP keyword for logical data set dump
operations allows filtering by storage group name, in addition to filtering by
volume serial numbers. It allows you to dump a complete storage group.

5.1.1.1 Logical dump
DFSMSdss performs logical processing if you specify the DATASET keyword with
the DUMP command, and either no input volume is specified, or
LOGINDDNAME, LOGINDYNAM, or STORGRP is used to specify input volumes.

If you specify the DATASET keyword with the DUMP command and do not specify
input volumes (neither LOGINDYNAM nor LOGINDDNAME), DFSMSdss
performs a logical data set dump using information in the catalogs to select data
sets.

If you specify the DATASET keyword with either LOGINDDNAME or
LOGINDYNAM, DFSMSdss performs a logical data set dump using information in
the VTOCs to select data sets.

Mounted HFS data sets should be backed up using logical data set dump.

You can dump an HFS data set from any system in participating group in a
shared HFS sysplex (OS/390 2.9 and higher).

In a pre-2.9 or non-shared environment, you must perform the dump on the
same system on which the HFS is currently mounted read/write.

Important information
104 Hierarchical File System Usage Guide



Logical data set dump provides the quiesce serialization mechanism (using the
BPX1QSE callable service) to ensure data integrity. The quiesce allows an HFS
data set to be dumped while in use. In a non-shared environment, the dump job
must be executed on the same system on which the HFS is currently mounted.

Part of the quiesce processing is to perform a sync. This is intended to flush out any
buffered data to DASD prior to a logical dump.

The same processing will be done in a shared HFS environment. Figure 49 provides
an overview of DFSMSdss logical dump processing for a dump issued from an client
system in a participating group (SYSBPX sysplex group).

Figure 49. DFSMSdss dump in a shared-HFS environment

Refer to Figure 49 callouts:

1. DFSMSdss invokes the quiesce processing on system 1. The quiesce is
propagated to system 2. It makes the files in it unavailable for use.

2. The server also performs a sync to harden the updated metadata that are
located in his buffers to the HFS data set on DASD. After the file system is
quiesced, system 1 will be notified and the data in it can be backed up.

3. DFSMSdss starts the I/O processing to read all tracks from the HFS data set
located on DASD (3a) and writes the data into the sequential output data set
on Tape or DASD (3b).

4. if DFSMSdss has completed the I/O processing then it invokes the unquiesce
macro to make the file system available again and to continue the normal file
system processing.

The DFSMSdss process will be finished after unquiesce processing completes
successfully.

In B.5, “Shared HFS - DFSMSdss dump from client” on page 281, it shows an
example of DFSMSdss logical dump processing.

DSS logical dump

File
System

System 1
Client

Buffer / Cache
System 2

Server

write
dump

DFSMS HFS

USS

DFSMSdss

harden
metadata
to DASD

R/W R/W

read
track

quiesce

3a

0.
4.

2.

unquiesce

3b

USS
1.
Chapter 5. Managing HFS data sets 105



Note: Currently, the file systems will also be quiesced during DFSMSdss logical
dump processing if you have mounted the HFS in read-only mode.

You receive the following message if you try to dump an HFS data set when it is
currently mounted R/W on another system in a non-shared environment or if you
try to perform a physical dump for an HFS data set that is currently mounted:

ADR412E (001)-DTDSC(03), DATA SET HFS.OS390R7.SC63.O37RA1.ROOT IN CATALOG
UCAT.VSBOX01 ON VOLUME SBOX14 FAILED SERIALIZATION

In DFSMSdss 1.4 and prior releases, the SHARE keyword must be specified
when dumping a mounted HFS data set. When an HFS data set is currently
mounted, OMVS will have a shared SYSDSN ENQ. Before DFSMSdss 1.5,
DFSMSdss obtains an exclusive SYSDSN ENQ if the SHARE keyword is not
specified.

FAMS (File and Attributes Management Service) is called to perform the quiesce
against the HFS data set before dumping it. The quiesce will succeed if the data
set is not mounted or if it is mounted on the same system that it is being dumped
from.

In DFSMSdss 1.5, DFSMSdss no longer obtains a SYSDSN ENQ, so the SHARE
keyword is no longer required during logical dump. For further information on
serialization of HFS data sets, see 7.1.2, “Serialization by DFSMSdss” on page
173. FAMS is no longer called to perform the quiesce.

5.1.1.2 Concurrent copy and virtual concurrent copy
DFSMSdss provides the concurrent copy (CC) function that, when used with
supported hardware, provides point-in-time data consistency. The data is copied
as if no updates have occurred. This function is invoked through the
CONCURRENT keyword in the DUMP command.

If the source volume is a RAMAC Virtual Array and CONCURRENT is specified,
DFSMSdss uses the Snapshot capability of the RVA to provide a function
equivalent to concurrent copy. This function is called CC-compatible Snapshot —
or Virtual Concurrent Copy (VCC) — and is transparent to the user.

HFS data sets can be dumped by using concurrent copy (CC or VCC).

For shared HFS in OS/390 2.9 and higher:

During our tests, from time to time, we received a DFSMSdss message
’ADR412E ... FAILED SERIALIZATION’ during logical dump processing. This was
because our DFSMSdss DUMP job was routed to a system which was not part
of the participating group.

Please keep in mind, that you can specify /*JOBPARM SYSF=systemname in your job
to route the job to a specific system which is part of the SYSBPX group.

For example (see Figure 72 on page 172), we submitted the job on system
SC64, but the job was routed to system SC63. System SC63 did not belong to
the participating group, therefore, we correctly received the ADR412E
message.

Note
106 Hierarchical File System Usage Guide



Note: Concurrent copy requires serialization on the data being processed while
the concurrent copy environment is initialized. This is the same serialization used
by DFSMSdss DUMP without using the CC option. The benefit of concurrent copy
is that this period of serialization is substantially reduced when compared with a
non-concurrent copy operation.

For detailed information about DFSMSdss and concurrent copy, refer to:

• DFSMS/MVS V1R5 DFSMSdss Storage Administration Guide, SC26-4930
• DFSMS/MVS V1R5 DFSMSdss Storage Administration Reference,

SC26-4929

Concurrent copy (CC)
The concurrent copy function of DFSMSdss is a hardware and software solution
that allows you to back up a database or any collection of data at a point-in-time,
and with minimum down time, for an HFS or data base.

The system serializes access to the data being dumped or copied just long
enough for the concurrent copy session to be initialized. This serialization takes a
matter of seconds, unlike the quiesce and backup technique, which requires data
to be unavailable for the entire duration of the dump, possibly for hours.

The copy is logically complete as soon as the concurrent copy environment is
initialized. At this point, the original state of the data is “protected” by concurrent
copy. After logical completion, the data is once again available for unrestricted
application access. The copy is physically complete once the concurrent copy
process finishes copying the data to the output device.

After concurrent copy initialization, DFSMSdss releases all the serialization it
holds on the data, informs the user that the initialization is complete so that
update activity may resume, and begins reading the data.

Be aware, however, that concurrent copy does not remove all data integrity
exposures. For example, a DFSMSdss full-volume dump serializes the VTOC of
the source volume, but does not serialize the data sets on the volume. This
ensures that the existing data sets are not deleted or extended, and new data
sets are not allocated. However, there is an exposure in that the data in the
existing data sets can be changed. Without concurrent copy, this exposure exists
for the entire duration of the dump. With concurrent copy, the exposure exists
only during initialization.

Logical data set dump processing of HFS data sets, full volume, and physical
data set dump operations are processed on a track-by-track basis by DFSMSdss.

Refer to the redbook Implementing Concurrent Copy, GG24-3990, for details on
Concurrent Copy.

Virtual concurrent copy (VCC)
CC-compatible Snapshot support uses Snapshot to provide a concurrent
copy-like function when the source device supports Snapshot, but does not
support concurrent copy.

If you are already using concurrent copy, you do not have to make changes to
your JCL to use virtual concurrent copy. To invoke VCC, you specify the
CONCURRENT keyword on a DFSMSdss COPY or DUMP statement.
Chapter 5. Managing HFS data sets 107



During CC-compatible Snapshot (VCC), data is snapped from the source location
to an intermediate location called the working space data set, and the data is
gradually copied to the target location using normal I/O methods. The operation is
logically complete after the source data is snapped to the working space data
sets and physically complete after the data is moved to the target media.

Refer to the redbook Implementing DFSMSdss SnapShot and Virtual Concurrent
Copy, SG24-5268, regarding additional information about VCC.

5.1.1.3 HFS and ALLDATA(*) considerations
The amount of space dumped during logical dump and restore processing is
related to the high formatted frame number (HFRFN).

See 1.2, “Structure of an HFS data set” on page 2, for additional information on
high formatted and high allocated differences.

Dumping without specifying ALLDATA(*)
If you do not specify ALLDATA(*) at DUMP time then DFSMSdss will only dump
the storage to the high formatted value (HFRFN). On restore processing,
DFSMSdss allocates the target HFS data set based on the HFRFN. This means
that DFSMSdss could reduce the amount of space for an HFS data set from the
allocated space to the (high) formatted space.

Figure 50 shows that the space from the top to the high formatted page of the
HFS data set will be dumped and restored.

Figure 50. Logical DFSMSdss dump and restore without ALLDATA(*)

Notes:

• You cannot reduce the space below the high formatted page by using
DFSMSdss DUMP/RESTORE or DFSMShsm MIGRATE/RECALL. To reduce
the space of an HFS data set below the high formatted page, you must copy

FILE F ILEFILE

F ILEFILE F ILE FILE F ILE FILE FILE FILE FILE FILE FILE F ILE

DIR

DIR DIR DIR

FILEFILE F ILE F ILE FILE

DIR DIR DIR DIR

FREE FREE FREEFREEFREE

original HFS data set

FREE

DIR

FREEFREE FREE FREE FREE FREE FREE FREE

FREE

F ILE

FILE

F ILE

F ILEF ILE FILE FILE FILE FILE

F ILE F ILE F ILE FILE FILE F ILE FILE

FILE FILEFILE

FILEFILE FILE FILE FILE FILE FILE FILE F ILE F ILE F ILE FILE

DIR

DIR DIR DIR

FILEFILE FILE FILE FILE

DIR DIR DIR DIR

FREE FREE FREEFREEFREE

restored HFS data set

FREE

DIR

FREEFREE FREE FREE FREE FREE FREE FREE

FREE

FILE

F ILE

FILE

FILEF ILE FILE FILE FILE FILE

FILE F ILE F ILE FILE F ILE F ILE FILE

high
form atted

high
allocated

high
formatted

1st track 1st track

DIR FREEFILE=DIR =FILE =FREE
108 Hierarchical File System Usage Guide



files and directories individually into a new HFS data set by using UNIX
commands.

• You can also use the copytree utility provided by OS/390 Unix System
Services. Copytree is a utility that can run under TSO or the shell and is used
to make a copy of a file hierarchy preserving all file attributes. It can be
downloaded from the following OS/390 Unix System Services Internet page:

http://www.s390.ibm.com/oe/bpxa1ty2.html

Or, you can use:

http://www.s390.ibm.com/oe/

Select Tools & Toys —> OS/390 Unix Tools.

• Refer to 5.3.1, “Copytree utility” on page 127.

Dumping with specifying ALLDATA(*)
If you specify ALLDATA(*) at DUMP time then DFSMSdss will allocate the target
HFS data set with the same size as the original (source) HFS data set.

Figure 51 shows a sample structure of an HFS data set if the DFSMSdss DUMP
is performed with parameter ALLDATA(*). In this case, the allocated space will be
preserved at restore time.

Figure 51. Logical DFSMSdss dump and restore with ALLDATA(*)

Note: DFSMSdss will not dump residual data past the high formatted page
number when dumping HFS data sets, even if ALLDATA was specified during
DUMP. However, the target data set will still be allocated to the high allocated
page, if ALLDATA was specified during DUMP.

5.1.1.4 Logical volume dump
To perform a logical volume dump, you specify DATASET(INCLUDE(**)) with
either LOGINDDNAME or LOGINDYNAM.

FILE F IL EFILE

FILEFILE FILE FILE FILE F ILE FILE FILE FILE F IL E FILE F IL E

DIR

D IR D IR D IR

FILEFILE F IL E FILE F ILE

D IR D IR D IR D IR

FR EE FR EE FR EEFR EEF REE

o rig in al H FS data set

F R EE

D IR

FR EEFR EE F REE FR EE FR EE FR EE FR EE FR EE

FR EE

F ILE

FILE

FILE

FILEF ILE FILE FILE FILE FILE

FILE F IL E FILE FILE FIL E FILE FILE

h igh
fo rm atted

h igh
allocated

1s t trac k

F IL E FILEFILE

FILEFIL E F IL E FILE FILE FILE F IL E FILE FILE FILE FILE FILE

D IR

DIR D IR DIR

FILEF IL E FILE FILE FILE

D IR DIR D IR D IR

FR EE F R EE FR EEF R EEFR EE

res to red H FS data set

FR EE

DIR

FR EEFR EE FR EE FR EE FR EE F R EE FR EE FR EE

FR EE

FILE

FILE

F IL E

FILEFILE FILE F IL E FILE FILE

F IL E FILE FILE FILE F IL E FILE FILE

high
allocated

1st track

D IR FRE EFILE=D IR =FILE =FR EE
Chapter 5. Managing HFS data sets 109



LOGINDDNAME identifies the input volume that contains the data sets to be
dumped. LOGINDYNAM specifies that the volumes containing data sets to be
dumped be dynamically allocated.

Note: The volume must be mounted and online. You cannot specify a nonspecific
volume serial number using an asterisk (*).

You can also specify the SELECTMULTI parameter to select the method for
determining how cataloged multi-volume data sets are to be selected during a
logical data set dump operation. SELECTMULTI is accepted only when logical
volume filtering is specified with either LOGINDDNAME or LOGINDYNAM
keywords. If logical volume filtering is not used, the specification of
SELECTMULTI is not accepted.

• ALL: Is the default, and specifies that DFSMSdss does not dump a
multi-volume data set unless the volume list specified by LOGINDDNAME or
LOGINDYNAM lists all the volumes that contain a part of the HFS data set.

• ANY: Specifies that DFSMSdss dump a multi-volume data set when any
volume in the volume list specified by LOGINDDNAME or LOGINDYNAM
contains a part of the HFS data set.

• FIRST: Specifies that DFSMSdss dump a multi-volume data set only when the
volume list specified by LOGINDDNAME or LOGINDYNAM lists the volume
that contains the first part of the HFS data set.

If either LOGINDDNAME or LOGINDYNAM is specified, DFSMSdss uses logical
processing to perform the dump operation. Logical processing is also used if no
input volume is specified.

A multi-volume data set that has extents on volumes not specified with
LOGINDDNAME or LOGINDYNAM will not be dumped unless you specify
SELECTMULTI.

5.1.1.5 Examples of logical dump processing
You can select data sets for DFSMSdss processing by filtering on criteria you
specify. DFSMSdss can filter on fully or partially qualified data set names and on
various data set characteristics.

The SHARE keyword is required to logically dump mounted HFS data sets in
DFSMSdss releases prior to DFSMSdss 1.5. It is no longer required when
logically dumping HFS data sets beginning with DFSMSdss release 1.5.

To dump an HFS data set while it is mounted in read/write mode you can specify:

You can dump all allocated space using the ALLDATA(*) keyword.

DUMP DATASET(INCLUDE(hfs.data.set.name)) -
OUTDDNAME(ddname)

DUMP DATASET(INCLUDE(hfs.data.set.name)) -
ALLDATA(*) -
OUTDDNAME(ddname)
110 Hierarchical File System Usage Guide



Using the CONCURRENT (or CC) keyword will minimize the time that the HFS
data set is serialized.

DFSMSdss can filter on fully qualified or partially qualified data set names (by
using the INCLUDE or EXCLUDE keyword) and on various data set
characteristics (by using the BY keyword).

The next example shows how to select all HFS data sets on one volume by using
a filter on DSORG (data set organization).

Or you can filter on a partially qualified data set name. In the following sample, all
data sets with a high level qualifier of OMVS and with a qualifier starting with HFS
will be selected for dump processing.

The STORGRP parameter specifies that all of the online volumes in the storage
group are dynamically allocated. If a volume in the storage group is not online,
that volume is not used for processing.

This example can be used to dump all data sets in a storage group.

This example shows how to perform a logical volume dump.

Or, for multi-volume processing, you can specify the SELECTMULTI parameter.

DUMP DATASET(INCLUDE(hfs.data.set.name)) -
CC -
OUTDDNAME(ddname)

DUMP DATASET(BY(DSORG,EQ,HFS)) -
LOGINDYNAM(volser) -
OUTDDNAME(ddname)

DUMP DATASET(INCLUDE(OMVS.**.HFS*.**)) -
OUTDDNAME(ddname)

DUMP DATASET(INCLUDE(**)) -
STORGRP(sgname)) -
OUTDDNAME(ddname)

DUMP DATASET(INCLUDE(**)) -
LOGINDYNAM((volser1),(volser2),(volser3)) -
OUTDDNAME(ddname)

DUMP DATASET(INCLUDE(**)) -
LOGINDYNAM(volser) SELECTMULTI(xxx) -
OUTDDNAME(ddname)
Chapter 5. Managing HFS data sets 111



Information about the DFSMSdss multi-volume processing is also provided in 5.5,
“Increasing the size of an HFS data set” on page 132.

See B.2, “Sample DFSMSdss jobs” on page 262 for sample JCL.

5.1.1.6 Physical dump
Physical dump does not use the quiesce service to write cached data to disk, and
it is not recommended as a way to back up HFS data sets which are mounted
read/write at the same time on several systems. The SHARE keyword should
never be specified during a physical dump of an HFS. Since the SHARE keyword
applies to the SYSDSN ENQ, it does not provide protection against updates
during dump.

If SHARE or TOL(ENQF) is specified during a physical dump, then the internal
control information and data inside the HFS can change during the dump. This
can result in a dump data set that contains a broken HFS data set. This data set
may not be usable after it has been restored.

If you must physically dump an HFS that is in use, TOL(ENQF) should be used
instead of SHARE. At least, with TOL(ENQF) the user will receive a return code
of four along with a warning message if adequate serialization was not provided
during dump.

For a physical dump of HFS data sets, all of the allocated space is always
dumped, regardless of the ALLDATA keyword (see Figure 52).

A physical dump of HFS data sets which are mounted R/W is not
recommended, because quiesce is not available during physical dump.

Using SHARE or TOL(ENQF) can result in a dump data set which contains a
broken HFS data set, and it may not be usable after it has been restored.

Important information
112 Hierarchical File System Usage Guide



Figure 52. Physical DFSMSdss dump and restore

Note: With APAR OW39883, DFSMSdss has been changed to get an exclusive
SYSDSN ENQ during physical data set DUMP of PDSE or HFS data sets unless
the SHARE keyword is specified.

5.1.1.7 Sample of physical data set dump processing
If you specify INDYNAM, DFSMSdss will dynamically allocate the volume for a
physical dump of a data set.

You can use the following statements to perform a DFSMSdss physical dump
while an HFS is not mounted:

See B.2, “Sample DFSMSdss jobs” on page 262 for sample JCL.

5.1.1.8 Sample of physical full volume dump
To perform a physical volume dump, specify the DUMP command with
INDDNAME or INDYNAM and OUTDDNAME. Because FULL is the default
keyword for the DUMP command, you need not specify it. Unallocated tracks are
not dumped.

The following example shows how you can specify the DUMP command to
physically back up a volume.

Note: DFSMSdss full-volume dump serializes the VTOC of the source volume,
but does not serialize the data sets on the volume. This ensures that the existing

FIL E FIL EFIL E

F ILEF ILE F IL E F ILE F ILE FIL E FIL E F ILE F IL E F IL E F IL E F IL E

D IR

D IR D IR D IR

FIL EFIL E FIL E F IL E F IL E

D IR D IR D IR D IR

F R EE F R EE FR EEFR EEFR EE

o r ig in a l H F S d ata se t

F R E E

D IR

F R E EF R EE FR EE FR EE F R EE F R EE FR EE F R E E

F R E E

F ILE

F ILE

FIL E

FIL EFIL E F IL E F IL E FIL E F IL E

F ILE F IL E F IL E F IL E F ILE F IL E F IL E

h igh
fo rm atte d

h igh
a lloc a te d

1 st trac k

F ILE FIL EF IL E

FIL EFIL E F ILE F IL E F IL E F IL E F IL E F ILE F IL E F IL E F ILE F ILE

D IR

D IR D IR D IR

F IL EF ILE FIL E FIL E F ILE

D IR D IR D IR D IR

FR EE F R E E F R E EFR EEF R E E

re s to re d H F S d ata s et

F R E E

D IR

F R E EFR EE F R E E FR EE FR EE F R E E F R E E F R E E

F R E E

F ILE

F ILE

F IL E

FIL EF IL E FIL E F ILE F IL E F ILE

F IL E F IL E F IL E FIL E F ILE F IL E F ILE

h igh
a lloc a te d

1 st tra c k

D IR F R EEFIL E= D IR =F ILE =F R E E

DUMP INDYNAM(volser) -
DATASET(INCLUDE(original.hfs.dsname)) -
OUTDDNAME(ddname)

DUMP INDDNAME(ddname) OUTDDNAME(ddname)
Chapter 5. Managing HFS data sets 113



data sets are not deleted or extended, and new data sets are not allocated.
However, there is an exposure in that the data in the existing data sets (like HFS
data sets) can be changed.

5.1.2 Restore processing
You can use DFSMSdss to restore HFS data sets to DASD volumes from
DFSMSdss-produced dump volumes. You can restore HFS data sets to the same
or a different device type if you have performed a logical dump.

DFSMSdss distinguishes between:

• Logical Data Set Restore

A logical data set restore is performed if you are restoring from a volume
created with a logical dump operation and if you specified the DATASET
keyword.

• Physical Data Set Restore

A physical data set restore is done if you are restoring from a dump volume
created by physical dump processing and you specified the DATASET
keyword.

If the dump volumes resulted from a physical data set dump operation, you
must do a physical data set restore.

• Volume Restore

You can recover a volume or ranges of tracks from a full-volume dump
operation.

You can also:

• Rename a data set during a restore
• Replace an existing data set
• Change either the entire name or part of the name
• Create a new data set with a new name instead of replacing the original data

set on a DASD volume

During a restore operation, the data is processed the same way it was dumped
because physical and logical dump tapes have different formats. If a data set is
dumped logically, it is restored logically; If it is dumped physically, it is restored
physically. A data set restore operation from a full volume dump is a physical data
set restore operation.

You cannot restore to an HFS data set when it is currently mounted. You must
first unmount the HFS data set before you can restore (REPLACE) to it.
Otherwise, you will receive the following message if you try to restore an HFS
data set with the REPLACE parameter when it is currently mounted:

ADR412E (001)-DYNA (01), DATA SET OMVS.STYRES1.HFS4 FAILED SERIALIZATION

5.1.2.1 Sample of logical restore processing
Here is an example of how to restore an HFS data set to a newly created HFS
data set with a new name:
114 Hierarchical File System Usage Guide



Note: You cannot RENAME the target data set and REPLACE it in the same
DFSMSdss step. REPLACE only works if the data set is not being renamed. If
you need to do this, you must insert a step before the restore. For example, you
can use an IDCAMS DELETE, or IEFBR14, step to delete the target data set
which will be renamed in the subsequent DFSMSdss RESTORE step.

See B.2, “Sample DFSMSdss jobs” on page 262 for sample JCL.

5.1.2.2 Sample of physical restore processing
This shows the DFSMSdss statements to restore an HFS data set which was
dumped physically:

Note: OUTDDNAME or OUTDYNAM is required for a physical restore, even for
SMS managed data. They are optional for a logical restore operation, except:

• For multi-volume data sets that are preallocated on volumes that are different
from the original source volumes; or

• When the original source volume is not available, and the restored data set is
not going to be SMS managed.

See B.2, “Sample DFSMSdss jobs” on page 262 for sample JCL.

5.2 DFSMShsm backup and migration

This section explains DFSMShsm backup and migration procedures.

IBM offers two program products that perform backups and maintains an
inventory of their attributes. They are the DFSMS/MVS Hierarchical Storage
Manager (the OS/390 optional feature DFSMShsm) and Tivoli Storage Manager,
formerly known as ADSTAR Distributed Storage Manager (ADSM). Tivoli Storage
Manager is a separately-priced program product. See Chapter 6, “Tivoli Storage
Manager” on page 153 for more information regarding TSM.

5.2.1 Common DFSMShsm functions
DFSMShsm provides automatic backup facilities for HFS data sets. You can back
up HFS data sets periodically. The data sets can be restored if necessary.
DFSMShsm is also used for migrating and recalling unmounted file systems.

5.2.1.1 Availability management
Availability management is the function of the DFSMShsm program that:

• Makes daily incremental backup copies of changed data sets

RESTORE INDD(ddname) -
DATASET(INCLUDE(original.hfs,dsname)) -
RENAMEU(original.hfs.dsname,target.hfs.dsname)

RESTORE INDD(ddname) -
OUTDD(ddname) -
DATASET(INCLUDE(original.hfs.dsname)) -
RENAMEU(original.hfs.dsname,target.hfs.dsname)
Chapter 5. Managing HFS data sets 115



• Makes periodic dump copies of the DFSMShsm-managed and ML1 volumes

For example, availability management makes it possible for you to:

• Automatically make backup copies of individual changed data sets on
DFSMShsm-managed volumes. This is known as incremental backup. You
can specify how frequently to back up data sets on a data set basis for SMS
managed data sets.

• Automatically make dump copies of DFSMShsm-managed volumes on a
specified schedule for day and time. You can dump different groups of
volumes on different days with different periods for the number of days
between dumps.

• By command, back up user data sets.

5.2.1.2 Space management
Space management is the DFSMShsm program function that you use to ensure
that you have space available on your DASD volumes to allocate new data sets
or to extend old ones. You can make the space available by:

• Deleting data sets that have outlived their usefulness

• Removing unused allocated space from data sets

• Moving low-activity data sets from level 0 volumes to other DASD or tape
volumes

• Returning the moved data sets to the level 0 devices when the data sets are
needed

See 5.2.4, “Migrating and recalling an HFS data set” on page 125 for more
information regarding HFS data sets and DFSMShsm space management.

5.2.1.3 Backup function
Backup is the process of copying a data set from a level 0 or an ML1 volume to a
daily backup volume. This copy is called a backup version. The purpose of
backup is to have copies of data sets in case something happens to the original
data sets. The difference between dump and backup is that the dump function
backs up the entire allocated space on a volume, whereas the DFSMShsm
backup function backs up individual data sets.

DFSMShsm can create backup versions of data sets either automatically or
through use of the BACKDS or HBACKDS commands. DFSMShsm automatically
creates backup versions of data sets on specified days beginning at a specified
time of day. The data sets must meet eligibility criteria and must be on
DFSMShsm-managed volumes that have been designated for automatic backup.

The backup function is a data-set-level function when DFSMShsm is
processing SMS managed volumes. That is, the management class attributes
define how the data set is treated for creation and retention of backup versions.

DFSMShsm automatically backs up data on system-managed volumes if the
storage group definition for the volumes is AUTO BACKUP=Y and the
management class definitions for the individual data set is AUTO BACKUP=Y.

For non-SMS managed volumes, backup function is a volume-basis operation.
The processing of non-SMS managed volumes is the same as that for SMS
116 Hierarchical File System Usage Guide



managed volumes with few exceptions. No request is sent to DFSMSdfp for the
management classes and storage classes.

Therefore, the FREQUENCY and VERSION parameters of the SETSYS
command control how often data sets are backed up and how many versions are
kept for all of the non-SMS managed data sets. A non-SMS managed volume can
contain uncataloged data sets that can be backed up

5.2.1.4 Dump function
Dump is the process of copying all data from a DASD volume to dump tape
volumes. Full-volume dump is an extension of DFSMShsm's availability
management that invokes DFSMSdss through the DFSMSdss application
interface. Full-volume dump backs up the entire allocated space of
DFSMShsm-managed DASD volumes and ML1 volumes either automatically or
by command.

5.2.1.5 Recovery and restore of data sets
Recovery and restore are processes that are requested only by command, not
automatically, for backed up data sets. Recovery is the process of retrieving a
full-volume dump or a backup version of a data set or a volume. Restore signifies
that DFSMSdss is used to retrieve dumped data from dump volumes. You can
use restore or recover processing to:

• Recover a data set that has been lost or damaged

• Recover an earlier version of the data set without deleting the current version

• Restore a volume from a full-volume dump and update the volume from later
incremental backup versions

• Restore a data set from a dump copy

• Restore a volume from a full-volume dump

• Recover a volume from DFSMShsm backup versions

DFSMShsm volume recovery can use incremental backups or full-volume dumps
or both. One DFSMShsm RECOVER command can be used to request both a
volume restore and an incremental volume recovery.

5.2.1.6 Dump processing
Automatic dump is a volume function; the attributes that govern it are taken
from the storage group. DFSMShsm dumps the volumes that have the AUTO
DUMP attribute = Y defined in their storage groups.

DFSMShsm always allocates the source and dump volumes for the full-volume
dump before it invokes DFSMSdss. DFSMSdss performs only volume level
serialization during full-volume dump processing. Because DFSMShsm does not
perform any data set serialization during full-volume dump processing, activity
against a volume being dumped should be kept at an absolute minimum during
the full-volume dump process, or errors occur.

DFSMShsm full-volume dump processing — which results in a DFSMSdss
physical volume dump — means that, for an HFS data set that is mounted
read/write, the HFS will not be quiesced and will not be serialized during
DFSMShsm dump processing. Also, like the DFSMSdss physical dump
Chapter 5. Managing HFS data sets 117



processing, this can result in a dump data set which contains a broken HFS data
set. This data set may not be usable after it has been restored.

For additional information regarding HFS serialization, refer to:

• Section 5.1, “DFSMSdss dump and restore” on page 103
• Section 7.1, “Serialization considerations” on page 170

For additional information concerning DFSMSdss full-volume dump, refer to:

• DFSMS/MVS V1R5 DFSMSdss Storage Administration Guide, SC26-4930
• DFSMS/MVS V1R5 DFSMSdss Storage Administration Reference,

SC26-4929

5.2.1.7 SMS Storage groups and management classes
DFSMShsm is concerned mainly with DASD storage groups and with
management classes. DFSMShsm manages each data set on an SMS managed
volume according to the management class attributes associated with the data
set.

DASD storage groups allow you to pool volumes for the purpose of defining how
and whether:

• Automatic dumps are performed on the volumes and to what dump classes

• Automatic backups are performed on the volumes

The backup function operates at a data set level, whereas the dump function
backs up the entire allocated space on the volume.

Management classes allow you to group data sets logically and specify how they
will be managed by DFSMShsm space management and availability
management.

5.2.2 Backup processing
Unlike other non-VSAM data sets that can be opened and closed repeatedly
throughout the day, some HFS file systems are often mounted for several days or
weeks at a time, with the individual file members inside opened as needed.
Normally, DFSMShsm's automatic backup (AUTOBACKUP) processes HFS file
systems at most once per mount, so an HFS file system mounted for a week
would only have one backup taken for that week. For some applications, that may
not be frequent enough. Fortunately, DFSMShsm provides some alternatives to
ensure that backups are taken more frequently.

• You can defined an SMS managed storage group with guaranteed backup
frequency (GBF). For example, if GBF=3 days, then if a backup has not been
taken for a particular data set in the last three days, a fresh backup is taken,
whether the file has been updated or not. Since this applies to all data sets on
a storage group, you can place your HFS data sets into a unique storage
group with a specification of GBF=1, so as not to affect other types of data.

For non-SMS managed storage, you can specify only one backup frequency
for all volumes processed by any one processor. For the example, SETSYS
FREQUENCY(1) defines that a backup should be taken every day.You can,
however, change the backup frequency of individual non-SMS managed data
sets with the (H)ALTERDS command.
118 Hierarchical File System Usage Guide



• Backups once a day may not be frequent enough. DFSMShsm provides
commands to invoke backups to be taken, independent of the standard
autobackup cycle and window. You can use the BACKVOL TOTAL command
to back up all the HFS data sets on a single DASD volume, a list of DASD
volumes, a single storage group, or a list of storage groups. This command
can be invoked from a job scheduling package such as OPC, or console
automation package, such as Tivoli Netview/390.

For example, in an SMS managed environment, you can issue the following
DFSMShsm command to perform backup processing for an individual SMS
storage group:

BACKVOL STORGRP(xx) TOTAL

Or, for a specific SMS managed volume:

BACKVOL VOLUMES(volser) TOTAL

In a non-SMS managed environment you can also specify option VOLUME(...)
to backup all data sets for a specific volume:

BACKVOL VOLUMES(volser) UNIT(3390) TOTAL

You can submit the job or command multiple times per day to get more than
one backup per day.

• If the HFS file systems are intermixed on the DASD volumes with other data
set types, it might be desirable to back up the HFS individually. You can use
the DFSMShsm command BACKDS to back up a single data set, or a set of
data sets that match a particular mask filter. The DFSMShsm batch program
ARCINBAK can be used to back up a list of data sets. ARCINBAK supports
JCL backward reference and variable substitution.

DFSMShsm also provides ABACKUP, a means to identify which HFS files
systems are part of a single aggregate list, and to back these up as a single
entity. Both the BACKDS and ABACKUP commands can also be invoked from
job scheduling or console automation software.

• If the application was developed in-house, it can be modified to perform the
backups internally. This might allow it to perform its own quiesce process, or
coordinate time-stamps with its own transactional log. DFSMShsm provides
the ARCHBACK assembler macro interface for this purpose.

In a OS/390 2.8 (or below) or in a non shared HFS sysplex environment if an HFS
file is mounted for read/write to a single MVS image, it can be only be backed up
by DFSMShsm from the MVS image that has it mounted. For automatic backup,
you may need to designate host affinity by specifying a system name associated
with AUTOBACKUP for each storage group (SMS managed). For
command-initiated backups, you may need to ensure that the commands or batch
jobs are issued to the correct MVS image. See also 5.2.2.2, “DFSMShsm
multi-system considerations (OS/390 2.8 or below)” on page 121 for additional
information.

If the file system is mounted as read-only or if it resides in a shared HFS sysplex
environment (participating group in OS/390 2.9 or above), then it can be dumped
from any system that has access to it. See also 5.2.2.3, “DFSMShsm
multi-system considerations (OS/390 2.9)” on page 122.
Chapter 5. Managing HFS data sets 119



Since DFSMShsm calls DFSMSdss to perform the backup or migrate the same
restriction applies for DFSMShsm processing as we have for DFSMSdss logical
dump processing.

For backup processing, DFSMShsm issues a DFSMSdss logical data set dump
command. The DFSMSdss logical dump process itself provides the quiesce
function which prevents the HFS data set from being updated at the time of the
DFSMSdss logical dump (DFSMShsm backup) processing.

A DFSMShsm backup of an HFS data set results in the following DFSMSdss
control statements:

DUMP DATASET(INCLUDE(data.set.name)) -
OUTDDNAME(ddname) CANCELERROR OPTIMIZE(2)

Our test has shown that an HFS data set will be quiesced correctly during the
DFSMShsm backup/DFSMSdss logical dump processing.

We issued a DFSMShsm HBACKDS command for a root HFS. The command
results are shown following the DFSMSdss command:

DUMP DATASET(INCLUDE(OMVS.ROOTY)) -
OUTDDNAME(SYS02240) CANCELERROR OPTIMIZE(2)

A D OMVS,F command shows (pre-OS/390 2.9) that the root HFS was quiesced
from DFHSM.

Later, when the backup was finished, the file system was active, as shown in
below.

You can backup an HFS data set from any system in participating group in a
shared HFS sysplex (OS/390 2.9 and higher).

In a pre OS/390 2.9 or non-shared environment, you must perform the backup
on the same system on which the HFS is currently mounted read/write.

Important information

BPXO044I 02.56.23 DISPLAY OMVS 513
OMVS 000E ACTIVE OMVS=(01)
TYPENAME DEVICE ----------STATUS----------- MODE QJOBNAME QPID
HFS 4 ACTIVE RDWR
NAME=IMW.SIMWHFS
PATH=/usr/lpp/internet

HFS 3 ACTIVE RDWR
NAME=OMVS.HFWL141.DATA
PATH=/usr/lpp/fw/fwdata

HFS 2 ACTIVE RDWR
NAME=OMVS.HFWL141.HFSPROD
PATH=/usr/lpp/fw

HFS 1 QUIESCED RDWR DFHSM 838860815
NAME=OMVS.ROOTY
PATH=/
120 Hierarchical File System Usage Guide



For additional information regarding HFS serialization, refer to:

• Section 5.1, “DFSMSdss dump and restore” on page 103
• Section 7.1, “Serialization considerations” on page 170

5.2.2.1 DFSMShsm requirements for OS/390 USS access
If you use DFSMShsm, you must define a user ID for the DFSMShsm address
space. For DFSMShsm to access the HFS data sets, it must run under a user ID
that is set up for access to a OS/390 UNIX system:

• The default group for the DFSMShsm user ID must have an OMVS segment
defined and a group ID associated with it.

• The home directory should be the root file system.

• If you use DFSMSdss to dump or restore an active HFS, the user ID used
must be set up to have superuser authority (UID of 0). Superuser authority is
required to quiesce and unquiesce a file system. If the HFS is not mounted,
then it is treated as an MVS data set, and the user ID must have read (dump)
or update (restore) authority.

Note: When the DFSMSdss 1.5 HFS support was shipped, users had to run
from an ID which had superuser authority. APAR OW37927 has lifted the
restriction that the QUEISCE macro requires users to have superuser
authority. So, DFSMShsm no longer needs to be an authorized user.

5.2.2.2 DFSMShsm multi-system considerations (OS/390 2.8 or below)
In a OS/390 2.8 (or below) or in a non-shared HFS environment, if the file system
being dumped by DFSMShsm is currently mounted as read/write, then this file
system can only be dumped from the system on which it is mounted.

Figure 53 shows a non shared environment. System 1 has mounted the file
system in mode read-write. DFSMShsm backup processing can be run only on
system1.

RESPONSE=MCECEBC
BPXO044I 08.35.54 DISPLAY OMVS 354
OMVS 000E ACTIVE OMVS=(01)
TYPENAME DEVICE ----------STATUS----------- MODE QJOBNAME QPID
HFS 4 ACTIVE RDWR
NAME=IMW.SIMWHFS
PATH=/usr/lpp/internet

HFS 3 ACTIVE RDWR
NAME=OMVS.HFWL141.DATA
PATH=/usr/lpp/fw/fwdata

HFS 2 ACTIVE RDWR
NAME=OMVS.HFWL141.HFSPROD
PATH=/usr/lpp/fw

HFS 1 ACTIVE RDWR
NAME=OMVS.ROOTY
PATH=/
Chapter 5. Managing HFS data sets 121



Figure 53. DFSMShsm multi-systems backup in OS/390 2.8 or below

There are four phases to DFSMShsm automatic backup:

1. Backing up the DFSMShsm control data sets
2. Moving backup versions from DASD to tape
3. Backing up migrated data sets
4. Backing up DFSMShsm managed volumes

In a multi-host configuration, the primary host performs the first three phases.
The fourth phase can be performed on any host.

For more information regarding DFSMSdss, refer to:

• Section 5.1, “DFSMSdss dump and restore” on page 103
• Section 7.1, “Serialization considerations” on page 170

5.2.2.3 DFSMShsm multi-system considerations (OS/390 2.9)
In a shared HFS Sysplex environment in OS/390 2.9 and higher, if all systems are
part of the same SYSBPX Sysplex (participating group), the DFSMShsm backup
can be performed from any system that has access to the file system.

Figure 54 shows that system1 and system 2 are sharing the file system in
read/write mode. The DFSMShsm backup can be done on system 1 or system 2.
System 3, which is not a member of the SYSBPX group, cannot perform the
backup.

R/W

'/'

HFS data set

System 3
OS/390 2.8

System 2
OS/390 2.9

System 1
OS/390 2.9

BACKUP

'/'

HFS data set

DFSMShsm DFSMShsmDFSMShsm

BACKUPBACKUP

DFSMShsm AUTOBACKUP:

You must perform the DFSMShsm backup (phase 4 below) from the system
that has mounted the HFS if the HFS data set is currently mounted as
read/write.

Important Information
122 Hierarchical File System Usage Guide



Figure 54. DFSMShsm multi-systems backup in OS/390 2.9

For more information regarding DFSMSdss, see also:

• Section 5.1, “DFSMSdss dump and restore” on page 103
• Section 7.1.2, “Serialization by DFSMSdss” on page 173

5.2.3 Recovery and restore of HFS data sets
The recovery methodology for HFS data sets used by DFSMShsm is the same as
used for other non-VSAM data sets.

You use the recovery and restore process to:

• Recover a data set that has been lost or damaged.

• Access an earlier version of the data set without deleting the current version.

• Restore a data set from a dump copy.

• Restore a volume from a dump copy and update it from incremental backup
versions.

• Restore a volume from a full-volume dump.

• Recover a volume from DFSMShsm backup versions.

The recovered backup version can replace an existing data set, or you can
rename the recovered copy so it exists in parallel with the current data set. You
can recover or restore a data set or volume only by specifying the RECOVER
command.

You can use RECOVER or HRECOVER commands to recover a data set from a
DFSMShsm backup version or dump copy. The HRECOVER command can be
used by any user; The RECOVER command can be used by
DFSMShsm-authorized users.

System 3
OS/390 2.8

System 2
OS/390 2.9

System 1
OS/390 2.9

'/'

HFS data set
'/'

HFS data set

Participating group

R/W

'/'

HFS data set

BACKUP

DFSMShsmDFSMShsmDFSMShsm

BACKUPBACKUP
Chapter 5. Managing HFS data sets 123



DFSMShsm's recovery process involves five steps for SMS managed data sets:

1. Determine if the data set being recovered currently exists on a level 0 volume.

2. Select a target volume.

3. Determine the storage class, management class, and data class to be
associated with the data set.

4. Determine whether to recover a backup version or a dump copy.

5. Recover the data set to the target volume.

The recovery action taken depends on whether a DFSMShsm backup version or
a dump copy is used to recover the data set. If you are recovering an existing
data set, you must specify either REPLACE or NEWNAME. If you specify
REPLACE, DFSMShsm replaces the existing data set with the recovered data
set. If you specify NEWNAME, DFSMShsm recovers the data set with the
NEWNAME data set name.

Part 3, How to Control Availability Management, in the book DFSMS/MVS V1R5
DFSMShsm Storage Administration Guide, SH21-1076, provides further
information about DFSMShsm recovery for SMS managed and non-SMS
managed data sets.

For example, you can use following TSO DFSMShsm command to recover an
non-existing SMS managed HFS data set:

HRECOVER 'hfs.data.set.name'

Only the data set name is a required parameter. However, you can specify
parameters like GENERATION, DATE, VERSION, FROMVOLUME to recover a
particular backup version and other parameters like NEWNAME, REPLACE to
affect the data set allocation.

For non-SMS managed HFS data sets you should also specify UNIT and
TOVOLUME parameters.

HRECOVER 'hfs.data.set.name.nonsms' TOVOLUME(volser) UNIT(3390)

These parameters are available for both the RECOVER and HRECOVER
commands. However, the RECOVER command provides additional parameters
not available in the user command to perform a more selective recovery for data
sets or volumes.

For further information regarding the command syntax and additional parameters,
please see:

• DFSMS/MVS V1R5 DFSMShsm Managing Your Own Data, SH21-1077
• DFSMS/MVS V1R5 DFSMShsm Storage Administration Reference,

SH21-1075

The HFS data set to be recovered cannot be mounted at recovery time.

Note:
124 Hierarchical File System Usage Guide



5.2.3.1 Examples how to code the RECOVER command
In this example, a backup version or dump copy of a cataloged non-SMS data set
(whichever is the more recent) is recovered to the TOVOLUME specified.

RECOVER hfs.data.set.name TOVOLUME(volser) UNIT(3390)

In this example, a next-to-latest backup generation of a cataloged data set is
recovered.

RECOVER hfs.data.set.name GENERATION(1)

In this example, the oldest backup version of a cataloged data set is recovered.

RECOVER hfs.data.set.name VERSION(1)

In this example, a data set is recovered to the volume the data set is currently
cataloged on, and it replaces a data set having the same name. DFSMShsm
deletes the original data set.

RECOVER hfs.data.set.name REPLACE

In this example, an entire volume is recovered. It is assumed that the volume is
current as of the date specified. For example, the volume has been restored with
a DFSMSdss dump tape made on that date. Data sets are recovered to the
volume only if a backup version was created on or after the specified date.

RECOVER * TOVOLUME(volser) UNIT(3390) DATE(1/12/99)

In this example, a lost volume is to be recovered to a DASD volume with a
different volser. The TARGETVOLUME parameter saves you the step of
"clipping" a volume to the lost volser.

RECOVER * TOVOLUME(volser) UNIT(3390) TARGETVOLUME(volser) +
FROMDUMP(DUMPVOLUME(volser) APPLYINCREMENTAL)

5.2.4 Migrating and recalling an HFS data set
If a file system is unmounted and remains so for a predetermined time,
DFSMShsm can migrate it to a lower priority storage medium.

DFSMShsm invokes DFSMSdss to perform the data movement for the migration.
DFSMSdss issues a logical data set dump with the following control statements:

DUMP DATASET(INCLUDE(hfs.dsname)) -
OUTDDNAME(ddname) CANCELERROR OPTIMIZE(2)

DFSMS/MVS automatically recalls a migrated file system from the migration
volume if a mount command is issued for the file system. See 4.2, “Mounting an
HFS” on page 91 for additional information on mounting an HFS.

Part 2, How to Control Space Management, in the book DFSMS/MVS V1R5
DFSMShsm Storage Administration Guide, SH21-1076, provides further
information about DFSMShsm migration for SMS managed and non-SMS
managed data sets.

It is up to the installation to ensure that all HFS data sets specified on MOUNT
statements in the BPXPRMxx PARMLIB member are available at IPL time. If an
HFS data set is migrated by DFSMShsm, then the initialization of OMVS and
DFSMShsm will deadlock and your system will have neither kernel nor
DFSMShsm services available.
Chapter 5. Managing HFS data sets 125



From a performance point of view, if you plan to migrate HFS data sets, migrate
them only to level 1 (DASD) storage. Recalling an HFS data set that was
migrated to tape could adversely affect performance because of the time required
to physically mount the volume.

If your HFS data sets reside on RVA volumes, which are already compressed by
more than the factor that DFSMShsm or the CPU can compress, we suggest that
you eliminate automatic migration to ML1. You can leave data for longer periods
of time on the primary volumes or save some space and then migrate directly to
ML2.

Another side effect could be that the size of the HFS data set would be reduced.
As explained in 1.2, “Structure of an HFS data set” on page 2, and 5.1,
“DFSMSdss dump and restore” on page 103, an HFS data set can be reduced
from the high allocated space to the high formatted space.

5.3 Recovering files and directories

If you detect a problem in a file system, we suggest that you perform the following
steps to recover your data as best as possible. Note: We assume that you have
taken a DFSMSdss dump or DFSMShsm backup and incremental TSM backups
before the failure.

• Create a new HFS data set and mount this HFS data set to a different mount
point.

• You may must unmount and then remount the affected file system (HFS data
set) in read-only mode if the affected file system is flagged in error in the main
control block (called the RFS). You can use the confighfs command to display
the RFS error flag for a specific file system.

Note: You may not be able to mount the file system again depending on the
nature of the error (for example, if you lose a complete volume in a
multi-volume HFS data set).

• Run pax copy function (this is a supported tool, see A.1.1, “Using pax to back
up and restore files” on page 245) or copytree (see 5.3.1, “Copytree utility” on
page 127) to copy the affected file system into the new file system (HFS data
set) to salvage as many files and directories as possible. Some files could
have been changed after the last backup action, so this will attempt to copy
the files over the new file system.

• Restore the file system from backup.

- Depending on the failure, you could restore individual files and directories
from TSM backups.

The TSM backup may not work if the directory tree is corrupted (see also
6.3, “Data management strategies” on page 163).

Depending on the kind of damage, you may not able to salvage many files
or directories. For example, if one volume of a multi-volume HFS data set is
not available, the metadata pages on this volume are also not available.
Therefore, USS will not be able to access many files within an HFS data set.
In the worst case, you will not be able to access any files.

Notes:
126 Hierarchical File System Usage Guide



- If the failure does not allow you to do this, you must restore or recover the
complete file system (HFS data set) from a DFSMShsm backup version or
a DFSMSdss dump version. Depending on your backup strategy, you may
also restore individual files and directories from TSM backups afterwards,
because some files could have been backed up after the last DFSMSdss or
DFSMShsm backup action.

• Now, you have recovered your broken file system (HFS data set). But the
restored files and directories will only be as current as the date of the last TSM
backup, DFSMShsm backup or DFSMSdss dump.

Note: If possible, you should try to verify if the restored files and directories
have been changed since the last backup action. You need to manually
recreate the changes in the files and directories. A ’query filespace ’f=d’ from
the TSM admin client will show you the time of the last backup.

• Unmount the affected file system and rename it. You should then contact your
local IBM support center so they can aid you in determining what caused the
failure.

• You may wish to rename and remount the new file system to the original HFS
data set name and at the original mount point.

Note: Please keep the affected file system for further analysis by your IBM
support center.

See B.6, “Recovery samples” on page 284 for sample recovery scenarios.

5.3.1 Copytree utility
OS/390 USS provides the copytree tool designed for OS/390 UNIX by IBM
developers and testers. The copytree tool is helpful for copying and consistency
checking on file systems. You can get the tool from the OS/390 UNIX internet
pages.

Note: The OS/390 USS tools are free. There are no warranties of any kind, and
there is no service or technical support available for these tools from IBM.

They can be downloaded from the following OS/390 Unix System Services
Internet page:

http://www.s390.ibm.com/oe/bpxa1ty2.html

Or, you can use:

http://www.s390.ibm.com/oe/

Select Tools & Toys —> OS/390 Unix Tools.

Please see the USS Internet pages for the latest information regarding the
utilities.

5.3.1.1 Copying an HFS
You can use the copytree utility to copy a file system into another file system.

A big advantage is of using copytree is that you have (re)created a file system
from scratch, including the metadata. The processing will be performed on a file
basis. You will see the following benefits:

• Cleanup of index records (metadata).
Chapter 5. Managing HFS data sets 127



• Removing orphaned metadata pages and orphaned data pages.

• Defragmentation (DEFRAG) processing for the individual files in a file system.
This means that all pages that belongs to an individual file are copied in
ascending order on the DASD volume.

• Performance improvements, mainly for applications which are performing
sequential access to the files (Also see 6.4.2, “Reorganizing HFS for
performance” on page 165).

Copytree is a utility that can run under TSO or the shell and is used to make a
copy of a file hierarchy preserving all file attributes. pax is a USS command

Copytree replicates the source tree under the source directory within a file
system to a target directory or attempts to verify the integrity of a source tree
without copying it. Every attribute that can be set should be copied if you have
sufficient authorization. Other features include:

• Should tolerate errors when setting target attributes with messages
• Should tolerate errors in the source tree, skipping those files
• Copies sparse files as sparse files
• Preserves file links
• Handles both symlinks and external links
• Does not cross mount points
• Runs under TSO or the shell

There are two restrictions: copytree will not handle files >1GB in TSO and it
requires the REXX function package for >1GB files when run under the shell.

The syntax for the copytree utility is:

copytree <sourcedir> [<targetdir>]

<sourcedir> is the pathname for the source directory where the copy begins

<targetdir> is the pathname for the target directory. This directory must exist
and must be empty. If the <targetdir> is not specified, copytree runs in a mode
that checks the source file tree.

Copytree can be installed in the HFS or in a PDS to run under TSO. Download
the copytree REXX program in text mode and copy it to a PDS where REXX
execs can be run and/or to an HFS directory where programs can be run.
Permissions should be at least read and execute; 755 is recommended.

For example: copytree /u/nigelr2/old2 /u/nigelr2/new2

We recommend regular use of either the supported pax USS command or the
copytree utility based on the benefits described above.

Important Information
128 Hierarchical File System Usage Guide



See also B.6, “Recovery samples” on page 284.

5.3.2 Consistency checking of a file system
The checking mode of the copytree utility can be used to verify the consistency of
an HFS data set. This mode is also referred as the checktree function.

This mode was provided in a new version of the copytree utility which was
created in March 2000. Copytree now has two execution modes:

• The original mode which copies all of the nodes from a file system to a new file
system.

• A checking mode. In this mode, it does not write any files. It only verifies that it
can read the first page of every file in the file system. By doing this, it implicitly
verifies that the file attribute and space map information is all accessible from
the HFS index. This goes most of the way towards verifying the integrity of the
HFS metadata.

The checktree function also detects sparse files. If a program only writes portions
of a file space, HFS will not allocate disk pages in the unwritten portions.
However, if a program issues a read to the unwritten portions, HFS returns zeros
rather than an indication that data does not exist. This is required for UNIX
compliance.

For example, a Domino file system is not supposed to be sparse. So, if a sparse
file in found in a Domino HFS, it is probably corrupt.

For example: copytree /u/nigelr2/old2

NIGELR2 @ SC64:/u>copytree /u/nigelr2/old2 /u/nigelr2/new2
Copying /u/nigelr2/old2 to /u/nigelr2/new2
Scanning for file nodes...
Skipping mountpoint: /u/nigelr2/old2/..
Processing 30 nodes
Creating directories
Creating other files
Setting file attributes

*******************

Copy complete. Error count= 0
Directory errors: 0
Directories copied: 7
File errors: 0
Files copied: 21
Symlink errors: 0
Symlinks copied: 2
Char-spec errors: 0
Char-spec copied: 0
FIFO errors: 0
FIFOs copied: 0
Sparse file count: 0
Chapter 5. Managing HFS data sets 129



See B.6, “Recovery samples” on page 284.

5.4 Additional space management topics

The next sections provide information about releasing unused space in an HFS
data set, and deleting or transporting an HFS data set.

5.4.1 Releasing unused space
DFSMS/MVS generally provides two ways of releasing over-allocated space.

5.4.1.1 Releasing unused space from a DASD data set using PARTREL
DADSM supports the release of unused space that is allocated. However, release
of HFS data sets is ignored, since the DADSM PARTREL macro no longer
supports HFS data sets.

5.4.1.2 Releasing space using DFSMShsm
DFSMShsm provides two functions during automatic primary space management
to reduce the unused space, but only the second one is applicable for HFS data
sets:

1. Under control of the management classes for the data sets, all processors
release unused allocated space in physical sequential, partitioned, and
extended format virtual storage access method (VSAM) KSDS data sets.

DFSMShsm invokes the PARTREL function of DADSM. As mentioned in the
previous section, the PARTREL function is not supported for HFS data sets.

2. Under the extent reduction function, all processors also reduce the number of
extents of physical sequential, partitioned, and direct access data sets that
have exceeded a specified number of extents. During the process of extent
reduction, they also release any unused space in the data sets.

DFSMShsm migrates the data sets that are candidates for extent reduction
and immediately schedules a recall for those same data sets. During the
migration, DFSMShsm moves only the valid data from the data sets.
Therefore, when the data sets are recalled into fewer extents, they may
occupy less space.

NIGELR2 @ SC64:/u>copytree /u/nigelr2/old2
Checking /u/nigelr2/old2
Scanning for file nodes...
Skipping mountpoint: /u/nigelr2/old2/..
Processing 30 nodes

*******************

Check complete. Error count= 0
Directory errors: 0
File errors: 0
Symlink errors: 0
Char-spec errors: 0
FIFO errors: 0
Sparse file count: 0
130 Hierarchical File System Usage Guide



As shown in 5.2.4, “Migrating and recalling an HFS data set” on page 125, the
migrate results in a logical data set dump without ALLDATA(*).

Therefore, DFSMSdss will only dump the storage to the high formatted value
(HFRFN). On DFSMShsm recall or DFSMSdss restore processing,
DFSMSdss allocates the target HFS data set based on the HFRFN. This
means that DFSMSdss could reduce the amount of space for an HFS data set
from the allocated space to the high formatted space.

Refer to 5.1.1.3, “HFS and ALLDATA(*) considerations” on page 108 for more
information about ALLDATA(*).

Notes:

1. You cannot reduce the space below the high formatted page by using
either DFSMSdss DUMP/RESTORE or DFSMShsm MIGRATE/RECALL.
To reduce the space of an HFS data set below the high formatted page,
you must copy files and directories individually into a new HFS data set by
using UNIX commands.

2. You can use the copytree utility provided by OS/390 Unix System Services.
Copytree is a utility that can run under TSO or the shell and is used to
make a copy of a file hierarchy preserving all file attributes. See 5.3.1,
“Copytree utility” on page 127.

5.4.2 Deleting or removing an HFS data set
If the file system (HFS data set) is mounted to another file system, logically
unmount it using the TSO UNMOUNT command against the HFS data set
containing it.

You can remove the file system in one of the following ways:

• Use the DELETE command (IDCAMS or TSO) with the SCRATCH parameter

• Execute an IEFBR14 job with DISP=(OLD,DELETE) specified for the HFS
data set

• Use ISPF option 3.4, Data Set List Utility using line command D - Delete data
set

• Use DFSMSdss DUMP processing to delete, for example, all unreferenced
HFS data sets. The following sample DFSMSdss job can be used to delete
all HFS data sets belonging to a specific storage group and that have a last
reference date of 90 days ago.

Note:

1. The job also selects all HFS data sets that do not have a reference date
set, such as all HFS data sets that were never used or mounted before.

//DUMP EXEC PGM=ADRDSSU,PARM=('TYPRUN=NORUN')
//OUT1 DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(**) -

BY((REFDT,LE,*,-90),(DSORG,EQ,HFS))) -
STORGRP(OPENMVS) -
OUTDDNAME(OUT1) -
DELETE

/*
Chapter 5. Managing HFS data sets 131



2. PARM=('TYPRUN=NORUN') bypasses the processing. It can be specified
to test and verify what the DFSMSdss job will do.

DFSMShsm Space Management functions can also delete data sets, based on:

• The amount of time since the data set was created
• The amount of time since the data set was last used
• An explicit date

5.4.3 Transporting an HFS
You might also want to copy a data set to a storage medium that can be
physically transported to another location. You can do that in one of the following
ways:

• Use either the pax, cpio, or tar shell commands to copy the file system in tape
archive (TAR) format.

• Have an authorized user logically unmount the file system, allocate an HFS
data set with a different data set name, and use the DFSMSdss logical dump
utility to copy the old file system to the new data set.

5.5 Increasing the size of an HFS data set

During the initial allocation of an HFS data set you specify a primary and
secondary allocation quantity. Normally during initial allocation, the system
allocates the first extent based on the primary allocation. The secondary
allocation quantity specifies the amount of additional space to be automatically
obtained if more space is needed as users add files and extend existing files.

HFS data sets can span up to 59 volumes, with up to 255 total extents for all
volumes, and up to 123 extents per volume.

Note: For DFSMS/MVS 1.4 and below, a file system resides on only one volume.
In DFSMS/MVS 1.5, an HFS data set can span multiple volumes.

To control or limit the size of an HFS data set, you can define it with no secondary
allocation value (zero). Additional extents will not be automatically obtained.
Such an HFS data set is limited to the size of the primary allocation.

Note: However, in this case, if candidate volumes are available, the HFS
automatically allocates the primary allocation amount on each candidate volume
as the HFS is extended to the new volume also with no secondary quantity
specified.

As mentioned before, an HFS data set size increases as users add files and
extend existing files. It may be necessary to increase the size of an existing HFS
data set when it has run out of extents or it can outgrow the space on its volume.

In this case, the storage administrator or system programmer responsible for
HFS data sets can make more space available by doing one of the following:

• Use DFSMSdss DUMP and RESTORE to

- Move the entire full file system to another volume

- Restore to a larger preallocated HFS data set
132 Hierarchical File System Usage Guide



- Restore to a multi-volume HFS data set, if it was a single volume HFS data
set before

See 5.5.1, “Increasing the file system size using DFSMSdss” on page 133 for
further information.

• Add volumes to the HFS data set by using the IDCAMS ALTER
ADDVOLUMES command.

See 5.5.2, “IDCAMS ALTER to add candidate volumes” on page 137.

• Invoke the new USS confighfs command to extend the HFS.

See 5.5.3, “USS confighfs command to change file system size” on page 139.

• Remove other data sets from the volume on which the full HFS data set
resides.

• Remove files from the full file system by either deleting them or by moving
them to another file system on another volume. If it is impossible to remove
the chosen files from a particular directory in the file system, it may be
possible to remove other files from a different directory in the same file
system.

• Create a new file system on another volume and move some files from the full
file system to the new file system. To avoid problems that might result from
this approach, define symbolic links using the original names.

5.5.1 Increasing the file system size using DFSMSdss
Normally, these steps should be performed to increase the size of an HFS data
set:

1. Have an authorized user enter a TSO UNMOUNT command to unmount the
file system.

2. Use the DFSMSdss DUMP function to logically dump the old file system.

3. Delete or rename the old HFS.

4. Allocate a new single-volume or multi-volume HFS data set.

5. Use the DFSMSdss RESTORE function to restore the dumped file system into
the preallocated HFS data set.

6. MOUNT the new file system.

The main information about DFSMSdss DUMP and RESTORE processing has
already been provided in 5.1, “DFSMSdss dump and restore” on page 103. The
following section supplies additional information for multi-volume processing.

The statements and parameters are explained in detail in:

• DFSMS/MVS V1R5 DFSMSdss Storage Administration Guide, SC26-4930
• DFSMS/MVS V1R5 DFSMSdss Storage Administration Reference,

SC26-4929

5.5.1.1 Dump processing for multi-volume data sets
An important advantage of DFSMSdss as a backup tool is that it can back up
multi-volume data sets without having to specify any or all of the input volumes. If
you do not specify any input volumes (you are using catalog filtering),
multi-volume data sets will automatically be processed in their entirety. The
catalogs are scanned to select an entire data set; That is, the data set is
Chapter 5. Managing HFS data sets 133



processed in its entirety from all the volumes it resides on. Logical processing
consolidates the extents of the data set in one dump data set for you.

Also, be aware of the DFSMSdss parameter, SELECTMULTI, if you are
performing a logical dump operation. Refer to 5.1.1.4, “Logical volume dump” on
page 109, for additional information about SELECTMULTI parameter.

SELECTMULTI works only for logical data set dumps. If you dump a multi-volume
data set physically, you must ensure that the segments from all the volumes are
dumped together. If you dump a multi-volume data set physically, it is dumped
from all the volumes that are passed. The output dumped data contains a logical
file for each selected volume.

A DFSMSdss logical data set dump operation attempts to ensure that all parts of
a multi-volume non-VSAM data set exist. In cases where a part of the data set is
missing, such as an inadvertent scratching of the VTOC entry on a volume,
DFSMSdss issues an error message and stops processing the data set.

• Sample DFSMSdss DUMP job

A logical dump statement can be specified as follows:

See 5.1.1, “Dump processing” on page 103, for additional information. Refer to
B.3, “DFSMSdss multi-volume processing” on page 269 for sample JCL.

5.5.1.2 RESTORE processing for multi-volume data sets
Multi-volume data sets from a logical data set dump tape can be restored either
to a single volume or to multiple volumes. When they are not preallocated and the
specified output volumes are different from the input volumes, multi-volume data
sets are restored to a single volume, space permitting.

If you are restoring a multi-volume data set from a physical dump, be sure the
segments from all volumes are restored with successive RESTORE commands.
Restoring a portion of a multi-volume non-VSAM data set to a preallocated data
set is allowed only if the volume sequence numbers of the source and target data
sets are the same.

Here are the descriptions of several parameters, their restrictions, and some
sample statements:

• MAKEMULTI parameter

MAKEMULTI allows DFSMSdss to convert single volume data sets into
multi-volume data sets. The default is not to convert single volume data sets
into multi-volume data sets.

SMS managed target data sets are given a volume count (VOLCOUNT) that is
either:

- The number of SMS output volumes specified in the RESTORE command,
if output volumes are specified through OUTDDNAME or OUTDYNAM.

- The number of volumes in the target storage group, or a value of 59,
whichever is less.

DUMP DATASET(INCLUDE(original.hfs.data.set.name)) -
OUTDDNAME(ddname)
134 Hierarchical File System Usage Guide



Note: When MAKEMULTI is specified and VOLCOUNT is also specified with
an option other than VOLCOUNT(*), the VOLCOUNT option overrides
MAKEMULTI.

• VOLCOUNT parameter

The number of volumes allocated for HFS data sets can be changed with
VOLCOUNT keyword options. The output data set must be SMS managed.
Single-volume data sets can be converted to multi-volume; multi-volume data
sets can be converted to single volume; or the number of volumes allocated
for multi-volume data sets can be changed. The result depends on which
VOLCOUNT keyword is selected, and on whether output volumes are
specified.

The following shows two possible VOLCOUNT options which can be used for
HFS processing:

- VOLCOUNT(N(nn)) - nn represents the number of volumes to be used for
SMS data set allocation. Any value between 0 and 59 may be specified.

- VOLCOUNT(ANY) specifies that DFSMSdss use a maximum volume count
to allocate the SMS target data set. DFSMSdss initially sets a volume
count of 59 for the allocation, but it reduces the number of volumes used to
the number of volumes needed to satisfy the allocation.

Refer to DFSMS/MVS V1R5 DFSMSdss Storage Administration Reference,
SC26-4929, for conditions and restrictions regarding the VOLCOUNT
parameter and the required options.

• RENAMEU and REPLACE parameter restrictions

This means that you cannot perform a restore of an HFS data set to a
preallocated (target) HFS data set with a different name from that of the
dumped (original) HFS data set.

However, to bypass this restriction, you can perform an additional step before
you restore to your final target data set.

1. Use DFSMSdss DUMP to dump the original HFS data set.

2. Rename (or delete) the original HFS data set.

3. Preallocate a larger HFS data set.

4. Run the DFSMSdss RESTORE only with option REPLACE (no RENAME
nor RENAMEU statement) to restore the HFS data set with the original
data set name.

However, sometimes you cannot rename the original HFS data set. For
example, if the HFS is still mounted (like the root file system), you need to
insert a second DFSMSdss DUMP and RESTORE job:

1. DFSMSdss DUMP of the original HFS data set.

2. DFSMSdss RESTORE with RENAMEU to the new HFS data set (which did
not exist before).

REPLACE only works if the data set is not being renamed.

REPLACE must be specified to restore preallocated data sets.

Important information
Chapter 5. Managing HFS data sets 135



Note: At this point in time, the target HFS data set has changed the name,
but not the size.

3. DUMP this HFS data set again using DFSMSdss DUMP.

4. Delete the new HFS data set (created at step 2).

5. Preallocate a larger HFS data set with the same name the HFS data set
had in step 3.

6. Run the DFSMSdss RESTORE with only the option REPLACE (no
RENAME nor RENAMEU statement) to restore the HFS data set with the
new (step 3) data set name.

Note: We now have a new HFS data set with a different name and a larger
size.

OUTDDNAME or OUTDYNAM is required for a logical restore operation if the
multi-volume data set is preallocated on volumes that are different from the
original source volumes.

• Sample RESTORE to multi-volume using MAKEMULTI

The following example shows the DFSMSdss statements that are needed to
restore from a single HFS data set to a multi-volume HFS data set by using
parameter MAKEMULTI.

The target HFS data set does not pre-exist, and will be allocated automatically
by DFSMSdss.

See B.3, “DFSMSdss multi-volume processing” on page 269 for sample JCL.

• Sample RESTORE by using VOLCOUNT(N(xx))

This sample shows how to restore to a multi-volume HFS data set with a
volume count of 2. The target HFS data set does not pre-exist. The target data
set was allocated as a multi-volume HFS data set with one candidate volume:

See B.3, “DFSMSdss multi-volume processing” on page 269 for sample JCL.

• Sample RESTORE by using VOLCOUNT(ANY)

This example shows how to restore to a multi-volume HFS data set by using
the VOLCOUNT(ANY) parameter. The target HFS data set does not exist
before the job:

RESTORE INDD(ddname) -
MAKEMULTI -
DATASET(INCLUDE(original.hfs.dsname)) -
RENAMEU(original.hfs.dsname,target.multivol.hfs.dsname)

RESTORE INDD(ddname) -
VOLCOUNT(N(2)) -
DATASET(INCLUDE(original.hfs.dsname)) -
RENAMEU(original.hfs.dsname,target.hfs.dsname)
136 Hierarchical File System Usage Guide



See B.3, “DFSMSdss multi-volume processing” on page 269 for sample JCL.

• Sample RESTORE to a preallocated single or multi-volume HFS data set

The restore to a pre-allocated HFS data set can be done by specifying the
REPLACE option on the DFSMSdss RESTORE command:

See B.3, “DFSMSdss multi-volume processing” on page 269 for sample JCL.

5.5.1.3 Mounting or unmounting of the root file system
Unmount the current root file and mount the new, larger data set.

A less disruptive method for making the changes effective is to schedule the
change at the next IPL, and modify BPXPRMxx to point to the new data set
name.

5.5.2 IDCAMS ALTER to add candidate volumes
IDCAMS ALTER ADDVOLUMES provides the volumes to be added to the list of
candidate volumes in the associated entry in the catalog.

You can use ALTER ADDVOLUMES to add candidate volumes to HFS data sets.
Only nonspecific volumes can be added to SMS managed HFS data sets.

If an ALTER ADDVOLUMES is done to a data set that is already opened and
allocated, the data set must be closed, reopened, and reallocated before it can
extend onto the newly-added candidate volume. This means that you must
unmount the HFS data set before you can add volumes.

RESTORE INDD(ddname) -
VOLCOUNT(ANY) -
DATASET(INCLUDE(original.hfs.dsname)) -
RENAMEU(original.hfs.dsname,target.hfs.dsname)

RESTORE INDD(ddname) -
DATASET(INCLUDE(original.hfs.data.set.name)) -
REPLACE

Unmounting and remounting the root file system is very disruptive.You will have
to stop all UNIX System Services work and unmount any file systems that are
mounted on the root file system. You will also have to stop any address spaces,
for example INETD or WEBSRV, which have HFS data sets allocated.

Once you have stopped all work, unmount the root file system through the
shell, or use the following TSO command:

UNMOUNT FILESYSTEM(’old.hfs.data.set.name’) IMMED

You must specify the IMMED keyword when unmounting the root file system.
Use the following command to mount the new file system:

MOUNT FILESYSTEM(’new.hfs.dsname’) TYPE(HFS) MOUNTPOINT(’/’)

Important Information
Chapter 5. Managing HFS data sets 137



Adding a non-existent volume to the list can result in an error when the data set is
extended. Ensure that the volume exists and is online before attempting to
extend the data set.

SMS might not use candidate volumes for which you request specific VOLSERs
with the ADDVOLUMES parameter. Sometimes a user-specified VOLSER for an
SMS managed data set results in an error.

To avoid candidate volume problems with SMS, you can have SMS choose the
VOLSER used for a candidate volume. To do this, you can code an * for each
VOLSER that you request with the ADDVOLUMES parameter. If, however, you
request both specified and unspecified VOLSERs in the same command, you
must enter the specified VOLSERs first in the command syntax. Space is not
allocated on candidate volumes until a data set extends to the candidate volume.

The syntax is:

ALTER entryname ADDVOLUMES(volser [volser])

For example, to add two non-specific volumes for an HFS data set with the
name’OMVS.STYRES1.HFS5’ you can specify:

ALTER OMVS.STYRES1.HFS5 ADDVOLUMES(* *)

Or, as a batch job:

The IDCAMS ALTER command is described in DFSMS/MVS V1R5 Access
Method Services for ICF, SC26-4906.

You can use the IDCAMS LISTCAT command to display the current number of
candidate volumes. For example:

LISTCAT ENTRIES(OMVS.STYRES1.HFS5) VOLUME

Or, as a batch job:

The IDCAMS LISTCAT command returns the following information.

An UNMOUNT and MOUNT is necessary to make use of additional candidate
volumes that were added before using IDCAMS ALTER ADDVOLUMES while
the HFS was mounted.

Important Information

//DELETE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

ALTER OMVS.STYRES1.HFS5 ADDVOLUMES(* *)
/*

//DELETE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

LISTC ENT(OMVS.STYRES1.HFS5) VOL
/*
138 Hierarchical File System Usage Guide



The two non-specific candidate volumes which we have just added are indicated
by an * instead of a VOLSER.

5.5.3 USS confighfs command to change file system size
The USS confighfs command can be used to extend an HFS on the same, or
different, volume when it has run out of extents, so that the HFS can outgrow the
space on its volume.

However, the extend to another volume works only if a candidate volume is
available in the associated catalog entry.

To control the space usage of an HFS data set, you can define your HFS data set
with no secondary allocation value. Such an HFS will not be automatically
extended. But you can increase the size of that HFS by using confighfs.

Note: However, in this case, if candidate volumes are available, the HFS
automatically allocates the primary allocation amount on each candidate volume
as the HFS is extended to the new volume also with no secondary quantity
specified.

In a shared HFS sysplex (OS/390 2.9 and higher), you need to issue the
confighfs command from the owning system to display information about a file
system.

If you issue the confighfs from a client system, you receive a message like:

Error issuing PFSCTL: RC=0 ERRNO=129(81) REASON=5B360105 ERRNO=129(81): HFS is not mounted.

This is because the confighfs command calls the PFS directly. On a client
system, the PFS doesn’t know anything about the file system. See 7.3, “HFS
sysplex sharing (OS/390 2.9 and above)” on page 179 for additional information
regarding HFS sysplex sharing and 3.3.5, “confighfs shell command” on page 68.

Here is the syntax to extend an HFS on the same volume:

confighfs -x size pathname

Or, to extend an HFS onto another volume, you can specify:

confighfs -xn size pathname

IDCAMS SYSTEM SERVICES I

LISTCAT ENTRIES(OMVS.STYRES1.HFS5) VOLUME
NONVSAM ------- OMVS.STYRES1.HFS5

IN-CAT --- MCAT.SANDBOX.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------1999.174
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS ----OPENMVS MANAGEMENTCLASS---MCDB22
DATACLASS --------(NULL) LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX17 DEVTYPE------X'3010200F'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
Chapter 5. Managing HFS data sets 139



The following parameters are used in the confighfs command:

size This is the amount to be extended, suffixed by the extend unit of M, T,
or C (for megabytes, tracks, or cylinders).

pathname This is a full or simple pathname to a file or directory in the file system
to extend.

Both commands require superuser authority.

This example shows how to extend an HFS data set (identified by its mount point)
by allocating an additional extent of 2 tracks on the same volume:

confighfs -x 2T /u/styres1

The next example will extend the HFS to the next volume. The amount of space
allocated on the next volume will be 4 tracks:

confighfs -xn 4T /u/styres1

Both commands force an allocation of a new extent, but they will not change the
secondary allocation quantity in the Format-1-DSCB in the VTOC. This means
that the HFS data set cannot extend automatically to a new extent on the same
volume. An HFS data set can be extended to a new candidate volume if a
candidate volume is available. But if no volume is available, you will receive a
message stating, "No space left on device".

Of course you can extend the HFS again by using the confighfs command, but it
will not happen automatically if you do not have a secondary allocation quantity
specified.

To insert a secondary allocation quantity at a later time, you can use DFSMSdss
DUMP and RESTORE to a preallocated HFS data set that has a secondary
allocation quantity specified.

Another important point is that candidate volumes must be available (in the
associated catalog entry) for an HFS data set that you will extend to another
volume by issuing the confighfs -xn command. Because an HFS data set is still
an MVS data set, neither USS nor the confighfs -xn command can bypass the
DFSMSdfp DADSM rules for multi-volume data sets.

For the following sample, we allocated a multi-volume HFS data set with the
following specifications:

Primary allocation quantity: 3 tracks

Secondary allocation quantity: 0

Volume count: 3

The confighfs -x command will not change the secondary allocation quantity in
the Format-1-DSCB in the VTOC. If your HFS data set was allocated without
specifying a secondary allocation quantity, then it will never extend
automatically to a new extent on the same volume.

The confighfs -xn can only extend an HFS data set to another volume if
candidate volumes are available (refer to IDCAMS ALTER ADDVOLUMES).

Important information
140 Hierarchical File System Usage Guide



We started to fill the HFS. The HFS data set will be extended automatically to the
two candidate volumes. In this example, we can get to a maximum of three
extents, one on each volume. Every volume contains one extent with a size of
three tracks. Therefore, the total number of allocated or used tracks is nine
tracks. If we reach the limit, we will receive a message like the following:

FSUM6237 no space on device for file "file3": EDC5133I No space left on device.

A LISTCAT command shows that all three volumes are already used.

ISPF data set information shows the current allocation of nine tracks on three
extents, and that 90% is used (Refer to 5.6, “Displaying the file system size” on
page 143, regarding the file size displays).

//ALLOC EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//DDNAME DD DSN=OMVS.STYRES1.HFS4,
// DISP=(NEW,KEEP),
// UNIT=(SYSDA,3),
// SPACE=(TRK,(3,0,1)),
// DSNTYPE=HFS
/*

STYRES1 @ SC64:/u/styres3>ls -l
total 680
-rwxrwxrwx 1 OMVSKERN SYS1 186600 Jun 26 00:34 file1
-rwxrwxrwx 1 OMVSKERN SYS1 156240 Jun 26 00:39 file2
STYRES1 @ SC64:/u/styres3>df
Mounted on Filesystem Avail/Total Files Status
/tmp (/TMP) 999805/1000000 127975 Available
/u/styres3 (OMVS.STYRES1.HFS4) 144/864 4294967292 Available
STYRES1 @ SC64:/u/styres3>cp file1 file3
cp: FSUM6237 no space on device for file "file3": EDC5133I No space left on device.
STYRES1 @ SC64:/u/styres3>

LISTC ENT(OMVS.STYRES1.HFS4) VOL
NONVSAM ------- OMVS.STYRES1.HFS4
VOLUMES
VOLSER------------SBOX17 DEVTYPE------X'3010200F'
VOLSER------------SBOX16 DEVTYPE------X'3010200F'
VOLSER------------SBOX14 DEVTYPE------X'3010200F'
Chapter 5. Managing HFS data sets 141



At this point, we have two ways to extend the size of the HFS data set:

1. We can use the confighfs -x 5T /u/styres3 command to add an extent of five
tracks to the HFS on the same volume: the cp file1 file3 command now
completes successfully.

The df command shows that the HFS was extended.

2. The second way is to extend the HFS to another volume by using the
command confighfs -xn 5T /u/styres3, as in the following example.

The reason code 5B27C005 refers to the fact that no space is available:

RSN5B27C005 (X'C005'): RSNS_DADSM_NO_SPACE_AVAIL

The message was issued correctly, because no candidate volumes are available
at this time.

Data Set Name . . . : OMVS.STYRES1.HFS4

General Data Current Allocation
Management class . . : MCDB22 Allocated tracks . : 9
Storage class . . . : OPENMVS Allocated extents . : 3
Volume serial . . . : SBOX17 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 90
Record length . . . : 0 % Utilized . . . . : 83
Block size . . . . : 0 Number of members . : 3
1st extent tracks . : 3
Secondary tracks . : 0
Data set name type : HFS

STYRES1 @ SC64:/>cd /usr/lpp/dfsms/bin
STYRES1 @ SC64:/usr/lpp/dfsms/bin>confighfs -x 5T /u/styres3
STYRES1 @ SC64:/usr/lpp/dfsms/bin>cd /u/styres3
STYRES1 @ SC64:/u/styres3>cp file1 file3
STYRES1 @ SC64:/u/styres3>df
Mounted on Filesystem Avail/Total Files Status
/tmp (/TMP) 999805/1000000 127975 Available
/u/styres3 (OMVS.STYRES1.HFS4) 256/1344 4294967291 Available

STYRES1 @ SC64:/u/styres3>ls -l
total 680
-rwxr-xr-x 1 OMVSKERN SYS1 186600 Jun 26 01:27 file1
-rwxr-xr-x 1 OMVSKERN SYS1 156240 Jun 26 01:27 file2
STYRES1 @ SC64:/u/styres3>df
Mounted on Filesystem Avail/Total Files Status
/tmp (/TMP) 999805/1000000 127975 Available
/u/styres3 (OMVS.STYRES1.HFS4) 144/864 4294967292 Available

STYRES1 @ SC64:/u/styres3>cd /usr/lpp/dfsms/bin
STYRES1 @ SC64:/usr/lpp/dfsms/bin>confighfs -xn 5T /u/styres3
Error issuing PFSCTL: RC=0 ERRNO=133(85) REASON=5B27C005
ERRNO=133(85): No space available
STYRES1 @ SC64:/usr/lpp/dfsms/bin>
142 Hierarchical File System Usage Guide



To extend the HFS, we must first add additional candidate volumes to the
associated HFS catalog entry by using the IDCAMS command:

ALTER OMVS.STYRES1.HFS4 ADDVOLUMES

Note: The HFS data set must be unmounted and remounted to make use of the
additional candidate volume.

Refer to B.4.2, “Using confighfs -xn and IDCAMS ALTER ADDVOLUMES” on
page 277 for additional examples.

5.6 Displaying the file system size

In the next sections, we describe the various methods available to display the
size of an HFS. Keep in mind that the physical structure on DASD is based on
pages (4,096 bytes), therefore, every file occupies at least one page (4,096 bytes
or 8*512 byte blocks). See 1.2, “Structure of an HFS data set” on page 2 for more
information regarding the structure.

5.6.1 Using the df UNIX command
The df UNIX system service command shows the amount of free space left in a
file system, the used space, and the total amount of available space.

Space is measured in units of 512-byte disk sectors. If you do not give an
argument, df reports space for all mounted file systems known to the system, in
the following format:

• File system root

• File system name

NONVSAM ------- OMVS.STYRES1.HFS4
VOLUMES

VOLSER------------SBOX17 DEVTYPE------X'3010200F'
VOLSER------------SBOX13 DEVTYPE------X'3010200F'
VOLSER------------SBOX16 DEVTYPE------X'3010200F'
VOLSER-----------------* DEVTYPE------X'00000000'

STYRES1 @ SC64:/>cd /usr/lpp/dfsms/bin
STYRES1 @ SC64:/usr/lpp/dfsms/bin>confighfs -xn 5T /u/styres3
STYRES1 @ SC64:/usr/lpp/dfsms/bin>cd /u/styres3
STYRES1 @ SC64:/u/styres3>cp file1 file3
STYRES1 @ SC64:/u/styres3>df
Mounted on Filesystem Avail/Total Files Status
/tmp (/TMP) 999805/1000000 127975 Available
/u/styres3 (OMVS.STYRES1.HFS4) 256/1344 4294967291 Available

In DFSMS/MVS 1.5, changes to the file system will be displayed by df after the
next sync.

Note:
Chapter 5. Managing HFS data sets 143



• Space available and total space

The total space reported is the space in the already allocated extents (primary
and any already allocated secondary extents) of the HFS data set that holds
this file system. Therefore, the total space may increase as new extents are
allocated.

• Number of free files (inodes)

This number is only meaningful for file systems created using DFSMS 1.3 and
later. For file systems created with earlier versions of DFSMS, this number will
always be 4,294,967,295.

• File system status

The following is an example of df output.

df - options
-k Uses 1024-byte (1KB) units instead of the default 512-byte units when

reporting space information.

-P Lists complete information on space used, in the following order:

File system name
Total space
Space used
Space free
Percentage of space used
File system root

-t Display total allocated file slots in addition to the total number of free files
that are already displayed.

-v Lists more detailed information on the file system status.

File system root
File system name
Space available and total space
Number of free files (inodes)
File system status
File system type, and mode bits
File system mount parm data

For systems in a shared HFS environment, the following additional fields
are displayed:

• File system ID (owner/mounted file system server)
• File system ID issuing a quiesce request

If df is issued in a non-shared HFS environment, these two fields are not
relevant and will not be displayed.

STYRES3 @ SC63:/usr/lpp/dfsms/bin>df
Mounted on Filesystem Avail/Total Files Status
/tmp (/TMP) 999703/1000000 127962 Available
/u/guts (OMVS.STYRES1.HFS3) 21208/21600 4294967284 Available
/usr/lpp/lotus (OMVS.DOMINO5.PROD.HFS) 28392/724320 4294966908 Available
/var (OMVS.SC63.VAR) 12904/12960 4294967293 Available
/u (OMVS.SC63.USERS) 37240/37440 4294967283 Available
/etc (OMVS.SC63.ETC) 73560/76320 4294967039 Available
/ (HFS.OS390R7.SC63.O37RA1.ROOT)87984/1264320 4294949033 Available
144 Hierarchical File System Usage Guide



Figure 55 is a sample output of a df -P command.

Figure 55. Sample output of a df -P command

We interpret the different kinds of information provided by the different methods
on a sample HFS data set ’OMVS.STYRES1.HFS3’.

The sizes are displayed in blocks of 512 bytes:

• 512 blocks (total): 21,600

=> 21,600 blocks / 8 blocks/page = 2,700 pages

=> 2,700 pages / 12 pages/track = 225 tracks

=> 225 tracks / 15 tracks/cylinder = 15 cylinders

The total number of 512 blocks matches the amount of allocated storage. See
5.6.3, “ISPF data set information” on page 146.

• Used blocks: 392

=> 392 blocks / 8 blocks/page = 49 pages

The number of used blocks matches the amount of used pages displayed in
ISPF Data Set Information.

• Available blocks: 21,208

This value represents:

total blocks - (used blocks + system reserved blocks for shadow writes)

5.6.2 Using the UNIX confighfs command
The UNIX system service command confighfs provides similar file size
information.

See 7.3, “HFS sysplex sharing (OS/390 2.9 and above)” on page 179 for
additional information reading HFS sysplex sharing and 3.3.5, “confighfs shell
command” on page 68.

STYRES3 @ SC63:/>df -P
Filesystem 512-blocks Used Available Capacity Mounted on
/TMP 1000000 305 999695 1% /tmp
OMVS.STYRES1.HFS3 21600 392 21208 2% /u/guts
OMVS.SC63.VAR 12960 56 12904 1% /var
OMVS.SC63.USERS 37440 200 37240 1% /u
OMVS.SC63.ETC 76320 2424 73896 4% /etc
HFS.OS390R7.SC63.O37RA1.ROOT 1264320 1175416 88904 93% /

Currently, in a shared HFS sysplex (OS/390 2.9 and higher), you need to issue
the confighfs command from the owning system to display information about a
file system. If you issue the confighfs from a client system, you receive a
message like:

Error issuing PFSCTL: RC=0 ERRNO=129(81) REASON=5B360105 ERRNO=129(81): HFS is not mounted.

This is because the confighfs command calls the PFS directly. On a client
system, the PFS doesn’t know anything about the file system.

Important Information
Chapter 5. Managing HFS data sets 145



Figure 56 is a sample output from a confighfs command.

Figure 56. Sample output from a confighfs command

The confighfs command displays similar information:

• File system size: 2,700 pages

2700 pages * 4096 bytes/page =11059200 bytes <=> 10.546875(MB)

• Used pages: 49 <=> 0.19140625(MB)

Note: Refer to APAR OW39886 (USS CONFIGHFS COMMAND SHOWS
INCORRECT MEMBER COUNT), if your member count is incorrect (too high) as
shown in this output.

5.6.3 ISPF data set information
ISPF option 3.2 and option 3.4 (option I - data set information) also shows
information about the HFS data set size; See the following example.

STYRES3 @ SC63:/usr/lpp/dfsms/bin>confighfs /u/guts
Statistics for file system OMVS.STYRES1.HFS3
( 06/18/99 2:49pm )
File system size:______2700

_10.546875(MB)
Used pages: ________49

0.19140625(MB)
Attribute pages: _________1

_0.0039063(MB)
Cached pages: _________4

__0.015625(MB)
Seq I/O reqs: ___________________1
Random I/O reqs: ___________________0
Lookup hit: ___________________2
Lookup miss: ___________________1
1st page hit: ___________________3
1st page miss: ___________________5
Index new tops: ___________________0
Index splits: ___________________0
Index joins: ___________________0
Index read hit: ___________________3
Index read miss: ___________________1
Index write hit: ___________________0
Index write miss:___________________0
RFS flags __________________82(HEX)
RFS error flags: ___________________0(HEX)
High foramt RFN: __________________31(HEX)
Member count: _______________12544
Sync interval: __________________60(seconds)
146 Hierarchical File System Usage Guide



The amount of Current Allocation and Used pages matches the information
provided by the UNIX df command.

The maximum number of free files (4,294,967,284) subtracted from the maximum
number of files (4,294,967,295) is equal to the Number of members displayed by
ISPF Data Set Information. Refer to 5.6.1, “Using the df UNIX command” on page
143.

The number of members includes the name and subname directories, so this
value reflects more than just the number of files in an HFS data set.

5.6.4 TSO ISHELL — file system attributes
The TSO ISHELL File System Attributes panel displays the file system size in
blocks of 4,096 bytes (pages).

Data Set Information
Command ===>

Data Set Name . . . : OMVS.STYRES1.HFS3

General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 15
Storage class . . . : OPENMVS Allocated extents . : 1
Volume serial . . . : SBOX06 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 49
Record length . . . : 0 % Utilized . . . . : 1
Block size . . . . : 0 Number of members . : 11
1st extent cylinders: 15
Secondary cylinders : 15
Data set name type : HFS

File System Attributes

File system name:
OMVS.STYRES1.HFS3
Mount point:
/u/guts

Status . . . . . . . . : Available
File system type . . . : HFS
Mount mode . . . . . . : R/W
Device number . . . . : 5
Type number . . . . . : 1
DD name . . . . . . . : SYS00008
Block size . . . . . . : 4096
Total blocks . . . . . : 2700
Available blocks . . . : 2651
Blocks in use . . . . : 49
Ignore SETUID . . . . : 0
Bypass security . . . : 0
Mount parameter:

SYNC(120),NOWRITEPROTECT__________________________
__________________________________________________
Chapter 5. Managing HFS data sets 147



For example, the total number of 4K blocks (2,700 pages) is equal to the current
allocation shown by ISPF (15 cylinders). The USS confighfs command reports the
same total number of pages.

5.6.5 ISMF data set information
The ISMF values for ALLOC SPACE and ALLOC USED are not useful for HFS
file size calculations, because the ISMF values represent the amount of space (in
kilobytes, K=1024 bytes) on the volume. The values are determined by converting
the number of tracks listed in the VTOC to kilobytes, and rounding to the nearest
kilobyte.

The values are also correct. However, ISMF shows them from a different point of
view. ISMF determines the space from a volume point of view. Therefore, the
space will be calculated by using the maximum track capacity of a volume. For
example, for a 3390 volume, the maximum track capacity is 56,664 bytes.

• ALLOC SPACE: 12,451 KB

=> 15 cylinder = 225 tracks = 225 track * 56,664 bytes/track = 12,450.6 KB

• USED SPACE: 221 KB

=> 4 tracks * 56,664 bytes/track = 226,656 bytes / 1,024 bytes/KB = 221.3 KB

5.7 Moving and displaying the ownership for a shared HFS

You can use the SETOMVS system command to change the options that OS/390
UNIX System Services currently is using dynamically. These options are
originally set in the BPXPRMxx parmlib member at IPL time.

In OS/390 2.9, the SETOMVS command was enhanced to:

• Change or move the ownership of an HFS mounted in read-write mode in a
participating (SYSBPX sysplex) group.

• Change the setting of the AUTOMOVE parameter for an mounted file system.

We used the following command to move our file system from system SC64 to
system SC65:

SETOMVS FILESYS,FILESYSTEM='NIGELR2.TEST.HFS',SYSNAME=SC65

---------------------------------------------------------------------
DATA SET LIST

Command ===>

Enter Line Operators below: Data Columns

LINE ALLOC ALLOC % NOT
OPERATOR DATA SET NAME SPACE USED USED
---(1)---- ------------(2)------------ --(3)-- --(4)-- -(5)-

OMVS.STYRES1.HFS3 12451 221 98

To move the ownership, the affected HFS data set will be unmounted on the
source system and mounted on the target system.

Note
148 Hierarchical File System Usage Guide



A D OMVS,F command shows that the file system is owned by system SC64.

The corresponding messages shows, that the HFS data set is unmounted on
SC64 and re-mounted on SC65.

You can also use the ISHELL to display the owner of an file system:

—> File_systems
—> 1. Mount table...

—> A=Attributes

SC64 D OMVS,F
SC64 BPXO045I 19.23.48 DISPLAY OMVS 528

OMVS 000F ACTIVE OMVS=(9B)
TYPENAME DEVICE ----------STATUS----------- MODE
...
HFS 31 ACTIVE RDWR
NAME=NIGELR2.TEST.HFS
PATH=/u/guts
OWNER=SC64 AUTOMOVE=Y CLIENT=N
...

SC64 SETOMVS FILESYS,FILESYSTEM='NIGELR2.TEST.HFS',SYSNAME=SC65
SC64 IEF196I IGD104I NIGELR2.TEST.HFS RETAINED,
SC64 IEF196I DDNAME=SYS00082
SC65 IGD103I SMS ALLOCATED TO DDNAME SYS00146
SC64 BPXO015I THE SETOMVS COMMAND WAS SUCCESSFUL.

File System Attributes

File system name:
NIGELR2.TEST.HFS
Mount point:
/u/guts

More: +

Status . . . . . . . . : Available
File system type . . . : HFS
Mount mode . . . . . . : R/W
Device number . . . . : 31
Type number . . . . . : 1
DD name . . . . . . . :
Block size . . . . . . : 4096
Total blocks . . . . . : 361080
Available blocks . . . : 32754
Blocks in use . . . . : 328142

Ignore SETUID . . . . : 0
Bypass security . . . : 0
Automove . . . . . . . : Yes
Owning system . : SC65
Data blocks read . . . : 0
Data blocks written . : 0
Dir blocks r/w . . . . : 0
Mount parameter:

__________________________________________________
__________________________________________________
Chapter 5. Managing HFS data sets 149



A third option to display the owner is to use USS command df -v.

You can use the SETOMVS system command to change the setting for the
AUTOMOVE parameter as shown in the next example:

SETOMVS FILESYS,FILESYSTEM='NIGELR2.TEST.HFS',AUTOMOVE=NO

For more information on the SETOMVS command, see OS/390 V2R9.0 MVS
System Commands, GC28-1781, or 3.3.4, “SETOMVS system command” on
page 66.

5.8 Installing service to products in the HFS

This topic has been covered in 7.3.1, "Installing Service to Products in the HFS",
of the redbook OS/390 Version 2 Release 6 UNIX System Services
Implementation and Customization, SG24-5178.

5.9 Snapshot and DFSMSdss COPY considerations

You can use full volume copy to snap a volume containing HFS data sets. You
can use DFSMSdss virtual concurrent copy (VCC) for HFS data sets during full
volume, physical data set, and logical data set dump operations.

However, you cannot use Snapshot to copy an individual HFS data set by using
the SNAP DATASET command. The same restriction exists for the DFSMSdss
COPY function. You cannot use DFSMSdss to copy an individual HFS data set.

Snapshot serialization is similar to DFSMSdss. For a VOLUME SNAP, the
enqueue is against the VTOC. See 5.1.1.6, “Physical dump” on page 112 for
more detail.

NIGELR2 @ SC64:/O39RA1/usr/lpp/dfsms/bin>df -v
Mounted on Filesystem Avail/Total Files Status
...
/u/guts (NIGELR2.TEST.HFS) 262032/2888640 4294938692 Available
HFS, Read/Write
File System Owner : SC65
...

SC64 SETOMVS FILESYS,FILESYSTEM='NIGELR2.TEST.HFS',AUTOMOVE=NO
SC64 BPXO015I THE SETOMVS COMMAND WAS SUCCESSFUL.

SC64 D OMVS,F
SC64 BPXO045I 01.14.08 DISPLAY OMVS 637

OMVS 000F ACTIVE OMVS=(9B)
TYPENAME DEVICE ----------STATUS----------- MODE
HFS 31 ACTIVE RDWR
NAME=NIGELR2.TEST.HFS
PATH=/u/guts
OWNER=SC65 AUTOMOVE=N CLIENT=Y
HFS 14 ACTIVE RDWR
150 Hierarchical File System Usage Guide



For example, we receive the following messages when we try to snap an HFS
data set by using the SNAP DATASET command:

SIB4622E open DDN error in SIBDMOPN, rc=10.

As well as the following message:

IEC143I 213-8C,IFG0194D,STYRES1B,SNAP1,SYS00002,2557,RV2CU3,
STYRES1.TESTSNAP.HFS1

The message SIB4622E indicates an open error:

RC10 : An ABEND occurred.

The ABEND213 indicates that an error occurred during processing of an OPEN
macro instruction for a data set on a direct access device.

RC8C : An OPEN macro instruction was attempted for an HFS data set, using a
DCB. BSAM/QSAM OPEN cannot be used to open a data set with DSNTYPE=HFS.

For a full volume copy operation, Snapshot and DFSMSdss serializes the VTOC
to prevent DADSM functions (such as ALLOCATE, EXTEND, RENAME, and
SCRATCH) from changing the contents of the VTOC on the volume during the
copy operation. Data sets are not serialized on these full or track operations.
Therefore, some data sets might be opened by other jobs during the copy,
resulting in copies of partially updated data sets. You can minimize this possibility
by performing the copy when there is low system activity.

A second important point, as with DFSMSdss physical dump processing, is that
SNAP VOLUME does not provide quiesce capability to write cached data to disk.
Your target HFS data set always reflects the HFS structure from the previous
sync process. This means that newly created files can be missed and newly
deleted files will still be present.

Therefore, we do not recommend SNAP VOLUME processing for HFS data sets
that are currently mounted read/write.

See 5.1.1.6, “Physical dump” on page 112, and the Snapshot manuals, for more
information.

The next example shows the SNAP VOLUME command. At the time this
command was used, there was one HFS data set currently mounted (R/W) on the
source volume.

The job ends with RC=8 along with the following Snapshot messages:

SIB4627E Unable to allocate the resource RV2CU3.
SIB4617I 19:28:52 Snapshot completed, rc=8.

SNAP VOLUME( -
SOURCE(VOL(RV2CU3)) -
TARGET(VOL(SMP79F)) -
COPYVOLID(NO) -
REPLACE(YES) -
)

Chapter 5. Managing HFS data sets 151



We could bypass the RC8 in one of the following ways:

• Unmount the HFS data set
• Specify TOLERATEENQFAILURE(YES) at the SNAP VOLUME command.

In spite of our example above (and examples shown in other Snapshot manuals),
a SNAP VOLUME does not only serialize on the VTOC; It appears that the SNAP
VOLUME processing also tries to serialize on the data set level. This processing
may be changed in the future to be consistent with DFSMSdss and the Snapshot
documentation.
152 Hierarchical File System Usage Guide



Chapter 6. Tivoli Storage Manager

This chapter discusses the use of Tivoli Storage Manager to provide backup and
recovery of HFS data at the file level. This is designed to complement, rather than
replace, the backup procedure described in Chapter 5, “Managing HFS data sets”
on page 103.

While you may not choose to purchase TSM solely to provide management of
HFS data, (where a TSM server already exists in your organization) it is easy to
install the TSM UNIX System Services (USS) client software to provide this
additional support.

6.1 Introduction to Tivoli Storage Manager

Tivoli Storage Manager (TSM), previously known as ADSTAR Distributed Storage
Manager or ADSM, is a client-server product designed to protect and manage a
broad range of data, from Notebook PCs to powerful corporate servers. TSM
supports more than 35 different operating platforms using a consistent
Web-based graphical user interface (GUI).

6.1.1 Why use Tivoli Storage Manager?
TSM provides granularity to the storage management of HFS file systems.
DFSMSdss DUMP provides recovery protection of entire HFS data sets, where
TSM allows you to backup and restore individual files. The price paid for this level
of granularity is performance. DFSMSdss DUMP works much faster than TSM,
because it is not keeping track of each file, but as you will see below, you do not
need to backup every file using TSM — just those data critical to your
organization.

We recommend that you use both DFSMSdss and TSM to provide your data
management. DFSMSdss DUMP will allow rapid recovery from a complete loss of
HFS data sets, including system files, and TSM allows you to recover lost or
damaged critical files or directories in an otherwise healthy HFS system.

Important features of TSM are:

• TSM works on a “progressive incremental” (also known as “incremental
forever”) principle by default, allowing you to backup only those files which
have changed since the last backup.

• TSM provides functions for long term archiving of critical files, which are
tracked and protected using separate policies from the backups.

• TSM has a Central Scheduler, which allows incremental or selective backups
at defined intervals. For example, you could back up all of your files nightly,
and critical files in a specific subdirectory hourly.

• Separate policies can be applied to manage the data within a given HFS file
system. These policies, which will be familiar to users of SMS but are not
dependent on SMS, define retention periods and versioning, so that you may
keep more versions of critical files and allow point-in-time restoration. These
policies, together with an Include/Exclude list, allow you to control what is
backed up, how often it is backed up, and how the backup data will be
managed.
© Copyright IBM Corp. 1999, 2000 153



• According to your security requirements, you may choose to allow end users
to recover files they access, or you may allow storage administrators or help
desk operators to perform functions on users’ behalf.

Most of the above functions are discussed in this chapter. However, it is beyond
the scope of this book to provide full details of the TSM product.

For further information, see Tivoli Storage Manager for MVS and OS/390: Quick
Start, GC35-0376. All TSM manuals are available in PDF and HTML format on
the World Wide Web via URL:

http://www.tivoli.com/tsm/

Many redbooks have also been written about TSM. Many of them were written
when the product was known as ADSM, but are still relevant to the TSM product.
To view or order TSM redbooks, search for ADSM or TSM at:

http://www.redbooks.ibm.com/

6.1.2 Tivoli Storage Manager components
The basic components of TSM are shown in Figure 57 below. The diagram shows
the following TSM building blocks:

• Server: The TSM server is the key component in a TSM installation. There are
many supported server platforms, from Windows NT to OS/390. It is likely, but
not imperative, that you will use an OS/390 server to manage your HFS data.
The managed client data is tracked by an internal relational database. The
server also contains a Central Scheduler to control the frequency of client file
capture.

• Storage Pools: This is where the TSM server stores backup or archive
objects on behalf of the managed clients. This may be automatically managed
as a hierarchy of disk, optical, or tape storage.

• Clients: For the purposes of this book, we will only be describing the OS/390
UNIX System Services client. TSM clients are available for many other
operating systems, providing data management for the whole of your
enterprise. There are two types of TSM clients:

• Backup/Archive: This client is used to backup, restore, archive and retrieve
data on behalf of the managed machine. Command line and GUI (via Web
interface) clients are available.

• Administration: This a special client for managing TSM servers. Command
line and GUI (via Web interface) clients are available. TSM servers running
under OS/390 can also be managed via operator console modify commands.
154 Hierarchical File System Usage Guide



Figure 57. Tivoli Storage Manager components

6.2 Installing the Tivoli Storage Manager USS client

This section describes the basic steps for setting up the TSM client for USS. This
information should be used in conjunction with the manuals referenced below.

6.2.1 Ordering the client software
Most TSM client software is freely downloadable from the World Wide Web, via
http://www.tivoli.com/tsm/. This is not the case with the USS client. The USS
client is delivered with the TSM for OS/390 server product, or may be ordered as
a service tape from your Customer Support organization.

6.2.2 Initial installation
This section describes the basic steps needed to install the USS client software.
These instructions should be read in conjunction with the Program Directory for
the Tivoli Storage Manager Backup-Archive, GI10-4520.

1. Perform SMP/E RECEIVE for the product tape. Sample JCL is provided in the
Program Directory.

2. Sample JCL is provided for pre-APPLY, APPLY-CHECK and APPLY jobs. Customize
these jobs according to your organization defaults and submit. The jobs
should all complete with rc=0.

3. Run the Post-APPLY steps described in the Program Directory. You are now
ready to customize the client options files.

6.2.3 Customizing the client
See Tivoli Storage Manager for UNIX: Using the Backup-Archive Clients,
SH26-4105, for full instructions on customizing the client options files. Following
the basic instructions in this section should leave you with a working USS client.
There are many additional options for customizing TSM, outside the scope of this
book.

Backup / Archive Clients

Admin Clients

Storage Management
Server

TSM Clients TSM Server TSM Server
Storage

Storage Pools
Chapter 6. Tivoli Storage Manager 155



We copied the sample files to /var/tsm., a file system mounted R/W. You may
also need to copy the language file dscameng.txt from the installation directory to
your chosen R/W file system, to avoid errors starting the TSM client. The sample
screens below show the TSO OMVS environment. You may choose to use telnet or
X-Windows to run similar commands:

Now you need to copy the sample client options files dsm.opt.smp to dsm.opt and
dsm.sys.smp to dsm.sys, as shown in the OMVS example below, then edit them to
provide connectivity to your TSM server.

Examples of basic dsm.opt and dsm.sys and Include/Exclude files are shown in
Figure 58, Figure 59, and Figure 60 below. Note: To save space, the
Include/Exclude list shown in Figure 60 is not a complete copy of the list used in
our environment.

Figure 58. Example dsm.opt file

The instructions in the TSM manuals for copying the sample options files to
files in the installation directory conflict with the recommended mount mode for
the Version HFS root file system in OS/390 USS. IBM recommends that the
Version root file system should be mounted read-only (see 10.2.5.2,
“VERSION” on page 239). In order to customize these files, you must copy
them to a read-write file system. We have chosen to use /var/tsm to hold the
client options files in our system

Note

Licensed Material - Property of IBM
5647-A01 (C) Copyright IBM Corp. 1993, 2000
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

NIGELR3 @ SC64:/>cd /var/tsm
NIGELR3 @ SC64:/SC64/var/tsm>cp dsm.opt.smp dsm.opt
NIGELR3 @ SC64:/SC64/var/tsm>cp dsm.sys.smp dsm.sys
NIGELR3 @ SC64:/SC64/var/tsm>

===>
RUNNING

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

SErvername WTSCMXA
156 Hierarchical File System Usage Guide



Figure 59. Example dsm.sys file

Note the special syntax in Figure 60. As well as asterisk (*) wildcards which are
familiar to most users, we also have /.../ (known as the “match-n” wildcard),
which refers to any number (0-n) of subdirectories. Full syntax rules are
described in Tivoli Storage Manager for UNIX: Using the Backup-Archive Clients,
SH26-4105.

Figure 60. Example Include/Exclude list

The basic setup is now complete. You have told the client where to find a TSM
server, and limited the files being backed up to critical data in your organization.
In order to point the TSM client at these options files, we need to set three
environment variables:

SErvername WTSCMXA
COMMmethod TCPip
TCPPort 1500
TCPServeraddress wtscmxa.itso.ibm.com
PasswordAccess Generate
PasswordDir /var/tsm
NODename WTSC64OE
SCHEDLOGName /var/tsm/dsmsched.log
SCHEDLOGRETENTION 14 D
ERRORLOGName /var/tsm/dsmerror.log
ERRORLOGRETENTION 14 D
INCLexcl //'NIGELR3.TSM.PARMLIB(WTSC64OE)'

1

1

2

2
3

PasswordAccess Generate saves an encrypted copy of the client
password in the directory specified by PasswordDir.

It is worth automatically deleting log records, but you should
regularly monitor these files! Here we specify 14 days.

You may use a PDS or PDSE member for the Include/Exclude list.
Note the special format of the file name needed to achieve this.

1

2

3

EXCLUDE /.../*
EXCLUDE.DIR /bin
EXCLUDE.DIR /bin/.../*
EXCLUDE.DIR /dev
EXCLUDE.DIR /dev/.../*
EXCLUDE.DIR /samples
EXCLUDE.DIR /samples/.../*
EXCLUDE.DIR /tmp
EXCLUDE.DIR /tmp/.../*
EXCLUDE.DIR /var/adsm/logs
EXCLUDE.DIR /var/adsm/logs/.../*
*
INCLUDE /usr/local/.../*
INCLUDE /etc/.../*
INCLUDE /u/.../*
INCLUDE /var/.../*
Chapter 6. Tivoli Storage Manager 157



• DSM_DIR: Points to the dsm.sys file
• DSM_CONFIG: Points to dsm.opt file
• DSM_LOG: Points to the directory where the dsmerror.log file will be written

In the Figure 61 below, we are setting all these environmental variables to point to
our R/W directory /var/tsm:

Figure 61. Setting environment variables

Adding the above environment variables to /etc/profile will set them each time a
USS session is started.

6.2.4 Using the Tivoli Storage Manager client
You are now ready to test the TSM USS client. The following sections describe
the basic operation of the client software. You should consult Tivoli Storage
Manager for UNIX: Using the Backup-Archive Clients, SH26-4105, for more
detailed instructions.

TSM provides two forms of interface to the client software:

• Command line: This interface is provided so that “dumb” terminals, such as
telnet or OMVS can be used to access the client. Command line does not look
as friendly, but can perform all TSM functions.

• GUI: This interface is provided via a Java applet on a suitable Web browser.
This not only makes the interface easier to use for ad-hoc file restoration, but
it can be used on any machine that has a Web browser, anywhere that can get
TCP/IP access to your client. It is particularly useful for help-desk personnel to
restore lost files on your behalf.

6.2.4.1 Command Line interface
The command dsmc i (incremental backup) should produce similar output to the
screen shown in Figure 62 (actual output will depend on your system
environment).

NIGELR3 @ SC64:/SC64/var/tsm>cd /$HOME
NIGELR3 @ SC64:/>DSM_DIR=/var/tsm
NIGELR3 @ SC64:/>DSM_CONFIG=/var/tsm/dsm.opt
NIGELR3 @ SC64:/>DSM_LOG=/var/tsm
NIGELR3 @ SC64:/>export DSM_DIR DSM_CONFIG DSM_LOG
NIGELR3 @ SC64:/>

===>
INPUT

ESC=¢ 1=Help 2=SubCmd 3=HlpRetrn 4=Top 5=Bottom 6=TSO
7=BackScr 8=Scroll 9=NextSess 10=Refresh 11=FwdRetr 12=Retrieve

The TSM server needs to know that your client is authorized to backup,
archive, restore, or retrieve files. To complete the client installation, you need to
register your client node name on the server. This needs to be performed by a
TSM administrator. If you are responsible for both the client and server, you will
perform this task. Otherwise, see your storage administrator!

Registering the client
158 Hierarchical File System Usage Guide



Figure 62. Typical TSM command line interface output

Commonly used commands (showing short command format):

i perform incremental backup
sel perform selective backup (backup individual file(s) with wildcards),

for example, sel /u/tsmnew/*.tar

ar archive file(s), with similar syntax to sel

res restore file(s); includes a picking list function (Figure 63 below)

Figure 63. The TSM PICK Window

The “Scrollable PICK Window” may look a little messy, but is quick and easy to
operate, once you get used to it! In Figure 63 we have selected a range of files for
restore, shown by the x characters on the left of the screen.

Tivoli Storage Manager
Command Line Backup Client Interface - Version 3, Release 7, Level 2.0
(C) Copyright IBM Corporation, 1990, 2000, All Rights Reserved.
.
. (output lines removed for clarity)
.
Selective Backup processing of '/u/tsmnew' finished without failure.

Total number of objects inspected: 56,283
Total number of objects backed up: 80
Total number of objects updated: 0
Total number of objects rebound: 0
Total number of objects deleted: 1
Total number of objects expired: 0
Total number of objects failed: 0
Total number of bytes transferred: 511.93 KB
Data transfer time: 0.32 sec
Network data transfer rate: 1,566.95 KB/sec
Aggregate data transfer rate: 10.74 KB/sec
Objects compressed by: 0%
Elapsed processing time: 00:00:47

TSM Scrollable PICK Window - Restore

# Backup Date/Time File Size A/I File
-----------------------------------------------------------------------

76. | 03/18/2000 16:57:06 244.00 KB A /u/local/tsmtest/acl_edit
77. | 03/18/2000 16:57:06 68.00 KB A /u/local/tsmtest/alias

x 78. | 03/18/2000 16:57:06 176.00 KB A /u/local/tsmtest/ar
x 79. | 03/18/2000 16:57:06 76.00 KB A /u/local/tsmtest/asa
x 80. | 03/18/2000 16:57:06 184.00 KB A /u/local/tsmtest/at

81. | 03/18/2000 16:57:06 364.00 KB A /u/local/tsmtest/awk
x 82. | 03/18/2000 16:57:09 3.30 MB A /u/local/tsmtest/bak
x 83. | 03/18/2000 16:57:12 60.00 KB A /u/local/tsmtest/basename
x 84. | 03/18/2000 16:57:12 184.00 KB A /u/local/tsmtest/batch
x 85. | 03/18/2000 16:57:12 240.00 KB A /u/local/tsmtest/bc

86. | 03/18/2000 16:57:12 68.00 KB A /u/local/tsmtest/bg
87. | 03/18/2000 16:57:14 1.64 MB A /u/local/tsmtest/bos
88. | 03/18/2000 16:57:14 2.01 KB A /u/local/tsmtest/bpxmtext
89. | 03/18/2000 16:57:18 488.00 KB A /u/local/tsmtest/c++
90. | 03/18/2000 16:57:27 488.00 KB A /u/local/tsmtest/c89

0---------10--------20--------30--------40--------50--------60--------7
<U>=Up <D>=Down <T>=Top <B>=Bottom <R#>=Right <L#>=Left
<G#>=Goto Line # <#>=Toggle Entry <+>=Select All <->=Deselect All
<#:#+>=Select A Range <#:#->=Deselect A Range <O>=Ok <C>=Cancel
pick>
Chapter 6. Tivoli Storage Manager 159



6.2.4.2 GUI interface
From version 3.7.2, TSM provides a Web GUI interface for accessing functions
via a convenient Web browser interface. The interface, which is provided by
means of Java applets, is of particular use by help desk personnel. From Web
browsers anywhere in your organization, you can access any client’s backup files
or administer your TSM server(s), depending on the security access given to the
user.

To activate TSM’s Web GUI interface, you need to know the URL of the TSM Web
client. The URL is made up of the client’s IP address and the port number on
which the Web admin client is listening. The default Web client port address is
1581. For our system, the URL becomes http://wtsc64oe.itso.ibm.com:1581/

An example of the front page displayed by the Java GUI is shown in the example
using Netscape Communicator in Figure 64. The four primary functions are
provided by the first large buttons:

• Backup: Perform incremental or selective backup of the HFS file space
• Restore: Restore files to original or new location
• Archive: Archive files for long term storage
• Retrieve: Retrieve archived files

The last button, Getting Started, provides an overview of TSM functions.

We only deal with the main TSM functions in this book. Please see the TSM user
manuals (discussed in 6.1.1, “Why use Tivoli Storage Manager?” on page 153
and page 156) for further information about the client interfaces.
160 Hierarchical File System Usage Guide



Figure 64. The TSM GUI front end

Pressing any of the main function buttons (Backup, Restore, Archive, Retrieve),
will result in a request for a valid User ID and Password, as shown in Figure 65.
The authentication is performed at the TSM server, so a valid administrator ID
and password must be entered. There is a special Client Owner ID available.
This ID cannot administer the server, but is allowed to activate client functions
through the Web interface. You may visit the Getting Started overview without
logging in.

Figure 65. TSM Login panel
Chapter 6. Tivoli Storage Manager 161



On successful login, TSM will generate a new Java window showing a tree view
of your file system, similar to that shown in Figure 66 (this figure shows the
Backup window — the tree view and its actions are similar for all four functions).

Figure 66. TSM Backup - tree view

From this tree view, you may select complete subdirectories or individual files.
Examples are shown by arrowed comments.

Note: Files excluded in the Include/Exclude list (Figure 60 on page 157) are not
selectable, and are shown by a red x on the tree view. If you need to back up such
files, you must edit the Include/Exclude list.

In this section, we have provided a short tutorial in TSM major functions. It is
outside the scope of this book to provide a complete functional guide, but
hopefully has been enough to get you started!

6.2.5 TSM server considerations
Server placement is dependent on many factors. The most probable scenario for
the USS client is that you will have an existing server in your organization. If you
are starting with a clean sheet, the best performer is likely to be TSM for OS/390
server running on the same machine or Sysplex as the USS client. Alternatively,
you could consider using an Open Systems Adaptor (OSA) to connect to TSM
servers elsewhere in your organization. Such is the flexibility provided by TSM,
you may even back up your USS environment to a TSM server running under
Windows NT, although we are unaware of any customers taking this approach!

Clicking here will select /smallhfs3
and all its subdirectories

Clicking here selects all files
in /tmp/outer1
162 Hierarchical File System Usage Guide



6.2.6 HFS file sharing considerations
Because the TSM client node name defaults to the hostname, if you need TSM to
restore a shared file system from multiple nodes you would need a backup to be
performed from every sysplex node, resulting in the same files being backed up
more than once. This is, of course, very wasteful of server storage. One way
around this is to specify the same NODename (see Figure 59 on page 157) for
every client which may be backing up or restoring the shared file system.

Now, the TSM server will be aware if a backup exists for any part of the shared
file system, regardless of the node performing the backup. Note that only one
system needs to perform the backup, since TSM operates on a file tree. The tree
for a shared file system will look identical throughout the Sysplex. There are a
number of non-shared file systems or directories (/etc, /tmp,...) unique to each
Sysplex host, but these are normally excluded from TSM processing.

Note: If you feel that you do need to run TSM from multiple systems, you will
need to apply the same changes to dsm.sys, etc., in the read-write file system for
each of the Sysplex nodes that will using TSM. Consider these scenarios:

1. To run TSM from multiple systems:

• Copy dsm.sys and dsm.opt to each system. This will allow changes to be
made, if desired.

• Create a symbolic link to the dsm.sys directory in the “owning” system (this
is preferred, because it forces the NODename to be identical on all systems,
assuming you have specified this parameter in dsm.sys).

2. To run TSM from one system:

• The Include/Exclude list should reflect all systems. For example:

exclude /SC64/var/.../*
exclude /SC65/var/.../*
.
.

Where SC64 and SC65 are the names of individual systems.

6.3 Data management strategies

This section discusses the various options available for managing your data with
the aid of TSM.

6.3.1 DFSMSdss and Tivoli Storage Manager
As we discussed earlier in this chapter, TSM is not designed to replace your
normal dump/restore processing. Both methodologies clearly have a part to play.
In the same way that you might use mksysb to create a system image to rapidly
restore an AIX system, DFDSMdss dump/restore provides a similar function in an
OS/390 USS environment. In both scenarios, you are using a rapid facility to save
you system image, while TSM provides data management at file level and online
backup and restoration of lost or damaged user data.

You would not normally use TSM to backup system files, since these do not
change frequently, although you are not precluded from this if your storage
strategy demands it. TSM’s “progressive incremental” approach means that the
Chapter 6. Tivoli Storage Manager 163



overhead of backing up such files occurs only on the first run. Thereafter, only
changed files will be considered for backup. However, it is because of the
reduced restore performance that it is beneficial to take regular dumps of HFS
volumes and use TSM to recreate files which have changed and been backed up
since.

6.3.2 Disaster recovery considerations
Your recovery methodology will depend upon the degree of failure. Accidental
loss or damage of critical files may be recovered merely by using the TSM USS
client. This may be achieved while HFS is active, giving access to other data
during the restore process. Disaster recovery assumes a catastrophic failure, for
instance loss of a complete DASD volume. In such cases, you will need to invoke
the services of DFSMS as well as TSM to recover your lost system.

Assuming a total loss of a volume containing HFS data, the following recovery
process may be used to bring your HFS files to the time of the TSM backup:

• Recover the volume using DFSMShsm

Check for existence of multi-volume HFS data sets. Recover these with HSM:

RECOVER NIGELR2.HFS.DATA GEN(0)

• Use TSM to apply updates since last DUMP:

dsmc res * -sub=yes -replace=yes -ifnewer

Note: There may have been files and/or directories added since the last TSM
backup. It may be difficult to recover from this situation, or even discover that
such changes have been made!

In B.6, “Recovery samples” on page 284, it shows a more complex disaster
recovery example, where TSM is being used along with system tools, to recover
from a broken file system. In the example, we have deliberately made part of an
HFS unavailable by zapping parts of the index.

6.4 Performance considerations

This section discusses some ways to get the best performance out of TSM.
Performance depends on many factors, including network load and server
placement. Most of these factors may be outside your immediate control. Here
we discuss parameters at your disposal which will affect the data management
performance of your HFS.

6.4.1 Tuning
TSM provides a number of tuning parameters for both client and server
components. These parameters are set by editing dsm.sys (described in Figure
59 on page 157). If the parameters are omitted, a default will be used.

Here we show some of the available parameters, with their recommended and
default values. The capitalized letters show the minimum characters required to
be typed into dsm.sys:

• COMPression No: Default — No (compaction by the tape drive is more
efficient). Compression is performed at the client, so may be beneficial if the
network bandwidth to the TSM server is very low).
164 Hierarchical File System Usage Guide



• Quiet: Default — VERBOSE (verbose messages are shown in this chapter.
Quiet turns off messages to screen and reduces I/O to the log files. Error
messages and summary information still appear in the logs).

• TCPBuffsize 512: Default — 8 (size of the TCP buffer, in kilobytes) Note: This
parameter is also valid on the TSM server.

• TCPWindowsize 640: Default — 32 (size of the TCP sliding window, in
kilobytes. A larger window size can improve communication performance, but
uses more memory. The maximum value is 2048) Note: This parameter is also
valid on the TSM server.

Two command line options exist, which will also influence the performance of
TSM. Command line options are preceded with a dash (-). Examples of
IFNEWER processing are shown in B.6, “Recovery samples” on page 284:

• IFNEWER: This option is used in conjunction with the restore command, and
restores files only if the server date is newer than the date of the local file.
This option will affect network utilization because less data needs to travel
across the network.

• INCRBYDATE: In a normal incremental backup, the server reads the
attributes of all the files in the file system and passes this information to the
client. The client then compares the server list to a list of its current file
system, backing up files which have changed. For an “incremental by date”
backup, the server only passes the date of the last successful backup,
avoiding the need to query every active file on the ADSM server. The time
savings are significant. However, periodic regular incremental backups are
still needed to backup files that have only had their attributes changes. For
example: If a new file in your file system has a creation date earlier than the
date of the last successful backup, any future INCRBYDATE processing will
not backup this file, because the client will believe that it has already been
backed up.

Finally, use the USS client’s Include/Exclude list (Figure 60 on page 157) to
eliminate unnecessary backups. Excluded files will still be protected by your
normal dump/restore processing.

6.4.2 Reorganizing HFS for performance
Table 6 shows the TSM performance improvements gained at a customer site by
reorganizing the HFS data, using the copytree utility (described in B.6, “Recovery
samples” on page 284).

The table shows data rates and elapsed time for TSM backup processing before
and after using copytree to defragment the HFS data.

The key point when viewing this table is not the raw data, but the fact that an
average performance improvement of more than 47% has been achieved by
reorganizing the HFS to reduce fragmentation.
Chapter 6. Tivoli Storage Manager 165



Table 6. HFS performance improvement following copytree reorganization

Before After Number of
files

transferred
to TSM

Data
transferred

in GB

Duration in minutes

in GB / hour Before After

10.1 14.8 1085 36 210 147

9.5 13.0 1783 23 144 107

5.5 11.3 1788 23 255 126

12.0 18.4 1043 37 186 121

6.6 13.4 1086 39 353 175

15.0 18.3 417 26 103 85

11.5 16.3 418 22 117 81

10.3 13.5 416 21 120 93

TSM is unlikely to be the only software to gain from the data being in a
defragmented state, so regular HFS reorganization is to be recommended. See
5.3.1.1, “Copying an HFS” on page 127 for further information on the
defragmentation process.

Note
166 Hierarchical File System Usage Guide



Chapter 7. Sharing and serialization for HFS data sets

This chapter provides information about sharing and serialization for HFS data
sets.

We distinguish between two different kinds of sharing:

• Sharing an HFS data set in read-only mode.
• Sharing an HFS data set in read/write mode.

Figure 67 shows what happens when you mount an HFS data set in read-only
mode on multiple systems. This kind of sharing is independent of the levels of the
individual systems. For example, system 1 can be an OS/390 2.7 system, system
2 can be at level OS/390 2.8, and system 3 is an OS/390 2.9.

Figure 67. Sharing a file system in read-only mode

Starting with OS/390 2.9, you can share an HFS data set in read/write mode
between other OS/390 2.9 systems (or above) in a participating group (Figure
68). Here are several points:

• The term participating group identifies those systems that belong to the same
SYSBPX XCF sysplex group.

• To be in the participating group, the OS/390 system level must be 2.9 or later
with DFSMS/MVS 1.5

• You need to specify SYSPLEX(YES) in your SYS1.PARMLIB(BPXPRMxx)
member

See 7.3, “HFS sysplex sharing (OS/390 2.9 and above)” on page 179 regarding
information about HFS sysplex sharing.

Sharing an HFS data set in read-only mode is like sharing DASD. Every system
reads HFS metadata and data directly from DASD.

Note

System 1 System 2 System 3

File
System

R/O R/OR/O

OS/390 2.xOS/390 2.x OS/390 2.x
© Copyright IBM Corp. 1999, 2000 167



Figure 68. Sharing a file system in read/write mode

As shown in Figure 68, HFS sysplex sharing is implemented as a kind of function
shipping and not by using shared DASD. This means that one system owns a file
system (the server system) and it serves the other sharing systems (clients). Only
the owning system performs physical I/Os to read and write the data and
metadata from an HFS data set. The client systems send the requests to the
server system for the particular HFS. The clients do not access the HFS data set
directly.

From the DFSMS/MVS HFS point of view, the same serialization rules apply to
HFS sharing in a sysplex as existed before OS/390 2.9, because only the server
system performs the physical access to the HFS data set on DASD in a
participating group. This means that you cannot share an HFS data set outside a
participating group if you have mounted the file system read/write in a
participating group. For more information, see:

• Section 7.1, “Serialization considerations” on page 170
• Section 7.3, “HFS sysplex sharing (OS/390 2.9 and above)” on page 179

Therefore, it is not possible to share an HFS data set in read/write mode that is
currently mounted on an OS/390 2.9 system with OS/390 2.8 (or below) systems
(see Figure 69). If you want to share the HFS data set, it must be mounted in
read-only mode on all systems. The same restriction exists when you have
mounted an HFS data set in read/write mode on an 2.8 (or below) system. You
cannot mount the same HFS on any 2.9 system to share its read/write. See 7.2,
“Sharing considerations (OS/390 2.8 and below)” on page 174 for more details
regarding sharing an HFS data set with OS/390 2.8 (and below) systems.

System 1 System 2 System 3

File
System

R/W R/WR/W

OS/390 2.9 OS/390 2.9OS/390 2.9

Participating group
or SYSBPX SYSPLEX Group

File System
Owner/Server

File System
Sharer/Client

File System
Sharer/Client

HFS Sysplex sharing is implemented by function shipping and not by using
shared DASD.

Note
168 Hierarchical File System Usage Guide



Figure 69. Sharing restriction with systems before OS/390 2.9

It is also not possible to share an HFS data set in read/write mode with other
systems outside the participating group (see Figure 70).

Figure 70. Sharing restriction for systems outside the participating group

If you want to share an HFS data set between systems outside a participating
group, then you must mount the HFS data set in read-only mode on all systems
as shown in Figure 71.

System 1 System 2 System 3

R/W R/O or R/W

File
System

R/O or R/W

OS/390 2.8OS/390 2.9 OS/390 2.7

Participating group

System 1 System 2 System 3

R/W R/O or R/W

File
System 1

R/W

OS/390 2.9OS/390 2.9 OS/390 2.9
SYSPLEX(YES) SYSPLEX(NO)SYSPLEX(YES)

File
System 2
Chapter 7. Sharing and serialization for HFS data sets 169



Figure 71. Sharing an HFS in read-only mode in a sysplex

The benefit of this kind of implementation is that the data and metadata don’t
need to be shipped between the systems in a participating group and therefore
you will get better performance. However, you lose the possibility to mount the file
system in read/write mode on any of these three system without first doing an
unmount on all three systems. Otherwise, you violate the sharing rules as
illustrated in Figure 69 and Figure 70.

Section 9.3, “UNIX System Services (OS/390 2.9 and later)” on page 212
summarizes the benefits and drawbacks of mounting an HFS as read/write or
read-only. Also in this section, OS/390 2.9 introduces a new file system structure.

Chapter 10, “HFS sysplex sharing implementation” on page 221 contains further
information about the implementation of HFS sysplex sharing.

7.1 Serialization considerations

The main serialization used by HFS mount processing is a SYSTEMS ENQ on
major name (qname) of SYSZDSN and minor name (rname) of the HFS data set
name while an HFS is mounted. An ENQ on qname of SYSDSN and rname of the
HFS data set name will also be obtained.

Table 7 provides an overview of the ENQ usage for HFS data sets that are
mounted read/write or read-only.

Table 7. HFS serialization - enqueue usage

The SYSZDSN and the SYSDSN ENQ are held on the HFS until the file system is
unmounted.

SYSZDSN ENQ SYSDSN ENQ

HFS is mounted R/W Exclusive Shared

HFS is mounted R/O Shared Shared

Participating group

System 1 System 2 System 3

R/O` R/O

File
System

R/O

OS/390 2.9OS/390 2.9 OS/390 2.9
SYSPLEX(YES) SYSPLEX(NO)SYSPLEX(YES)
170 Hierarchical File System Usage Guide



Note: In DFSMS/MVS 1.4 and older systems, if the SYSZDSN ENQ is not
properly maintained the HFS data set will be damaged. Starting with DFSMS 1.5,
due to the new write protection function the HFS index should remain consistent.
However, the files within the HFS data set (the data files) could be inconsistent.
See 7.2, “Sharing considerations (OS/390 2.8 and below)” on page 174 for
additional information.

APARs OW30738 and OW30744 have changed the ENQ on HFS file systems
from RNL=NO to RNL=YES. The fixes (PTFs) for both APARs are already
included in the base of DFSMS/MVS 1.5.

The ENQ of SYSZDSN is issued with the scope SYSTEMS and RNL=YES, and
therefore should NOT be placed in member GRSRNLxx when using GRS. Other
serialization products may need to be customized to ensure that SYSZDSN is
propagated to all systems in the complex.

APAR OW30729 provides more information on the usage of RNL=YES and NO.

Note: This documentation APAR is intended to clarify the proper use of the ENQ
RNL= specification so that IBM and vendor products that either are already using,
or are considering using, the enqueue specification understand its impact.

For example, you will receive the following message at mount time if you try to
mount the same HFS on a second system in the same sysplex:

BPXF135E RETURN CODE 00000072, REASON CODE 5B220117. THE MOUNT FAILED FOR
FILESYSTEM hfs.data.set.name.

• The return code x’0072’ (EBUSY) indicates that the resource (the HFS data
set) is busy.

• The reason code x’0117’ indicates that the ENQ for qname SYSZDSN has
failed.

Also, if you try to mount the HFS that is already mounted read/write on the same
system, then you will receive message:

BPXF135E RETURN CODE 00000079, REASON CODE 055B005B. THE MOUNT FAILED FOR FILE
SYSTEM hfs.data.set.name.

• The return code x’0079’ (EINVAL) indicates an incorrect parameter.

• The reason code x’005B’ (JRIsMounted) indicates that the file system is
already mounted.

One situation that resulted in a duplicate mount in the past happened when
building or cloning a new or test system based on a production system. You had
to ensure that PARMLIB member BPXPRMxx in the cloned system was altered
so that it did not contain the same HFS name(s) as found in the production
system's BPXPRMxx member. Failing to do this would damage the HFS that was
being shared accidentally, even if it was just for a few minutes after the first IPL of
the new test system.

7.1.1 ENQ usage for shared HFS (OS/390 2.9 and higher)
Figure 72 shows that only one system holds the SYSZDSN ENQ in a shared HFS
environment if the file system is mounted in read/write mode.
Chapter 7. Sharing and serialization for HFS data sets 171



Figure 72. Enqueues for shared HFS in read/write mode

However, if you mount the file system in read-only mode, then each system in the
participating group holds a SYSZDSN ENQ for the particular file system (as
shown in Figure 73).

Figure 73. Enqueues for shared HFS in read-only mode

This is because, in read/write mode, the ENQ for SYSZDSN will be obtained for
the physical file system (PFS) in the owning system. In read-only mode, the PFS

Participating group

System 1 System 2 System 3

R/W R/O or R/W

NIGELR2.
TEST

R/W

OS/390 2.9OS/390 2.9 OS/390 2.9
SYSPLEX(YES) SYSPLEX(NO)SYSPLEX(YES)

File
System

SC63SC65SC64

D GRS,RES=(*,NIGELR2.TEST*)
ISG343I 13.27.11 GRS STATUS 364
S=SYSTEMS SYSDSN NIGELR2.TEST.HFS
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SC65 OMVS 000F 008FDE28 SHARE OWN
S=SYSTEMS SYSZDSN NIGELR2.TEST.HFS
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SC65 OMVS 000F 008F77B8 EXCLUSIVE OWN

HFSHFS

Participating group

System 1 System 2 System 3

R/O R/O or R/WR/O

OS/390 2.9OS/390 2.9 OS/390 2.9
SYSPLEX(YES) SYSPLEX(NO)SYSPLEX(YES)

File
System

SC63SC65SC64

D GRS,RES=(*,NIGELR2.TEST*)
ISG343I 13.29.02 GRS STATUS 369
S=SYSTEMS SYSDSN NIGELR2.TEST.HFS
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SC64 OMVS 000F 008FDE28 SHARE OWN
SC65 OMVS 000F 008FDE28 SHARE OWN
S=SYSTEMS SYSZDSN NIGELR2.TEST.HFS
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SC64 OMVS 000F 008F7828 SHARE OWN
SC65 OMVS 000F 008F77B8 SHARE OWN

NIGELR2.
TEST

HFSHFS
172 Hierarchical File System Usage Guide



in each system has access to the file system. See 7.3.1, “Function shipping” on
page 179 for more information.

7.1.2 Serialization by DFSMSdss
See 5.1, “DFSMSdss dump and restore” on page 103 for additional information
regarding DFSMSdss DUMP processing and recommendations about dumping
an HFS.

7.1.2.1 Logical dump
Starting with OS/390 2.9, you can perform a logical data set dump from any of the
systems in a participating group. The DFSMSdss serialization processing is the
same as in the environment before OS/390 2.9.

The serialization mechanism during logical dumps of HFS data sets consists
primarily of the SYSZDSN ENQ and use of the quiesce (BPX1QSE) service.

If a data set is not mounted while it is being dumped, then serialization is
provided by a shared SYSZDSN ENQ. In order to mount an HFS data set for
update, OMVS must obtain an exclusive ENQ on the SYSZDSN. Thus, the
shared ENQ on the SYSZDSN prevents the data set from being mounted during
the dump.

If an HFS data set is mounted prior to a DFSMSdss dump job, the data set will be
quiesced as long as the DFSMSdss dump job is executed on the same system
that the data set is currently mounted on. The quiesce prevents updates to the
data set for the duration of the dump.

In DFSMSdss 1.4 and older releases, DFSMSdss also obtains a SYSDSN ENQ.
If the SHARE keyword is not specified, then DFSMSdss will attempt the SYSDSN
ENQ as exclusive. If a data set is currently mounted, then OMVS will already
have a shared SYSDSN ENQ. So, SHARE is required when dumping mounted
HFS data sets on systems prior to DFSMSdss 1.5.

In DFSMSdss 1.5 the SYSDSN ENQ is no longer obtained by DFSMSdss for HFS
data sets, so the SHARE keyword is no longer required to dump mounted HFS
data sets.

For shared HFS in OS/390 2.9 and higher:

During our tests, from time to time, we received a DFSMSdss message
’ADR412E ... FAILED SERIALIZATION’ during logical dump processing. This was
because our DFSMSdss DUMP job was routed to a system which was not part
of the participating group.

Please keep in mind, that you can specify /*JOBPARM SYSF=systemname in your job
to route the job to a specific system which is part of the SYSBPX group.

For example (see Figure 72 on page 172), we submitted the job on system
SC64, but the job was routed to system SC63. System SC63 does not belong
to the participating group. Therefore we received message ADR412E correctly.

Note
Chapter 7. Sharing and serialization for HFS data sets 173



7.1.2.2 Physical dump
DFSMSdss relies on a SYSDSN ENQ for physical data set dump operations.

By default, DFSMSdss will attempt an exclusive SYSDSN ENQ during a physical
dump. As long as the data set is not mounted at dump time, the exclusive
enqueue on the SYSDSN resource provides sufficient serialization.

If the data set is already mounted before the physical dump job begins, OMVS
will have a shared ENQ on the SYSDSN. DFSMSdss will therefore not be able to
obtain an exclusive SYSDSN ENQ.

Note: with APAR OW39883, DFSMSdss has been changed to get an exclusive
SYSDSN ENQ during physical data set DUMP of PDSE or HFS data sets, unless
the SHARE keyword is specified.

For full volume processing (physical), DFSMSdss issues a RESERVE command
on SYSVTOC (this is the default).

DFSMSdss full-volume dump serializes the VTOC of the source volume, but does
not serialize the data sets on the volume. This ensures that the existing data sets
are not deleted or extended, and new data sets are not allocated. However, there
is an exposure in that the data in the existing data sets can be changed.

See Appendix B, "Data Integrity—Serialization" in the DFSMS/MVS V1R5
DFSMSdss Storage Administration Reference, SC26-4929, for further details
about DFSMSdss serialization.

7.2 Sharing considerations (OS/390 2.8 and below)

An HFS can only be mounted read/write (R/W) on a single system, but it can be
mounted read-only on multiple systems. Furthermore, on a single system, a file
system can be mounted at only one directory at any time. This means that you
cannot mount an HFS twice on the same system, whether in read/write mode or
read-only mode.

As shown in Figure 74, if one system has an HFS mounted in read/write mode, no
other system can mount the same HFS at the same time.

D GRS,RES=(SYSVTOC,*)
ISG343I 12.50.52 GRS STATUS 977
S=SYSTEMS SYSVTOC RV2CU3
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SC64 STYRES3A 0018 008D7840 EXCLUSIVE OWN

D U,VOL=RV2CU3
IEE457I 13.05.46 UNIT STATUS 002
UNIT TYPE STATUS VOLSER VOLSTATE
2557 3390 A-BSY-R RV2CU3 PRIV/RSDNT
174 Hierarchical File System Usage Guide



Figure 74. Cross system sharing restriction

There were no changes in the rules for sharing an HFS across multiple systems
in a Sysplex for DFSMS/MVS 1.5 when used with OS/390 2.8 or below.

You can only share an HFS data set across systems in a GRS complex if you
mount an HFS data set in R/O mode on all systems.

However, the OS/390 Version 2 Release 7 UNIX System Services Planning,
SC28-1890 contains the following advice:

"We no longer recommend mounting an HFS in read-only mode and shared
across all systems, because mounting the root file system in read mode will
cause incomplete setup of certain OS/390 UNIX functions."

7.2.1 Mount integrity (write protection) enhancements
In the past, serialization was sometimes not handled properly across all systems
in a multiple system environment. Most of these cases resulted in a broken index
for the affected HFS, which means that the HFS was corrupted. Depending on
which level or position of the index was broken, some or all files (data) in the HFS
were no longer accessible.

Common symptoms for this situation were the message:

BPXF020I FILE SYSTEM MAY BE DAMAGED; RETURN CODE = 000000A2 ( x’A2’:
EMVSPFSPERM - HFS encountered a system error)

U n i x
S e r v i c e s

A
U n i x
S e r v i c e s

B
G R S

< S Y S Z D S N >

M o u n t R / W

M o u n t
R / W

o r R / O

H F S

An HFS mounted in read/write mode cannot be shared by multiple systems. If
an HFS is mounted in read/write mode on one system, it may not be mounted
either read/write or read-only on any other system.

SYSTEMS ENQ requests must be propagated for HFS data sets to ensure the
integrity of your HFS data sets.

Important information
Chapter 7. Sharing and serialization for HFS data sets 175



This situation also had these errors:

• ABEND0F4 with reason code 145AA033 indicating index page damaged

Or

• ABEND0F4 with reason code 05090035 when attempting to read beyond the
highest record written.

There is no way to repair a broken HFS index. The only supported means to
recover a damaged HFS is to restore from a backup copy.

Figure 75 shows such an environment. For example, systems B and C are in the
same GRS complex. This means that ENQ SYSZDSN will be propagated to both
systems. However, system A is not part of the complex; therefore, the appropriate
ENQ will not be propagated to system A.

A sample scenario on DFSMS/MVS 1.4 (and older) systems might be as follows:

1. System C sends out a MOUNT R/W and enqueue on SYSZDSN and
SYSDSN; System B sees the enqueue; the exclusive ENQ for SYSZDSN
prevents system B from also mounting the HFS in R/W mode.

2. System A does not see the enqueue so it could also mount the same HFS in
R/W mode.

3. System A issues a write.

4. System C also issues a write. This write will break the index, because now,
both systems have different index structures in their own cache. The data
(files) are probably inconsistent, too.

Note that it is not necessary to write, modify, or update an HFS to cause an index
write. Just reading a file will cause the file’s ATIME to be updated, resulting in an
index write if the HFS is mounted R/W mode.

Figure 75. Sharing without write protection

In DFSMS/MVS 1.5, HFS services provide a new write protection mechanism to
detect a second system that has also mounted the HFS in R/W mode.

H F S

G R SU n ix
S e r v i c e s

B
U n ix
S e r v ic e s

A
U n ix
S e r v i c e s

C

< S Y S Z D S N >

3 2 41
176 Hierarchical File System Usage Guide



Every system that mounts an HFS R/W writes the information into the HFS data
set on DASD at mount time. Each system will also save the time stamp in its own
storage. Figure 76 shows this in detail.

Figure 76. Write protection

1. System C writes its timestamp, system ID, and CPU ID at mount time into the
HFS data set. System C will also save the timestamp in its storage.

2. Later on, System A writes its timestamp, system ID, and CPU ID at mount time
into the HFS data set. It overwrites the information from system C.

3. At SYNC time, System C reads the information and compares it with that
saved in its own storage.

If the information does not match, the HFS will be flagged as bad on this
system and all functions except unmount will not be executed and will return
an error. The important point, in this case, is that no index nor data buffer will
be written to DASD and the index structure of the HFS data set remains
consistent. A console message will be issued to identify the other system:

IGW020I HFS DATA SET dsname HAS BEEN MOUNTED R/W ON ANOTHER SYSTEM: sysname.
FILE SYSTEM OPERATIONS ARE DISABLED UNTIL MOUNT.

The associated message text explains the situation as well:

System Programmer Response: Determine why an illegal R/W mount
was done on another system and take steps to prevent future occurrences.
Putting both systems into the same GRS ring is the recommended
prevention mechanism. The file system can be reactived by unmounting it
and then remounting it.

Future HFS calls will fail on System C, but they should not ABEND. An
UNMOUNT and REMOUNT clears the status of the affected HFS. System A will
be able to continue to access the HFS. Only system C is prevented from further
access.

A
'/ '

H F S R /W

H F S
d a ta s e t

T im e s ta m p

S y s te m ID

C P U ID

C
'/'

H F S R /W

12

3

T im e s ta m pT im e s ta m p
Chapter 7. Sharing and serialization for HFS data sets 177



Note: The new write protection does not remove the restriction about sharing an
HFS between two systems:

• An HFS mounted read/write cannot be shared by multiple systems before
OS/390 2.9.

• SYSTEMS ENQ requests must be propagated to ensure the integrity of your
HFS data sets.

You must still ensure that the HFS is serialized correctly by propagating the ENQ
SYSZDSN to all other systems. The intention of the new write protection is to
reduce the number of broken HFS data sets by detecting improper use of
serialization of an HFS data set.

Figure 77 shows the benefits of the new write protection mechanism based on the
sample and environment shown in Figure 75 on page 176.

Figure 77. Sharing with write protection

What happens in a DFSMS/MVS 1.5 system with write protection is:

1. System C:

• Mounts the HFS in R/W mode.
• Writes its information into the HFS data set.
• Enqueues on SYSZDSN and SYSDSN.

Again, due to the GRS serialization, System B sees this enqueue.

2. System A does not see the enqueue, so it could:

• Also mount the same HFS in R/W mode.
• Overwrite the information on DASD with its own information

3. System A writes its buffer (index and data) at sync time to DASD.

4. At SYNC time, System C reads the information directly from the HFS data set
on DASD and compares it with the information saved in its own storage.

In this case, they do not match, so message IGW020I will be issued to identify
the illegal mount from System A.

H F S

G R SU n i x
S e r v i c e s

B
U n i x
S e r v i c e s

A
U n i x
S e r v i c e s

C

< S Y S Z D S N >

3 2 41
178 Hierarchical File System Usage Guide



After an UNMOUNT of the HFS on Systems A and C, you can MOUNT the HFS
data set again on System C.

7.3 HFS sysplex sharing (OS/390 2.9 and above)

OS/390 2.9 UNIX System Services provides the capability for sysplex users to
access data throughout the file hierarchy. Before 2.9, users logged onto one
system in a sysplex had write access only to the file systems associated with their
own system.

The shared HFS support provides these advantages:

• A common file system hierarchy on all systems. The root file system structure
works in a sysplex and non-sysplex environment.

• Mount requests are sysplex-wide

• Writes to file systems from all systems in a participating group.

• Rolling IPL’s to introduce new systems into the sysplex.

• Backout of systems from a sysplex.

• Greater availability of data in the event of a system outage by automatic
recovery if a server system goes down.

• Multiple releases of the root file system (version root) are supported within a
file system in a participating group.

• One common BPXPRMxx parmlib member for systems in a participating
group.

A new file system structure was also introduced in OS/390 2.9 to support the
shared HFS capability in a sysplex. See 9.3, “UNIX System Services (OS/390 2.9
and later)” on page 212 regarding the new file system structure.

7.3.1 Function shipping
OS/390 Unix System Services 2.9 implemented shared HFS support by using
function shipping. Function shipping means that one system performs as a
server to the other sharing systems (clients). A client system ships its requests
to the related server(s) for each read/write shared HFS data set. Only the server
system issues read and write requests for both types of data (files and metadata)
to an HFS data set on a volume. The buffering and caching is also done within by
the system which owns the file system.

By default, the system which mounts the HFS data set the first time automatically
becomes the owning system. Figure 78 illustrates the server-client relationship.

The HFS will be flagged as bad, and no buffer (index nor files) will be written
to DASD.

The index structure of the HFS is still consistent, because at sync time, we
always write a consistent HFS to DASD.

However, the updated or changed files (data) could be inconsistent from
system C’s point of view.

Note
Chapter 7. Sharing and serialization for HFS data sets 179



Figure 78. Shared HFS overview

The shared HFS support is implemented in the Virtual/Logical File System
(VFS/LFS) layer within the OS/390 USS. Only one system can own a file system
at a time within a participating group. However, each system can own different file
systems at a time. As you can see in Figure 79, system 3 owns file system 2, but
it can also update files on file system 1 owned by system 1 and vice versa.
System 2 shares both file systems 1 and 2.

Figure 79. VFS and PFS relationship in read/write mode

Since HFS sharing is not implemented in the Physical File System (PFS) layer,
represented by the DFSMS/MVS HFS functions, the same serialization rules
apply to HFS data sets as existed before OS/390 2.9, if we leave the participating
group.

Buffer / Cache
System 2System 1 System 3

File
System

File System
Owner/Server

File System
Sharer/Client

File System
Sharer/Client

R/W R/WR/W

Participating group

XCF XCF

I/O's

File
System 1

R/W

File
System 2

R/W

LFS/VFS

PFS

System 1

File System 1
Server

File System 2
Client

OS/390 USS

DFSMS HFS

File System 1

System 2

File System 1
Client

File System 2
Client

OS/390 USS

DFSMS HFS

System 3

File System 2
Server

File System 1
Client

OS/390 USS

DFSMS HFS

File System 2

XCF XCF
180 Hierarchical File System Usage Guide



Note: The PFS contains control blocks used to maintain and access the file
system and its files and directories.

However, if you mount a file system in read-only mode, as shown in Figure 80 for
file system 1, we have information about the HFS in the PFS on each system that
has the HFS mounted. No function shipping will be done for file systems mounted
read-only.

Figure 80. VFS and PFS relationship in read-only mode

System 2

File System 1
Client

File System 2
Client

OS/390 USS

DFSMS HFS

File
System 1

File
System 2

LFS/VFS

PFS

System 1

File System 1
Server

File System 2
Client

OS/390 USS

DFSMS HFS

File System 1

System 3

File System 2
Server

File System 1
Client

OS/390 USS

DFSMS HFS

XCF
XCF

File System 1
File System 2

File System 1

R/WR/O

In order to share an HFS in read/write mode, all systems must be in the same
participating (or SYSBPX) group in a sysplex.

In addition, all systems doing the read/write sharing must be at OS/390 2.9 or
higher.

In order to share an HFS with pre-2.9 systems or with 2.9 systems outside the
participating group, the HFS must be mounted read-only on all systems.

You will not be able to share an HFS between native MVS machines and
second level VM guest machines.

If you are using shared HFS, REMOUNT is not supported. The way to remount
a file system in a shared HFS environment is to UNMOUNT the file system and
then MOUNT it again in the desired mode.

Important Information
Chapter 7. Sharing and serialization for HFS data sets 181



7.3.2 Sysplex sharing considerations
As you can see from Figure 68 on page 168 through Figure 70 on page 169, only
one system has physical access to an file system although it is mounted
read/write on other systems in a participating group.

Since the HFS sharing is implemented as function shipping, all systems in the
participating group must exchange information around the participating systems
in a sysplex (See also Figure 81).

The communication for the shared HFS support is implemented by using:

• XCF messaging services to inform all systems

- When a system joins or leaves the SYSBPX group, and

- To notify other systems that an update occurred in the system-wide mount
table when a mount, unmount, chmount, quiesce or unquiesce request was
issued.

• A coupling data set to track information about the participating systems and to
have a sysplex-wide mount table. Note that a coupling data set is used, not a
coupling facility structure.

Figure 81. Shared HFS couple data set

Two new options are added to the mount requests to determine the owning
system:

• SYSNAME(sysname): SYSNAME directs a mount request to the particular
system on which a mount should be performed. This system will then become
the owner of the mounted file system.

• AUTOMOVE | NOAUTOMOVE: AUTOMOVE indicates that ownership of the
file system can automatically be moved to another system participating in
shared HFS if the system that owns a file system goes down.

Owns:
FS1,FS4
Shares:
FS2,FS3,FS5
FS6,FS7,FS8
FS9

System 1

FS1 FS4

System 3

Owns:
FS3,FS5,FS6
FS8
Shares:
FS1,FS2,FS4
FS7,FS9

FS3 FS5 FS6 FS8

System 2

Owns:
FS2,FS7,FS9
Shares:
FS1,FS3,FS4
FS5,FS6,FS8

FS2

FS7

FS9

XCF

XCFXCF

Sysplex-wide
system info &
mount table

Couple
data set
182 Hierarchical File System Usage Guide



NOAUTOMOVE means that the file system will not be moved if the system
goes down and therefore it is inaccessible from other systems.

See 3.3, “HFS PARMLIB and command enhancements” on page 56 for detailed
information regarding the BPXPRMxx member and TSO MOUNT command
enhancements.The AUTOMOUNT facility does not support the new options.

You may wish to force a mount of an HFS data set to a particular system for
performance reasons. Assume that one system performs many updates to a
particular file system which it doesn’t own and also assume that the owning
system doesn’t perform updates to this file system. You can improve the
performance by forcing the mount to the system performing the most updates.
Thus, we avoid the overhead for function shipping.

Chapter 8, “Optimizing HFS performance” on page 185 provides further
information regarding performance.

A recovery process for shared HFS data sets (mounted read/write) is also
implemented. If an owning system fails, and AUTOMOVE was requested on the
mount, takeover processing will be initiated to move the ownership of a file
system to another system in the participating group. This system will then act as
a server for this file system. This is also shown in Figure 82.

Figure 82. Recovering a file system.

The system attempts to perform recovery transparently to users. However, when
it cannot do so, files will have to be closed and reopened.

You will find additional information regarding the file structure introduced with
OS/390 2.9 and associated implementation information in:

• Chapter 9, “Implementing HFS for selected applications” on page 209
• Chapter 10, “HFS sysplex sharing implementation” on page 221
• OS/390 V2R9.0 UNIX System Services Planning, SC28-1890

Buffer / Cache Buffer / Cache

System 2System 1 System 3

File
System

File System
Owner/Server

File System
Sharer/Client

File System
Owner/Server

R/W R/WR/W

XCF

I/O's
Chapter 7. Sharing and serialization for HFS data sets 183



184 Hierarchical File System Usage Guide



Chapter 8. Optimizing HFS performance

DFSMS/MVS Version 1 Release 5 delivers a major restructuring of HFS.
Throughput is improved dramatically because of reduced path lengths and
improved buffering capabilities.

This chapter focuses on three sections:

• Section 8.1, “HFS performance restructure” on page 185 provides detailed
information about the performance restructuring of HFS, that is, new deferred
writes and new buffer management. Some performance data is shown in this
section, too.

• In section 8.2, “RMF reporting enhancements” on page 192, the Resource
Measurement Facility (RMF) provides new performance information about
HFS. Additionally, this section explains how to set up RMF and the meaning of
fields in the reports.

• Section 8.3 discusses how to optimize HFS performance.

Additional performance considerations are found in:

• Section 8.4, “Sysplex and HFS sharing” on page 204
• Section 8.5, “Distributed File System considerations” on page 206
• Section 8.6, “Using the copytree utility” on page 207

8.1 HFS performance restructure

The HFS performance restructure in DFSMS/MVS Version1 Release 5
implements a fundamental change in the way HFS data is written to disk, namely
through the use of deferred writes and buffer management. These changes
contributed to major performance improvements in elapsed time and CPU time.

This section provides detailed information about these enhancements to help you
to understand the new HFS concepts.

8.1.1 HFS deferred writes
Prior to DFSMS/MVS 1.5, HFS hardened all metadata changes to disk,
synchronous with user requests, and all file data changes in HFS cache were
forced to be written to disk, synchronous with metadata hardening. For example,
when an HFS file was created, the new file’s metadata as well as the parent
directory’s metadata and data were written to disk before returning to the
application.

This was true for all HFS functions that change HFS metadata, even though the
POSIX and UNIX standards do not require metadata to be hardened upon return
from functions that change metadata.

DFSMS/MVS 1.5 uses deferred writes, which are writes that are initially written to
a system buffer rather than to disk. Deferred writes are then written to disk
asynchronously by a sync daemon, without causing any immediate I/O delays to
the application. Both data and metadata writes may be deferred. One of the most
common write operations in UNIX is the updating the last reference time stamp
(ATIME), which occurs whenever a file in a file system (HFS data set) is read.
Since reads are typically more prevalent than writes, updating of the last
© Copyright IBM Corp. 1999, 2000 185



reference time stamp occurs very frequently, and elimination of such updates due
to deferred writing can be very significant.

Instead of the immediate disk hardening of both data and metadata, a sync
daemon will run at periodic intervals and write out both data and metadata
changes that have occurred since the last time the sync daemon ran. Therefore,
multiple metadata changes of an HFS file will be batched into a single I/O.

The sync daemon is part of the OMVS kernel address space, and it runs in the
Logical File System (LFS) layer on UNIX System Services (USS). Figure 83
shows a diagram of the task and component structures related to HFS.

Figure 83. HFS task and component structure

As with other UNIX systems, OS/390 USS has a sync daemon which periodically
writes all modified buffers to disk. The default sync interval is 60 seconds, but it is
modifiable through the BPXPRMxx member in PARMLIB, or it may be specified
differently for each file system when the file system is mounted.

The following examples show how to specify a sync interval in the BPXPRMxx
PARMLIB member and also how to specify a sync parameter using
/samples/mountx:

/samples/mountx -p ’sync(30)’ /u/neils/test OMVS.HFS.NEILS.TEST

Or, in BPXPRMxx:

MOUNT FILESYSTYPE(’OMVS.HFS.NEILS.TEST’)
MOUNTPOINT(’/u/neils/test’)

application:
read()
write()

TCB

USS Kernel Address Space (OMVS)

User Address Space (C RunTime Library)

Logical File System Layer (LFS)

Physical File System Layer (PFS)

SYSCALL Interface

Sync Daemon
PC

Media Manager / IOS

Post

HFS Service Tasks

/

HFS Data Set

(Cross memory call)
186 Hierarchical File System Usage Guide



TYPE(HFS)
MODE(RDWR)
PARM(’SYNCDEFAULT(30)’)

Note: You can also mount an HFS through ISHELL and specify a sync interval.

When the system crashes before the metadata is hardened, newly created files
will be missing and recently removed files will still be present. The integrity of the
file system is preserved because of the index shadowing.

Figure 84 below shows an example when System Crash 1 occurs between Sync
Point N and N+1. The results from Activity 1 and 2 are not hardened to the file
system. The conditions of the file system are set back to the conditions on Sync
Point N.

Figure 84. Example of sync daemon and system crash

In case of a long process across the sync point such as a Sequential Write of
Activity 3, if System Crash 2 occurs between Sync Point N+1 and the end of
process, the condition of the file is set back to the state it had at N+1.

8.1.2 HFS caching and buffering
In DFSMS/MVS 1.4, the HFS component calls another component to obtain index
(such as metadata) buffers and perform lookaside on the file data.

With DFSMS 1.5, caching and buffering for file and index data are dramatically
improved by restructuring and consolidating the components. This consolidation
leads to reduced pathlength which results in a performance gain.

The sync process of the sync daemon will occur independently on each HFS
file system. Even if sync intervals of all the HFS file systems are the same, the
sync point of each HFS file system will be different on each mounted time.

Important Information

Time

System Crash 2

N+1N

Sync Point

1.Create New File

2.Delete File

3.Sequential Write

Sync Point

System Crash 1
Chapter 8. Optimizing HFS performance 187

http://www.ddd.com


Figure 85 on page 188 shows the address spaces and data spaces of
DFSMS/MVS 1.5, (consisting of HFS caching and buffering functions) compared
to DFSMS/MVS 1.4.

Figure 85. Restructuring of file and index caching and buffering

In DFSMS/MVS 1.4, file data is cached and buffered in one data space owned by
the OMVS address space. Index data (such as metadata) and some small file
data is cached and buffered in one data space owned by SYSBMAS which is also
used by PDSE. Furthermore, large file data is read into the OMVS address space
itself. If 2GB of these data spaces is exhausted, the HFS component gives an
0F4 abend and fails the request. The user has no control over the cache and
buffer sizes.

In DFSMS/MVS 1.5, a user can control these pool sizes using the confighfs shell
command. Two confighfs settings, VIRTUAL and FIXED are provided to control
the virtual storage and real storage allocated to HFS to be used for caching and
buffering. The default value for VIRTUAL is set to 50% of real storage and the
default value for FIXED is set to zero. For more information about the confighfs
shell command, please refer to 3.3.5, “confighfs shell command” on page 68.

The HFS component initially allocates four 2GB data spaces for four different
buffer pools. These data spaces are owned by the OMVS address space and are
called HFSDSP01 through HFSDSP04. File and index data (such as metadata)
are initially cached and buffered in the HFSDSP01 data space.

The HFS buffers are divided into four pools: the 4KB pool, the 16KB pool, the
64KB pool and the 256KB pool. If one of these data spaces is exhausted, another
data space may be automatically allocated by HFS.

In the case of a sequential I/O, the data spaces are divided into the following
pools:

• 4KB pool: For small size files (equal or less than 4KB)

HFSDSP01
Data Space

HFSDSP02
Data Space

HFSDSP03
Data Space

HFSDSP04
Data Space

SYSZBPX2
Data Space

SYSBMFDS
Data Space

OMVS
kernel

SYSBMAS
Addr Space

OMVS
kernel

DFSMS/MVS Version 1 Release 5DFSMS/MVS Version 1 Release 4

Index Caching
& Buffering

File and Index Caching
& Buffering

File Caching
& Buffering
188 Hierarchical File System Usage Guide



• 16KB and 64KB pool: For intermediate size files (greater than 4KB but equal
or less than 64KB)

• 256KB pool: For large size files (greater than 64KB)

The buffer selection algorithm is summarized as follows:

• Preference scheme of HFS buffer page selection

When an application needs to acquire an HFS buffer, HFS chooses a buffer
based on a preference scheme. Since the purpose of allocating a new buffer is
generally to do I/O, which requires that the buffer be page-fixed, the first
preference is to use a permanently fixed buffer. (This statement is obvious for
reads, but even deferred write will cause an I/O in the near future.) If no
permanently fixed buffers are available, the second preference is to use a
pageable buffer that is already backed by real storage if one is available. If all
such buffers are in-use, then a new buffer is acquired, and the first time that
the buffer is touched, the Real Storage Manager (RSM) will allocate some real
storage.

• Number and size of HFS buffer selection

The 4KB pool is used for all metadata and for all files that are less than 4KB in
size. For sequential reads, HFS chooses the minimum pool size that it will
allow the entire file to be read into a single buffer. For random reads and
writes, HFS chooses the pool size based on the number of bytes being
requested and the offset from a page boundary, choosing the smallest buffer
such that I/O can be satisfied using a single buffer. For sequential writes, the
algorithm is more complicated. HFS uses gradually increasing buffer sizes up
to the largest 256KB buffer size. The number of buffers that HFS will use to
cache a file is generally limited to 4, which provides for the caching of up to
1MB. More buffers may be allocated per file if the VIRTUAL parameter
exceeds 2GB, but it is generally recommended that VIRTUAL not be set larger
than 2GB.

8.1.3 Performance data
This topic shows the measurement results for single-user file system reads and
writes. These measurements clearly demonstrate the dramatic reductions in CPU
time, as well as the reductions in elapsed time.

Note: These results were obtained in a controlled environment. Actual customer
results may vary, depending on their environments. Please also note that the
vertical axes are logarithmic, not linear.

8.1.3.1 Small file performance
In both sequential read and write cases of small files, CPU and elapsed time are
dramatically reduced. As shown in Figure 86 on page 190, CPU time in DFSMS
Version 1 Release 5 equals its elapsed time, which means there is no I/O, and all
data is cached in the buffer pool. Previous DFSMS/MVS releases update the last
reference time stamp synchronously, even for read accesses.

Note: The CPU and I/O time of the sync daemon process (asynchronous I/O of a
file) is charged to the OMVS kernel address space.
Chapter 8. Optimizing HFS performance 189



Figure 86. Small file performance improvements

8.1.3.2 Single user read/write performance
The graphs in Figure 87 and Figure 88 on page 191 show the CPU and elapsed
time of various file sizes for both sequential read and write. The HFS
improvements in DFSMS/MVS 1.5 reduce the CPU time dramatically for all file
sizes.

Figure 87. Single user read/write CPU time

0.74 0.74

5.35

26.45

0.33 0.33

1.22

4.35

CPU time Elapsed time
0.1

1

10

100
T

im
e

(m
ill

is
ec

on
ds

)

DFSMS 1.4.0 Reads
DFSMS 1.5.0 Reads
DFSMS 1.4.0 Writes
DFSMS 1.5.0 Writes512 byte file, 9021-9X2, 3390

13x reduction in read response time
4x reduction in read CPU time
36x reduction in write response time
7x reduction in write CPU time

9021-9X2
3990-6, 3390, ESCON

VIRTUAL < 2GB,
User buffers = 512KB

0.1 1 10 100 1000 10000 100000

File size (KB)

0.1

1

10

100

1000

C
P

U
tim

e
(m

ill
is

ec
on

ds
)

1.4.0 Writes
1.5.0 Writes
1.4.0 Reads
1.5.0 Reads

Single-user read/write
CPU Time
190 Hierarchical File System Usage Guide



In the elapsed time measurements shown in the previous graph, the reason that
files larger than 1MB performed worse than the files smaller than 1MB is that
synchronous I/O to write data pages occurs at that time, since the maximum
buffer size of a file is 1MB (256KBx4).

You will find that the CPU time corresponds to its elapsed time in the best
performance case.

Figure 88. Single user read/write elapsed time

The typical situations when synchronous I/Os occur on HFS are as follows:

• Synchronous writes of data pages are done whenever all the HFS buffers of
the file are filled.

• Synchronous reads of data pages are done whenever there is a cache miss.

• Synchronous writes of metadata and data pages are done whenever an
fsync function is issued. For information about the fsync function, refer to
8.3.3, “fsync call considerations” on page 204.

Important Information

0.1 1 10 100 1000 10000 100000

File size (KB)

0.0001

0.001

0.01

0.1

1

10

100

E
la

ps
ed

tim
e

(s
ec

on
ds

)

1.4.0 Writes
1.5.0 Writes
1.4.0 Reads
1.5.0 Reads

9021-9X2
3990-6, 3390

VIRTUAL < 2GB
User buffers = 512KB

Single-user read/write
Elapsed Time

The DFSMS/MVS 1.5 announcement letter states that the performance border
for the new HFS support tends to be 512KB. This is not correct. CPU and
elapsed time reductions are seen at all sizes. However, the most significant
elapsed time reductions are for files that are 1MB or smaller.

Note
Chapter 8. Optimizing HFS performance 191



8.2 RMF reporting enhancements

With OS/390 2.7, new RMF (Resource Measurement Facility) reports are
available for Monitor II and the Postprocessor. These reports provide
performance information on HFS which allows you to tune your system and use
HFS resources better. You can use the storage information and utilization
statistics in the new reports to determine the optimum size of the HFS buffer
storage.

This section provides information about setting up RMF and the meaning of fields
in the report.

8.2.1 New RMF reports for HFS
Two new reports offer performance information on HFS:

• The Monitor II Hierarchical File System Statistics (HFS) report shows data for
performance analysis related to I/O activities in the OS/390 UNIX
environment.

• The Postprocessor Hierarchical File System Statistics (HFS) report shows
data for performance analysis and capacity planning.

8.2.2 Setting up RMF Monitor III
Data gathering for HFS file statistics in the Postprocessor report will be
performed in the Monitor III gatherer session. The Monitor III gathers SMF record
74 subtype 6. A new option, HFSNAME, is available for Monitor III data gathering
to define the appropriate files. If you do not set option HFSNAME, you only get
the HFS global statistics report of the Postprocessor.

For example, in Figure 89, to gather the appropriate files, HFS.SC64.STYRES1
and HFS.SC64.STYRES2, the following statement should be added in
ERBRMFxx of Monitor III.

Figure 89. Example of ERBRMFxx for Monitor III

You can dynamically enable or disable this option by using these OS/390 operator
commands:

F RMF,F III,HFSNAME(ADD(OMVS.SC64.STYRES1))

F RMF,F III,HFSNAME(DEL(OMVS.SC64.STYRES1))

8.2.3 HFS Postprocessor report
After data gathering for HFS file statistics is performed in the Monitor III gatherer
session, the Postprocessor provides HFS global statistics data and HFS file
statistics data.

For example, in Figure 90, to produce the report you should specify the following
option in the RMF REPORTS command.

HFSNAME(ADD(OMVS.SC64.STYRES1),
ADD(OMVS.SC64.STYRES2))
192 Hierarchical File System Usage Guide



Figure 90. Example of REPORTS command

The HFS report consists of two parts:

• HFS Global Statistics Report

The first part of the HFS report provides overall data about the I/O activity to
HFS files and gives statistics about the various buffer pools that have been
defined. The report can be used as an entry point for performance
investigation and capacity planning.

• HFS File System Statistics Report

The second part of the report is based on data gathered for specific file
systems. You can get the statistics about I/O activities and the internal
structure (index) of the HFS files.

Both parts of the report can help you to make best use of your resources.

8.2.3.1 HFS global statistics
An example of the HFS global statistics report is shown in Figure 91.

Figure 91. Example of HFS global statistics

The HFS global statistics report shows you a summary of HFS activity for the
entire system and each buffer pool. It can then be used for determining the
VIRTUAL and FIXED values. The important point to note is that the CACHE,
DASD, and HIT RATIO fields in the FILE I/O section show only the statistics for
sequential I/O. Statistics for random I/O are not currently provided.

The field descriptions shown in the report are listed in Table 8.

REPORTS(HFS,...)

H F S G L O B A L S T A T I S T I C S

OS/390 SYSTEM ID TSC3 DATE 07/05/1999 INTERVAL 01.00.000
REL. 02.07.00 RPT VERSION 2.7.0 TIME 20.52.00 CYCLE 5.000 SECONDS

--- STORAGE LIMITS (MB) -- ----- FILE I/O ---- --- METADATA I/O --
COUNT RATE COUNT RATE

VIRTUAL MAX 128
USE 7.007 CACHE 138 2.300 12 0.200

FIXED MIN 32 DASD 6 0.100 2 0.033
USE 0.156 HIT RATIO 95.83 85.71

----------------------------------------- BUFFER POOL STATISTICS -------------------------------------------
POOL NUMBER BUFFER -------- POOL SIZE -------- DATA ---------- I/O ACTIVITY ---------

NUMBER BUFFERS SIZE PAGES BYTES %FIXED SPACES TOTAL FIXED %FIXED
1 202 1 202 808K 9 1 11 8 73
2 6 4 24 96K 16 1 0 0 0
3 6 16 96 384K 16 1 0 0 0
4 23 64 1472 5888K 0 1 122 114 93
Chapter 8. Optimizing HFS performance 193



Table 8. RMF field descriptions - HFS global statistics

Field Heading Meaning

Storage Limits - All fields are given in megabytes and show the values at interval
end.

VIRTUAL MAX Value of VIRTUAL(MAX) parameter.

VIRTUAL USE Total amount of virtual storage assigned to I/O buffers.

FIXED MIN Value of FIXED(MIN) parameter.

FIXED USE Total amount of permanently fixed storage assigned to
I/O buffers. This number is included in the VIRTUAL
USE field.

File I/O - The fields are given as COUNT and RATE (count per second).

CACHE The first page of a data file was requested and found in
virtual storage (cache).

DASD The first page of a data file was requested and not found
in virtual storage, and an I/O was necessary.

HIT RATIO Percentage of cache-found requests based on total
number of requests.

Metadata I/O - The fields are given as COUNT and RATE (count per second).

CACHE The metadata for a file was found in virtual storage
during file lookup.

DASD The metadata for a file was not found in virtual storage
during file lookup, and an index call was necessary
which may have resulted in an I/O.

HIT RATIO Percentage of cache-found requests based on total
number of requests.

Buffer Pool Statistics

POOL NUMBER HFS defines four buffer pools for processing. This
number is used to refer to each of these pools.

NUMBER BUFFERS Number of buffers in this buffer pool currently residing in
virtual storage.

BUFFER SIZE Size of each buffer in this pool (in pages).

POOL SIZE - PAGE Size of this buffer pool currently in virtual storage (in
pages).

POOL SIZE - BYTES Size of this buffer pool currently in virtual storage (in
bytes).

POOL SIZE - %FIXED Percentage of the size of the buffers which is
permanently fixed.

DATA SPACES Number of data spaces comprising this buffer pool.

I/O ACTIVITY - TOTAL Total number of buffers in this buffer pool for which I/Os
were issued. This is not necessarily the number of
actual I/Os issued since multiple buffers can be written
in a single I/O request.
194 Hierarchical File System Usage Guide



8.2.3.2 HFS file statistics
The example of an HFS file statistics report is shown in Figure 92.

Figure 92. Example of HFS file system statistics

The HFS file statistics report shows the statistics for each HFS file system. The
important points to note are that the CACHE, DASD, and HIT RATIO fields in the
FILE I/O section show only the statistics for sequential I/O. If your applications
use random I/O to certain HFS file systems those caching statistics are not
currently available.

The field descriptions shown in the report are listed in Table 9.

I/O ACTIVITY - FIXED Number of times a buffer was already fixed prior to an
I/O request in this buffer pool.

I/O ACTIVITY - %FIXED Percentage of fixed I/Os.

Field Heading Meaning

H F S F I L E S Y S T E M S T A T I S T I C S

OS/390 SYSTEM ID TSC3 DATE 07/05/1999 INTERVAL 01.00.000
REL. 02.07.00 RPT VERSION 2.7.0 TIME 20.51.00 CYCLE 5.000 SECONDS

--- ALLOCATION (MB) -- ----- FILE I/O ---- --- METADATA I/O -- ---- INDEX I/O ---- ---- INDEX EVENTS ---
SIZE COUNT RATE COUNT RATE COUNT RATE COUNT

FILE SYSTEM NAME: OMVS.OS270.TSC3.ROOT
MOUNT DATE: 07/05/1999 TIME: 20:03:16
SYSTEM 668 CACHE 0 0.000 0 0.000 8 0.133 NEW LEVEL 0
DATA 591 DASD 0 0.000 0 0.000 0 0.000 SPLITS 0
ATTR. DIR 2.808 HIT RATIO 0.00 0.00 100.00 JOINS 0

SEQUENTIAL 0 0.000
CACHED 0.089 RANDOM 0 0.000
FILE SYSTEM NAME: OMVS.TSC3.S067157
MOUNT DATE: 07/05/1999 TIME: 20:47:50
SYSTEM 92 CACHE 28 0.467 0 0.000 22 0.367 NEW LEVEL 0
DATA 53 DASD 3 0.050 4 0.067 1 0.017 SPLITS 0
ATTR. DIR 0.324 HIT RATIO 90.32 0.00 95.65 JOINS 0

SEQUENTIAL 3 0.050
CACHED 0.000 RANDOM 0 0.000

HFS File System Statistics shows Metadata I/O and Index I/O separately.

Metadata I/O means I/O on behalf of an RNODE, which represents one file in
an HFS. An RNODE is created during the first access of a file and contains,
among other things, a pointer to the attribute directory. RNODEs reside in the
OMVS kernel address space.

Index I/O means I/O activities to all the index data and metadata on disk or in a
data space, and metadata on disk or cached in a data space.

Important Information
Chapter 8. Optimizing HFS performance 195



Table 9. RMF field descriptions - HFS file system statistics

Field Heading Meaning

FILE SYSTEM NAME The name of the HFS file system which has been
selected for reporting.

MOUNT DATE and TIME Date and time when the selected file system was
mounted.

Allocation - All fields are given in megabytes.

SYSTEM Amount of storage allocated to this file system.

DATA Amount of storage internally used within HFS for data
files, directories and HFS internal structures like the
attribute directory (AD).

ATTR. DIR Amount of storage used for the attribute directory (AD).
This number is included in the DATA field.

The attribute directory is the internal HFS structure
(index) which contains attribute information about
individual file system objects as well as attributes of the
file system itself.

CACHED Amount of data buffer storage cached by this file system.

File I/O - The fields are given as COUNT and RATE (count per second).

CACHE The first page of a data file was requested and found in
virtual storage (cache).

DASD The first page of a data file was requested but was not
found in virtual storage (cache) and an I/O was
necessary.

HIT RATIO Percentage of cache-found requests based on total
number of requests.

SEQUENTIAL Sequential file data I/O requests.

A sequential I/O is one of a series of I/Os to read or write
a data file, where the first I/O started at the first byte of
the file and each subsequent I/O was for the next
sequential set of bytes.

RANDOM Random file data I/O requests.

A random I/O is an I/O that does not read or write the
start of a file, and was not preceded by an I/O that read
or wrote the immediately preceding set of bytes.

Metadata I/O - The fields are given as COUNT and RATE (count per second).

CACHE The metadata for a file was found in virtual storage
(cache) during file lookup.

DASD The metadata for a file was not found in virtual storage
during file lookup and an index call was necessary which
may result in an I/O.

HIT RATIO Percentage of cache-found requests based on total
number of requests.
196 Hierarchical File System Usage Guide



8.2.4 Setting up RMF Monitor II
After you start RMF Monitor II, you can enter the Monitor II Primary Menu from
your ISPF menu to see the HFS statistics report.

When you select Monitor II on the RMF Primary Menu, you get the Monitor II
Primary Menu. As you can see in Figure 93, you can go from here to selection 2,
I/O Subsystem.

Figure 93. RMF Monitor II Primary Menu

Index I/O - The fields are given as COUNT and RATE (count per second).

CACHE Index page read/write hits.

DASD Index page read/write misses.

HIT RATIO Percentage of cache-found requests based on total
number of requests.

Index Events

NEW LEVEL Number of times HFS added a new level to its index
structure.

The index statistics are relative to all of the indices in the
HFS data set. The attribute directory (AD) is one index.

SPLITS Number of times an index page was split into two pages
because new records were inserted. This gives an idea
of how much insertion activity there has been for the
index structure.

JOINS Number of times HFS was able to combine two index
pages into one, because enough index records had
been deleted in the two pages.

Field Heading Meaning

RMF Monitor II Primary Menu OS/390 2.7.0 RMF

Enter selection number or command on selection line.

1 Address Spaces Address space reports
2 I/O Subsystem I/O Queuing, Device, Channel, and HFS reports
3 Resource Enqueue, Storage, SRM, and other resource reports

L Library Lists Program library information
U User User-written reports (add your own...)

T TUTORIAL X EXIT

5647-A01 (C) Copyright IBM Corp. 1994, 1999. All Rights Reserved
Licensed Materials - Property of IBM

Selection ===>2
Chapter 8. Optimizing HFS performance 197



From this panel in Figure 94, you can access information about HFS from option
5, HFS Statistics.

Figure 94. Monitor II I/O Report Selection Menu

When you select option 5 for the first time, the panel HFS Report Options is
shown as in Figure 95. You can select one of the listed HFS data sets to be
monitored and then press PF3.

Figure 95. Monitor II HFS Report Options

The HFS file system statistics for OMVS.SC64.STYRES2 are shown in Figure 96.

The next time you display these panels, the HFS Report Options screen is not
shown. If you want to change this option later, you can enter the RO command on
the HFS file system statistics screen.

RMF Monitor II I/O Report Selection Menu

Enter selection number or command on selection line.

1 CHANNEL Channel path activity
2 IOQUEUE I/O queuing activity

3 DEV Device activity
4 DEVV Device activity by volume or number

5 HFS Hierarchical file system statistics

Selection ===> 5

RMF Monitor II - HFS Report Options Line 1 of 9

Select (S) or fill-in a file system name. To exit press END.

Selected file system name:
Number of mounted file systems: 11 Display: YES (YES/NO)

You can use FIND to search for a specific HFS file system name.

Sel HFS File System Name
_ OMVS.HFS.TEST1
_ OMVS.OS270.ETC
_ OMVS.OS270.ROOT
_ OMVS.SC64.STYRES1
S OMVS.SC64.STYRES2
_ OMVS.SC64.STYRES3
_ OMVS.SC64.STYRES4

Command ===> Scroll ===> PAGE
198 Hierarchical File System Usage Guide



Figure 96. Monitor II HFS File System Statistics

The meanings of the fields displayed for the HFS file system statistics report are
the same as those displayed in the Postprocessor report. Refer to 8.2.3.2, “HFS
file statistics” on page 195 for more details.

8.3 Optimizing HFS performance

This section provides hints and tips that may help you to optimize HFS
performance.

There are five options available to tune HFS I/O performance:

1. Setting SYNCDEFAULT or SYNC parameter

2. Setting VIRTUAL and FIXED parameters

3. Rearranging HFS data sets

4. Dividing one HFS data set into several smaller HFS data sets

5. Setting each product’s parameters related to their own caching

We will only discuss the first two considerations in detail as these are specific to
HFS. The other recommendations are general I/O tuning recommendations.

8.3.1 SYNCDEFAULT and SYNC setting
In general, setting a long sync interval on UNIX systems would cause a
performance impact to the entire system, whereas the impact on S/390 would not
be as severe. There are several reasons for this, namely, the disk devices and I/O
subsystems on S/390 are more sophisticated, providing fast interfaces, multiple
paths, and a large amount of cache in a control unit. Also, OS/390 provides a
System Resource Manager (SRM) which optimizes resource usage for multiple
tasks running concurrently. It is for these reasons that setting a long sync interval
is not as detrimental to system performance on S/390 as on other UNIX systems.

RMF - HFS File System Statistics Line 1 of 12

CPU= 23 UIC=254 PFR= 0 System= SC64 Total

File System Name: OMVS.SC64.STYRES2
Mount Date: 07/01/1999 Time: 16:21:39 Elapsed Time: 05:51:12

----------- Allocation (MB) ---------- ------------ Index Events ------------
System 70 Data 24 New Level 0
Attr. Dir 0.019 Cached 0.000 Splits 0 Joins 0

----- File I/O ---- --- Metadata I/O -- ---- Index I/O ----
Count Rate Count Rate Count Rate

Cache 0 0.000 1 0.000 1116 0.053
DASD 5 0.000 1 0.000 1 0.000
Hit Ratio 0.00 50.00 99.91
Sequential 0 0.000
Random 0 0.000

Command ===> Scroll ===> PAGE
Chapter 8. Optimizing HFS performance 199



If you set a sync interval to a non-zero value, you will get much better
performance than if you set a sync interval of zero. A different sync interval may
be specified for each file system. A sync interval of zero signifies that deferred
writes are not used. However, since an application may still use deferred writes
and control the writing of data by using the fsync call, it is generally
recommended that a non-zero sync interval be used. For more information about
the fsync call, refer to 8.3.3, “fsync call considerations” on page 204.

Figure 97 shows the effect obtained by setting various sync interval lengths.

Figure 97. Effect of various sync interval lengths

Next, we will discuss the advantages and disadvantages of setting the sync
interval too high or too low.

8.3.1.1 Setting a short sync interval
One reason for lowering the sync interval is that some control units do not
perform well if they are flooded with many writes all at once. This may happen if
the channel speed is higher than the rate that the control unit can destage data
out of its cache or non-volatile storage and if the size of the non-volatile storage
is small.

A second reason for lowering the sync interval is to avoid high variations in
response times. While the deferred writes are executing, read operations cannot
get to the devices. By lowering the sync interval, the interference that writes
cause can be spread more evenly over time.

Finally, a shorter sync interval minimizes data loss in the event of a system
failure.

Impact to
Other I/O Processes

Sync Interval

Async I/O

Short Sync Interval

Moderate Sync Interval

Long Sync Interval
200 Hierarchical File System Usage Guide



8.3.1.2 Setting a long sync interval
Before thinking about a performance influence, you should consider that setting a
long interval will increase the possibility of losing updated data if the system
crashes.

From a performance standpoint, the benefit of setting longer intervals will depend
on how frequently the same file data or metadata is updated. It is more likely that
the same metadata pages are repeatedly updated than the file data pages, but it
would depend on the application. If pages are repeatedly updated, then a longer
sync interval would reduce the number of data and I/O operations.

On the other hand, a long sync interval would decrease the number of available
metadata pages to the HFS file system during the interval, because the index
shadowing holds updated metadata pages until the next sync point. For
nearly-full HFS data sets, this is an important consideration. You can analyze the
usage from the following sources:

• ATTR.DIR field of HFS File System Statistics report from RMF
• Attribute pages field of confighfs -q command output
• df -P USS command output

A long interval increases the possibility that a larger percentage of buffers will be
filled with modified data. This may lead to a lower read hit ratio in some cases.

When you mount HFS file systems in BPXPRMxx in SYS1.PARMLIB, the mount
times of the HFS file systems will be nearly the same. If HFS file systems with the
same long sync interval are allocated on the same device, all I/O operations to
each of the file systems will be overlapped. To avoid this I/O contention, you can
do the following:

• Disperse the HFS data sets to other volumes
• Move HFS data sets to faster devices
• Stagger mount commands by using a /etc/rc shell script with mountx and

sleep commands instead of the BPXPRMxx

8.3.2 VIRTUAL and FIXED setting
In DFSMS 1.5, the way that HFS manages I/O buffers and caches data in the
processor is very different from that in DFSMS 1.4. For the most part, these
changes are transparent to the system programmer. However, there are two new
controls which the system programmer can use to tune the system in terms of
managing I/O buffers and caching data. There are also some new performance
reports that provide better awareness of what needs to be tuned.

The two new controls are the VIRTUAL and FIXED parameters, which may either
be specified in the BPXPRMXX in PARMLIB, or dynamically by using the
confighfs command. The buffer pool is logically partitioned into pageable storage
and non-pageable storage, otherwise called permanently page-fixed storage.
Actually, there is also a third category called "released" or "unbacked" storage
which does not consume any real storage.

8.3.2.1 VIRTUAL parameter considerations
Virtual refers to the maximum amount of virtual storage which is to be used for
the HFS buffer pool.
Chapter 8. Optimizing HFS performance 201



When the contents of a buffer are no longer needed, HFS must decide whether or
not to release the real frames associated with the buffer pages. The VIRTUAL
parameter is used to make that decision. If the virtual limit is currently exceeded,
the buffer pages are released.

The advantage of releasing the storage is to reduce real storage usage. The
disadvantage is the Real Storage Manager (RSM) overhead of acquiring new
storage at the next time that the buffer is reused. VIRTUAL is not a hard limit on
the size of the buffer pool, but is rather a target working set size of the HFS buffer
pool.

Virtual is also used to determine how much data to cache per file. Whenever
possible, up to 1MB of data is cached per every 2GB of VIRTUAL specified.

8.3.2.2 FIXED parameter considerations
FIXED is a target minimum number of megabytes of fixed buffers. The actual
number can be (and often is) lower and may exceed the target if there is a lot of
demand. These buffers remain permanently fixed regardless of HFS I/O activity.
HFS may temporarily fix other buffers to meet the I/O demand since buffers
involved in I/O must be fixed. In the performance statistics provided by RMF, the
temporarily fixed buffers are not counted as "fixed"; The purpose of these
statistics is to evaluate the effectiveness of permanently fixed buffers.

An optimal use of fixed buffers would avoid frequent page fixing, but would not
waste storage. Wasting storage is only a problem if there is real storage
contention. Assuming that there is a storage constraint, the frequency of HFS I/O,
which can be determined from RMF’s HFS report, is what determines the
effectiveness of fixed storage. However, the definition of frequent is relative to
other demands for storage. RMF computes a statistic called "%FIXED", which is
the percentage of HFS I/O requests which did not have to dynamically fix a buffer.
If %FIXED is 100, it means that there is ample HFS fixed storage, but the storage
may be over-allocated. If it is believed that HFS I/O frequency is low, it may be
desirable to reduce the FIXED value in order to free the storage for other use. If
%FIXED is anything less than 100, then there is an opportunity to reduce the
frequency of page fixing by increasing the FIXED value.

If a buffer needs to be acquired to perform an I/O operation and the buffer is not
already fixed, then it has to be page-fixed to perform the I/O. If FIXED is
non-zero, HFS tries to maintain a pool of permanently page-fixed storage so that
it can avoid having to dynamically page-fix the storage. Page-fix operations are
very costly in terms of CPU time, and even more costly in terms of the system
serialization effects. At the present time, the RSM in OS/390 has one lock to
serialize the allocation and page-fixing of real storage frames. Thus, by
specifying a large FIXED parameter, CPU utilization may be reduced and overall
system throughput may be increased. Such effects may be felt by both USS and
non-USS applications.

However, there is a trade-off between the cost of fixing pages and the availability
of free real storage. The danger in over-allocating fixed storage for the HFS
buffer pool is that, if the buffer pool is under-utilized, the real storage is wasted
and could be better used for other applications. In the worst case, if the fixed
buffers are wasted and the system does not have enough real storage for other
applications, the system may run out of real storage. In this case the system may
be brought to a halt until the fixed buffers are freed. HFS receives a signal from
202 Hierarchical File System Usage Guide



OS/390 when there is a real storage shortage and will attempt to free fixed
buffers when this happens. In addition, HFS provides for the monitoring of its
buffer pool usage, and it also provides the capability to dynamically modify the
FIXED parameter using the confighfs shell command. Because of the potential for
depleting real storage, system programmers should only set the FIXED
parameter at a level that they can feel comfortable with. To set the FIXED
parameter high may aggressively push the throughput to its limit, but it runs the
risk of a real storage shortage when there is a shift in application usage away
from HFS.

This is another downside of using fixed storage exists in an environment
consisting of a mixture of USS and non-USS applications. For example, suppose
that USS and DB2 coexist in the processor. Both applications use a large buffer
pool to minimize I/O to the database. Before choosing a value for FIXED, the
system programmer should choose the size of the buffer pool for each
application. For HFS, the VIRTUAL parameter is used to control the size of the
buffer pool. The system programmer’s choice will depend on the relative
importance of the USS and the non-USS applications.

8.3.2.3 Settings for Domino for S/390
When choosing an appropriate value for FIXED and VIRTUAL, it is useful to
understand the dual purpose of HFS buffers. One purpose is to do I/O and the
second purpose is to serve as a cache. Some applications do their own caching,
in which case it is redundant for HFS to cache file data.

Domino for S/390 is such an application. Domino only uses HFS as an I/O driver
and to cache the metadata about which Domino knows nothing. If the objective is
to minimize I/Os, then it is desirable to use a large VIRTUAL parameter, while a
small FIXED parameter is sufficient. As with any large buffer pool, specifying too
large of a buffer pool may result in paging which is slower than I/O to HFS file
systems. If it is expected that HFS is to be used primarily as an I/O driver, then it
may be desirable to set FIXED equal to VIRTUAL, and to specify a value that is
only large enough to efficiently handle the I/O.

8.3.2.4 Distributing the fixed storage among the four buffer pools
With respect to the management of permanently fixed storage, the 256KB buffer
pool is treated differently from the other smaller pools because it is the largest
buffer size, and because there is an opportunity to amortize the cost of the page
fixing across many I/Os. Any sequentially accessed file larger than 64KB will use
the 256KB buffer pool. A file that is larger than 768KB will be allocated four
256KB buffers, and will require one I/O to read each 256KB chunk of data. Unless
VIRTUAL is larger than 2GB, subsequent I/Os will reuse the buffers.

For example, let us consider the case where we read a file that is 10MB in size.
When the first megabyte is read, four 256KB buffers will be allocated and they will
each be dynamically page fixed to perform four I/Os. If the system is not
constrained by storage, HFS will not unfix the buffers when the I/Os complete.
Since each buffer will be reused ten times to read the 10MB file, each page fixing
operation is amortized across ten I/Os. When a 256KB I/O completes, if the
current amount of fixed HFS storage exceeds the FIXED parameter, then the
buffer is unfixed.

Given the nature of the amortization effects described above, HFS never
permanently allocates fixed storage to the 256KB pool. If FIXED is specified in
Chapter 8. Optimizing HFS performance 203



the BPXPRMXX in PARMLIB, HFS automatically distributes the buffers to the
three small buffer pools in a 4-2-1 ratio. If this distribution is not satisfactory, the
confighfs shell command may be used to dynamically allocate fixed pages. If
modified through the confighfs shell command, HFS allocates the fixed pages on
demand. If the confighfs shell command is used to reset the fixed pages to zero,
or to decrease the FIXED value, HFS will immediately attempt to unfix enough
storage to meet the target.

If too many fixed pages should become allocated to a buffer pool that is no longer
used, it is possible to provide HFS with an opportunity to redistribute the fixed
pages among the pools by first resetting FIXED to zero, and then respecifying
FIXED to some non-zero value. When FIXED is increased dynamically by the
confighfs shell command and HFS is not used enough heavily to require more
fixed buffers, then no additional buffers will be fixed and the total working set of
fixed pages may be below the FIXED value.

8.3.3 fsync call considerations
If your programs or products issue an fsync call which sends a synchronous I/O
request to the OMVS kernel, then all the other metadata pages in the same HFS
data set will be synchronously hardened. This implementation is done because of
the index shadowing which enables HFS file systems to maintain their data
integrity when the system crashes.

If the specific files in one HFS file system are updated frequently by a program
using fsync calls, you should separate those files into other HFS file systems to
avoid the influences on other files.

There is no way to monitor or report on fsync calls. If fsync calls are a concern,
you must check with the appropriate application developers.

8.4 Sysplex and HFS sharing

There are a number of performance implications that you need to be aware of if
you share HFS files between OS/390 systems in a sysplex.

8.4.1 XCF overhead
The intersystem communication required to provide additional availability and
recoverability of shared HFS affects response time and throughput on file
systems being shared in a sysplex. Increased XCF message traffic to support
shared HFS can contribute to system degradation if not monitored and controlled.
Workloads that use large file buffer sizes will give you an increased number of
large sized messages; Workloads with small file buffer sizes will you give you an
increased number of small sized messages. To control XCF message traffic,
closely monitor the number and size of message buffers and the number of
message paths within the sysplex. It is likely that you will need to define
additional XCF paths and increase the number of XCF message buffers above
the minimum default.

For more information on signaling services and determining message buffer
sizes, see OS/390 V2R9.0 MVS Setting Up a Sysplex, GC28-1779.
204 Hierarchical File System Usage Guide



Additional information is also available in the Parallel Sysplex Test Report, on the
OS/390 UNIX System Services web site at:

http://www.s390.ibm.com/unix

Also see the Technical Support Information Site, "Parallel Sysplex Performance:
XCF Performance Considerations", Flash 10011 which can be viewed at:

http://www.ibm.com/support/techdocs

8.4.2 Locally mounted versus remotely mounted HFS
In many cases, when accessing data on a system that owns a mounted file
system, the file I/O time is only the path length to the buffer manager to get the
data from cache. However, file I/O to a shared file system from a client that does
not own the mount has additional path length plus latency involved in the XCF
messaging function. Under some circumstances it is reasonable for it to take
much longer for remote file access compared to locally mounted file access. For
this reason, we recommend that when you mount an HFS file, mount it on that
system where it is most heavily used.

Example test configurations and response times can be found on the OS/390
UNIX System Services Web site:

http://www.s390.ibm.com/oe/

8.4.3 How shared HFS affects mount times
You should be aware that because of I/O operations to the mount table CDS
(Couple Data Set), every mount request requires additional system overhead.
Mount time increases as a function of these three parameters:

• Number of mounts
• Number of members in the sysplex
• The size of your CDS

8.4.3.1 Number of mounts
When a system joins the sysplex, information concerning its mounts must be
written into the CDS; this takes time since mounts are performed serially, one at a
time. Also, every time a system joins the sysplex, it must first read the CDS and
perform the mounts already listed there. Once this is done, the new system can
perform its own mounts and write that information to the CDS. As each new
mount is performed, if there are other systems in the sysplex, these other
systems must then read what was just written into the CDS and perform the same
mount (catch-up). Conducting these catch-ups affects the system on which the
new mounts are initiated, that is, the next mount can not be written into the CDS
until the other systems have read and mounted the last mount recorded in the
CDS. Thus, the more mounts that need to be performed, the more time is
expended in the reading of and writing to the CDS.

8.4.3.2 Number of members in the sysplex
As pointed out above, when a new system enters a sysplex, it must perform all
the mounts listed in the CDS before it can perform its own mounts. The more
systems in the sysplex, the more mounts there will be recorded in the CDS, and,
therefore, the more time it will take for this new system to read what is already in
the CDS and perform the mounts. Also, as already discussed, a catch-up function
must be performed when there are multiple systems in the sysplex. The more
Chapter 8. Optimizing HFS performance 205



systems in the sysplex, the more systems that will be competing to read what is
added to the CDS and perform the new mounts listed there. This competition, as
discussed above, impedes the mount response time on the system that is writing
new mounts to the CDS.

8.4.3.3 Size of the CDS
When you format your CDS, the number of mounts specified in the JCL
determines the size of the CDS. A value of 1000 gives you a smaller CDS than a
value of 5000. When a system reads the CDS for mount information, it must read
the entire CDS. Therefore, even if you are only performing 600 mounts, if you
specify a mount number of 1000, all members in the sysplex will read the CDS as
if 1000 mounts must be performed. In other words, whatever amount of space the
CDS will use to hold information on 1000 mounts will be read by all the systems
in the sysplex.

For example, even if only 600 mounts are listed in the CDS, if the mount number
in the JCL is 1000, a new system joining the sysplex will read the entire CDS, not
just the space that contains the information on the 600 mounts. Also, those
systems performing catch-up will read not only the new information added, but
will first read through the entire CDS to get to the new information along with
whatever additional space is left over (in our example, the space used up by the
400 additional mounts defined in the JCL).

More information on defining and formatting the CDS can be found in the
following publications:

• OS/390 V2R9.0 UNIX System Services Planning, SC28-1890
• OS/390 V2R9.0 MVS Setting Up a Sysplex, GC28-1779

Example test configurations and mount response times can be found on the
OS/390 UNIX System Services Web site:

http://www.s390.ibm.com/unix

8.5 Distributed File System considerations

A file system can only be exported by the Distributed File System (DFS) server at
the system that owns the file system. Once a file system has been exported by
DFS, it cannot be moved until it has been unexported by DFS. To recover from
system outages, you need to weigh sysplex availability against availability to the
DFS and Server Message Block (SMB) clients. When an owning system recycles
and a DFS-exported file system has been taken over by one of the other systems,
DFS will not be able to automatically re-export that file system. The file system
will have to be moved from its current owner back to the original DFS system, the
one that has just been recycled, and then re-exported. For file systems that are
mostly for use by DFS clients, you should consider specifying NOAUTOMOVE on
the MOUNT statement so that they will not be taken over if the system is
recycled, and they will be available for automatic re-export by DFS.

We recommend that you select an appropriate number of mounts to be
specified in the JCL; This way you will not end up with a CDS whose size is
unnecessarily large.

Important Information
206 Hierarchical File System Usage Guide



8.6 Using the copytree utility

Over a period of time, as more and more updates are done to an HFS file, it can
get fragmented. You can use the Copytree utility to ’defrag’ the HFS file. This can
improve the performance of the HFS file. For more details of the Copytree utility
please refer to: 5.3.1, “Copytree utility” on page 127; and 6.4.2, “Reorganizing
HFS for performance” on page 165.
Chapter 8. Optimizing HFS performance 207



208 Hierarchical File System Usage Guide



Chapter 9. Implementing HFS for selected applications

This chapter discusses the HFS data set allocations and the backup policies for
selected applications on UNIX System Services. The selected application
include:

• UNIX System Services on OS/390 2.7 and 2.9
• Domino for S/390
• WebSphere for OS/390
• OS/390 Network File System Server

9.1 Understanding your backup needs

Before discussing each application from a backup policy standpoint, we first
categorize the characteristics of the data on the HFS file systems.

In general, the characteristics of the data determine the recovery needs, which, in
turn, impose the backup requirements. The following examples describe some
possible scenarios in USS environments.

Discardable data: The customer may find the risks or consequences of losing a
particular type of data acceptable. However, this is not a workable plan in a
disaster recovery situation, where many or all files must be rebuilt. To avoid
recreating a large numbers of files, it might be simpler to take low-frequency data
set dumps, using a tool such as DFSMSdss or DFSMShsm.

Static data: The root file system of USS, which contains many binary
executables, is an example of data which is very static. At first glance, it might
seem that a post-installation one-time backup would suffice for later recovery.
However, the problem is that the content of the directory is not totally static,
because there is a possibility for certain processes updating a file. Since these
updates are not well documented, it is advisable to base the recovery strategy
upon full periodic backups. Since this data is contained in a single HFS,
DFSMSdss logical data set dump or DFSMShsm incremental backup might be
the appropriate tools.

Non-critical data: Data is non-critical when business needs make it acceptable
to recover the data to a given point in time in the not too distant past. This
requirement could be accomplished through periodic backups by DFSMSdss data
set dump or DFSMShsm incremental backup, and then a restore of the last
backup when needed. Any updates that may have taken place after the backup
would be lost, but this is acceptable by definition.

Critical data: This category involves files where the business need dictates that
the data must be recovered to its state immediately preceding the failure. The
only way to accomplish this type of recovery is with periodic backups combined
with some journal-based forward recovery system. The new transaction log in
Domino for S/390 Release 5 allows such solutions.

The categories above are applicable to the backup policies discussed in the
following sections.
© Copyright IBM Corp. 1999, 2000 209



9.2 UNIX System Services (OS/390 2.8 and before)

When OS/390 2.7 is installed according to a ServerPac scenario, the following
HFS structure is built as shown in Figure 98.

Figure 98. HFS structure with OS/390 2.7

After the installation, there are two separate HFS data sets created, one under
the root (/) and the other under the /etc directory, and there are many files and
executables of various products under the /usr/lpp directory.

9.2.1 Recommended HFS structure and management (UNIX)
First of all, we recommend that you separate volumes (or storage groups)
containing HFS data sets from volumes holding other OS/390 data sets whenever
possible.

In addition, we recommend that you separate HFS data sets for the mount points
/var, /tmp and /u, because they each have unique characteristics regarding their
usage. Following are some data management considerations for these HFS data
sets.

9.2.1.1 Root file system
The root file system is an aggregation of read-intensive files, such as LINKLIB on
OS/390. If we lose the root file system, USS does not work.

We recommend making a copy of the root file system, using another data set
name. This copied data set can then be used for the product maintenance
activities. If the root file system is damaged, you can use this backup.

The root file system is considered static data.

/

etc devlibtmp binvar usr u samples

lpp

OS/390
ROOT HFS

ETC
HFS

ioclibPrintsrv fwbooksrv ezm internetdfscmx encinadceasWebSphreNetQNFS ldapnetview tcpipIMiner Tivoli bpa dce dfsms gskssl icli ldapclient java
210 Hierarchical File System Usage Guide



9.2.1.2 /etc directory
This directory contains important customized data, which is used, for example, by
USS or other product initialization processes.

This file system is considered non-critical data.

9.2.1.3 /var directory
This directory contains dynamic data used internally by products and by elements
and features of OS/390. Any files or directories needed are created during the
execution of code. An example of this is caching data. IBM products will only
create directories or files when code is executed.

The typical process using /var is the syslogd daemon, which writes various log
records from USS and TCP/IP applications to files under the /var directory, or
sends those records to other systems through the network. Basically, these log
record files continue to increase, so a space management task to delete
increasing HFS files can be performed automatically by the cron daemon, which
can periodically run a shell script to delete files.

This file system is considered discardable data. If these log records are used as
statistics data, this file system will be considered non-critical data.

9.2.1.4 /tmp directory
You should use the option of mounting a Temporary File System (TFS) on /tmp
rather than using an HFS file system for it, because this directory contains
temporary data used by products and applications such as the sort program. TFS
enables you to get better performance. For more information about TFS, refer to
OS/390 V2R9.0 UNIX System Services Planning, SC28-1890.

9.2.1.5 /u directory
This directory contains individual USS users’ HFS data sets, and almost all USS
users have their home directory under the /u directory. We recommend that you
use the Automount Facility under the /u directory. The advantage of the
Automount Facility is as follows:

• With automount active and the correct automount policy in place, there is no
need to create a user directory with the mkdir command; the user directory will
be dynamically allocated and the user’s HFS data set will be automatically
mounted at the /u/userid mount point. Later, if the user’s file system has not
been accessed, based on certain time criteria in your automount policy the
user’s HFS data set will automatically be unmounted.

• Another advantage of using the Automount Facility is to manage user file
systems (as opposed to adding them to BPXPRMxx). The last access time of
the data set is updated only when the data set is mounted automatically. If a
user goes on vacation for two weeks, then their HFS might not be mounted,
and therefore can become a candidate for DFSMShsm migration. If the user
HFS data sets are defined in the BPXPRMxx, the HFS data sets will always be
mounted, and so the last access date will always be updated.

For more information about the Automount Facility, refer to A.2, “Automount
facility” on page 248.

Basically, these file systems are considered non-critical data.
Chapter 9. Implementing HFS for selected applications 211



These data sets have similar characteristics to users’ TSO data sets. So, if you
already have backup or migration policies for TSO data sets, you can adopt them
for these HFS data sets.

9.2.2 Recommended HFS allocations (UNIX)
We recommend the following data set allocations on physical volumes (storage
groups) as shown in Figure 99.

Figure 99. Recommended UNIX System Services HFS allocations

Considerations for each data set are summarized as follows:

• Root file data set: The production and copied data set can be allocated on
the same storage group, but should be allocated on different volumes.

• Other HFS data sets: These should ideally be divided into two storage
groups, one group for /etc and /var, and one group for /u.

If you have few USS users, you can use the same storage group for /etc, /var,
and /u.

9.3 UNIX System Services (OS/390 2.9 and later)

OS/390 2.9 along with DFSMS 1.5 now support sharing of HFS data sets
between multiple OS/390 systems that are members of the same sysplex. When
you install applications to be run under OS/390 Unix System, you now need to
consider the implications and think about how you can exploit this new facility.

Although, we recommend that you exploit shared HFS support, you are not
required to. If you choose not to, you will continue to share HFS data sets as you
have before OS/390 2.9.

Copied
Root File data set

/etc Data Set
/var Data Set

Other HFS data set

/u/user1 Data Set
/u/user2 Data Set
/u/user3 Data Set
/u/user4 Data Set

Production
Root File data set

.

.

.

.

Storage Group: ETC&VAR Storage Group: USER

Storage Group: ROOT Root File data set
212 Hierarchical File System Usage Guide



Before OS/390 2.9, users logged onto one system in a sysplex had write access
only to the file systems associated with their own system. For example, the
system programmer who makes configuration changes for the sysplex must log
onto each system and change entries in the /etc file for that system. With shared
HFS, The system programmer can logon to any system and then can change
entries in all /etc file systems. The changes will be visible from all systems.

Also with shared HFS, there is greater availability of data in case of system
outage.There is also greater flexibility for data placement.

You now need to understand the new HFS files introduced for sysplex sharing.
These are

• Sysplex Root
• Version HFS
• System Specific HFS

For an explanation of these, please refer to Chapter 10, “HFS sysplex sharing
implementation” on page 221.

9.4 Domino for S/390

When Domino for S/390 is installed according to the installation procedures, the
three separate HFS data sets shown in Figure 100 are built, with the logical file
structure shown in Figure 101.

To get the latest Domino for S/390 R5 implementation, see also:

• Lotus Domino for S/390 Problem Determination Guide, SG24-5599
• Lotus Domino for S/390 Release 5: Installation, Customization and

Administration, SG24-2083

Important information
Chapter 9. Implementing HFS for selected applications 213



Figure 100. HFS data sets structure of Domino for S/390 installation

Figure 101. Logical file structure for Domino for S/390

9.4.1 Recommended HFS structure and management (Domino)
The recommendations for using a Domino HFS structure are:

/OS/390
ROOT HFS

lpp

LOTUS

/usr/lpp/lotus

NOTESDATA

/notesdata

MAIL

/notesdata/mail

3 HFS data sets for Domino

usr

/

usr

lpp

lotus
mail noteslog

notes

Version Release

bin

os390

tools

notesdata
214 Hierarchical File System Usage Guide



• One more HFS data set should be allocated on the mount point
/notesdata/noteslog, because files under /notesdata/noteslog tend to increase
in size. If these log records make the HFS data set full, other files under
/notesdata cannot be updated, and this can stop the Domino server activities.

• In general, the Mail HFS data set should be separated into several data sets,
and the directory structures should be changed according to the
recommendations in Domino for S/390. Methods for separating this file system
are not discussed in this redbook, but following are some recommendations
from a storage management standpoint.

9.4.1.1 Lotus HFS data set
The Lotus HFS data set, which is mounted on /user/lpp/lotus, consists of several
executables and shell scripts related to the Domino server function, and some
tools. This data set is an aggregation of read-intensive files, but it is not totally
static; For example, some updates take place when a new server partition is
added. If we lose this data set, the Domino server will not run.

We recommend making a copy of the Lotus HFS data set, using another data set
name. If the Lotus HFS data set is damaged, you can use this backup copy.

This file system is considered static data.

9.4.1.2 Notesdata HFS data set
The Notesdata HFS data set, which is mounted on /notesdata, has various
important files used to initialize and manage the entire Domino server. Some of
them are updated dynamically.

This file system is considered non-critical data.

9.4.1.3 Noteslog HFS data set
The Noteslog HFS data set, which is mounted on /notesdata/noteslog, consists of
various log files. These log files continue to increase in size, so the space
management to delete the increasing files can be performed automatically by the
cron daemon, which can periodically run a shell script to delete files.

This file system is considered discardable data. If these log records are used as
statistics data, this file system is considered non-critical data.

9.4.1.4 Mail HFS data set
The Mail HFS data set has the following characteristics:

• In general, this HFS data set would be separated into several data sets after
the Domino installation.

• This HFS data set consists of many Notes client databases (files, from an HFS
standpoint), and they will sometimes need a large amount of storage space.

• Most update I/Os to the Domino system are concentrated in this data set.

• This file system can be considered critical or non-critical, depending on your
requirements.

You can choose one or a combination of the following methods to recover a Mail
HFS data set or each Notes database.

• Notes-based database replication
Chapter 9. Implementing HFS for selected applications 215



• Tivoli Storage Management (former ADSM) to back up each Notes
database in the HFS data set

• USS archive commands to back up each Notes database in the HFS data
set

• DFSMShsm to back up the HFS data sets

• DFSMSdss to back up the HFS data sets

• RVA based backup options (Snapshot)

Most importantly, when you restore a backed-up HFS data set or database, you
need to decide how to recover it to the latest date. Methods for recovering Notes
databases of critical data are not discussed in this topic. For more detailed
information about the Notes database recovery of critical data, refer to the
appropriate Notes publications.

Following are some considerations for using DFSMSdss and DFSMShsm to back
up HFS data sets:

The DFSMSdss quiesce process for mounted HFS data sets allows backups to
be taken while the owning Domino server is active. In this scenario, the file
system can be quiesced between writes, in the middle of a database update by
the Domino server. The resulting backup would have a database with incomplete
data. What would happen if the need to restore arose, and the Domino server
was started with the restored database? The startup database consistency check
scan would detect the partial update, and a subsequent FIXUP would remove it.
This is acceptable if the partial update was the only update performed by the
application's logical unit of work. In addition, it is obvious that all other successful
updates from the time of the backup would also be lost.

Another scenario would be when the quiescing and backup may take place at a
clean point, meaning that there are no documents being updated; But, if the
application's logical unit of work consists of updates to two or more documents,
the server may be caught in between updates during the backup. Domino has no
externalized concept of a logical unit of work, nor the corresponding controls for
it, such as syncpoint, bucket, and so on. Under these conditions, the backup
would contain logically incomplete data, although not inconsistent from a
database structure point of view. This is a serious issue that must be considered.

In addition to the previous considerations, the time involved in dumping large
HFS files can translate into unacceptable system quiesced times.

Since DFSMShsm uses DFSMSdss as the data mover, its use has issues similar
to the use of DFSMSdss. In addition, you must consider the timing of the backup
in relation to the status of the Domino server. This is particularly critical if the
backup is to be taken with the server down.
216 Hierarchical File System Usage Guide



9.4.2 Recommended HFS allocations (Domino)
The recommendations for data set allocation on physical volumes (or storage
groups) are shown in Figure 102.

Figure 102. Recommended Domino for S/390 HFS allocations

Some considerations for each data set are:

• Lotus HFS data set: The production and copied data set can be allocated on
the same storage group, but should be allocated on different volumes.

These data sets can be allocated on the USS storage group ROOT, but you
should avoid allocating the production Lotus data set on the USS production
root volume.

• Notesdata HFS data set: The Notesdata data set should be allocated in an
independent storage group or a volume which is not influenced by other I/O
activities.

• Noteslog HFS data set: The Noteslog data set should ideally be allocated in
an independent storage group for performance reasons.

From DFSMS 1.5 on, this data set can be considered a multi-volume
allocation candidate.

• Mail HFS data sets: The Mail HFS data set would usually be split into several
data sets under separate directories, and then, depending on the disk
subsystem used, several separate volumes would be used.

From DFSMS/MVS 1.5 on, this data set can be considered a multi-volume
allocation candidate, both to avoid running out of space and to support large
capacities for Notes client databases.

Copied
Lotus data set

Storage Group: NOTESLOG

/usr/lpp/lotus

Production
Lotus data set

Multivolume Candidates

Storage Group: NOTESDATAStorage Group: LOTUS

/notesdata/noteslog

Noteslog
data set

Storage Group: MAIL

/notesdata

Notesdata
data set

/notesdata/mail

Mail data set NOTE:
Usually a Mail HFS data set is separated
into several data sets under separated
directories. Then you can also have
several separate storage groups
according to their requirements.

. . . .

Multivolume Candidates
Chapter 9. Implementing HFS for selected applications 217



9.5 WebSphere for OS/390 case

When WebSphere for OS/390 is installed according to the installation procedure,
the following HFS data sets are created and shown in Figure 103.

Figure 103. HFS data sets structure of WebSphere for OS/390

We recommend you have one HFS data set for the http server logging and
another HFS data set for the WebSphere application server logging.

9.5.1 Recommended HFS structure and management (WebSphere)
We recommend that you have a separate HFS data set on the mount point
/usr/lpp/WebSphere/AppServer/logs. Following are considerations for data
management of these HFS data sets.

9.5.1.1 Logging file system
The HFS data sets, which are mounted on /usr/lpp/internet/server_root/logs and
/usr/lpp/WebSphere/AppServer/logs, consist of various logging files. They are not
used for the transaction recovery like other transaction subsystems. Rather, they
are used to report the system activities and the error records.

These log files continue to increase in size, so space management to delete
increasing files can be performed automatically by the archive function of
WebSphere.

These file systems are considered discardable data. If you use these log
records as statistics data, this file system is considered non-critical data.

If these HFS data sets are full, the Web server will slow down and use up all
available CPU. Furthermore, you might not even be able to start your Web server.
You should pay close attention to the usage of these data sets.

/OS/390
ROOT HFS

WebSphere AS Log

/usr/lpp/WebSphere/AppServer/logs

HTTP
Sever Log

/usr/lpp/internet/server_root/logs

usr

internet WebSphere

lpp

Recommendation:
Separate this HFS data set
from ROOT HFS
218 Hierarchical File System Usage Guide



9.6 OS/390 Network File System Server

The OS/390 Network File System (NFS) Server provides a way for client
machines to access data held on an OS/390 system. The latest level of the NFS
server was shipped with OS/390 2.6 and added support for NFS version 3
protocols, WebNFS protocols and advisory locking using the Network Lock
Manager and Network Status Manager. The NFS server provides file access
across an IP network and can serve data from these type of OS/390 data sets:

• Sequential (including extended format)
• Partitioned (both PDS and PDSE)
• VSAM KSDS, ESDS or RRDS
• Direct access (DOSRG=DA)
• UNIX file systems held in HFS data sets

Any of these data sets may be system-managed or not. For anything other than
HFS, it is better to use system-managed data sets for performance reasons. For
HFS data sets, your storage management policies can dictate whether they
should be SMS managed or not.

Normally, an OS/390 data set appears to the NFS client as a file. The exceptions
are for PDSs and PDSEs where the data set name appears to be a directory
name and the individual members appear as files within that directory.

The relationship between the clients, the OS/390 NFS Server and the data is
shown in Figure 104.

Figure 104. Where the OS/390 NFS server fits

You may choose to use the NFS server for different reasons. You may want to
give workstation users direct access to data held on the OS/390 system or you
may want to use the OS/390 system as a file server.

TCP/IP
network

TCP/IP

NFS Server

OS/390 Unix
System Services

Access
methods

non-HFS
data

NFS Clients
Chapter 9. Implementing HFS for selected applications 219



If you want to use the OS/390 system as a file server, storing data in the HFS has
a number of advantages when compared to using other OS/390 data sets:

• You can use UNIX style names with file names up to 255 characters and path
names up to 1023 characters.

• Mixed-case file names and file names with special characters (except nulls,
slash and commas) are permitted.

• You can use a hierarchical directory structure.

• Access control uses UNIX-style permissions, with group and user id support at
file level.

It has sometimes proven difficult to implement application packages with data
stored on OS/390 and accessed through the NFS server because the application
may be written to need a file name format that is not a valid OS/390 data set
name. Serving data from an HFS will avoid that problem.

If the NFS server is used to provide file sharing for workstation users, it is
possible that they will understand file naming rules for their workstation but will
not understand OS/390 data set name rules. Using HFS data sets is much easier
for them.

In addition, if you use non-SMS OS/390 data sets, you may see poor
performance when the client requests file size information as the entire data set
must be read to determine the size.

For anything other than an HFS file system, the time and date stamps do not
have exactly the same meaning as a client file. For HFS, the meanings are
identical.

You may request synchronous or asynchronous processing on the mount
command when you use NFS version 2 protocols. Asynchronous processing
allows the data to be written to disk after the server responds that a write request
has been completed.

In order to access HFS files, you need to know the HFS prefix that has been
defined. You can find this out using the showattr command. The default is /hfs.
So, to mount the HFS directory /james from OS/390 host sc64 on an AIX system
at mount point /u/james/mnt, this command should be issued from AIX:

mount sc64:"/hfs/james" /u/james/mnt

For more information on NFS facilities available within OS/390, please refer to
OS/390 Network File System User’s Guide, SC26-7254.

9.7 Other applications

If you run other USS applications using HFS data sets, you must know the
characteristics of their data (criticality, frequency of changes, and so on) in order
to determine the storage management needs. Then, you can adapt them to one
of the backup categories discussed in 9.1, “Understanding your backup needs” on
page 209 which will help you to decide upon an appropriate storage management
policy.
220 Hierarchical File System Usage Guide



Chapter 10. HFS sysplex sharing implementation

The main features of HFS sysplex sharing are:

• A common file system hierarchy on all systems in the sysplex
• The ability to write to file systems from all systems in the sysplex
• One common BPXPRMxx member for all systems in the sysplex
• Sysplex wide mount requests

In this chapter first we explain how HFS sysplex sharing works. Then we describe
how to implement it step by step.

10.1 How HFS sysplex sharing works

Every HFS data set that has shared read/write in the sysplex, has a central
owning system that manages it on behalf of other systems in the sysplex. The
owning system gets read or write requests from other systems and performs
these operations on the HFS data sets. A messaging protocol via XCF services is
used to transfer data around the sysplex from the central owner. This is like a
client and server environment. For more details, please see Chapter 7, “Sharing
and serialization for HFS data sets” on page 167.

When HFS data sets are shared across the sysplex, you will have a big pool of all
the HFS data sets of the entire sysplex. All these HFS data sets will be
accessible to every system in the sysplex. This raises a number of questions.

• The systems in the sysplex could be at different release levels. You will have
different versions of root HFS in the system and every system in the sysplex
will have access to all these root HFS files. How does each system pick up the
right version of the root HFS?

• You have HFS files and directories specific to each system in the sysplex like
/etc, /var, /dev and /tmp. All the systems in the sysplex will be able to see the
files of every system. How does each system point to the correct HFS files
specific to that system?

• What happens to the HFS files of a particular system when it joins the sysplex
or gets out of the sysplex?

• What if I want to upgrade to OS/390 2.9, but do not want HFS sysplex
sharing?

This section answers these questions by explaining how the new HFS file system
structure (that was introduced in OS/390 2.9) meets these requirements. You will
also see how the same structure accommodates sysplex and non-sysplex
environments.

The file structure has changed and looks different to the systems programmer.
But to each system in the sysplex, the file structure looks just like the structure
before OS/390 2.9.

10.1.1 Sysplex root
This is a new structure that was introduced in OS/390 2.9 to support HFS sysplex
sharing. The sysplex root is an umbrella structure to encompass all the HFS files
in the entire sysplex. It contains directories and symlinks to redirect HFS file
© Copyright IBM Corp. 1999, 2000 221



references to the correct files across the sysplex. It does not contain any files or
any code. The sysplex root is created using JCL supplied in SYS1.SAMPLIB.
Figure 105 shows the structure of the sysplex root after it has been created.

Figure 105. Sysplex root structure

Please note that the sysplex root has symlinks to point to /bin, /usr/, /lib and /opt
files that are specific to a release/service level of OS/390 and /dev, /tmp, /var, and
/etc files that are specific to each system in the sysplex.

10.1.2 Version HFS
The version HFS is the IBM supplied root HFS data set containing files and
executables for OS/390 elements. To avoid confusion with the sysplex root HFS
data set, the IBM supplied root HFS data set is hereafter called Version HFS. In a
sysplex environment, there could be a number of Version HFS data sets, each
denoting a different release or service level of OS/390.

10.1.2.1 Structure of Version HFS
Please see Figure 106. Note that the version specific files /bin, /usr, /lib, /opt and
/samples have symlinks.

/usr

/lib

//sam ples

/var

/tm p

/u

/e tc

$V E R S IO N /usr

sym link

sym link

sym link

sym link

sym link

/optsym link

$V E R S IO N /lib

$V E R S IO N /op t

$V E R S IO N /sam ples

/devsym link

/. . .d irec to ry

d irec to ry

$S Y S N A M E /d ev

$S Y S N A M E /tm p

$S Y S N A M E /var

$S Y S N A M E /e tc

$VE R S IO Nsym link

$SY S N A M Esym link $ S Y SN A M E /

$VE R S IO N /

sym link

/b insym link $V E R S IO N /b in
222 Hierarchical File System Usage Guide



Figure 106. Structure of Version HFS

10.1.2.2 Setup of Version HFS
In the sysplex environment each system could be on a different OS/390 release
or service level. In this section, we describe how the sysplex root is set up to
point to the correct Version HFS for any system in the sysplex.

You use the VERSION statement of BPXPRMxx member to specify the version of
the HFS. Figure 107 shows how to set up the Version HFS using the BPXPRMxx
parmlib member.

Not used in
sysplex
environment

/dev

/opt

/lib

/samples

directory

directory

symlink

/tmpsymlink

$SYSNAME/dev

$SYSNAME/tmp

/varsymlink $SYSNAME/var

/usrdirectory

directory

$SYSNAME/etcsymlink /etc

/bindirectory

/udirectory

/SYSTEMdirectory

directory /...

tmpdirectory

usr

lib

optsymlink

symlink

symlink

symlink bin /bin

/usr

/opt

/lib
symlink /samplessamples

directory

directory

directory etc

dev

var
Chapter 10. HFS sysplex sharing implementation 223



Figure 107. Set up of the Version HFS

In this example we used the system residence volser (symbol &SYSR1) to
identify the Version HFS. Also note that we use the same &SYSR1 as one of the
qualifiers of the version HFS data set. Our system residence volume was
O39RA1. Here is what happens when the system processes the BPXPRMxx
member at the time of IPL.

The statement:

VERSION(&SYSR1.) SYSPLEX(YES)

Which gets resolved to:

VERSION(O39RA1) SYSPLEX(YES)

The SYSPLEX(YES) parameter tells the system that we want to do HFS sysplex
sharing. The system creates a mount point /O39RA1 in the sysplex root and also
sets the symlink $VERSION to /O39RA1

The mount statement:

FILESYTEM(’HFS.OS390R9.&SYSR1.ROOT)’ MOUNTPOINT(/&VERSION)

Which gets resolved to:

FILESYTEM(’HFS.OS390R9.O39RA1.ROOT)’ MOUNTPOINT(/O39RA1)

This will mount the HFS Version data set on mount point O39RA1.

/bin

/usr

/bin/bin/bin/bin/bin

/opt

/var

/tmp

/u

/etc

$VERSION/bin

symlink

symlink

symlink

symlink

symlink

/libsymlink

$VERSION/usr

$VERSION/lib

$VERSION/opt

/devsymlink

/...directory

directory

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

$SYSNAME/etc

$VERSIONsymlink

$SYSNAMEsymlink $SYSNAME/

$VERSION/

symlink

Dynamically Created /O39RA1

/

/samplessymlink $VERSION/samples

OMVS.SYSPLEX.ROOT

HFS.OS390R9.O39RA1.ROOT

/dev

/var

/opt

/lib

/samples

$SYSNAME/etc

directory

directory

symlink

symlink

symlink

/tmpsymlink

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

/usrdirectory

directory

/etc

/bindirectory

/udirectory

/SYSTEMdirectory

dev

var

tmp

etc

directory

directory

directory

directory

usr

lib

optsymlink
symlink

symlink

symlink bin /bin

/usr

/opt

/lib

Not used in
sysplex
environment

directory /...

symlink /samplessamples

BPXPRMxx parmlib member

VERSION(&SYSR1.') SYSPLEX(YES)

MOUNT FILESYSTEM('HFS.OS390R9.&SYSR1..ROOT')
MOUNTPOINT('/$VERSION') TYPE(HFS) MODE(READ)

BPXPRMxx parmlib member resolved

VERSION('O39RA1') SYSPLEX(YES)

MOUNT FILESYSTEM('HFS.OS390R9.O39RA1.ROOT')
MOUNTPOINT('/O39RA1') TYPE(HFS) MODE(READ)
224 Hierarchical File System Usage Guide



After IPL when the system tries to access HFS files /bin, /usr, /lib or /opt, the
symlinks resolve them to /O39RA1/usr, /O39RA1/usr, /O39RA1/lib and
/O39RA1/opt. The mount point /O39RA1 will then have the right Version HFS
mounted and these references will pick up the right HFS files.

10.1.3 System specific HFS
Files like /dev, /tmp, /var and /etc are specific to each system. In this section we
show how the system uses symlinks to point to the correct system specific HFS
files for each system.

You have to define a root HFS and /dev, var, /tmp and /etc HFS files for each
system. We recommend that you use &SYSNAME as one of the qualifiers of
these files to identify the system to which these files belong to.

Please see Figure 108 on page 226 to understand how the symlinks are resolved
to refer to the correct HFS files for each system.

In this example we used system SC64 for &SYSNAME. At the time of the IPL the
system reads the BPXPRMxx member. The parameter SYSPLEX(YES) tells the
system that we are going to do HFS sysplex sharing. The system dynamically
creates a mount point SC64 on the sysplex root. Then it processes the
BPXPRMxx statement:

MOUNT FILESYSTEM('WTSCPLX2.&SYSNAME..SYSTEM.HFS')
MOUNTPOINT('/&SYSNAME.') NOAUTOMOVE TYPE(HFS) MODE(RDWR)

Which gets resolved to:

MOUNT FILESYSTEM('WTSCPLX2.SC64..SYSTEM.HFS')
MOUNTPOINT('/SC64') NOAUTOMOVE TYPE(HFS) MODE(RDWR)

And, the system specific root for system SC64 gets mounted on mount point
SC64 of the sysplex root.

Now the system processes the BPXPRMxx statement:

MOUNT FILESYSTEM('HFS.&SYSNAME..DEV') MOUNTPOINT('/&SYSNAME./dev')
NOAUTOMOVE TYPE(HFS) MODE(RDWR)

Which gets resolved to:

MOUNT FILESYSTEM('HFS.SC64.DEV') MOUNTPOINT('/SC64/dev') NOAUTOMOVE TYPE(HFS)
MODE(RDWR)

This mounts the HFS.SC64.DEV file on mount point SC64/dev.

The /etc, /var and /tmp files get mounted this way. When the system tries to
access any of these files the symlinks in the sysplex root get resolved to
/SC64/dev, /SC64/etc, /SC64/var and /SC64/tmp and it picks the correct file for
the system.
Chapter 10. HFS sysplex sharing implementation 225



Figure 108. System Specific HFS Set up

10.1.4 OS/390 2.9 system without HFS sysplex sharing
Please note that if you want to upgrade your system to OS/390 2.9, but do not
want to do sysplex sharing, you do not need to make any changes to your
BPXPRMxx member. See Figure 109 for the HFS structure prior to OS/390 2.9.

/bin

/usr

/bin/bin/bin/bin/bin

/opt

/var

/tmp

/u

/etc

$VERSION/bin

symlink

symlink

symlink

symlink

symlink

/libsymlink

$VERSION/usr

$VERSION/lib

$VERSION/opt

/devsymlink

/...directory

directory

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

$SYSNAME/etc

$VERSIONsymlink

$SYSNAMEsymlink $SYSNAME/

$VERSION/

symlink

Dynamically Created /SC64
/

/samplessymlink $VERSION/samples

OMVS.SYSPLEX.ROOT

BPXPRxx parmlib member

MOUNT FILESYSTEM('HFS.&SYSNAME..DEV')
MOUNTPOINT('/&SYSNAME./dev') TYPE(HFS)

MODE(READ) NOAUTOMOVE

MOUNT
FILESYSTEM('WTSCPLX2.&SYSNAME..SYSTEM.HFS')

MOUNTPOINT('/&SYSNAME.') NOAUTOMOVE
MODE(RDWR) TYPE(HFS)

BPXPRxx parmlib member resolved

MOUNT FILESYSTEM('HFS.SC64.DEV')
MOUNTPOINT('/SC64./dev') TYPE(HFS)

MODE(READ) NOAUTOMOVE

MOUNT
FILESYSTEM('WTSCPLX2.SC64.SYSTEM.HFS')

MOUNTPOINT('/SC64') NOAUTOMOVE
MODE(RDWR) TYPE(HFS)

HFS.SC64.TMP

HFS.SC64.ETC

HFS.SC64.VAR

HFS.SC64.DEV

bin

usr

var
tmp

etc

/bin

directory

directory

symlink

symlink

symlink

libsymlink

/usr

/lib

/opt

devdirectory

directory

opt

symlink /samplessamples

STSCPLX2.SC64.SYSTEM.HPS
226 Hierarchical File System Usage Guide



Figure 109. Structure of HFS before OS/390 2.9

10.1.5 Single system image with read-only root
We recommend that you have a read-only root file system. You should have the
customizable files /tmp, /dev, /var and /etc mounted off the mount point
/SYSTEM. If you follow the recommendation, mounting of these files will occur as
before, even with the new sysplex root structure. So, you will not have to make
any changes to the BPXPRMxx member. Please see Figure 110 for the structure
for a single 2.9 system with a read-only root.

Before OS/390 2.9, the single system image with two HFS data set
structure would look like:

/bin

/etc

/...

/bin

/...

/bin

/...

/bin

/...

/bin

/.../...

/lib

//usr

/

/var

/opt

/tmp

/u

/dev

OMVS.ROOT.HFSOMVS.ROOT.HFS

OMVS.ETC.HFS

BPXPRMxx
ROOT
FILESYSTEM('OMVS.ROOT.HFS')
TYPE (HFS) MODE(RDWR)

MOUNT
FILESYSTEM('OMVS.ETC.HFS')
TYPE(HFS) MODE(RDWR)
MOUNTPOINT('/etc')

.

.

.

/

/samples

Notice that the BPXPRMxx member has not changed from
pre-R9 to R9, even though we have a new file system
structure.

ServerPac and CBPDO customers have to run a job BPXISETS during system
installation to convert /etc to a symlink $SYSNSAME/etc.

Note
Chapter 10. HFS sysplex sharing implementation 227



Figure 110. Single OS/390 2.9 system with a read-only root

10.1.6 Multiple systems on different releases
The systems in the sysplex could be running different software levels. Also the
systems could have different customization. In such an environment you will have
three main sysplex wide HFS data sets. These are the sysplex root, system
specific HFS and version specific HFS.

The sysplex root is visible from each system as the main root. As described
earlier, it contains symlinks to redirect references to system-specific and
version-specific HFS data sets to the correct mount point. The sysplex root is a
small file. This should be mounted as read/write because the mount points for
system and version HFS are dynamically created on the sysplex root when a
system joins the sysplex.

You need one system specific HFS for each system containing the customized
/dev,/ tmp, /var and /etc files. You should mount the system specific HFS as
read/write.

You will have one version specific HFS data set for each release or service level
of OS/390. This is the IBM supplied HFS file containing all the system libraries.
You should not modify this HFS data set and should mount it read only.

We describe three scenarios:

1. The first system in the sysplex
2. Two systems in sysplex sharing the same release or version of software
3. Two systems in sysplex with different releases or versions of software

/dev

/ /var

/samples

/opt

/...

$SYSNAME/etc

directory

directory

symlink

symlink

symlink

/tmpsymlink

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

/libdirectory

directory

/etc

/usr

directory

/udirectory

/SYSTEM/directory

dev

var

tmp

etc

directory

directory

directory

directory

lib

samples

opt

symlink

symlink

symlink

symlink bin /bin

/lib

/opt

/samples

/

OMVS.DEV.HFS

OMVS.VAR.HFS

OMVS.TMP.HFS

OMVS.ETC.HFS

OMVS.ROOT.HFS

symlink

symlink

usr /usr

directory

/bin
228 Hierarchical File System Usage Guide



10.1.6.1 The first system in the sysplex
Please see in Figure 111 that the sysplex root directs the references to system
specific HFS files /dev,/etc, /var and /tmp to the HFS data set
OMVS.SY1.SYSTEM.HFS mounted on mount point SY1. The version specific
files /bin, /lib and /samples are directed to OMVS.ROOT.HFS mounted on REL9.

Figure 111. The first system in the sysplex

10.1.6.2 Multiple systems in sysplex sharing the same software version
Please see Figure 112. Systems SY1 and SY2 share the same version HFS in
OMVS.ROOT.HFS mounted at REL9. Both these systems would either have
VERSION(REL9) in their BPXPRMxx members or they would be sharing the
same BPXPRMxx member.

SY1 has its own specific HFS data set OMVS.SY1.SYSTEM.HFS and is mounted
on /SY1. This mount point is created dynamically on the sysplex root when SY1 is
IPLed. Similarly SY2 has OMVS.SY2.SYSTEM.HFS mounted on /SY2.

When the system SY2 refers to any of its system specific file like /etc, it appears
as $SYSNAME/etc to system SY2.This gets resolved to /SY2/etc and so SY2
picks the correct file.

/dev

/ /var

/samples

/opt

/...

$SYSNAME/etc

directory

directory

symlink

symlink

symlink

/tmpsymlink

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

/libdirectory

directory

/etc

/usr

directory

/udirectory

/SYSTEM/directory

dev

var

tmp

etc

directory

directory

directory

directory

lib

samples

opt

symlink

symlink

symlink

symlink bin /bin

/lib

/opt

/samples

/

OMVS.DEV.HFS

OMVS.VAR.HFS

OMVS.TMP.HFS

OMVS.ETC.HFS

OMVS.ROOT.HFS

symlink

symlink

usr /usr

directory

/bin
Chapter 10. HFS sysplex sharing implementation 229



Figure 112. Two systems in sysplex sharing same version HFS

10.1.6.3 Multiple systems with different versions of software
In this case we have two systems SY1 and SY2. But we have two version HFS
data sets (REL9 and REL10) available in the sysplex. The systems SY1 and SY2
can use either REL9 or REL10 by specifying it in the version statement of
BPXPRMxx parmlib member. Figure 113 illustrates this.

/bin

/usr

/bin/bin/bin/bin/bin

/opt

/var

/tmp

/u

/etc

Automount
Managed

$VERSION/bin

symlink

symlink

symlink

symlink

symlink

/libsymlink

$VERSION/usr

$VERSION/lib

$VERSION/opt

/devsymlink

/...directory

directory

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

$SYSNAME/etc

$VERSIONsymlink

$SYSNAMEsymlink $SYSNAME/

$VERSION/

symlink

/SY2

/REL9

/

OMVS.SYSPLEX.ROOT

/SY1

symlink $VERSION/samples/samples

/dev

//var

/opt

/lib

/samples

$SYSNAME/etc

directory

directory

symlink

symlink

symlink

/tmpsymlink

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

/usrdirectory

directory

/etc

/bindirectory

/udirectory

/SYSTEMdirectory

dev

var

tmp

etc

directory

directory

directory

directory

usr

lib

optsymlink

symlink

symlink

symlink bin /bin

/usr

/opt

/lib

VERSION HFS

Not used in
sysplex
environment

directory /...

symlink /samplessamples

bin

usr

var

tmp

etc

/bin

directory

directory

symlink

symlink

symlink

libsymlink

/usr

/lib

/opt

devdirectory

directory

opt

SYSTEM HFS

symlink /samplessamples

bin

usr

var

tmp

etc

/bin

directory

directory

symlink

symlink

symlink

libsymlink

/usr

/lib

/opt

devdirectory

directory

opt

SYSTEM HFS

symlink /samplessamples

OMVS.SY2.ETC

OMVS.SY2.VAR

OMVS.SY2.TMP

OMVS.SY2.DEV

OMVS.SY1.ETC

OMVS.SY1.VAR

OMVS.SY1.TMP

OMVS.SY1.DEV

OMVS.SY1.SYSTEM.HFS

OMVS.SY2.SYSTEM.HFS

OMVS.ROOT.HFS
230 Hierarchical File System Usage Guide



Figure 113. Two systems and two versions

10.1.7 System joins sysplex
Now assume that a third system SY3 joins the sysplex. When that system is
IPLed a new mount point SY3 is created in the sysplex root. You specify the
system specific HFS in mount statement of the BPXPRMxx to be mounted at this
mount point.

In the version statement in BPXPRMxx you will specify which version of HFS to
be used. So when the system SY3 is IPLed into the sysplex it will refer to the
correct system specific files and version specific files.

10.1.8 System leaves sysplex
When a system leaves the sysplex, normally the system specific files also
disappear with the system and will not be available to the other systems in the
sysplex. However, it is possible to specify the AUTOMOVE parameter in the
mount statement of an HFS data set. This will transfer ownership of the data set
to another system before leaving the sysplex so that this data set will still be
available to other systems in the sysplex.

Normally data sets are owned by systems on which they are mounted. However,
you can specify a different owner to a data set in the mount command.

/bin

/usr

/bin/bin/bin/bin/bin

//opt

/var

/tmp

/u

/etc

Automount
Managed

$VERSION/bin

symlink

symlink

symlink

symlink

symlink

/libsymlink

$VERSION/usr

$VERSION/lib

$VERSION/opt

/devsymlink

/...directory

directory

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

$SYSNAME/etc

$VERSIONsymlink

$SYSNAMEsymlink $SYSNAME/

$VERSION/

symlink

/SY2

/REL9

/

OMVS.SYSPLEX.ROOT

/SY1

symlink $VERSION/samples/samples

/dev

//var

/opt

/lib

/samples

$SYSNAME/etc

directory

directory

symlink

symlink

symlink

/tmpsymlink

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

/usrdirectory

directory

/etc

/bindirectory

/udirectory

/SYSTEMdirectory

dev

var

tmp

etc

directory

directory

directory

directory

usr

lib

optsymlink

symlink

symlink

symlink bin /bin

/usr

/opt

/lib

VERSIONHFS

Notusedin
sysplex
environment

directory /...

symlink /samplessamples

bin

usr

var

tmp

etc

/bin

directory

directory

symlink

symlink

symlink

libsymlink

/usr

/lib

/opt

devdirectory

directory

opt

SYSTEMHFS

symlink /samplessamples

bin

usr

var

tmp

etc

/bin

directory

directory

symlink

symlink

symlink

libsymlink

/usr

/lib

/opt

devdirectory

directory

opt

SYSTEMHFS

symlink /samplessamples

OMVS.SY2.ETC

OMVS.SY2.VAR

OMVS.SY2.TMP

OMVS.SY2.DEV

OMVS.SY1.ETC

OMVS.SY1.VAR

OMVS.SY1.TMP

OMVS.SY1.DEV

OMVS.SY1.SYSTEM.HFS

OMVS.SY2.SYSTEM.HFS

OMVS.SYSR9.ROOT.HFS/REL10

/dev

//var

/opt

/lib

/samples

$SYSNAME/etc

directory

directory

symlink

symlink

symlink

/tmpsymlink

$SYSNAME/dev

$SYSNAME/tmp

$SYSNAME/var

/usrdirectory

directory

/etc

/bindirectory

/udirectory

/SYSTEMdirectory

dev

var

tmp

etc

directory

directory

directory

directory

usr

lib

optsymlink

symlink

symlink

symlink bin /bin

/usr

/opt

/lib

VERSIONHFS

Notusedin
sysplex
environment

directory /...

symlink /samplessamplesOMVS.SYSR10.ROOT.HFS
Chapter 10. HFS sysplex sharing implementation 231



10.2 Implementation of HFS sysplex sharing

We assume that you have already installed OS/390 2.9 on all the systems that
will participate in HFS sharing and the systems are already set up in a sysplex.

For more details, please refer to Chapter 17 "Shared HFS in a Sysplex" in
OS/390 V2R9.0 Unix System Services Planning, SC28-1890.

Implementation for sysplex-wide HFS sharing consists of these six steps:

1. Create OMVS Couple data set
2. Define the Couple data set to XCF
3. Create Sysplex Root
4. Create system specific HFS data sets
5. Dynamically add OMVS Couple data sets to XCF
6. IPL the systems

These steps are explained in detail in this chapter. For every step we provide
information on:

• What is accomplished by the step
• The options available to you
• The questions you need to ask yourself
• The issues you need to consider
• How we implemented the step
• Listings of the JCL and job output for our implementation

10.2.1 Step 1 - Create OMVS couple data set
In this step, you define the data structure named BPXMCDS. This is used by XCF
to maintain the necessary information to allow HFS sharing across the Sysplex.

When you create this data set you need to specify the maximum number of HFS
mounts and automount rules you want to support under OMVS. This is the total
number sysplex-wide. You should set this value right for your installation. If you
set it too high and more than what you really need, the HFS performance may be
affected. Please refer to 8.4.3, “How shared HFS affects mount times” on page
205 for a discussion on this topic.

You also specify the name of your sysplex that will be sharing the HFS and the
maximum number of systems in the sysplex.

You should define two couple data sets: one as primary and the other as
secondary. Define these on two different volumes for availability reasons. These
may or may not be cataloged.

Use the sample JCL supplied in SYS1.SAMPLIB(BPXISCDS) and customize it for
this step.

We modified the sample JCL as below to define the Couple data sets. The
changes we made to the SAMPLIB member are shown in bold.
232 Hierarchical File System Usage Guide



/* Begin definition for OMVS couple data set (1) */
DEFINEDS SYSPLEX(SANDBOX) /* Name of the sysplex in

which the OMVS couple data
set is to be used. */

DSN(SYS1.XCF.OMVS00) VOLSER(SBOX03) /* The name and
volume for the OMVS
couple data set. The
utility will allocate a
new data set by the name
specified on the volume
specified. */

MAXSYSTEM(8) /* Number of systems in the
sysplex to be supported by
this couple data set. Default
value is eight. @01A*/

CATALOG /* Default is not to CATALOG.
@01C*/

DATA TYPE(BPXMCDS) /* The type of data in the
data set being created is
for OMVS. BPXMCDS is the
TYPE for OMVS. */

ITEM NAME(MOUNTS) NUMBER(500) /* Specifies the number of
MOUNTS that can be supported
by OMVS.
Default = 100
Minimum = 1
Maximum = 50000 @D1C*/

ITEM NAME(AMTRULES) NUMBER(50) /* Specifies the number
of automount rules that can
be supported by OMVS.
Default = 50
Minimum = 50
Maximum = 1000 @D1A*/

/* Begin definition for OMVS couple data set (2) */
DEFINEDS SYSPLEX(SANDBOX) /* Name of the sysplex in

which the OMVS couple data
set is to be used. */

DSN(SYS1.XCF.OMVS01) VOLSER(SBOX04) /* The name and
volume for the OMVS
couple data set. The
utility will allocate a
new data set by the name
specified on the volume
specified. */

MAXSYSTEM(8) /* Number of systems in the
sysplex to be supported by
this couple data set. Default
value is eight. @01A*/

CATALOG /* Default is not to CATALOG.
@01C*/

DATA TYPE(BPXMCDS) /* The type of data in the
data set being created is
for OMVS. BPXMCDS is the
TYPE for OMVS. */

ITEM NAME(MOUNTS) NUMBER(500) /* Specifies the number of
MOUNTS that can be supported
by OMVS.
Default = 100
Minimum = 10
Maximum = 50000 @D1C*/

ITEM NAME(AMTRULES) NUMBER(50) /* Specifies the number
Chapter 10. HFS sysplex sharing implementation 233



The output of the job follows. Again we show here only the relevant portion of the
output.

For more details on how to define Sysplex Couple data sets, please refer to
section 3.1 on “Considerations for All Couple Data Sets", in OS/390 V2R9.0 MVS
setting Up a Sysplex, GC28-1779.

10.2.2 Step 2 - Define the OMVS couple data sets to XCF
Next you need to tell XCF the names of the primary and secondary couple data
sets you have just defined. This is done by updating the COUPLExx member in
your PARMLIB data set. The COUPLExx member contains information on all
couple data sets used by your sysplex. You need to add the OMVS Couple data
set information to the COUPLExx member. We added the following statements to
our COUPLExx member shown by bold letters.

IGD100I 253A ALLOCATED TO DDNAME COUPLE DATACLAS ( )
IXC292I DATA SET FORMATTING COMPLETE: DATA SET REQUIRES 32 TRACKS ON VOLSER SBOX03

IXC292I 1 RECORDS FORMATTED WITH 500 MOUNTS ITEMS EACH
IXC292I 1 RECORDS FORMATTED WITH 50 AMTRULES ITEMS EACH
IGD100I 253B ALLOCATED TO DDNAME COUPLE DATACLAS ( )
IXC292I DATA SET FORMATTING COMPLETE: DATA SET REQUIRES 32 TRACKS ON VOLSER SBOX04

IXC292I 1 RECORDS FORMATTED WITH 500 MOUNTS ITEMS EACH
IXC292I 1 RECORDS FORMATTED WITH 50 AMTRULES ITEMS EACH

COUPLE SYSPLEX(SANDBOX)
PCOUPLE(SYS1.XCF.CDS00)
ACOUPLE(SYS1.XCF.CDS01)
CLEANUP(30)
RETRY(10)

/* DEFINITIONS FOR CFRM POLICY */
DATA TYPE(CFRM)

PCOUPLE(SYS1.XCF.CFRM00)
ACOUPLE(SYS1.XCF.CFRM01)

/* DATASETS FOR SFM POLICY */
DATA TYPE(SFM)

PCOUPLE(SYS1.XCF.SFM00)
ACOUPLE(SYS1.XCF.SFM01)

/* DATASETS FOR WLM POLICY */
DATA TYPE(WLM)

PCOUPLE(SYS1.XCF.WLM00)
ACOUPLE(SYS1.XCF.WLM01)

DATA TYPE(BPXMCDS)
PCOUPLE(SYS1.XCF.OMVS01)
ACOUPLE(SYS1.XCF.OMVS02)

/* LOCAL XCF MESSAGE TRAFFIC */
LOCALMSG MAXMSG(512) CLASS(DEFAULT)
/* PATH DEFINITIONS FOR DEFAULT SIGNALLING */
234 Hierarchical File System Usage Guide



10.2.3 Step 3 - Create sysplex root HFS
You can customize the JCL in SYS1.SAMPLIB(BXISYSR) and run it to create the
sysplex root. This job allocates the data set and runs a REXX exec BPXISYS1 to
create the necessary directories and symlinks in the data set.

You need superuser authority to run this job.

We customized the BXISYSR exec as follows. The changes are shown in bold.

This data set may or may not be SMS managed. The sysplex root must be
mounted in read/write mode.

We recommend that the sysplex root be kept very stable; Updates and changes
to the sysplex root should be made as infrequent as possible.

Important Information
Chapter 10. HFS sysplex sharing implementation 235



The output of the job shows the directories and the symlinks created. Please
compare this output with Figure 105 on page 222 to see what the structure of the
sysplex root will look like after it is created.

10.2.4 Step 4 - Create system specific HFS
You will need to define system specific HFS files for each system in the sysplex.
We recommend that you use a naming convention that will associate this data set
to the system for which it is defined. The sysplex root has symbolic links to mount
points for system-specific etc, var, tmp, and dev HFS data sets.

//IKJEFT1A EXEC PGM=IKJEFT1A,PARM='BPXISYS1'
//*
//ROOTSYSP DD DSNAME=WTSCPLX2.SYSPLEX.ROOT,
// DISP=(,CATLG),
// DSNTYPE=HFS,
// SPACE=(CYL,(1,0,1)),
//* STORCLAS=OPENMVS
// UNIT=3390,VOL=SER=SBOX02
//*
//SYSEXEC DD DSN=SYS1.SAMPLIB,DISP=SHR ,
//* UNIT=SYSALLDA,VOL=SER=tvol2
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//*

The EXEC BPXISYS1 ran at 17:12:17 on 13 Mar 2000 .

This EXEC completed with Return Code 0 .

Created the following directories:
==================================
...
u

Problems creating the following directories:
============================================
No problems while creating the directories.

Created the following symlinks:
===============================
bin ---> $VERSION/bin
usr ---> $VERSION/usr
lib ---> $VERSION/lib
opt ---> $VERSION/opt
samples ---> $VERSION/samples
$VERSION ---> $VERSION/
$SYSNAME ---> $SYSNAME/
dev ---> $SYSNAME/dev
tmp ---> $SYSNAME/tmp
var ---> $SYSNAME/var
etc ---> $SYSNAME/etc

Problems creating the following symlinks:
=========================================
No problems while creating the symlinks.

End of EXEC.
236 Hierarchical File System Usage Guide



The mount point for these data sets will be dynamically created by the system
during OMVS startup.

You can customize the JCL in SYS1.SAMPLIB(BPXISYSS) to create system
specific HFS. You need to run this job for each system in the sysplex that will be
sharing HFS. This dataset may be SMS managed or non-SMS managed.

We customized the JCL in SAMPLIB as follows. The changes are in bold.

We defined the data set for two systems SC64 and SC65. Only SC64 JCL is
shown

We defined the SC64 HFS data set as SMS managed and the SC65 HFS as
non-SMS managed

The output of the job is also shown below. It runs a REXX exec BPXISYS2 to
define the directories and sysmlinks,

The system-specific HFS data set should be mounted read/write. In addition,
we recommend that the name of the system-specific data set contain the
system name as one of the qualifiers. This allows you to use the &SYSNAME
symbolic in BPXPRMxx.

Important Information
Chapter 10. HFS sysplex sharing implementation 237



.

10.2.5 Step 5 - Update BPXPRMxx parmlib member
You specify the various parameters to control the file system in the BPXPRMxx
parmlib member. This member also contains information to control the OMVS set
up and processing. We recommend that you use two different members: one
containing the file system information and the other containing OMVS
information. Then you can update the OMVS parameter of IEASYSxx parmlib
member to point to both the BPXPRMxx members. You will find that migrating
from one release to another is easier if you use two members for BPXPRMxx.

You can use a common BPXPRMxx member for all the systems in the sysplex.

//IKJEFT1A EXEC PGM=IKJEFT1A,PARM='BPXISYS2'
//*
//HFSSYSTS DD DSNAME=WTSCPLX2.SC64.SYSTEM.HFS,
// DISP=(,CATLG),
// DSNTYPE=HFS,
// SPACE=(CYL,(1,0,1)),
// STORCLAS=OPENMVS
//* UNIT=uuuu,VOL=SER=vvvvvv
//*
//SYSEXEC DD DSN=SYS1.SAMPLIB,DISP=SHR ,
//* UNIT=SYSALLDA,VOL=SER=tvol2
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD DUMMY
//*

The EXEC BPXISYS2 ran at 17:16:17 on 13 Mar 2000 .

This EXEC completed with Return Code 0 .

Created the following directories:
==================================
dev
tmp
var
etc

Problems creating the following directories:
============================================
No problems while creating the directories.

Created the following symlinks:
===============================
bin ---> /bin
usr ---> /usr
lib ---> /lib
opt ---> /opt
samples ---> /samples

Problems creating the following symlinks:
=========================================
No problems while creating the symlinks.

End of EXEC.
238 Hierarchical File System Usage Guide



There are four parameters in BPXPRMxx that are mainly relevant to HFS sharing
in a sysplex. These are:

1. SYSPLEX
2. VERSION
3. ROOT
4. MOUNT

10.2.5.1 SYSPLEX
You should specify SYSPLEX(YES) to share HFS across the Sysplex. It is this
parameter which tells the system at the time of IPL to take part in HFS sharing
across the sysplex.

10.2.5.2 VERSION
This statement will dynamically create a mount point at the time of IPL to mount
the Version HFS file. The version HFS is the IBM-supplied root HFS data set. You
should specify a version parameter which identifies your OS/390 system release
level. The system residence volser might be an appropriate name you can use.
Different MVS systems in the sysplex can specify different VERSION parameters
in their BPXPRMxx member to allow different releases or service levels of root
HFS. IBM recommends that you mount the Version HFS in read-only mode. For
specific actions you have to take before you can mount the Version HFS in
read-only mode please see the section on "Post Installation Actions for Mounting
the Root HFS in Read-Only" in OS/390 V2R9.0 UNIX System Services Planning,
SC28-1890.

10.2.5.3 ROOT
Here you specify the name of the Sysplex Root data set you created in step 3.
This data set must be mounted read/write.

10.2.5.4 MOUNT
You should specify the mount information for all the HFS files you will require for
your system. If you used &SYSNAME as one of the qualifiers when you defined
your system specific HFS data sets in step 4, then you can create a single
BPXPRMxx member for all systems in your sysplex.

You can specify two new parameters for the MOUNT statements.The SYSNAME
parameter specifies the name of the MVS system in the Sysplex that should own
the HFS data set being mounted. The AUTOMOVE parameter determines if
another system in the sysplex can take ownership of the HFS data set if the
owning system goes down.

We used a common BPXPRMxx member for both the systems. Below is a copy of
the BPXPRMxx member we used. It shows only the relevant part of the
BPXPRMxx member.

We do not recommend using &SYSNAME as one of the qualifiers for the
version HFS data set name. Appropriate names may be the name of the target
zone, &SYSR1, or any other qualifier meaningful to the system programmer.

Important Information
Chapter 10. HFS sysplex sharing implementation 239



Please note that you have to specify &SYSNAME for the mount point for TMP, so
that each system gets its own mount point for the TMP file system.

10.2.6 Step 6 - Dynamically add the OMVS couple data sets to XCF
This step is just to verify that your couple data sets are correct before you IPL the
systems in the next step. Issue the system commands shown in order to add the

FILESYSTYPE TYPE(HFS) /* Type of file system to start */
ENTRYPOINT(GFUAINIT) /* Entry Point of load module */
PARM(' ') /* Null PARM for physical file

system */
/* ASNAME(adrspc01) */ /* Name of address space for

physical file system */
VERSION('&SYSR1.')
SYSPLEX(YES)

ROOT FILESYSTEM('WTSCPLX2.SYSPLEX.ROOT')
TYPE(HFS) /* TYPE OF FILE SYSTEM */
MODE(RDWR) /* (OPTIONAL) CAN BE READ OR RDWR.

DEFAULT = RDWR */

MOUNT FILESYSTEM('WTSCPLX2.&SYSNAME..SYSTEM.HFS')
MOUNTPOINT('/&SYSNAME.')
NOAUTOMOVE
TYPE(HFS) MODE(RDWR)

MOUNT FILESYSTEM('HFS.OS390R9.&SYSR1..ROOT')
MOUNTPOINT('/$VERSION')
TYPE(HFS) MODE(READ)

MOUNT FILESYSTEM('HFS.&SYSNAME..DEV')
MOUNTPOINT('/&SYSNAME./dev')
NOAUTOMOVE
TYPE(HFS) MODE(RDWR)

MOUNT FILESYSTEM('HFS.&SYSNAME..ETC')
MOUNTPOINT('/&SYSNAME./etc')
NOAUTOMOVE
TYPE(HFS) MODE(RDWR)

MOUNT FILESYSTEM('HFS.USERS')
MOUNTPOINT('/u')
NOAUTOMOVE
TYPE(HFS) MODE(RDWR)

MOUNT FILESYSTEM('HFS.&SYSNAME..VAR')
MOUNTPOINT('/&SYSNAME./var')
NOAUTOMOVE
TYPE(HFS) MODE(RDWR)

FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)
MOUNT FILESYSTEM('/&SYSNAME./TMP')

TYPE(TFS) MODE(RDWR)
MOUNTPOINT('/&SYSNAME./tmp')
PARM('-s 500')
NOAUTOMOVE

FILESYSTYPE TYPE(AUTOMNT) ENTRYPOINT(BPXTAMD)
240 Hierarchical File System Usage Guide



primary Couple data set, the secondary Couple data set, and then to verify that
they have been added successfully:

SETXCF COUPLE,TYPE=BPXMCDS,PCOUPLE=XCF,OMVS00

SETXCF COUPLE,TYPE=BPXMCDS,ACOUPLE=XCF,OMVS01

D XCF,COUPLE,TYPE=BPXMCDS

The output from these commands is shown below.

10.2.7 IPL the systems
This is to activate the COUPLExx and BPXPRMxx changes. Now you are ready
to share HFS data sets across the sysplex.

SETXCF COUPLE,TYPE=BPXMCDS,PCOUPLE=SYS1.XCF.OMVS00
IXC309I SETXCF COUPLE,PCOUPLE REQUEST FOR BPXMCDS WAS ACCEPTED
IEF196I IEF237I 253A ALLOCATED TO SYS00077
IXC286I COUPLE DATA SET 441
SYS1.XCF.OMVS00,
VOLSER SBOX03, HAS BEEN ADDED AS THE PRIMARY
FOR BPXMCDS ON SYSTEM SC64
IEF196I IEF237I 253A ALLOCATED TO SYS00077
IXC286I COUPLE DATA SET 837
SYS1.XCF.OMVS00,
VOLSER SBOX03, HAS BEEN ADDED AS THE PRIMARY
FOR BPXMCDS ON SYSTEM SC63
IEF196I IEF237I 253A ALLOCATED TO SYS00080
SETXCF COUPLE,TYPE=BPXMCDS,ACOUPLE=SYS1.XCF.OMVS01
IXC309I SETXCF COUPLE,ACOUPLE REQUEST FOR BPXMCDS WAS ACCEPTED
IXC260I ALTERNATE COUPLE DATA SET REQUEST FROM SYSTEM 448
SC64 FOR BPXMCDS IS NOW BEING PROCESSED.
DATA SET: SYS1.XCF.OMVS01
IEF196I IEF237I 253B ALLOCATED TO SYS00078
IEF196I IEF237I 253B ALLOCATED TO SYS00078
IXC286I COUPLE DATA SET 521
SYS1.XCF.OMVS00,
VOLSER SBOX03, HAS BEEN ADDED AS THE PRIMARY
FOR BPXMCDS ON SYSTEM SC65
IXC251I NEW ALTERNATE DATA SET 450
SYS1.XCF.OMVS01
FOR BPXMCDS HAS BEEN MADE AVAILABLE
D XCF,COUPLE,TYPE=BPXMCDS
IXC358I 14.06.26 DISPLAY XCF 452
BPXMCDS COUPLE DATA SETS
PRIMARY DSN: SYS1.XCF.OMVS00

VOLSER: SBOX03 DEVN: 253A
FORMAT TOD MAXSYSTEM
03/09/2000 18:01:40 8
ADDITIONAL INFORMATION:
NOT PROVIDED

ALTERNATE DSN: SYS1.XCF.OMVS01
VOLSER: SBOX04 DEVN: 253B
FORMAT TOD MAXSYSTEM
03/09/2000 18:01:41 8
ADDITIONAL INFORMATION:
NOT PROVIDED

BPXMCDS IN USE BY ALL SYSTEMS
Chapter 10. HFS sysplex sharing implementation 241



10.2.8 Implementation summary
The following pictures summarize the installation. Figure 114 shows the
relationship between XCF, the couple data sets and COUPLExx parmlib member.

Figure 114. XCF and the Couple data sets

Figure 115 shows the relationship between the sysplex root, the version HFS file,
the system specific HFS and the BPXPRMxx parmlib member.

XCF

COUPLExx

System 1
OS/390 R9

SC64

System 2
OS/390 R9

SC65

SYSPLEX SANDBOX

SYS1.XCF.OMVS01

BPXMCDS

- mount table

- automount rules

SBOX04

SYS1.XCF.OMVS00

BPXMCDS

- mount table

- automount rules

SBOX03
242 Hierarchical File System Usage Guide



Figure 115. BPXPRMxx and HFS systems

10.3 How to add another system to the sysplex for HFS sharing

To add another system to share HFS data in your sysplex, you need to:

1. Make sure that the system you are adding is already running OS/390 2.9.

2. Update the COUPLExx parmlib member to include the OMVS CDS you have
defined for HFS sharing. You can also use a common COUPLExx member for
all the systems in the sysplex. Please see 10.2.2, “Step 2 - Define the OMVS
couple data sets to XCF” on page 234.

3. Define system specific HFS data sets for the system as described in 10.2.4,
“Step 4 - Create system specific HFS” on page 236.

4. Dynamically add the OMVS CDS as in 10.2.6, “Step 6 - Dynamically add the
OMVS couple data sets to XCF” on page 240.

5. IPL the system into the sysplex.

10.3.1 Change in ls command
The ls command will now require you to specify "ls /dev/". Please notice the
trailing slash. Prior to OS/390 2.9, you could say "ls /dev" and you would get a
listing of the /dev directory. To minimize this difference, if you wish, you could
place alias ls=ls -L in your /etc/profile file.

BPXPRMxx

dev

var

tmp

etc

directory

directory

directory

directory

usr

lib

optsymlink

symlink

symlink

symlink bin /bin

/usr

/opt

/lib

symlink samples

VERSION HFS

dev

var

tmp

etc

lib

samples

opt

symlink

bin /bin

/lib

/opt

/samples

OMVS.DEV.HFS

OMVS.VAR.HFS

OMVS.TMP.HFS

OMVS.ETC.HFS

HFS for SC64

directory

directory

directory

directory

symlink

symlink

symlink

symlink

usr /usr

/bin

/etc

/bin/bin/bin/bin

/...

/usr

/lib

/var

/opt
/tmp

/u

/dev

/samples

SYSPLEX ROOT

dev

var

tmp

etc

lib

samples

opt

symlink

bin /bin

/lib

/opt

/samples

OMVS.DEV.HFS

OMVS.VAR.HFS

OMVS.TMP.HFS

OMVS.ETC.HFS

HFS for SC65

directory

directory

directory

directory

symlink

symlink

symlink

symlink

usr /usr
Chapter 10. HFS sysplex sharing implementation 243



10.3.2 Automount facility
The automount facility gives you the flexibility to mount files as and when they are
required rather than keeping them mounted all the time. The mount point
directories are internally created as they are required. Later, when the file system
is no longer in use the mount point directories are deleted. You specify the details
on how to and when to mount and unmount the file in a policy file.

In the sysplex environment, there is a common mount table for all systems in the
sysplex. This resides in the OMVS CDS.

Automount delay is the time for which you want to keep an auto-mounted file
mounted after its last use. This is specified in your MapName File that contains
the mount information for your automount files. The default automount delay is 0
minutes. In a sysplex environment we do not recommend that you use the default
value. You should specify a delay time of at least 10 minutes.

Automount does not support the new key words AUTOMOVE and SYSNAME.

10.3.3 Special files
You cannot share character-special files nor UNIX domain socket address files in
read/write mode among systems participating in the sysplex.

You can share FIFO special files between systems.

10.3.4 Cloning systems
OS/390 2.9 now supports non-SMS HFS data sets. This means that it is now
possible for you to allocate HFS data sets on your system residence volume and
catalog them with VOLSER=******.

We strongly recommend that you keep automount policies consistent across all
the systems in the sysplex. At any time, the most recent automount policy that
was loaded prevails for all the systems participating in the sysplex.

Important information
244 Hierarchical File System Usage Guide



Appendix A. Miscellaneous implementation topics

This chapter discusses miscellaneous implementation topics that storage
administrators should know about. The topics covered are:

• The pax, tar, and cpio commands
• The automount facility

A.1 The pax, tar and cpio commands

In MVS, you can use Data Facility System-Managed Storage Hierarchical
Storage Manager (DFSMShsm) to back up or archive hierarchical file systems
automatically.

In the shell, files are often bundled together in single files by utilities like pax, tar,
and cpio. When these files are bundled into a single file, it is called an archive
file. Usually the file name of the archive indicates the utility that was used when
the file was built. For example, a file named mvsport.tar indicates that the tar
utility was used. The three utilities basically provide the same function: reading
and writing of archive files.

The important thing to know is that the tar and cpio commands can only read and
write files of their respective formats, but pax can read or write in either format.
So given a pax, tar, or cpio file, you can use pax from the OS/390 UNIX System
Services shell to explode or unwind the archive into its individual files.

To save disk space and transmission time, archive files can also be compressed
with the tar, cpio and pax utilities by using the -z option. The naming convention
that is generally used for a compressed archive file is to end the file name with a
.Z, for example, mvsport.tar.Z.

You can copy archive files to an MVS data set, and then to tape. You can retrieve
archive files from a tape into an MVS data set, and then copy them into the file
system.

This topic provides information about how to use pax, tar and cpio to back up and
restore files into and from MVS data sets.

A.1.1 Using pax to back up and restore files

The pax command can read and write files in:

• CPIO format
• ASCII format
• CPIO binary format
• TAR format
• USTAR format

It can read files that were written using tar, cpio, or pax itself. How it handles file
name length and preservation of link information across the backup and restore
process depends on the format you select: if you select CPIO, it behaves like the
cpio command; and if you select TAR, it behaves like the tar command.
© Copyright IBM Corp. 1999, 2000 245



For information about preserving links with pax, and about the CPIO and TAR
archive file formats, see the OS/390 V2R9.0 UNIX System Services Command
Reference, SC28-1892.

In the following examples, /tmp/posix is the working directory.

A.1.1.1 Backing up a complete directory into an MVS data set
To back up a complete directory into a data set, including the subdirectories and
their contents, enter these two commands:

pax -wf archive_file directory_name
tso "OGET ’archive_file’ ’DATA_SET_NAME’ BINARY"

Here, directory_name is the name of the directory you want to archive,
’archive_file’ is an absolute pathname and ’DATA_SET_NAME’ is a fully qualified
data set name. The pax command creates an archive file with the specified name
in the current working directory. The OGET command copies the archive file into
the specified MVS data set.

For example, these two commands back up the directory /tmp/posix/testpgm into
the data set POSIX.TESTPGM.PAX:

pax -wf testpgm.pax /tmp/posix/testpgm
tso "OGET ’/tmp/posix/testpgm.pax’ ’POSIX.TESTPGM.PAX’ BINARY"

For the pax command:

• The -w option writes to the archive file.
• The -f option lets you specify the name of the archive file.

After you have copied the archive file into an MVS data set, you can delete it.

Note: To avoid accidentally including the pax file when you create it (which will
put you in a loop), you must do one of the following:

• Explicitly specify the directories you want included (as in the above example).

• Write the file to a different directory than the one you are archiving. This
example archives the contents of the current directory and writes the archive
in another directory, /tmp:

pax -w . > /tmp/pax.file

A.1.1.2 Restoring a complete directory from an MVS data set
To restore the directory in the previous example, enter two commands:

tso "OPUT ’POSIX.TESTPGM.PAX’ ’/tmp/posix/testpgm.pax’ BINARY"
pax -rf testpgm.pax

The OPUT command copies the data set containing an archive file into the
specified directory in the file system. The pax command restores the contents of
the archive so that they can be accessed in the file system.

For the pax command, the -r option reads from the file specified with the -f option.

A.1.2 Using tar to back up and restore files

The tar command reads and writes headers in either the original TAR format from
UNIX systems or the USTAR format defined by the POSIX 1003.1 standard. With
the TAR format, the length of the path name you can specify is 100 characters.
246 Hierarchical File System Usage Guide



With the USTAR format, the length of the path name you can specify is 255
characters. For information on the TAR archive file formats, see the OS/390
V2R9.0 UNIX System Services Command Reference, SC28-1892.

During the backup or restore process, tar preserves link information.

If you will be putting the archive file on a tape, the block size that was used when
writing the file should be used when reading the file.

In the following examples, /tmp/posix is the working directory.

A.1.2.1 Backing up a complete directory into an MVS data set
To back up a complete directory, including the subdirectories and their contents,
into a data set, enter these two commands:

tar -cf archive_file directory_name
tso "OGET ’archive_file’ ’DATA_SET_NAME’ BINARY"

where ’archive_file’ is an absolute path name and ’DATA_SET_NAME’ is a fully
qualified data set name.

The tar command creates the specified archive file in your working directory. The
OGET command copies the archive file into the specified MVS data set.

For example, the following commands back up the directory /tmp/posix/testpgm
into the data set POSIX.TESTPGM.TAR:

tar -cvf testpgm.tar /tmp/posix/testpgm
tso "OGET ’/tmp/posix/testpgm.tar’ ’POSIX.TESTPGM.TAR’ BINARY"

For the tar command:

• The -c option creates an archive.
• The -v option displays each file name as it processes the archive.
• The -f option uses a specified file name for the archive file.

After you have copied the archive file into an MVS data set, you can delete it.

A.1.2.2 Restoring a complete directory from an MVS data set
To restore the directory in the previous example, enter these two commands:

tso "OPUT ’POSIX.TESTPGM.TAR’ ’/tmp/posix/testpgm.tar’ BINARY"
tar -xvf testpgm.tar

The OPUT command copies the data set containing an archive file into the
specified directory in the file system. The tar command restores the contents of
the archive so that they can be accessed in the file system. For the tar command,
the -x option restores files from the archive.

A.1.3 Using cpio to back up and restore files

cpio reads and writes either a compact binary format header or an ASCII format
header. The cpio command has no limit on the length of a file name. For
information on the cpio archive file format, see OS/390 UNIX System Services
Command Reference, SC28-1892.

In these examples, /tmp/posix is the working directory.
Appendix A. Miscellaneous implementation topics 247



A.1.3.1 Backing up a complete directory into an MVS data set
Backing up a complete directory, including the subdirectories and their contents,
into a data set takes two commands:

find directory_name -print | cpio -o > archive_file
tso "OGET ’archive_file’ ’DATA_SET_NAME’ BINARY"

where ’archive_file’ is an absolute path name and ’DATA_SET_NAME’ is a fully
qualified data set name.

The find command extracts path names from the specified directory. Its contents
are piped to cpio, which creates an archive file in your working directory. The
OGET command copies the archive file into the specified MVS data set. We
recommend using BINARY for an archive file. For example, to back up the
directory /tmp/posix/testpgm into the data set POSIX.TESTPGM.CPIO, enter
these two commands:

find /tmp/posix/testpgm -print | cpio -o > testpgm.cpio
tso "OGET ’/tmp/posix/testpgm.cpio’ ’POSIX.TESTPGM.CPIO’ BINARY"

For the cpio command, the -o option writes to an archive file — in this case, to
testpgm.cpio.

After you have copied the archive file into an MVS data set, you can delete it.

A.1.3.2 Restoring a complete directory from an MVS data set
The following commands would restore the directory in the previous example:

tso "OPUT ’POSIX.TESTPGM.CPIO’ ’/tmp/posix/testpgm.cpio’ BINARY"
cpio -iud < testpgm.cpio

The OPUT command copies the data set containing an archive file into the
specified directory in the file system. The cpio command restores the contents of
the archive so that they can be accessed in the file system.

For the cpio command:

• The -i option reads an archive — in this case, from testpgm.cpio.
• The -u option overwrites any existing file or directory.
• The -d option creates any necessary intermediate directories.

A.2 Automount facility

This topic discusses the customization of the automount facility to control all user
file systems so that they will be automatically mounted when they are needed.

A.2.1 Customizing the automount facility

The automount facility lets you designate directories as containing only mount
points. This is the preferred method of managing user HFS data sets. As each of
these mount points is accessed, an appropriate file system is mounted. The
mount point directories are internally created as they are required. Later, when
the file system is no longer in use, the mount point directories are deleted.

Think of automount as an administrator that has total control over a directory.
When a name is accessed in this directory, it checks its policy to see what file
system is supposed to be associated with that name. If it finds one, it (logically)
248 Hierarchical File System Usage Guide



does an mkdir followed by a mount and quietly moves out of the way. Once out of
the way, the root directory of that newly mounted file system is now accessed as
that name. For example, we create the user1 directory with the mkdir command.

With automount active and the correct automount policy in place, there is no need
to create a user1 directory with the mkdir command; the user1 directory will be
dynamically allocated and the OMVS.SC64.USER1 data set will be automatically
mounted at the /u/user1 mount point. Later, if the /u/user1 file system has not
been accessed based on certain criteria in your automount policy, the
OMVS.SC64.USER1 data set will automatically be unmounted.

Another advantage of using the automount daemon to manage user file systems
(as opposed to adding them to BPXPRMxx) is when a user goes on vacation for
two weeks. Their HFS might not be mounted, and so can become a candidate for
HSM to migrate the HFS. If the user HFS is defined in the BPXPRMxx PARMLIB
member, the HFS will always be mounted, and so the last access date will always
be updated. The automount facility is shown in Figure 116.

See OS/390 V2R9.0 UNIX System Services Planning, SC28-1890 and OS/390
V2R9.0 UNIX System Services Command Reference, SC28-1892 for additional
information about this facility.

Figure 116. Automount facility

The following steps show how to set up the automount facility to mount user file
systems.

(Automount Facility will dynamically
allocate pseudo directories to act
as mount points and mount HFS data sets
only when files are accessed)

bin

DD DDD

user1, user2, userx..

/

etcdevu bin

src

FF FFF

HFS Data Set
OMVS.SC64.USER2

Automount
Facility

HFS Data Set
OMVS.SC64.USER1

Root HFS Data Set
OMVS.SC64.ROOT
Appendix A. Miscellaneous implementation topics 249



A.2.1.1 Step 1 - Modify BPXPRMxx
To use the automount facility, add the following statement to your BPXPRMxx
PARMLIB member and re-IPL the MVS system.

FILESYSTYPE TYPE(AUTOMNT) ENTRYPOINT(BPXTAMD)

A.2.1.2 Step 2 - Customize the definition files
The automount facility uses two definition files, a master file and a MapName file.
The default file name of the master file is /etc/auto.master. The /etc/auto.master
file contains the directory or directories that will be monitored by automount and
the associated MapName files which contain the mount parameters. Figure 117
shows an example of a /etc/auto.master file.

Figure 117. Example of /etc/auto.master file

The master file defines that automount should manage the /u directory. This
means that as soon as someone using UNIX System Services tries to access a
directory that is mounted off the /u directory, automount will automatically mount
the HFS data set based on the MapName policy in Figure 118.

Note: In order to make the most efficient use of an automount MapName policy
that contains generic entries, it is important to come up with a consistent HFS
data set naming convention. In our examples here, all our HFS data sets have a
high-level qualifier of OMVS and the low-level qualifier is equal to the user name.

Figure 118. Example of /etc/u.map file

The MapName file contains the mapping between a subdirectory of a directory
managed by automount and the mount parameters.

The MapName file can contain specific entries and a generic entry. There should
be only one generic entry in a MapName file and it must be the first one. When
the automounter tries to resolve a lookup request, it attempts to find a specific
entry. If a specific entry does not exist for the name being looked up, it attempts
to use the generic entry.

The variable <uc_name> means convert the name being looked up to upper
case. Whenever this variable is encountered, it is replaced by the name being

BROWSE -- /etc/auto.master ------
COMMAND ===>
*************** Top of Data **********
/u /etc/u.map
*************** Bottom of Data *******

BROWSE -- /etc/u.map -------------
COMMAND ===>
*************** Top of Data **********
name *
type HFS
filesystem OMVS.SC64.<uc_name>
mode rdwr
duration nolimit
delay 0
*************** Bottom of Data *******
250 Hierarchical File System Usage Guide



looked up. A directory with the looked-up name is created and used as a mount
point for the file system to be mounted. The <uc_name> can be used to replace
any level qualifier in the data set. For example, if the name of the directory that is
being looked up is user1, automount will resolve the name in the following ways:

OMVS.<uc_name> = OMVS.USER1
OMVS.<uc_name>.HFS = OMVS.USER1.HFS

The <uc_name> variable is replaced with the uppercase name anywhere in the
string.

A.2.1.3 Step 3 - Start the automount facility
Figure 119 on page 252 contains an example of starting the automount facility
(from the shell) and how file systems are automatically mounted. The automount
command can only be issued from a superuser ID. It has the following syntax:

/usr/sbin/automount [-s] [Master filename]

When running the command with no arguments, the automount facility reads the
/etc/auto.master file to determine the directories to be monitored and the file
names that contain their configuration specifications, the MapName files. If
automount is used with a master file name specified, that file name is used
instead of /etc/auto.master.

The -s option only checks the syntax of the configuration file. The automount
policy is not activated.

Figure 119 shows how <uc_name> works with the /etc/auto.master and
/etc/u.map files from Figure 117 and Figure 118. HFS data sets,
OMVS.SC64.USER1 and OMVS.SC64.USER2 have already been allocated. The
low-level qualifier of the HFS data sets is the user ID, which is also the directory
mount point that automount will dynamically allocate. With the automount facility,
the HFS data set will be automatically mounted off the /u directory, as soon as a
user tries to access any directory in their HFS file system. Type in OMVS from
ISPF option 6 to access the UNIX System Services shell.

When an HFS data set is first allocated for a new user (in our case, USER1
shown in Figure 116 on page 249), and automount is used to dynamically
allocate a mount point, this new mount point directory’s permission bits are set
to 700 and the owner field is set to a superuser ID name. In order for USER1 to
be able to use this new file system, you will need to issue the chown command
to change the owner field of this new mount point directory that was created by
automount. In Figure 119 on page 252, item 7 shows a superuser issuing the
chown command against the /u/user1 directory to change the ownership.

Important Information
Appendix A. Miscellaneous implementation topics 251



Figure 119. Result of using <uc_name> in MapName file

1 The automount command is issued from a superuser ID to start the
automount facility from the UNIX System Services shell.

2 Automount scans the /etc/master.auto file first to see what MapName files
should be read. Here we are managing the /u directory.

Note: Calling automount command twice erroneously does not create any
problems, regardless of whether a file system is already mounted or not.
Automount rereads the /etc/master.auto file and associated MapName files
and picks up any changes.

3 The display free space command (df) is issued, showing that the automount
facility is started and is monitoring the /u directory (*AMD/u).

IBM
Licensed Material - Property of IBM
5647-A01 (C) Copyright IBM Corp. 1993, 1999
(C) Copyright Mortice Kern Systems, Inc., 1985, 1996.
(C) Copyright Software Development Group, University of Waterloo, 1989.

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or
Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

IBM is a registered trademark of the IBM Corp.

$ su
# df
Mounted on Filesystem Avail/Total Files Status
/var (OMVS.SC64.VAR) 14104/14400 4294967276 Available
/etc (OMVS.SC64.ETC) 84448/86400 4294967052 Available
/ (OMVS.SC64.ROOT) 158712/1368000 4294958129 Available
# /usr/sbin/automount 1
FOMF0107I Processing file /etc/u.map
FOMF0108I Managing directory /u 2
# df 3
Mounted on Filesystem Avail/Total Files Status
/u (*AMD/u) 0/8 0 Available
/var (OMVS.SC64.VAR) 14104/14400 4294967276 Available
/etc (OMVS.SC64.ETC) 84448/86400 4294967052 Available
/ (OMVS.SC64.ROOT) 158712/1368000 4294958129 Available
# cd /u/user1 4
# cd /u/user2 4
# df 5
Mounted on Filesystem Avail/Total Files Status
/u (*AMD/u) 0/8 0 Available
/u/user2 (OMVS.SC64.USER2) 1400/1440 4294967294 Available
/u/user1 (OMVS.SC64.USER1) 1400/1440 4294967294 Available
/var (OMVS.SC64.VAR) 14104/14400 4294967276 Available
/etc (OMVS.SC64.ETC) 84448/86400 4294967052 Available
/ (OMVS.SC64.ROOT) 158712/1368000 4294958129 Available
# ls -ldn /u/user1 6
drwx------ 2 0 0 8192 Jun 25 02:20 /u/user1
# chown -R user1 /u/user1 7
# ls -ld /u/user1 8
drwx------ 2 USER1 SYS1 8192 Jun 25 02:20 /u/user1
#

2

252 Hierarchical File System Usage Guide



4 Change directory (cd) commands are issued to access directories in two file
systems to be mounted off the /u directory. In this case, the directories user1
and user2 are used to resolve the <uc_name> symbol in the /etc/u.map file.
The user1 and user2 directory names are translated to uppercase and
substituted to build the HFS data set names, OMVS.SC64.USER1 and
OMVS.SC64.USER2, respectively.

The user1 and user2 directories do not physically exist in any file system, but
they are created as pseudo-mount points by the automount facility on which
the HFS data sets OMVS.SC64.USER1 and OMVS.SC64.USER2 are
mounted.

5 Output from another display free space command (df) shows (*AMD/u) is
monitoring the /u directory. It also shows the OMVS.SC64.USER1 and
OMVS.SC64.USER2 data sets are now mounted at pseudo mount points
/u/user1 and /u/user2 respectively.

Note: When automount is actively monitoring a particular mount point (in this
case, /u), it is no longer possible to add a file to this directory (/u) or create a
new subdirectory off the /u directory using the mkdir command. If attempted,
you will receive the message:

EDC515I Dynamic allocation error

6 The ls -ldn /u/user1 command is issued against the /u/user1 directory and
the directory attributes are displayed using the numeric values for UID and
GID.

7 The chown command is issued to change the ownership of the /u/user1
directory from UID 0 to USER1.

8 The ls -ld /u/user1 command is issued again to show that the owner field of
the /u/user1 directory is now set to USER1.

A.2.1.4 Step 4 - Starting automount when OMVS is started
When you have everything customized and working, you can have the automount
facility started when the UNIX System Services kernel is started by adding it to
the /etc/rc file. Add the following line to the /etc/rc file:

# Start the automount facility
/usr/sbin/automount

A.2.1.5 Step 5 - Using a specific entry in a mapname file
Use specific entries for directory names when the parameters you wish to use
differ from the generic entry. Any parameters that are not specified are inherited
from the generic entry. Figure 120 shows a specific entry defining a directory
name called itsosj in the name parameter of the MapName file, rather than an *.
Also notice that in this example the duration for generic mounts is set to unmount
idle file systems after 60 minutes, but in our specific mount entry, idle file systems
will stay mounted indefinitely.
Appendix A. Miscellaneous implementation topics 253



Figure 120. Specific entry in a MapName file

Whenever the directory /u/itsosj is referenced by a command such as cd or cp,
automount will mount HFS data set OMVS.ITSOSJ.HFS.

A.2.2 Changing which data sets get automounted

The automount facility is really a physical file system (PFS) that is started with a
FILESYSTYPE statement in the PARMLIB. After the PFS is started, automount
manages the policy you make active through the /usr/sbin/automount command.
You can change the automount policy at any time, although you cannot set it to
null. To change it, update your automount configuration files and run the
automount (/usr/sbin/automount).

BROWSE -- /etc/auto.master ------
COMMAND ===>
*************** Top of Data **********
/u /etc/u.map
*************** Bottom of Data *******

BROWSE -- /etc/u.map -------------
COMMAND ===>
*************** Top of Data **********
name *
type HFS
filesystem OMVS.SC64.<uc_name>
mode rdwr
duration nolimit
delay 0
/*
name itsosj
type HFS
filesystem OMVS.ITSOSJ.HFS
mode rdwr
duration 60
delay 0
*************** Bottom of Data *******

• Do not use a slash (/) in front of the name of the directory to be mounted in
a specific entry in a MapName file. For example, in /etc/u.map:

name itsosj

is correct, while

name /itsosj

is NOT correct.

• The directory name and the data set name qualifier for the HFS data set,
which is replaced by the variable <uc_name>, have to be the same.
Otherwise you will get error messages like:

EDC129I No such file or directory

or

EDC515I Dynamic allocation error

Important Information
254 Hierarchical File System Usage Guide



A.2.3 Stopping the automount facility

You cannot stop automount after it has been started because there are no
external commands to stop any PFS. To turn automount off, change your
automount configuration files so that automount is set to manage a dummy
directory. Then activate that configuration with the /usr/sbin/automount command.
Appendix A. Miscellaneous implementation topics 255



256 Hierarchical File System Usage Guide



Appendix B. Sample JCL and output

This appendix provides sample JCL that we have used in our project. Samples
are provided in a logical order. We have also included additional information
(such as ISPF Data Set Information, LISTCAT outputs and notes) to make it
easier to follow the logical order, and to understand the associated results of the
jobs.

B.1 HFS data set related information

There are several ways in which you can find information about HFS file systems.

B.1.1 D OMVS,F

You can use D OMVS,FILE to display a list of the file systems that UNIX System
Services is currently using together with the status of each file system.

B.1.2 df

The df shell command gives you information about the space used and available
within a file system. By default, it gives you space information in units of 512-byte
blocks.

Note that the output of the df command may show different values from confighfs
and ISPF. The df command also includes the space reserved for shadow writes of
the metadata pages and so will usually show that more space is used. The values
will be closest immediately after a sync operation.

Issued without parameters, it tells you about all mounted file systems.

D OMVS,F
BPXO044I 18.25.50 DISPLAY OMVS 410
OMVS 000F ACTIVE OMVS=(7B)
TYPENAME DEVICE ----------STATUS----------- MODE QJOBNAME QPID
TFS 5 ACTIVE RDWR
NAME=/TMP
PATH=/tmp
MOUNT PARM=-s 500

HFS 12 ACTIVE RDWR
NAME=OMVS.STYRES1.HFS3
PATH=/u/guts

HFS 4 ACTIVE RDWR
NAME=OMVS.SC63.VAR
PATH=/var

HFS 3 ACTIVE RDWR
NAME=OMVS.SC63.USERS
PATH=/u

HFS 2 ACTIVE RDWR
NAME=OMVS.SC63.ETC
PATH=/etc

HFS 1 ACTIVE RDWR
NAME=HFS.OS390R7.SC63.O37RA1.ROOT
PATH=/
© Copyright IBM Corp. 1999, 2000 257



B.1.3 df -P

The -P parameter lists complete information about space used.

We have 1176352 blocks of 512 bytes. If we divide by eight, we get the number of
pages which is 147044.

B.1.4 ISPF information for root HFS

ISPF/PDF can also tell us about the space used for an individual HFS data set.

Here, we see an example for the root data set.

STYRES3 @ SC63:/u/guts>df
Mounted on Filesystem Avail/Total Files Status
/tmp (/TMP) 999703/1000000 127962 Available
/u/guts (OMVS.STYRES1.HFS3) 21208/21600 4294967284 Available
/var (OMVS.SC63.VAR) 12904/12960 4294967293 Available
/u (OMVS.SC63.USERS) 37216/37440 4294967282 Available
/etc (OMVS.SC63.ETC) 73552/76320 4294967039 Available
/ (HFS.OS390R7.SC63.O37RA1.ROOT)203168/1379520 4294949032 Available

STYRES3 @ SC63:/>df -P
Filesystem 512-blocks Used Available Capacity Mounted on
/TMP 1000000 367 999633 1% /tmp
OMVS.STYRES1.HFS3 21600 392 21208 2% /u/guts
OMVS.SC63.VAR 12960 56 12904 1% /var
OMVS.SC63.USERS 37440 224 37216 1% /u
OMVS.SC63.ETC 76320 2768 73552 4% /etc
HFS.OS390R7.SC63.O37RA1.ROOT 1379520 1176352 203168 86% /

Data Set Name . . . : HFS.OS390R7.SC63.O37RA1.ROOT

General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 958
Storage class . . . : OPENMVS Allocated extents . : 2
Volume serial . . . : SBOX14 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 147044
Record length . . . : 0 % Utilized . . . . : 85
Block size . . . . : 0 Number of members . : 18263
1st extent cylinders: 878
Secondary cylinders : 80
Data set name type : HFS
258 Hierarchical File System Usage Guide



B.1.5 ISPF information for HFS OMVS.SC63.USERS

Following, we have a display from ISPF for a data set containing user file
systems:

B.1.6 ISPF information for HFS OMVS.STYRES1.HFS3

B.1.7 confighfs /

The next example shows the output from the confighfs command. This command
was introduced by DFSMS/MVS 1.5.

For more detail on the confighfs command, please see 3.3.5, “confighfs shell
command” on page 68.

Data Set Name . . . : OMVS.SC63.USERS

General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 26
Storage class . . . : OPENMVS Allocated extents . : 1
Volume serial . . . : SBOX06 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 25
Record length . . . : 0 % Utilized . . . . : 1
Block size . . . . : 0 Number of members . : 12
1st extent cylinders: 26
Secondary cylinders : 26
Data set name type : HFS

Data Set Name . . . : OMVS.STYRES1.HFS3

General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 15
Storage class . . . : OPENMVS Allocated extents . : 1
Volume serial . . . : SBOX06 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 49
Record length . . . : 0 % Utilized . . . . : 1
Block size . . . . : 0 Number of members . : 11
1st extent cylinders: 15
Secondary cylinders : 15
Data set name type : HFS
Appendix B. Sample JCL and output 259



B.1.7.1 HFRFN for OMVS.OS390R7.SC63.O37RC1.ROOT
The High Formatted page number is hexadecimal 272A2 or, in decimal, 160418.
Dividing 160418 by 12 (the number of pages per track) gives us 13369 tracks
used. Dividing again by 15 (the number of tracks per cylinder) gives us 892
formatted cylinders.

STYRES3 @ SC63:/usr/lpp/dfsms/bin>confighfs /
Statistics for file system HFS.OS390R7.SC63.O37RA1.ROOT
( 06/18/99 6:36pm )
File system size:____172440

_673.59375(MB)
Used pages: ____147044

_574.39063(MB)
Attribute pages: ______1911

____7.4648(MB)
Cached pages: _______167

___0.65234(MB)
Seq I/O reqs: _________________499
Random I/O reqs: ___________________0
Lookup hit: _______________53697
Lookup miss: _______________17924
1st page hit: _______________10417
1st page miss: _________________430
Index new tops: ___________________1
Index splits: __________________26
Index joins: ___________________7
Index read hit: ______________102005
Index read miss: ________________1363
Index write hit: _______________10320
Index write miss:___________________0
RFS flags __________________82(HEX)
RFS error flags: ___________________0(HEX)
High format RFN: _______________272A2(HEX)
Member count: ____________41067008
Sync interval: __________________60(seconds)
260 Hierarchical File System Usage Guide



B.1.8 confighfs /u

B.1.8.1 HFRFN for OMVS.SC63.USERS
The High Formatted page number is hexadecimal 18 or decimal 24.

As before, we can divide by 12 to gives us the number of tracks which is 2
formatted tracks.

STYRES3 @ SC63:/usr/lpp/dfsms/bin>confighfs /u
Statistics for file system OMVS.SC63.USERS
( 06/17/99 7:36pm )
File system size:______4680

__18.28125(MB)
Used pages: ________25

0.09765625(MB)
Attribute pages: _________4

__0.015625(MB)
Cached pages: _________2

_0.0078125(MB)
Seq I/O reqs: ___________________7
Random I/O reqs: ___________________0
Lookup hit: __________________47
Lookup miss: __________________10
1st page hit: _________________654
1st page miss: ___________________7
Index new tops: ___________________1
Index splits: ___________________0
Index joins: ___________________0
Index read hit: __________________67
Index read miss: ___________________5
Index write hit: __________________41
Index write miss:___________________0
RFS flags __________________82(HEX)
RFS error flags: ___________________0(HEX)
High format RFN: __________________18(HEX)
Member count: ________________6144
Sync interval: __________________60(seconds)
Appendix B. Sample JCL and output 261



B.1.9 confighfs /u/guts output

B.1.9.1 HFRFN for OMVS.STYRES1.HFS3
The High Formatted page number is hexadecimal 31 or decimal 49. Dividing by
12 and rounding up gives us 5 formatted tracks.

B.2 Sample DFSMSdss jobs

These are jobs that we used to test backup and recovery.

B.2.1 Logical DUMP without ALLDATA(*)

STYRES3 @ SC63:/usr/lpp/dfsms/bin>confighfs /u/guts
Statistics for file system OMVS.STYRES1.HFS3
( 06/17/99 7:33pm )
File system size:______2700

_10.546875(MB)
Used pages: ________49

0.19140625(MB)
Attribute pages: _________1

_0.0039063(MB)
Cached pages: _________4

__0.015625(MB)
Seq I/O reqs: ___________________1
Random I/O reqs: ___________________0
Lookup hit: ___________________2
Lookup miss: ___________________1
1st page hit: ___________________3
1st page miss: ___________________5
Index new tops: ___________________0
Index splits: ___________________0
Index joins: ___________________0
Index read hit: ___________________3
Index read miss: ___________________1
Index write hit: ___________________0
Index write miss:___________________0
RFS flags __________________82(HEX)
RFS error flags: ___________________0(HEX)
High format RFN: __________________31(HEX)
Member count: _______________12544
Sync interval: __________________60(seconds)

//DUMP EXEC PGM=ADRDSSU
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA),
// SPACE=(CYL,(20,20)),DCB=BLKSIZE=32760,
// DSN=OMVS.STYRES1.HFS3.DSSDUMP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(OMVS.STYRES1.HFS3)) -

OUTDDNAME(OUT1)
/*
262 Hierarchical File System Usage Guide



B.2.2 RESTORE with RENAMEU

B.2.2.1 ISPF Information for OMVS.STYRES1.HFS3.BACKUP

Note: The amount of allocated space was reduced from 15 cylinders to 1
cylinder, because the HFRFN pointed to the 5th track. The number of used pages
was not changed.

B.2.3 Logical DUMP with ALLDATA(*)

Note: This HFS is not mounted.

//RESTORE EXEC PGM=ADRDSSU
//IN1 DD DSN=OMVS.STYRES1.HFS3.DSSDUMP,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
RESTORE INDD(IN1) -

DATASET(INCLUDE(OMVS.STYRES1.HFS3)) -
RENAMEU(OMVS.STYRES1.HFS3,OMVS.STYRES1.HFS3.BACKUP)

/*

Data Set Name . . . : OMVS.STYRES1.HFS3.BACKUP

General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 1
Storage class . . . : OPENMVS Allocated extents . : 1
Volume serial . . . : SBOX15 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 49
Record length . . . : 0 % Utilized . . . . : 27
Block size . . . . : 0 Number of members . : 11
1st extent cylinders: 1
Secondary cylinders : 15
Data set name type : HFS

//DUMP EXEC PGM=ADRDSSU
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA),
// SPACE=(CYL,(20,200)),DCB=BLKSIZE=32760,
// DSN=OMVS.STYRES1.HFS1.DSSDUMP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(OMVS.STYRES1.HFS1)) -

ALLDATA(*) -
OUTDDNAME(OUT1)

/*
Appendix B. Sample JCL and output 263



B.2.3.1 ISPF Information for HFS OMVS.STYRES1.HFS1

B.2.4 RESTORE to a preallocated HFS with REPLACE

Note: We renamed the original HFS from OMVS.STYRES1.HFS1 to
OMVS2.STYRES1.HFS2. Afterwards we allocated a new HFS with the same
name as the original HFS by using ISPF option 3.2.

B.2.4.1 ISPF allocation panel (option 3.2)

Note: Our primary request of 50 cylinders was reduced to 42 cylinders of primary
and 9 cylinders of secondary, due to the Default Device Geometry settings in
ISMF. On our system the Default Device Geometry is set for a 3380 volume:

• Bytes/track . . . . . : 47476
• Tracks/cylinder . . . : 15

A 3390 volume has a capacity of 56664 bytes/track. Therefore, all allocations to a
3390 will be reduced by s factor of 1.19 (56664/47476).

Data Set Name . . . : OMVS.STYRES1.HFS1

General Data Current Allocation
Management class . . : MCDB22 Allocated tracks . : 30
Storage class . . . : OPENMVS Allocated extents . : 2
Volume serial . . . : SBOX13 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 157
Record length . . . : 0 % Utilized . . . . : 43
Block size . . . . : 0 Number of members . : 4
1st extent tracks . : 15
Secondary tracks . : 15
Data set name type : HFS

Allocate New Data Set
Command ===>

More:
Data Set Name . . . : OMVS.STYRES1.HFS1

Management class . . . (Blank for default management class)
Storage class . . . . (Blank for default storage class)
Volume serial . . . . (Blank for system default volume) **
Device type . . . . . (Generic unit or device address) **
Data class . . . . . . (Blank for default data class)
Space units . . . . . CYLINDER (BLKS, TRKS, CYLS, KB, MB, BYTES

or RECORDS)
Average record unit (M, K, or U)
Primary quantity . . 50 (In above units)
Secondary quantity 10 (In above units)
Directory blocks . . 0 (Zero for sequential data set) *
Record format . . . . U
Record length . . . . 0
Block size . . . . . 0
Data set name type : HFS (LIBRARY, HFS, PDS, or blank) *
264 Hierarchical File System Usage Guide



B.2.4.2 RESTORE with REPLACE

B.2.4.3 ISPF Information for HFS OMVS.STYRES1.HFS1

Note: The ISPF Data Set Info shows that the HFS data set was increased from
30 tracks to 42 cylinders.

B.2.4.4 Dumping and filtering on DSORG

Note: We have specified TYPRUN=NORUN. Only input data set selection is
done without actually processing data sets. Printed output for the run indicates
the data sets selected.

//RESTORE EXEC PGM=ADRDSSU
//IN1 DD DSN=OMVS.STYRES1.HFS1.DSSDUMP,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
RESTORE INDD(IN1) -

DATASET(INCLUDE(OMVS.STYRES1.HFS1)) -
REPLACE

/*

Data Set Information
Command ===>

Data Set Name . . . : OMVS.STYRES1.HFS1

General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 42
Storage class . . . : OPENMVS Allocated extents . : 1
Volume serial . . . : SBOX14 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 157
Record length . . . : 0 % Utilized . . . . : 2
Block size . . . . : 0 Number of members . : 4
1st extent cylinders: 42
Secondary cylinders : 9
Data set name type : HFS

//DUMP EXEC PGM=ADRDSSU,PARM=('TYPRUN=NORUN')
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA,3),
// SPACE=(CYL,(400,200)),DCB=BLKSIZE=32760,
// DSN=OMVS.STYRES1.BACKUP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(BY(DSORG,EQ,HFS)) -

LOGINDYNAM(SBOX13) -
OUTDDNAME(OUT1)
Appendix B. Sample JCL and output 265



B.2.4.5 Dumping and filtering on data set name

B.2.4.6 Dumping with STORGRP parameter

B.2.4.7 Logical full volume dumps
Notes for the following samples:

1. We received a RC=4 (ADR377W for SYS1.VTOCIX.Vvolser and
SYS1.VVDS.Vvolser data sets) for this job. This can be avoided by excluding
these data sets from the operation using the EXCLUDE option such as:

DATASET(INCLUDE(**) EXCLUDE(SYS1.VTOCIX.V**, SYS1.VVDS.**))

2. We have specified TYPRUN=NORUN. Only input data set selection is done
without actually processing data sets. Printed output for the run indicates the
data sets selected.

Note: We received a RC=8 with message ADR380E reason code 75 for every
multi-volume HFS data set located on this volume. The reason code 75 indicates:

• All volumes of a multi-volume data set were not included in the input volume
list and SELECTMULTI was not specified.

//DUMP EXEC PGM=ADRDSSU,PARM=('TYPRUN=NORUN')
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA,3),
// SPACE=(CYL,(400,200)),DCB=BLKSIZE=32760,
// DSN=OMVS.STYRES1.BACKUP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(OMVS.**.HFS*.**)) -

OUTDDNAME(OUT1)

//DUMP EXEC PGM=ADRDSSU,PARM=('TYPRUN=NORUN')
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA,3),
// SPACE=(CYL,(20,20)),DCB=BLKSIZE=32760,
// DSN=OMVS.STYRES1.BACKUP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(**)) -

STORGRP(OPENMVS)) -
OUTDDNAME(OUT1)

/*

//DUMP EXEC PGM=ADRDSSU,PARM=('TYPRUN=NORUN')
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA,3),
// SPACE=(CYL,(20,20)),DCB=BLKSIZE=32760,
// DSN=OMVS.STYRES1.BACKUP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(**)) -

LOGINDYNAM(SBOX13) -
OUTDDNAME(OUT1)

/*
266 Hierarchical File System Usage Guide



To bypass this problem, you can use one of the following jobs:

• Specifying all volumes that contain a part of a multi-volume data set:

Note: We received an RC=4 (ADR377W for every SYS1.VTOCIX and
SYS1.VVDS data set) on this job. This can be avoided by excluding these
data sets from the operation using the EXCLUDE option such as:

DATASET(INCLUDE(**) EXCLUDE(SYS1.VTOCIX.V**, SYS1.VVDS.**))

• Specifying SELECTMULTI parameter:

Note: We received an RC=4 (ADR377W for SYS1.VTOCIX.SBOX13 and
SYS1.VVDS.VSBOX13) on this job. This can be avoided by excluding the
index VTOC from the operation using the EXCLUDE option such as:

DATASET(INCLUDE(**) EXCLUDE(SYS1.VTOCIX.V**, SYS1.VVDS.**))

//DUMP EXEC PGM=ADRDSSU,PARM=('TYPRUN=NORUN')
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA,3),
// SPACE=(CYL,(20,20)),DCB=BLKSIZE=32760,
// DSN=OMVS.STYRES1.BACKUP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(**)) -

LOGINDYNAM((SBOX13),(SBOX14),(SBOX15),(SBOX16),(SBOX17)) -
OUTDDNAME(OUT1)

/*

//DUMP EXEC PGM=ADRDSSU,PARM=('TYPRUN=NORUN')
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA,3),
// SPACE=(CYL,(20,20)),DCB=BLKSIZE=327
// DSN=OMVS.STYRES1.BACKUP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(**)) -

LOGINDYNAM(SBOX13) SELECTMULTI(ANY) -
OUTDDNAME(OUT1)

/*

//DUMP EXEC PGM=ADRDSSU,PARM=('TYPRUN=NORUN')
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA,3),
// SPACE=(CYL,(20,20)),DCB=BLKSIZE=3276
// DSN=OMVS.STYRES1.BACKUP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(**)) -

LOGINDYNAM(SBOX13) SELECTMULTI(FIRST) -
OUTDDNAME(OUT1)

/*
Appendix B. Sample JCL and output 267



Note: We received an RC=4 (ADR377W for SYS1.VTOCIX.SBOX13 and
SYS1.VVDS.VSBOX13) on this job. This can be avoided by excluding the
index VTOC from the operation using the EXCLUDE option such as:

DATASET(INCLUDE(**) EXCLUDE(SYS1.VTOCIX.V**, SYS1.VVDS.**))

B.2.5 Physical DUMP

Note: The HFS is not mounted.

Note: See B.2.3.1, “ISPF Information for HFS OMVS.STYRES1.HFS1” on page
264 for ISPF Data Set Information. We renamed the HFS in B.2.4.2, “RESTORE
with REPLACE” on page 265 from OMVS.STYRES1.HFS1 to
OMVS.STYRES.HFS2.

B.2.6 RESTORE (physical) with RENAMEU

//DUMP EXEC PGM=ADRDSSU
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA),
// SPACE=(CYL,(20,20)),DCB=BLKSIZE=32760,
// DSN=OMVS.STYRES1.HFS2.DSSDUMP.PHY
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP INDYNAM(SBOX13) -

DATASET(INCLUDE(OMVS.STYRES1.HFS2)) -
OUTDDNAME(OUT1)

/*

//RESTORE EXEC PGM=ADRDSSU
//IN1 DD DSN=OMVS.STYRES1.HFS2.DSSDUMP.PHY,DISP=OLD
//OUT1 DD UNIT=3390,VOL=SER=SBOX13,
// DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
RESTORE INDD(IN1) -

OUTDD(OUT1) -
DATASET(INCLUDE(OMVS.STYRES1.HFS2)) -
RENAMEU(OMVS.STYRES1.HFS2,OMVS.STYRES.HFS2.BACKUP.PHY)

/*
268 Hierarchical File System Usage Guide



B.2.6.1 ISPF Data Set Information

Note: The number of allocated tracks was not changed during physical restore
processing.

B.3 DFSMSdss multi-volume processing

These are jobs that we used to test backup and recovery of multi-volume HFS
data sets.

B.3.1 DUMP of root HFS

B.3.1.1 D OMVS,F
Note: The D OMVS,F command shows that the file system is quiesced during
dump processing.

Data Set Name . . . : OMVS.STYRES.HFS2.BACKUP.PHY

General Data Current Allocation
Management class . . : MCDB22 Allocated tracks . : 30
Storage class . . . : OPENMVS Allocated extents . : 1
Volume serial . . . : SBOX13 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 157
Record length . . . : 0 % Utilized . . . . : 43
Block size . . . . : 0 Number of members . : 4
1st extent tracks . : 30
Secondary tracks . : 15
Data set name type : HFS

//DUMP EXEC PGM=ADRDSSU
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA),
// SPACE=(CYL,(800,200)),DCB=BLKSIZE=32760,
// DSN=OMVS.SC63.ROOT.DSSDUMP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(HFS.OS390R7.SC63.O37RA1.ROOT)) -

OUTDDNAME(OUT1)
/*
Appendix B. Sample JCL and output 269



B.3.1.2 LISTCAT ENT(OMVS.SC63.ROOT.BACKUP.MULTI) VOL

Note: The root file system is still a single file system.

B.3.2 RESTORE to multi-volume HFS data set using MAKEMULTI

Note: The target HFS data set did not exist before the restore operation.

D OMVS,F

HFS 4 ACTIVE RDWR
NAME=OMVS.SC63.VAR
PATH=/var

HFS 3 ACTIVE RDWR
NAME=OMVS.SC63.USERS
PATH=/u

HFS 2 ACTIVE RDWR
NAME=OMVS.SC63.ETC
PATH=/etc

HFS 1 QUIESCED RDWRSTYRES1D 1728053278
NAME=HFS.OS390R7.SC63.O37RA1.ROOT
PATH=/

IDCAMS SYSTEM SERVICES TIM

/ LISTC ENT(HFS.OS390R7.SC63.O37RA1.ROOT) VOL
NONVSAM ------- HFS.OS390R7.SC63.O37RA1.ROOT

IN-CAT --- UCAT.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------1999.166
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS ----OPENMVS MANAGEMENTCLASS---MCDB22
DATACLASS --------(NULL) LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX14 DEVTYPE------X'3010200F'

//RESTORE EXEC PGM=ADRDSSU
//IN1 DD DSN=OMVS.SC63.ROOT.DSSDUMP,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
RESTORE INDD(IN1) -

MAKEMULTI -
DATASET(INCLUDE(HFS.OS390R7.SC63.O37RA1.ROOT)) -
RENAMEU(HFS.OS390R7.SC63.O37RA1.ROOT,OMVS.SC63.ROOT.BACKUP.MULTI)
270 Hierarchical File System Usage Guide



B.3.2.1 LISTCAT ENT(OMVS.SC63.ROOT.BACKUP.MULTI) VOL

Note: We truncated the output of the IDCAMS LISTCAT. The total number of
candidate volumes was 59.

B.3.3 RESTORE to multi-volume HFS data set using VOLCOUNT(N((02))

Note: The target HFS data set did not exist before the restore operation.

IDCAMS SYSTEM SERVICES TIME: 18:50:43 06/18/99
1

/ LISTC ENT(OMVS.SC63.ROOT.BACKUP.MULTI) VOL 00004001
NONVSAM ------- OMVS.SC63.ROOT.BACKUP.MULTI

IN-CAT --- MCAT.SANDBOX.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------1999.169
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS ----OPENMVS MANAGEMENTCLASS---MCDB22
DATACLASS --------(NULL) LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX13 DEVTYPE------X'3010200F'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'

//RESTORE EXEC PGM=ADRDSSU
//IN1 DD DSN=OMVS.SC63.ROOT.DSSDUMP,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
RESTORE INDD(IN1) -

VOLCOUNT(N(02)) -
DATASET(INCLUDE(HFS.OS390R7.SC63.O37RA1.ROOT)) -
RENAMEU(HFS.OS390R7.SC63.O37RA1.ROOT,OMVS.SC63.ROOT.BACKUP.MULTI)

/*
Appendix B. Sample JCL and output 271



B.3.3.1 LISTCAT ENT(OMVS.SC63.ROOT.BACKUP.MULTI) VOL

Note that we now have one actual volume and one candidate volume shown.

B.3.4 RESTORE to multi-volume HFS data set using VOLCOUNT(ANY)

Note: The target HFS data set did not exist before the restore operation.

B.3.4.1 ISPF Data Set Information

Note: The total amount of allocated space was reduced from 958 cylinders to 892
cylinders to match the HFRFN (see B.1.7, “confighfs /” on page 259).

COMMAND INPUT ===> SCROLL ===>
/ LISTC ENT(OMVS.SC63.ROOT.BACKUP.MULTI) VOL 000
NONVSAM ------- OMVS.SC63.ROOT.BACKUP.MULTI

IN-CAT --- MCAT.SANDBOX.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------1999.169
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS ----OPENMVS MANAGEMENTCLASS---MCDB22
DATACLASS --------(NULL) LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX13 DEVTYPE------X'3010200F'
VOLSER-----------------* DEVTYPE------X'00000000'

//RESTORE EXEC PGM=ADRDSSU
//IN1 DD DSN=OMVS.SC63.ROOT.DSSDUMP,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
RESTORE INDD(IN1) -

VOLCOUNT(ANY) -
DATASET(INCLUDE(HFS.OS390R7.SC63.O37RA1.ROOT)) -
RENAMEU(HFS.OS390R7.SC63.O37RA1.ROOT,OMVS.SC63.ROOT.BACKUP.MULTI)

/*

Data Set Name . . . : OMVS.SC63.ROOT.BACKUP.MULTI1

General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 892
Storage class . . . : OPENMVS Allocated extents . : 5
Volume serial . . . : SBOX15 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 147045
Record length . . . : 0 % Utilized . . . . : 91
Block size . . . . : 0 Number of members . : 18264
1st extent cylinders: 327
Secondary cylinders : 80
Data set name type : HFS
272 Hierarchical File System Usage Guide



B.3.4.2 LISTCAT ENT(OMVS.SC63.ROOT.BACKUP.MULTI1) VOL

Note: The HFS was converted from a single volume to a multi-volume data set
(three volumes).

B.3.5 RESTORE to preallocated multi-volume HFS

Note: We cannot restore an HFS data set to a preallocated (target) HFS data set
(requires REPLACE) with a different name (requires RENAME). Also, we could
not restore to an HFS data set while it is mounted. Therefore, we need two DUMP
and RESTORE processes.

B.3.5.1 DUMP

Note: Refer to B.3.4.1, “ISPF Data Set Information” on page 272 and to B.3.4.2,
“LISTCAT ENT(OMVS.SC63.ROOT.BACKUP.MULTI1) VOL” on page 273 for
more information about the allocation.

B.3.5.2 IDCAMS DELETE

IDCAMS SYSTEM SERVICES

/ LISTC ENT(OMVS.SC63.ROOT.BACKUP.MULTI1) VOL
NONVSAM ------- OMVS.SC63.ROOT.BACKUP.MULTI1

IN-CAT --- MCAT.SANDBOX.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------1999.169
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS ----OPENMVS MANAGEMENTCLASS---MCDB22
DATACLASS --------(NULL) LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX15 DEVTYPE------X'3010200F'
VOLSER------------SBOX16 DEVTYPE------X'3010200F'
VOLSER------------SBOX14 DEVTYPE------X'3010200F'

//DUMP EXEC PGM=ADRDSSU
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA,3),
// SPACE=(CYL,(400,200)),DCB=BLKSIZE=32760,
// DSN=OMVS.SC63.ROOT.BACKUP.MULTI1.DSSDUMP
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(OMVS.SC63.ROOT.BACKUP.MULTI1)) -

OUTDDNAME(OUT1)

//DELETE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DELETE (OMVS.SC63.ROOT.BACKUP.MULTI1)
/*
Appendix B. Sample JCL and output 273



B.3.5.3 IEFBR14 to allocate a multi-volume HFS data set

Note: The number of directory blocks must be specified for an HFS data set but
the value has no effect on allocation.

B.3.5.4 ISPF Information for the preallocated HFS (before RESTORE)

Note: Our primary request of 1,200 cylinders was reduced to 1,006 cylinders of
primary and 336 cylinders of secondary, due to the Default Device Geometry
settings in ISMF. On our system the Default Device Geometry is set for a 3380
volume:

• Bytes/track . . . . . : 47476
• Tracks/cylinder . . . : 15

A 3390 volume has a capacity of 56664 bytes/track.Therefore, all allocations to a
3390 will be reduced by a factor of 1.19 (56664/47476).

B.3.5.5 RESTORE to preallocated HFS with REPLACE

//ALLOC EXEC PGM=IEFBR14
//SYSPRINT DD SYSOUT=*
//DDNAME DD DSN=OMVS.SC63.ROOT.BACKUP.MULTI1,
// DISP=(NEW,KEEP),
// UNIT=(SYSDA,5),
// SPACE=(CYL,(1200,400,1)),
// DSNTYPE=HFS
/*

Data Set Name . . . : OMVS.SC63.ROOT.BACKUP.MULTI1

General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 1,006
Storage class . . . : OPENMVS Allocated extents . : 1
Volume serial . . . : SBOX16 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 5
Record length . . . : 0 % Utilized . . . . : 1
Block size . . . . : 0 Number of members . : 1
1st extent cylinders: 1006
Secondary cylinders : 336
Data set name type : HFS

//RESTORE EXEC PGM=ADRDSSU
//IN1 DD DSN=OMVS.SC63.ROOT.BACKUP.MULTI1.DSSDUMP,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
RESTORE INDD(IN1) -

REPLACE -
DATASET(INCLUDE(OMVS.SC63.ROOT.BACKUP.MULTI1))
274 Hierarchical File System Usage Guide



B.3.5.6 ISPF information for the preallocated HFS (after RESTORE)

Note: The number of used pages does not change. But now we have increased
our primary allocation from 892 cylinders to 1,006 cylinders.

B.3.5.7 LISTCAT for the preallocated HFS (before and after RESTORE)

Note: The number of volumes was increased to 5. Four of these are candidate
volumes.

B.4 Increasing the size of an HFS data set

This section shows how we increased the size of an HFS data set:

• confighfs -x extends an HFS file system.
• confighfs -xn extends an HFS file system to a new volume.

Data Set Name . . . : OMVS.SC63.ROOT.BACKUP.MULTI1

General Data Current Allocation
Management class . . : MCDB22 Allocated cylinders : 1,006
Storage class . . . : OPENMVS Allocated extents . : 1
Volume serial . . . : SBOX16 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 147045
Record length . . . : 0 % Utilized . . . . : 81
Block size . . . . : 0 Number of members . : 18264
1st extent cylinders: 1006
Secondary cylinders : 336
Data set name type : HFS

IDCAMS SYSTEM SERVICES

/ LISTC ENT(OMVS.SC63.ROOT.BACKUP.MULTI1) VOL
NONVSAM ------- OMVS.SC63.ROOT.BACKUP.MULTI1

IN-CAT --- MCAT.SANDBOX.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------1999.169
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS ----OPENMVS MANAGEMENTCLASS---MCDB22
DATACLASS --------(NULL) LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX16 DEVTYPE------X'3010200F'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'
Appendix B. Sample JCL and output 275



B.4.1 Using confighfs -x

B.4.1.1 ISPF Information

Note: At this time, the primary allocation is three tracks and no secondary
extents.

B.4.1.2 confighfs -x /u/styres1

Notes:

1. The copy of file1 to file3 has failed.

2. Therefore we increased the size of the HFS data set ’OMVS.STRYRES.HFS4’
by 2 tracks.

3. The number of total blocks was increased from 3 tracks (3 track * 12
page/track * 8 block/page = 288 (512byte) blocks) to 5 tracks (480 blocks).

Data Set Name . . . : OMVS.STYRES1.HFS4

General Data Current Allocation
Management class . . : MCDB22 Allocated tracks . : 3
Storage class . . . : OPENMVS Allocated extents . : 1
Volume serial . . . : SBOX17 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 5
Record length . . . : 0 % Utilized . . . . : 13
Block size . . . . : 0 Number of members . : 1
1st extent tracks . : 3
Secondary tracks . : 0
Data set name type : HFS

STYRES3 @ SC63:/>df
Mounted on Filesystem Avail/Total Files Status
/u/styres1 (OMVS.STYRES1.HFS4) 128/288 4294967292 Available

STYRES3 @ SC63:/>cd u/styres1
STYRES3 @ SC63:/u/styres1>cp file1 file3
cp: FSUM6259 target file "file3": EDC5133I No space left on device.
STYRES3 @ SC63:/u/styres1>

STYRES3 @ SC63:/usr/lpp/dfsms/bin>confighfs -x 2T /u/styres1
STYRES3 @ SC63:/usr/lpp/dfsms/bin>df
Mounted on Filesystem Avail/Total Files Status
/u/styres1 (OMVS.STYRES1.HFS4) 320/480 4294967292 Available
276 Hierarchical File System Usage Guide



B.4.1.3 ISPF Information after confighfs

Note: Now, we have a second extent and the current allocation is five tracks.
However, we still have no secondary extents specified (secondary tracks = 0).

Note: Now, we can successfully copy the file.

Note: The confighfs has not changed the secondary allocation value. So the HFS
cannot extend automatically. Therefore, we can run into the same situation again.

B.4.2 Using confighfs -xn and IDCAMS ALTER ADDVOLUMES

B.4.2.1 confighfs -xn

Note: The confighfs -xn to extend the HFS to another volume fails if no candidate
volumes are available for this HFS data set. See the next screen.

Data Set Name . . . : OMVS.STYRES1.HFS4

General Data Current Allocation
Management class . . : MCDB22 Allocated tracks . : 5
Storage class . . . : OPENMVS Allocated extents . : 2
Volume serial . . . : SBOX17 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 20
Record length . . . : 0 % Utilized . . . . : 33
Block size . . . . : 0 Number of members . : 3
1st extent tracks . : 3
Secondary tracks . : 0
Data set name type : HFS

STYRES3 @ SC63:/usr/lpp/dfsms/bin>cd /u/styres1
STYRES3 @ SC63:/u/styres1>ls
file1 file2
STYRES3 @ SC63:/u/styres1>cp file1 file3

STYRES3 @ SC63:/u/styres1>cp file1 file4
STYRES3 @ SC63:/u/styres1>cp file1 file5
cp: FSUM6259 target file "file5": EDC5133I No space left on device.
STYRES3 @ SC63:/u/styres1>

STYRES3 @ SC63:/u/styres1>cd /usr/lpp/dfsms/bin
STYRES3 @ SC63:/usr/lpp/dfsms/bin>confighfs -xn 4T /u/styres1
Error issuing PFSCTL: RC=0 ERRNO=133(85) REASON=5B27C005
ERRNO=133(85): No space available
Appendix B. Sample JCL and output 277



B.4.2.2 LISTCAT VOLUME

The LISTCAT joblog shows:

Note: The HFS data set ’OMVS.STYRES1.HFS4’ is a single volume data set.

B.4.2.3 IDCAMS ALTER ADDVOLUMES
Note: We unmounted the HFS data set before we ran the IDCAMS ALTER:

Note: This job adds two candidate volumes to the catalog entry for the HFS data
set ’OMVS.STRES1.HFS4’.

//DELETE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

LISTC ENT(OMVS.STYRES1.HFS4) VOL
/*

IDCAMS SYSTEM SERVICES

LISTC ENT(OMVS.STYRES1.HFS4) VOL
NONVSAM ------- OMVS.STYRES1.HFS4

IN-CAT --- MCAT.SANDBOX.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------1999.173
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS ----OPENMVS MANAGEMENTCLASS---MCDB22
DATACLASS --------(NULL) LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX17 DEVTYPE------X'3010200F'

//DELETE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

ALTER OMVS.STYRES1.HFS4 ADDVOLUMES(* *)
/*
278 Hierarchical File System Usage Guide



Note: The IDCAMS LISTCAT now shows the two candidate volumes.

B.4.2.4 HFS automatically extended to the next volume

Notes:

1. We have mounted the HFS data set again.
2. The HFS data set was extended automatically to the next volume.
3. Now, the total number of allocated 512-byte blocks is 960 (10 tracks).

IDCAMS SYSTEM SERVICES

LISTC ENT(OMVS.STYRES1.HFS4) VOL
NONVSAM ------- OMVS.STYRES1.HFS4

IN-CAT --- MCAT.SANDBOX.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------1999.173
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS ----OPENMVS MANAGEMENTCLASS---MCDB22
DATACLASS --------(NULL) LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX17 DEVTYPE------X'3010200F'
VOLSER-----------------* DEVTYPE------X'00000000'
VOLSER-----------------* DEVTYPE------X'00000000'

STYRES3 @ SC63:/usr/lpp/dfsms/bin>df
Mounted on Filesystem Avail/Total Files Status
/u/styres1 (OMVS.STYRES1.HFS4) 128/480 4294967290 Available

STYRES3 @ SC63:/usr/lpp/dfsms/bin>cd /u/styres1
STYRES3 @ SC63:/u/styres1>cp file1 file5
STYRES3 @ SC63:/u/styres1>df
Mounted on Filesystem Avail/Total Files Status
/u/styres1 (OMVS.STYRES1.HFS4) 608/960 4294967290 Available
Appendix B. Sample JCL and output 279



B.4.2.5 ISPF information

B.4.2.6 LISTCAT VOLUME

Note: The LISTCAT output shows that the HFS data set was extended to the next
volume.

B.4.2.7 confighfs -xn 4T

Notes:

1. We issued a second confighfs -xn command to extend the HFS to the third
volume.

2. The total number of allocated 512-byte blocks was increased from 960 (10
tracks) to 1344 (14 tracks).

Data Set Name . . . : OMVS.STYRES1.HFS4

General Data Current Allocation
Management class . . : MCDB22 Allocated tracks . : 10
Storage class . . . : OPENMVS Allocated extents . : 3
Volume serial . . . : SBOX17 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 56
Record length . . . : 0 % Utilized . . . . : 46
Block size . . . . : 0 Number of members . : 6
1st extent tracks . : 3
Secondary tracks . : 0
Data set name type : HFS

IDCAMS SYSTEM SERVICES

LISTC ENT(OMVS.STYRES1.HFS4) VOL
NONVSAM ------- OMVS.STYRES1.HFS4

IN-CAT --- MCAT.SANDBOX.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------1999.173
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS ----OPENMVS MANAGEMENTCLASS---MCDB22
DATACLASS --------(NULL) LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX17 DEVTYPE------X'3010200F'
VOLSER------------SBOX13 DEVTYPE------X'3010200F'
VOLSER-----------------* DEVTYPE------X'00000000'

STYRES3 @ SC63:/u/styres1>cd /usr/lpp/dfsms/bin
STYRES3 @ SC63:/usr/lpp/dfsms/bin>confighfs -xn 4T /u/styres1
STYRES3 @ SC63:/usr/lpp/dfsms/bin>df
Mounted on Filesystem Avail/Total Files Status
/u/styres1 (OMVS.STYRES1.HFS4) 896/1344 4294967289 Available
280 Hierarchical File System Usage Guide



B.4.2.8 ISPF information

Note: The Current Allocation is 14 tracks on four extents. We still have no
secondary allocation specified in the format 1 DSCB in the VTOC.

B.4.2.9 LISTCAT VOLUME

Note: The LISTCAT VOLUME output shows that the fourth extent went onto the
third volume.

B.5 Shared HFS - DFSMSdss dump from client

We tested sysplex sharing support in a sysplex consisting of three systems:
SC63, SC64 and SC65.

B.5.1 Mounting the HFS on system SC65

Using TSO MOUNT command in a batch job.

Data Set Name . . . : OMVS.STYRES1.HFS4

General Data Current Allocation
Management class . . : MCDB22 Allocated tracks . : 14
Storage class . . . : OPENMVS Allocated extents . : 4
Volume serial . . . : SBOX17 Maximum dir. blocks : NOLIMIT
Device type . . . . : 3390
Data class . . . . . :
Organization . . . : PO Current Utilization
Record format . . . : U Used pages . . . . : 56
Record length . . . : 0 % Utilized . . . . : 33
Block size . . . . : 0 Number of members . : 6
1st extent tracks . : 3
Secondary tracks . : 0
Data set name type : HFS

IDCAMS SYSTEM SERVICES

LISTC ENT(OMVS.STYRES1.HFS4) VOL
NONVSAM ------- OMVS.STYRES1.HFS4

IN-CAT --- MCAT.SANDBOX.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------1999.173
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS ----OPENMVS MANAGEMENTCLASS---MCDB22
DATACLASS --------(NULL) LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX17 DEVTYPE------X'3010200F'
VOLSER------------SBOX13 DEVTYPE------X'3010200F'
VOLSER------------SBOX15 DEVTYPE------X'3010200F'
Appendix B. Sample JCL and output 281



B.5.2 Displaying the ownership

Using D OMVS,F system command.

B.5.3 Displaying the ENQ

Displaying all ENQ’s for an HFS data set.

Note: Only the owning system SC65 (server) holds the ENQ’s. System SC64
(client) is part of the SYSBPX group. SC64 doesn’t held any ENQ for this
particular HFS data set, but it can also access the HFS in read-write mode.

B.5.4 Performing the DFSMSdss logical dump

DFSMSdss logical dump from the client system SC64.

//STEP1 EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
MOUNT FILESYSTEM('NIGELR2.TEST.HFS') +

MOUNTPOINT('/u/nigelr2') +
TYPE(HFS) MODE(RDWR) +
PARM('SYNC(120),NOWRITEPROTECT') +
SYSNAME(SC65) +
NOAUTOMOVE

/*

D OMVS,F
BPXO045I 15.08.28 DISPLAY OMVS 655
OMVS 000F ACTIVE OMVS=(9B)
TYPENAME DEVICE ----------STATUS----------- MODE
...
HFS 18 ACTIVE RDWR
NAME=NIGELR2.TEST.HFS
PATH=/u/nigelr2
MOUNT PARM=SYNC(120),NOWRITEPROTECT
OWNER=SC65 AUTOMOVE=N CLIENT=Y

...

D GRS,RES=(*,NIGELR2.TEST.HFS)
ISG343I 15.09.48 GRS STATUS 657
S=SYSTEMS SYSDSN NIGELR2.TEST.HFS
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SC65 OMVS 000F 008FDE28 SHARE OWN
S=SYSTEMS SYSZDSN NIGELR2.TEST.HFS
SYSNAME JOBNAME ASID TCBADDR EXC/SHR STATUS
SC65 OMVS 000F 008F77B8 EXCLUSIVE OWN
282 Hierarchical File System Usage Guide



Note: You can also specify CONCURRENT which specifies that the data is to be
processed with concurrent copy if possible.

B.5.4.1 Displaying the status during dump processing
The D OMVS,F system command shows that the HFS is quiesced during the
logical dump processing.

The df USS command returns an error message during dump processing
because the HFS data set is quiesced.

B.5.4.2 Displaying the status after dump processing
Afterwards, if the file system is unquiesced, the df -v USS command once more
shows the information about the file system (including the owner).

//DUMP EXEC PGM=ADRDSSU
//OUT1 DD DISP=(NEW,KEEP),
// UNIT=(SYSDA,6),STORCLAS=SCMHLRES,
// SPACE=(CYL,(200,200)),DCB=BLKSIZE=32760,
// DSN=NIGELR2.TEST.HFS.DSSDUMP.#2
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(NIGELR2.TEST.HFS)) -

OUTDDNAME(OUT1)
/*

D OMVS,F
BPXO045I 15.59.51 DISPLAY OMVS 672
OMVS 000F ACTIVE OMVS=(9B)
TYPENAME DEVICE ----------STATUS----------- MODE
...
HFS 18 QUIESCED RDWR
NAME=NIGELR2.TEST.HFS
PATH=/u/nigelr2
MOUNT PARM=SYNC(120),NOWRITEPROTECT
OWNER=SC65 AUTOMOVE=N CLIENT=Y
QSYSTEM=SC64 QJOBNAME=NIGELR2D QPID= 50462741

...

NIGELR2 @ SC64:/>df
Mounted on Filesystem Avail/Total Files Status
/SC65/tmp (/SC65/TMP) 999742/1000000 127967 Available
/SC64/tmp (/SC64/TMP) 999719/1000000 127964 Available
FSUMF168 w_getmntent could not obtain mount point for "NIGELR2.TEST.HFS".
/SC65/var (HFS.SC65.VAR) 74768/77760 4294967022 Available
/SC65/etc (HFS.SC65.ETC) 48952/51840 4294967044 Available
/SC65/dev (HFS.SC65.DEV) 14224/14400 4294967286 Available
/SC65 (WTSCPLX2.SC65.SYSTEM.HFS)992/1440 4294967275 Available
/was/hod (HFS.SC64.WAS.HOD) 42568/64800 4294966422 Available
/web/hod (HFS.SC64.WEB.HOD) 52400/57600 4294966750 Available
/SC64/var (HFS.SC64.VAR) 36776/38880 4294967277 Available
/SC64/etc (HFS.SC64.ETC) 85088/87840 4294967055 Available
/SC64/dev (HFS.SC64.DEV) 14224/14400 4294967283 Available
/O39RA1 (HFS.OS390R9.O39RA1.ROOT) 2674040/2675520 4294938691 Available
/SC64 (WTSCPLX2.SC64.SYSTEM.HFS)1032/1440 4294967279 Available
/ (WTSCPLX2.SYSPLEX.ROOT) 0/1536 4294967271 Available
Appendix B. Sample JCL and output 283



B.6 Recovery samples

This section shows how we tested a recovery procedure. To do this, we mounted
a file system and then broke the HFS data set internal structure.

B.6.1 Corrupt metadata recovery (example 1)

We mount our file system on mount point /u/nigelr2/old and display the file
structure.

We start a TSM backup for this file system.

NIGELR2 @ SC64:/>df -v
Mounted on Filesystem Avail/Total Files Status
...
/u/nigelr2 (NIGELR2.TEST.HFS) 262032/2888640 4294938692 Available
HFS, Read/Write
SYNC(120),NOWRITEPROTECT
File System Owner : SC65
...

NIGELR5 @ SC65:/>df
Mounted on Filesystem Avail/Total Files Status
...
/u/nigelr2/old (NIGELR2.TEST.HFS1.BAD2) 256/1440 4294967264 Available
...
NIGELR5 @ SC65:/>cd /u/nigelr2/old
NIGELR5 @ SC65:/u/nigelr2/old>ls
dir2 dir3 dir5 file1 file10 file11 file12 file13 file14
NIGELR5 @ SC65:/u/nigelr2/old>cd dir3/dir4
NIGELR5 @ SC65:/u/nigelr2/old/dir3/dir4>ls
dir50 dir6 file400 file401 file402 file403 file404 file41 file42
NIGELR5 @ SC65:/u/nigelr2/old/dir3/dir4>cd dir50
NIGELR5 @ SC65:/u/nigelr2/old/dir3/dir4/dir50>ls
file500 file501 file502 symlink503
284 Hierarchical File System Usage Guide



Now, we break the file system by zapping a specific metadata page on
DASD volume.

We try to display the attributes for a path which we broke before by using the ls

-l USS command.

dsmc> sel /u/nigelr2/old/ -sub=y
Selective Backup function invoked.

Directory--> 8,192 /u/nigelr2/old/ [Sent]
Directory--> 8,192 /u/nigelr2/old/dir2 [Sent]
Directory--> 8,192 /u/nigelr2/old/dir3 [Sent]
Directory--> 8,192 /u/nigelr2/old/dir5 [Sent]
Normal File--> 1,427 /u/nigelr2/old/file1 [Sent]
.
. (output lines removed for clarity)
.
Directory--> 8,192 /u/nigelr2/old/dir5/dir51 [Sent]
Normal File--> 2,800 /u/nigelr2/old/dir5/file51 [Sent]
Normal File--> 7,682 /u/nigelr2/old/dir5/file52 [Sent]
Normal File--> 1,440 /u/nigelr2/old/dir5/dir51/file51a
[Sent]
Symbolic Link--> 18 /u/nigelr2/old/dir5/dir51/symlink
[Sent]
Selective Backup processing of '/u/nigelr2/old/' finished without failure.

Total number of objects inspected: 31
Total number of objects backed up: 31
Total number of objects updated: 0
Total number of objects rebound: 0
Total number of objects deleted: 0
Total number of objects failed: 0
Total number of bytes transferred: 331.47 KB
Data transfer time: 1.70 sec
Network data transfer rate: 194.89 KB/sec
Aggregate data transfer rate: 50.36 KB/sec
Objects compressed by: 0%
Elapsed processing time: 00:00:06

NIGELR2 @ SC64:/>cd u/nigelr2/old
NIGELR2 @ SC64:/u/nigelr2/old>ls
dir2 dir3 dir5 file1 file10 file11 file12 file13 file14
NIGELR2 @ SC64:/u/nigelr2/old>cd dir3
NIGELR2 @ SC64:/u/nigelr2/old/dir3>ls
dir4 file31
NIGELR2 @ SC64:/u/nigelr2/old/dir3>cd dir4
NIGELR2 @ SC64:/u/nigelr2/old/dir3/dir4>ls
dir50 dir6 file400 file401 file402 file403 file404 file41 file42
NIGELR2 @ SC64:/u/nigelr2/old/dir3/dir4>ls -l
ls: ./dir50: EDC5157I An internal error has occurred.
ls: ./dir6: EDC5157I An internal error has occurred.
ls: ./file404: EDC5157I An internal error has occurred.
total 208
-r-xr-xr-x 1 NIGELR2 SYS1 1350 Mar 29 11:41 file400
-r-xr-xr-x 1 NIGELR2 SYS1 13350 Mar 29 11:41 file401
-r-xr-xr-x 1 NIGELR2 SYS1 66690 Mar 29 11:41 file402
-r-xr-xr-x 1 NIGELR2 SYS1 3000 Mar 29 11:41 file403
-r-xr-xr-x 1 NIGELR2 SYS1 6467 Mar 28 17:33 file41
-r-xr-xr-x 1 NIGELR2 SYS1 2581 Mar 28 17:34 file42
NIGELR2 @ SC64:/u/nigelr2/old/dir3/dir4>
Appendix B. Sample JCL and output 285



Note: The file file404 and the directories dir50 and dir6 are displayed on a ls
command, but not on a ls -l command because the ls -l command needs to read
the attributes (which are not available).

At this stage, a TSM backup is also impossible due to its inability to traverse the
damaged tree structure. The error message, which does not look helpful at first
glance, is also a pointer to the problem we have caused within the HFS:

To start to fix this problem, we need to mount a new file system on a different
mount point /u/nigelr2/new.

The copytree (using the check tree function) reports some errors within the file
system.

dsmc> sel /u/nigelr2/old/ -sub=y
Node Name: WTSC64OE
Session established with server ADSM: MVS
Server Version 3, Release 1, Level 2.40
Server date/time: 03/29/2000 16:46:31 Last access: 03/29/2000 13:44:37

Selective Backup function invoked.

ANS1028S Internal program error. Please see your service representative.

Total number of objects inspected: 13
Total number of objects backed up: 0
Total number of objects updated: 0
Total number of objects rebound: 0
Total number of objects deleted: 0
Total number of objects failed: 0
Total number of bytes transferred: 0
Data transfer time: 0.00 sec
Network data transfer rate: 0.00 KB/sec
Aggregate data transfer rate: 0.00 KB/sec
Objects compressed by: 0%
Elapsed processing time: 00:00:01

NIGELR2 @ SC64:/>df
Mounted on Filesystem Avail/Total Files Status
...
/u/nigelr2/old (NIGELR2.TEST.HFS1.BAD2) 10336/11520 4294967264 Available
/u/nigelr2/new (NIGELR2.TEST.HFS1.RECOVER.#2)13592/14400 4294967269 Availabl
...
286 Hierarchical File System Usage Guide



Now we can copy the "good" files and directories by using copytree into the new
file system at mount point /u/nigelr2/new/.

Note the errors from copytree, trying to access two complete directories and one
file. We will need TSM to help us with these later.

Alternatively, you can use the pax USS command to copy the remaining files and
directories into the new file system at mount point /u/nigelr2/new/.

NNIGELR2 @ SC64:/u>copytree /u/nigelr2/old
Checking /u/nigelr2/old
Scanning for file nodes...
Skipping mountpoint: /u/nigelr2/old/..
Cannot read directory: /u/nigelr2/old/dir3/dir4/dir50
Cannot read directory: /u/nigelr2/old/dir3/dir4/dir6
Processing 26 nodes
Cannot open file: /u/nigelr2/old//dir3/dir4/file404

*******************

Check complete. Error count= 3
Directory errors: 2
File errors: 1
Symlink errors: 0
Char-spec errors: 0
FIFO errors: 0
Sparse file count: 0
NIGELR2 @ SC64:/u>

NIGELR2 @ SC64:/u>copytree /u/nigelr2/old /u/nigelr2/new
Copying /u/nigelr2/old to /u/nigelr2/new
Scanning for file nodes...
Skipping mountpoint: /u/nigelr2/old/..
Cannot read directory: /u/nigelr2/old/dir3/dir4/dir50
Cannot read directory: /u/nigelr2/old/dir3/dir4/dir6
Processing 26 nodes
Creating directories
Creating other files
Cannot open file: /u/nigelr2/old//dir3/dir4/file404
Setting file attributes

*******************

Copy complete. Error count= 3
Directory errors: 2
Directories copied: 7
File errors: 1
Files copied: 17
Symlink errors: 0
Symlinks copied: 1
Char-spec errors: 0
Char-spec copied: 0
FIFO errors: 0
FIFOs copied: 0
Sparse file count: 0
NIGELR2 @ SC64:/u>
Appendix B. Sample JCL and output 287



Now we can restore only the missing files and directories to our new file system
at mount point /u/nigel/new by using the TSM restore function. The -ifnewer
command line option ensures that we do not overwrite the files that were
undamaged by our file system corruption. These files may be newer than the last
backup version, and we do not want to make matters worse by overwriting them!

NIGELR2 @ SC64:/u/nigelr2/old>pax -r -w . /u/nigelr2/new/
NIGELR2 @ SC64:/u/nigelr2/old>cd ..
NIGELR2 @ SC64:/u/nigelr2>cd new
NIGELR2 @ SC64:/u/nigelr2/new>ls
dir2 dir3 dir5 file1 file10 file11 file12 file13 file14
NIGELR2 @ SC64:/u/nigelr2/new>cd dir3
NIGELR2 @ SC64:/u/nigelr2/new/dir3>cd dir3
cd: dir3: EDC5129I No such file or directory.
NIGELR2 @ SC64:/u/nigelr2/new/dir3>cd dir4
NIGELR2 @ SC64:/u/nigelr2/new/dir3/dir4>ls -l
total 208
-r-xr-xr-x 1 NIGELR2 SYS1 1350 Mar 29 11:41 file400
-r-xr-xr-x 1 NIGELR2 SYS1 13350 Mar 29 11:41 file401
-r-xr-xr-x 1 NIGELR2 SYS1 66690 Mar 29 11:41 file402
-r-xr-xr-x 1 NIGELR2 SYS1 3000 Mar 29 11:41 file403
-r-xr-xr-x 1 NIGELR2 SYS1 6467 Mar 28 17:33 file41
-r-xr-xr-x 1 NIGELR2 SYS1 2581 Mar 28 17:34 file42
NIGELR2 @ SC64:/u/nigelr2/new/dir3/dir4>
288 Hierarchical File System Usage Guide



Note: Now, we have recovered the broken file system (HFS data set). But the
restored files and directories will only be current as of the date and time of the
last TSM backup. So we need to verify if the restored files and directories have
been changed since the last TSM backup (if possible!).

Please keep in mind that no error flag is set in PFS for this file system. You can
verify the error flag by using confighfs command (must be run on server system).

dsmc> res /u/nigelr2/old/ /u/nigelr2/new/ -sub=y -ifnewer
Session established with server ADSM: MVS
Server Version 3, Release 1, Level 2.40
Server date/time: 03/29/2000 18:12:00 Last access: 03/29/2000 18:01:57

Restore function invoked.

ANS1247I Waiting for files from the server...
Restoring 8,192 /u/nigelr2/old/ --> /u/nigelr2/new/ [Done]
Restoring 8,192 /u/nigelr2/old/dir2 --> /u/nigelr2/new/dir2
[Done]
Restoring 8,192 /u/nigelr2/old/dir3 --> /u/nigelr2/new/dir3
[Done]
Restoring 8,192 /u/nigelr2/old/dir5 --> /u/nigelr2/new/dir5
[Done]
Restoring 8,192 /u/nigelr2/old/dir3/dir4 --> /u/nigelr2/new/dir3/dir4
Restoring 8,192 /u/nigelr2/old/dir3/dir4/dir50 --> /u/nigelr2/new/dir3
Restoring 8,192 /u/nigelr2/old/dir3/dir4/dir6 --> /u/nigelr2/new/dir3/
Restoring 8,192 /u/nigelr2/old/dir3/dir4/dir60 --> /u/nigelr2/new/dir3
Restoring 8,192 /u/nigelr2/old/dir5/dir51 --> /u/nigelr2/new/dir5/dir5
File /u/nigelr2/new/file1 exists, skipping
File /u/nigelr2/new/file10 exists, skipping
File /u/nigelr2/new/file11 exists, skipping
File /u/nigelr2/new/file12 exists, skipping
File /u/nigelr2/new/file13 exists, skipping
File /u/nigelr2/new/file14 exists, skipping
File /u/nigelr2/new/dir2/file3 exists, skipping
File /u/nigelr2/new/dir3/file31 exists, skipping
File /u/nigelr2/new/dir3/dir4/file400 exists, skipping
File /u/nigelr2/new/dir3/dir4/file401 exists, skipping
File /u/nigelr2/new/dir3/dir4/file402 exists, skipping
File /u/nigelr2/new/dir3/dir4/file403 exists, skipping
Restoring 3,026 /u/nigelr2/old/dir3/dir4/file404 --> /u/nigelr2/new/di
File /u/nigelr2/new/dir3/dir4/file41 exists, skipping
File /u/nigelr2/new/dir3/dir4/file42 exists, skipping
Restoring 1,960 /u/nigelr2/old/dir3/dir4/dir50/file500 --> /u/nigelr2/
Restoring 3,432 /u/nigelr2/old/dir3/dir4/dir50/file501 --> /u/nigelr2/
Restoring 177,800 /u/nigelr2/old/dir3/dir4/dir50/file502 --> /u/nigelr2/
Restoring 18 /u/nigelr2/old/dir3/dir4/dir50/symlink503 --> /u/nigel
Restoring 1,360 /u/nigelr2/old/dir3/dir4/dir60/file600 --> /u/nigelr2/
File /u/nigelr2/new/dir5/file51 exists, skipping
File /u/nigelr2/new/dir5/file52 exists, skipping
File /u/nigelr2/new/dir5/dir51/file51a exists, skipping
File /u/nigelr2/new/dir5/dir51/symlink exists, skipping

Restore processing finished.

Total number of objects restored: 15
Total number of objects failed: 0
Total number of bytes transferred: 183.29 KB
Data transfer time: 0.30 sec
Network data transfer rate: 606.88 KB/sec
Aggregate data transfer rate: 51.73 KB/sec
Elapsed processing time: 00:00:03
Appendix B. Sample JCL and output 289



The same confighfs command fails on a client system.

B.6.2 Corrupt metadata recovery (example 2)

We use the same ’broken’ HFS data set as used in the first sample. But now, we
created a new file in the affected file system at mount point /u/nigelr2/old. The
new file cannot be written to DASD at sync time, because the PFS detects the
corrupted metadata structure during sync processing. The PFS sets an error flag
in the main control block (RFS) for the affected file system. To reset the RFS error
flag, you must unmount and mount the file system (HFS data set) again.

NIGELR5 @ SC65:/>cd /usr/lpp/dfsms/bin
NIGELR5 @ SC65:/O39RA1/usr/lpp/dfsms/bin>confighfs /u/nigelr2/old
Statistics for file system NIGELR2.TEST.HFS1.BAD2
( 03/29/00 5:58pm )
File system size:______1080

___4.21875(MB)
Used pages: _______117

0.45703125(MB)
Attribute pages: _________6

_0.0234375(MB)
Cached pages: ________34

_0.1328125(MB)
Seq I/O reqs: __________________18
Random I/O reqs: ___________________0
Lookup hit: __________________74
Lookup miss: __________________46
1st page hit: __________________85
1st page miss: __________________18
Index new tops: ___________________0
Index splits: ___________________0
Index joins: ___________________0
Index read hit: _________________251
Index read miss: ___________________6
Index write hit: __________________72
Index write miss:___________________0
RFS flags __________________82(HEX)
RFS error flags: ____________0(HEX)
High foramt RFN: __________________75(HEX)
Member count: __________________31
Sync interval: __________________60(seconds)

NIGELR2 @ SC64:/O39RA1/usr/lpp/dfsms/bin>confighfs /u/nigelr2/old
Error issuing PFSCTL: RC=0 ERRNO=129(81) REASON=5B360105
ERRNO=129(81): HFS is not mounted
NIGELR2 @ SC64:/O39RA1/usr/lpp/dfsms/bin>
290 Hierarchical File System Usage Guide



We create a new file /u/nigelr2/old/output in the affected file system.

Since the sync has not occurred, the error flag is not set.

NIGELR5 @ SC65:/u>cd /usr/lpp/dfsms/bin
NIGELR5 @ SC65:/O39RA1/usr/lpp/dfsms/bin>confighfs /u/nigelr2/old
Statistics for file system NIGELR2.TEST.HFS1.BAD2
( 03/30/00 11:41am )
File system size:______1440

_____5.625(MB)
Used pages: _______117

0.45703125(MB)
Attribute pages: _________6

_0.0234375(MB)
Cached pages: _________0

_________0(MB)
Seq I/O reqs: ___________________0
Random I/O reqs: ___________________0
Lookup hit: ___________________0
Lookup miss: ___________________0
1st page hit: ___________________0
1st page miss: ___________________0
Index new tops: ___________________0
Index splits: ___________________0
Index joins: ___________________0
Index read hit: ___________________7
Index read miss: ___________________0
Index write hit: ___________________0
Index write miss:___________________0
RFS flags __________________82(HEX)
RFS error flags: ___________________0(HEX)
High foramt RFN: __________________75(HEX)
Member count: __________________31
Sync interval: __________________60(seconds)

NIGELR5 @ SC65:/O39RA1/usr/lpp/dfsms/bin>cd /u/nigelr2/old
NIGELR5 @ SC65:/u/nigelr2/old>ls -l >>output
Appendix B. Sample JCL and output 291



A couple seconds later, the sync processing was performed. After the sync, the
error flag is on.

If the error flag is on, a copytree (checktree) fails.

NIGELR5 @ SC65:/u/nigelr2/old>cd /usr/lpp/dfsms/bin
NIGELR5 @ SC65:/O39RA1/usr/lpp/dfsms/bin>confighfs /u/nigelr2/old
Statistics for file system NIGELR2.TEST.HFS1.BAD2
( 03/30/00 11:42am )
File system size:______1440

_____5.625(MB)
Used pages: _______118

_0.4609375(MB)
Attribute pages: _________6

_0.0234375(MB)
Cached pages: _________0

_________0(MB)
...
Index write miss:___________________0
RFS flags __________________8E(HEX)
RFS error flags: ___________________0(HEX)
High foramt RFN: __________________75(HEX)
Member count: __________________32
Sync interval: __________________60(seconds)

NIGELR5 @ SC65:/O39RA1/usr/lpp/dfsms/bin>confighfs /u/nigelr2/old
Statistics for file system NIGELR2.TEST.HFS1.BAD2
( 03/30/00 11:42am )
File system size:______1440

_____5.625(MB)
Used pages: _______118

_0.4609375(MB)
Attribute pages: _________6

_0.0234375(MB)
Cached pages: _________0

_________0(MB)
...
Index write miss:___________________0
RFS flags __________________8E(HEX)
RFS error flags: __________________80(HEX)
High foramt RFN: __________________75(HEX)
Member count: __________________32
Sync interval: __________________60(seconds)
292 Hierarchical File System Usage Guide



We also cannot copy the files and directories by using copytree.

Also pax does not copy anything (no files in target file system).

A df command shows that the affected file system is mounted in read-write mode.

NIGELR5 @ SC65:/O39RA1/usr/lpp/dfsms/bin>cd /u
NIGELR5 @ SC65:/u>copytree /u/nigelr2/old
Checking /u/nigelr2/old
Scanning for file nodes...
Cannot read directory: /u/nigelr2/old
Processing 0 nodes

*******************

Check complete. Error count= 1
Directory errors: 1
File errors: 0
Symlink errors: 0
Char-spec errors: 0
FIFO errors: 0
Sparse file count: 0
NIGELR5 @ SC65:/u>

NIGELR5 @ SC65:/u>copytree /u/nigelr2/old /u/nigelr2/new
Copying /u/nigelr2/old to /u/nigelr2/new
Scanning for file nodes...
Cannot read directory: /u/nigelr2/old
Processing 0 nodes
Creating directories
Creating other files
Setting file attributes

*******************

Copy complete. Error count= 1
Directory errors: 1
Directories copied: 0
File errors: 0
Files copied: 0
Symlink errors: 0
Symlinks copied: 0
Char-spec errors: 0
Char-spec copied: 0
FIFO errors: 0
FIFOs copied: 0
Sparse file count: 0
NIGELR5 @ SC65:/u>

NIGELR5 @ SC65:/u>cd /u/nigelr2/old
NIGELR5 @ SC65:/u/nigelr2/old>pax -r -w . /u/nigelr2/new
NIGELR5 @ SC65:/u/nigelr2/old>cd ../new
NIGELR5 @ SC65:/u/nigelr2/new>ls
NIGELR5 @ SC65:/u/nigelr2/new>
Appendix B. Sample JCL and output 293



To reset the error flag, we unmount and then mount the file system again. We
mount the file system in read-only mode at the same mount point.

Now, the RFS error flag is reset.

Now, the checktree function of copytree tool detects the invalid metadata
structure.

NIGELR5 @ SC65:/u/nigelr2/new>df -v
Mounted on Filesystem Avail/Total Files Status
...
/u/nigelr2/new (NIGELR2.TEST.HFS1.RECOVER.#3)14224/14400 4294967294 Available
HFS, Read/Write
File System Owner : SC65
/u/nigelr2/old (NIGELR2.TEST.HFS1.BAD2) 10304/11520 4294967263 Available
HFS, Read/Write
File System Owner : SC65
/SC65/var (HFS.SC65.VAR) 74752/77760 4294967020 Available
...

NIGELR5 @ SC65:/u/nigelr2/new>df -v
Mounted on Filesystem Avail/Total Files Status
...
/u/nigelr2/new (NIGELR2.TEST.HFS1.RECOVER.#3)14224/14400 4294967294 Available
HFS, Read/Write
File System Owner : SC65
/u/nigelr2/old (NIGELR2.TEST.HFS1.BAD2) 11272/11520 4294967264 Available
HFS, Read Only
File System Owner : SC65
...

NIGELR5 @ SC65:/u/nigelr2/new>cd /usr/lpp/dfsms/bin
NIGELR5 @ SC65:/O39RA1/usr/lpp/dfsms/bin>confighfs /u/nigelr2/old
Statistics for file system NIGELR2.TEST.HFS1.BAD2
( 03/30/00 12:40pm )
...
RFS flags __________________82(HEX)
RFS error flags: ___________________0(HEX)
High foramt RFN: __________________75(HEX)
Member count: __________________31
Sync interval: __________________60(seconds)
294 Hierarchical File System Usage Guide



We can also copy the remaining files and directories to our new file system.

Note: The file file404, the directories dir50 and dir6 and the files behind the
directories could not copied due to the broken index structure.

Next, we must restore the missing files to our new file system by using a TSM
restore. See B.6.1, “Corrupt metadata recovery (example 1)” on page 284 for an
example of TSM restore processing.

NIGELR5 @ SC65:/O39RA1/usr/lpp/dfsms/bin>cd /u
NIGELR5 @ SC65:/u>copytree /u/nigelr2/old
Checking /u/nigelr2/old
Scanning for file nodes...
Skipping mountpoint: /u/nigelr2/old/..
Cannot read directory: /u/nigelr2/old/dir3/dir4/dir50
Cannot read directory: /u/nigelr2/old/dir3/dir4/dir6
Processing 26 nodes
Cannot open file: /u/nigelr2/old//dir3/dir4/file404

*******************

Check complete. Error count= 3
Directory errors: 2
File errors: 1
Symlink errors: 0
Char-spec errors: 0
FIFO errors: 0
Sparse file count: 0
NIGELR5 @ SC65:/u>

NIGELR5 @ SC65:/u>cd nigelr2/old
NIGELR5 @ SC65:/u/nigelr2/old>pax -r -w . /u/nigelr2/new
NIGELR5 @ SC65:/u/nigelr2/old>cd ../new
NIGELR5 @ SC65:/u/nigelr2/new>ls -l
total 120
drwxr-xr-x 2 NIGELR5 SYS1 8192 Mar 24 19:45 dir2
drwxr-xr-x 3 NIGELR5 SYS1 8192 Mar 28 17:34 dir3
drwxr-xr-x 3 NIGELR5 SYS1 8192 Mar 28 18:16 dir5
-rw-r--r-- 1 NIGELR5 SYS1 1427 Mar 24 19:44 file1
-r-xr-xr-x 1 NIGELR5 SYS1 2057 Mar 29 14:13 file10
-r-xr-xr-x 1 NIGELR5 SYS1 238 Mar 28 17:32 file11
-r-xr-xr-x 1 NIGELR5 SYS1 15561 Mar 28 18:14 file12
-r-xr-xr-x 1 NIGELR5 SYS1 392 Mar 28 18:15 file13
-r-xr-xr-x 1 NIGELR5 SYS1 3115 Mar 28 18:15 file14
NIGELR5 @ SC65:/u/nigelr2/new>cd dir3/dir4
NIGELR5 @ SC65:/u/nigelr2/new/dir3/dir4>ls -l
total 208
-r-xr-xr-x 1 NIGELR5 SYS1 1350 Mar 29 11:41 file400
-r-xr-xr-x 1 NIGELR5 SYS1 13350 Mar 29 11:41 file401
-r-xr-xr-x 1 NIGELR5 SYS1 66690 Mar 29 11:41 file402
-r-xr-xr-x 1 NIGELR5 SYS1 3000 Mar 29 11:41 file403
-r-xr-xr-x 1 NIGELR5 SYS1 6467 Mar 28 17:33 file41
-r-xr-xr-x 1 NIGELR5 SYS1 2581 Mar 28 17:34 file42
NIGELR5 @ SC65:/u/nigelr2/new/dir3/dir4>
Appendix B. Sample JCL and output 295



B.6.3 Lost volume recovery (example 3)

In this sample. we used a multi-volume HFS data set. We want to simulate the
loss of a volume in this sample.

We created a multi-volume HFS data set spanning three volumes, as shown on
the following LISTCAT report.

The file system is mounted on the same mount point as used in the samples
before.

TSO ISHELL - file system attributes shows:

NONVSAM ------- NIGELR2.MULTIVOL.HFS
IN-CAT --- UCAT.VSBOX01
HISTORY
DATASET-OWNER-----(NULL) CREATION--------2000.095
RELEASE----------------2 EXPIRATION------0000.000
ACCOUNT-INFO-----------------------------------(NULL)
DSNTYPE--------------HFS

SMSDATA
STORAGECLASS -----SCTEST MANAGEMENTCLASS---MCDB22
DATACLASS -----------HFS LBACKUP ---0000.000.0000

VOLUMES
VOLSER------------SBOX27 DEVTYPE------X'3010200F'
VOLSER------------SBOX25 DEVTYPE------X'3010200F'
VOLSER------------SBOX26 DEVTYPE------X'3010200F'

READY

File System Attributes

File system name:
NIGELR2.MULTIVOL.HFS
Mount point:
/u/nigelr2/old

Status . . . . . . . . : Available
File system type . . . : HFS
Mount mode . . . . . . : R/W
Device number . . . . : 112
Type number . . . . . : 1
DD name . . . . . . . : SYS00073
Block size . . . . . . : 4096
Total blocks . . . . . : 1080
Available blocks . . . : 50
Blocks in use . . . . : 999
296 Hierarchical File System Usage Guide



We dumped our HFS data set by using the following job:

We also backed up the entire file system (HFS data set) by using TSM selective
backup.

Now, we:

• Create a new file: dir001/dir003/dir004/file101.

//DUMP EXEC PGM=ADRDSSU
//OUT1 DD DISP=(NEW,CATLG),
// STORCLAS=OPENMVS,
// SPACE=(CYL,(5,5)),DCB=BLKSIZE=32760,
// DSN=NIGELR2.MULTIVOL.HFS.DSSDUMP.ALLDATA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DUMP DATASET(INCLUDE(NIGELR2.MULTIVOL.HFS)) -

ALLDATA(*) -
OUTDDNAME(OUT1)

/*

dsmc> sel /u/nigelr2/old/ -sub=y
Selective Backup function invoked.

Directory--> 8,192 /u/nigelr2/old/ [Sent]
Directory--> 8,192 /u/nigelr2/old/dir001 [Sent]
Normal File--> 520,000 /u/nigelr2/old/file001 [Sent]
Normal File--> 240,000 /u/nigelr2/old/file002 [Sent]
Directory--> 8,192 /u/nigelr2/old/dir001/dir002 [Sent]
Directory--> 8,192 /u/nigelr2/old/dir001/dir003 [Sent]
Normal File--> 679,966 /u/nigelr2/old/dir001/file003 [Sent]
Normal File--> 899,940 /u/nigelr2/old/dir001/file004 [Sent]
Directory--> 8,192 /u/nigelr2/old/dir001/dir003/dir004
[Sent]
Normal File--> 450,000 /u/nigelr2/old/dir001/dir003/dir004/file006
[Sent]
Normal File--> 450,000 /u/nigelr2/old/dir001/dir003/dir004/file007
[Sent]
Normal File--> 530,000 /u/nigelr2/old/dir001/dir003/dir004/file008
[Sent]
Normal File--> 195,580 /u/nigelr2/old/dir001/dir003/dir004/file009
[Sent]
Normal File--> 44,000 /u/nigelr2/old/dir001/dir003/dir004/file010
[Sent]
Selective Backup processing of '/u/nigelr2/old/' finished without failure.

Total number of objects inspected: 14
Total number of objects backed up: 14
Total number of objects updated: 0
Total number of objects rebound: 0
Total number of objects deleted: 0
Total number of objects failed: 0
Total number of bytes transferred: 3.82 MB
Data transfer time: 7.79 sec
Network data transfer rate: 502.21 KB/sec
Aggregate data transfer rate: 264.39 KB/sec
Objects compressed by: 0%
Elapsed processing time: 00:00:14
Appendix B. Sample JCL and output 297



• Create a directory: dir101
• Create a symbolic link: dir101/sym001 (pointing to /usr/lpp/dfsms/bin)
• Delete a file: file010
• Modify file file001 (as shown on the following screen):

Now, we run an incremental TSM backup, which picks up the two changed files.
Note that it also generates a number of "expiring" messages on our system, some
of which are shown in the screen shot. This is because the previous backup
structure, for the corruption test, contained a number of directories that are no
longer present in our new multi-volume structure. By default, TSM would not
restore these, but the backup copies still exist in an "inactive" state. If we felt we
did still need these files, the inactive files could be restored. Note that inactive
files are also managed using a different TSM policy than active files.

Also note the long elapsed time, even though we are only backing up two files.
TSM still needs to traverse the tree and compare the file information to the server
database. We could have reduced this time by using the incrbydate option (see
6.4.1, “Tuning” on page 164).

EDIT /u/nigelr2/old/file001
Command ===>
****** ******************************************************* Top
000001
000002 - modified after TSM backup and DSS dump
000003
000004 /u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
000005 /u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
000006 /u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
...
298 Hierarchical File System Usage Guide



We again modify file file001 as shown in the following screen.

Next, we want to simulate a hardware failure. We did this by setting offline a
volume (SBOX25) in the middle of our HFS file system. Afterwards, we cannot
access any data (files or directories).

dsmc> i /u/nigelr2/old/ -sub=y

Incremental backup of volume '/u/nigelr2/old/'
Expiring--> 8,192 /u/nigelr2/old/... [Sent]
Expiring--> 98,304 /u/nigelr2/old/bin/IBM/FSUMVCHA [Sent]
Expiring--> 1,475 /u/nigelr2/old/bin/IBM/FSUMURUN [Sent]
Expiring--> 360,448 /u/nigelr2/old/bin/IBM/FSUMSYMN [Sent]
...
Directory--> 8,192 /u/nigelr2/old/dir101 [Sent]
...
Expiring--> 12 /u/nigelr2/old/dev [Sent]
Normal File--> 520,047 /u/nigelr2/old/file001 [Sent]
Expiring--> 16 /u/nigelr2/old/krb5 [Sent]
Expiring--> 4,803 /u/nigelr2/old/newfile1 [Sent]
Expiring--> 632 /u/nigelr2/old/newfile11 [Sent]
Expiring--> 12 /u/nigelr2/old/tmp [Sent]
Expiring--> 12 /u/nigelr2/old/var [Sent]
Expiring--> 44,000 /u/nigelr2/old/dir001/dir003/dir004/file010
[Sent]
Normal File--> 10,000 /u/nigelr2/old/dir001/dir003/dir004/file101
[Sent]
Symbolic Link--> 18 /u/nigelr2/old/dir101/sym001 [Sent]
Successful incremental backup of '/u/nigelr2/old/'

Total number of objects inspected: 32
Total number of objects backed up: 4
Total number of objects updated: 0
Total number of objects rebound: 0
Total number of objects deleted: 54,201
Total number of objects failed: 0
Total number of bytes transferred: 517.73 KB
Data transfer time: 0.00 sec
Network data transfer rate: 563,366.04 KB/sec
Aggregate data transfer rate: 0.33 KB/sec
Objects compressed by: 0%
Elapsed processing time: 00:25:32

EDIT /u/nigelr2/old/file001
Command ===>
****** ******************************************************* Top
000001
000002 - modified after TSM backup and DSS dump
000003
000004 - modified a second time after TSM incremental backup
000005
000006 /u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
000007 /u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
000008 /u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
...
Appendix B. Sample JCL and output 299



The confighfs output shows that the error flag was set for our affected file system.

The checktree function of copytree utility also reports a ’Directory error’.

NIGELR2 @ SC64:/u/nigelr2/old>ls
NIGELR2 @ SC64:/u/nigelr2/old>ls -l
total 0
NIGELR2 @ SC64:/u/nigelr2/old>

NIGELR5 @ SC65:/O39RA1/usr/lpp/dfsms/bin>confighfs /u/nigelr2/old
Statistics for file system NIGELR2.MULTIVOL.HFS
( 04/05/00 1:28pm )
File system size:______1080

___4.21875(MB)
Used pages: _______994

_3.8828125(MB)
Attribute pages: _________5

0.01953125(MB)
Cached pages: _________0

_________0(MB)
Seq I/O reqs: __________________38
Random I/O reqs: ___________________0
Lookup hit: _________________125
Lookup miss: ___________________0
1st page hit: __________________70
1st page miss: __________________39
Index new tops: ___________________1
Index splits: ___________________0
Index joins: ___________________0
Index read hit: _________________196
Index read miss: ___________________1
Index write hit: _________________120
Index write miss:___________________0
RFS flags __________________82(HEX)
RFS error flags: __________40(HEX)
High foramt RFN: _________________418(HEX)
Member count: __________________17
Sync interval: __________________60(seconds)

NIGELR2 @ SC64:/u>copytree /u/nigelr2/old
Checking /u/nigelr2/old
Scanning for file nodes...
Cannot read directory: /u/nigelr2/old
Processing 0 nodes

*******************

Check complete. Error count= 1
Directory errors: 1
File errors: 0
Symlink errors: 0
Char-spec errors: 0
FIFO errors: 0
Sparse file count: 0
300 Hierarchical File System Usage Guide



We allocated a new HFS data set ’NIGELR2.MULTIVOL.HFS.NEW’ and mounted
this at mount point /u/nigelr2/new.

Now, we tried to copy the affected file system into the new file system (HFS data
set) to salvage as many files and directories as we could. However, it wasn’t
possible.

We also tried to unmount and then to remount the affected HFS data set in
read-only mode again. However, this was not possible either. We got a dynamic
allocation error during mount processing.

NIGELR2 @ SC64:/u>df
Mounted on Filesystem Avail/Total Files Status
...
/u/nigelr2/old (NIGELR2.MULTIVOL.HFS) 368/8640 4294967278 Available
/u/nigelr2/new (NIGELR2.MULTIVOL.HFS.NEW)9904/10080 4294967294 Available
...

NIGELR2 @ SC64:/u>copytree /u/nigelr2/old /u/nigelr2/new
Copying /u/nigelr2/old to /u/nigelr2/new
Scanning for file nodes...
Cannot read directory: /u/nigelr2/old
Processing 0 nodes
Creating directories
Creating other files
Setting file attributes

*******************

Copy complete. Error count= 1
Directory errors: 1
Directories copied: 0
File errors: 0
Files copied: 0
Symlink errors: 0
Symlinks copied: 0
Char-spec errors: 0
Char-spec copied: 0
FIFO errors: 0
FIFOs copied: 0
Sparse file count: 0
Appendix B. Sample JCL and output 301



Therefore, we need to start our recovery from scratch. This means that we must
first restore from our DFSMSdss dump. Then, we will use TSM RESTORE (with
option ifnewer) to restore the file system to the time of the last TSM backup.

We used this DFSMSdss restore job (including an IDCAMS delete step so that we
could restore to a new name):

We mounted the restored HFS data set on mount point /u/nigelr2/new:

File Directory Special_file Tools File_systems Options Setup Help

Mount a File System

Mount point:
More:

/u/nigelr2/old

File system name . . 'NIGELR2.MULTIVOL.HFS
File system type . . HFS
New owner . . . . . ________
Owning system . . . ________

Select additional mount options:
_ Read-only file system
_ Ignore SETUID and SETGID
_ Bypass security
_ Do not automove file system
Mount parameter:

F1=Help F3=Exit F4=Name F6=Keyshelp F12=Cancel

Errno=97x Dynamic allocation error; Reason=02180000 The return code value
describes the error. Press Enter to continue.

//DELETE EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
/ DELETE (NIGELR2.MULTIVOL.HFS.RESTORE)
/*
//RESTORE EXEC PGM=ADRDSSU
//IN1 DD DISP=OLD,
// DSN=NIGELR2.MULTIVOL.HFS.DSSDUMP.ALLDATA
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
RESTORE INDD(IN1) -

STORCLAS(SCTEST) -
VOLCOUNT(N(3)) -
DATASET(INCLUDE(NIGELR2.MULTIVOL.HFS)) -
RENAMEU(NIGELR2.MULTIVOL.HFS,NIGELR2.MULTIVOL.HFS.RESTORE)

/*
302 Hierarchical File System Usage Guide



As you can see, we restored file001. However, this is not the latest version since
file001 was modified after the logical dump and then modified again after the
TSM backup.

We issued the TSM restore command to restore all files that were backed up to
file systems mounted at /u/nigelr2/new. We also specified parameter ifnewer to
restore only these files and directories that were backed up after the logical dump
was taken.

NIGELR2 @ SC64:/u>tso ish
NIGELR2 @ SC64:/u>df
Mounted on Filesystem Avail/Total Files Status
...
/u/nigelr2/new (NIGELR2.MULTIVOL.HFS.RESTORE)400/8640 4294967281 Available
...

BROWSE -- /u/nigelr2/new/file001 -------------------
Command ===>
********************************* Top of Data ********
/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
Appendix B. Sample JCL and output 303



The TSM restore brought back the directory dir101, the symbolic link sym001 and
the file file001, all of which were modified after the logical dump.

dsmc> res /u/nigelr2/old/* /u/nigelr2/new/ -sub=y -ifnewer
Restore function invoked.

ANS1247I Waiting for files from the server...
Restoring 8,192 /u/nigelr2/old/ --> /u/nigelr2/new/ [Done]
Restoring 8,192 /u/nigelr2/old/dir001 --> /u/nigelr2/new/dir001
[Done]
Restoring 8,192 /u/nigelr2/old/dir101 --> /u/nigelr2/new/dir101
[Done]
Restoring 8,192 /u/nigelr2/old/dir001/dir002 --> /u/nigelr2/new/dir001
/dir002 [Done]
Restoring 8,192 /u/nigelr2/old/dir001/dir003 --> /u/nigelr2/new/dir001
/dir003 [Done]
Restoring 8,192 /u/nigelr2/old/dir001/dir003/dir004 --> /u/nigelr2/new
/dir001/dir003/dir004 [Done]

--- User Action is Required ---
File '/u/nigelr2/new/file001' exists

Select an appropriate action
1. Replace this object
2. Replace all objects that already exist
3. Skip this object
4. Skip all objects that already exist
A. Abort this operation

Action [1,2,3,4,A] : 1
Restoring 520,047 /u/nigelr2/old/file001 --> /u/nigelr2/new/file001
[Done]
File /u/nigelr2/new/file002 exists, skipping
File /u/nigelr2/new/dir001/file003 exists, skipping
File /u/nigelr2/new/dir001/file004 exists, skipping
File /u/nigelr2/new/dir001/dir003/dir004/file006 exists, skipping
File /u/nigelr2/new/dir001/dir003/dir004/file007 exists, skipping
File /u/nigelr2/new/dir001/dir003/dir004/file008 exists, skipping
File /u/nigelr2/new/dir001/dir003/dir004/file009 exists, skipping
Restoring 10,000 /u/nigelr2/old/dir001/dir003/dir004/file101 --> /u/nig
elr2/new/dir001/dir003/dir004/file101 [Done]
Restoring 18 /u/nigelr2/old/dir101/sym001 --> /u/nigelr2/new/dir101
/sym001 [Done]

Restore processing finished.

Total number of objects restored: 9
Total number of objects failed: 0
Total number of bytes transferred: 517.71 KB
Data transfer time: 0.62 sec
Network data transfer rate: 828.73 KB/sec
Aggregate data transfer rate: 22.84 KB/sec
Elapsed processing time: 00:00:22
304 Hierarchical File System Usage Guide



However, note that the version of file001 that was restored is not the most recent
as that was modified after the TSM backup but before the hardware failure was
simulated.

Also note, that file010 was brought back by the DFSMSdss RESTORE job. It was
deleted after the dump but before the TSM backup. However, it still remains as
the TSM RESTORE does not delete files.

The final step is to decide what to do about file010 and file001. Almost certainly,
you would simply choose to delete file010. For file001, it is unlikely in practice
that you would know that it had been changed. We only know this because we
have been checking what has happened in detail. The action that you would
probably take is to check the date and time of the last TSM backup and notify
users that changes made after then have been lost.

BROWSE -- /u/nigelr2/new/file001 ------------------
Command ===>
******************************** Top of Data ******

- modified after TSM backup and DSS dump

/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
/u/nigelr2/old/file001 in hfs nigelr2.multivol.hfs
...

NIGELR2 @ SC64:/u/nigelr2/new>ls -l
total 1520
drwxrwxrwx 4 STC SYS1 8192 Apr 4 18:05 dir001
drwxrwxrwx 2 STC SYS1 8192 Apr 5 14:22 dir101
-rwxrwxrwx 1 STC SYS1 520047 Apr 5 11:30 file001
-rwxrwxrwx 1 STC SYS1 240000 Apr 4 18:03 file002
NIGELR2 @ SC64:/u/nigelr2/new>cd dir001/dir003/dir004
NIGELR2 @ SC64:/u/nigelr2/new/dir001/dir003/dir004>ls -l
total 3296
-rwxrwxrwx 1 STC SYS1 450000 Apr 4 18:05 file006
-rwxrwxrwx 1 STC SYS1 450000 Apr 4 18:06 file007
-rwxrwxrwx 1 STC SYS1 530000 Apr 4 18:06 file008
-rwxrwxrwx 1 STC SYS1 195580 Apr 4 18:07 file009
-rwxrwxrwx 1 STC SYS1 44000 Apr 4 18:08 file010
-rwxrwxrwx 1 STC SYS1 10000 Apr 5 11:27 file101
NIGELR2 @ SC64:/u/nigelr2/new/dir001/dir003/dir004>
Appendix B. Sample JCL and output 305



306 Hierarchical File System Usage Guide



Appendix C. Special notices

This publication is intended to help storage administrators to implement and
manage HFS data sets. The information in this publication is not intended as the
specification of any programming interfaces that are provided by DFSMS/MVS
V1R5. See the PUBLICATIONS section of the IBM Programming Announcement
for DFSMS/MVS V1R5 for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The information about non-IBM ("vendor")
products in this manual has been supplied by the vendor and IBM assumes no
responsibility for its accuracy or completeness. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.
© Copyright IBM Corp. 1999, 2000 307



Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In
Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned
by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

DFSORT RETAIN
RMF S/390
DFSMS DFSMS/MVS
DFSMSdfp DFSMSdss
DFSMShsm Websphere
Hiperspace IBM �

IMS MVS
MVS/DFP MVS/ESA
Parallel Sysplex OpenEdition
System/390 OS/390
RAMAC SP
RACF RAMAC
308 Hierarchical File System Usage Guide



Appendix D. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

D.1 IBM Redbooks

For information on ordering these publications see “How to get IBM Redbooks”
on page 313.

• OS/390 Version 2 Release 6 UNIX System Services Implementation and
Customization, SG24-5178

• S/390 File and Print Sharing, SG24-5330

• Lotus Domino for S/390 Release 5: Problem Determination Guide, SG24-5599

• Lotus Domino for S/390 Release 5: Installation, Customization and
Administration, SG24-2083

• Implementing DFSMSdss SnapShot and Virtual Concurrent Copy, SG24-5268

• Implementing Concurrent Copy, GG24-3990

D.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

D.3 Other resources

These publications are also relevant as further information sources:

• OS/390 Version 2 Release 9 UNIX System Services Planning, SC28-1890

• OS/390 Version 2 Release 9 UNIX System Services User’s Guide, SC28-1891

• OS/390 Version 2 Release 9 UNIX System Services File System Interface
Reference, SC28-1909

• OS/390 Version 2 Release 9 UNIX System Services Command Reference,
SC28-1892

• OS/390 Version 2 Release 9 MVS Initialization and Tuning Reference,
SC28-1752

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 1999, 2000 309

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/


• OS/390 Version 2 Release 9 TSO/E Command Reference, SC28-1969

• OS/390 Version 2 Release 9 UNIX System Services Assembler Callable
Services, SC28-1899

• OS/390 Version 2 Release 8 Security Server Command Language Reference,
SC28-1919

• OS/390 Version 2 Release 6 Network File System User’s Guide, SC26-7254

• DFSMS/MVS Version 1 Release 5 Using Data Sets, SC26-4922

• DFSMS/MVS Version 1 Release 5 Planning for Installation, SC26-4919

• DFSMS/MVS Version 1 Release 5 Implementing System-Managed Storage,
SC26-3123

• DFSMS/MVS Version 1 Release 5 DFSMSdss Storage Administration
Reference, SC26-4929

• DFSMS/MVS Version 1 Release 5 DFSMSdss Storage Administration Guide,
SC26-4930

• DFSMS/MVS Version 1 Release 5 DFSMSdfp Storage Administration
Reference, SC26-4920

• DFSMS/MVS Version 1 Release 5 Access Method Services for the Integrated
Catalog Facility, SC26-4906

• Storage Management Library: Managing Storage Groups, SC26-3125

• Storage Management Library: Managing Data, SC26-3124

• Using 3390 in an MVS Environment, GC26-4574

• DFSMS/MVS Version 1 Release 5 DFSMShsm Implementation and
Customization, SH21-1078

• DFSMS/MVS Version 1 Release 5 DFSMShsm Managing Your Own Data,
SH21-1077

• DFSMS/MVS Version 1 Release 5 DFSMShsm Storage Administration Guide,
SH21-1076

• DFSMS/MVS Version 1 Release 5 DFSMShsm Storage Administration
Reference, SH21-1075

• DFSMS/MVS Macro Instructions for Data Sets, SC26-4913

• OS/390 Version 2 Release 9 MVS System Commands, GC28-1781

• Tivoli Storage Manager for UNIX: Using the Backup-Archive Clients,
SH26-4105

• Program Directory for the Tivoli Storage Manager Backup-Archive Client,
GI10-4520

• OS/390 Version 2 Release 9 MVS Setting Up a Sysplex, GC28-1779
310 Hierarchical File System Usage Guide



D.4 Referenced Web sites

These Web sites are relevant as information sources:

• http://www.tivoli.com/tsm contains the latest information about the Tivoli
Storage Manager.

• http://www.s390.ibm.com/oe and http://www.s390.ibm.com/unix both take you to
the OS/390 UNIX System Services Web site. This site has a great deal of
information about HFS and you can download the copytree utility from here.

• http://www.ibm.com/support/techdocs contains technical support flashes.
Appendix D. Related publications 311



312 Hierarchical File System Usage Guide



How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this Redbooks
site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999, 2000 313

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
mailto: pubscan@us.ibm.com 
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/


IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
314 Hierarchical File System Usage Guide



List of abbreviations

ACDS active control data set

ACS automatic class selection

AD attribute directory

ADSM adstar distributed storage
manager

APAR authorized program analysis
report

APF authorized programming
facility

API application programming
interface

ASCII American national standard
for information interchange

BSAM basic sequential access
method

CC concurrent copy

COMMDS communication data set

DADSM direct access storage space
management

DASD direct access storage device

DC data class

DCB data control block

DFSMS data facility storage
mangement subsystem

DFSMSdfp data facility storage
mangement subsystem data
facility product

DFSMSdss data facility storage
mangement subsystem data
set service

DFSMShsm data facility storage
mangement subsystem
hierarchical storage
management

DOS disk operating system

DSCB data set control block

ESDS entry sequenced data set

FIFO first in first out

FMID function modification identifier

FPM fragmented parcel map

FSN file sequence number

GID group identifier

GRS global resource sharing

HFRFN high formatted relative file
number
© Copyright IBM Corp. 1999, 2000
HFS hierarchical file system

HLQ high level qualifier

IOS input output supervisor

IPL initial program load

ISMF interactive storage
management facility

ISPF interactive structured
programming facility

ITSO International Technical
Support Organization

JCL job control language

KSDS key sequenced data set

LFS logical file system

LLQ low level qualifier

MC management class

ML1 migration level 1

ML2 migration level 2

MSR millisecond response

MVS multiple virtual storage

ND name directory

NFS network file system

PDSE partitioned data set extended

PFS physical file system

PTF program temporary fix

QSAM queued sequential access
method

RACF resource access control
facility

RMF resource measurement facility

RSM real storage manager

RVA RAMAC Virtual Array

SC storage class

SCDS source control data set

SG storage group

SML storage management library

SMS storage management
subsystem

SRM system resource manager

SVC supervisor call

TCB task control block

TCP/IP transmittion control
protocol/internet protocol
315



TFS temporary file system

TSM Tivoli storage manager

UCB unit control block

UID user identifier

USS UNIX system services

VCC virtual concurrent copy

VSAM virtual storage access method

VTOC volume table of contents

WLM workload manager
316 Hierarchical File System Usage Guide



Index

Symbols
&DSN variable 47
&LLQ variable 47

Numerics
1st data page hit 70
1st data page miss 70
1st page hit 71
1st page miss 71
3380 3, 43
3380 track compatibility mode 43
3390 2, 7, 38, 43
3990 38

A
ABEND 151, 176, 177
access method 22, 75
ACDS 34
ACS routine 33, 34, 46, 77, 82

sample 47
active control data set

See ACDS 34
AD 4, 8, 9
ADDVOL 52
ADR377W 267
ADR380E 266
ADR412E 106, 114
ADSM 216

See TSM 153
AF_INET 17, 56
AF_UNIX 18, 56
aggregate group 34
ALLDATA(*) 108, 131, 262
ALLOCATE command 36, 76, 77, 88
already_fixed 70
ALTER ADDVOLUMES 133, 137, 277
ALTERDS 52
alternate entry points 74
APAR

II09184 76
II11833 75
OW30729 171
OW30738 171
OW30744 171
OW37267 80
OW39883 113, 174
OW39886 72

APF 64
APPC 19
ARCCMDxx 52
ASCII 245
ASNAME() 75
ATIME 176, 185
ATTR.DIR field 201
attribute directory

See AD
© Copyright IBM Corp. 1999, 2000
attribute pages 71
auto backup 44
auto dump 44
auto migration 44
AUTOBACKUP 53
AUTODUMP 53
automatic backup 43
automatic class selection

See ACS
automatic migration 43
AUTOMIGRATION 55
automount 22, 244
automount facility 211, 248

customizing 248
starting 251
stopping 255

AUTOMOVE 61
AUTORECALL 55
availability management 115
AVAILABILITY parameter 38
AVG VALUE 36
AVGREC 36, 77

B
backup

understanding needs 209
backup attributes 41
backup cycle 53
backup frequency 52
backup processing 118
backup versions 116, 117
base configuration 33
BCDS 53
BIAS parameter 38
binder 74
BP_pages 70
BPX.SUPERUSER 63, 92, 95, 98
BPX1PCT 68
BPX1QSE 105, 173
BPX1SYN 11
BPXAS 20
BPXF020I 175
BPXISYS1 235
BPXOINIT 19
BPXPRMxx 11, 14, 17, 21, 33, 56, 99, 125, 167, 171,
186, 201, 211, 249
BSAM 75
B-tree 4, 10
buffer management 185
buffer pool 203
buffer selection 189
byte-oriented 21

C
character special file 26
Checkpoints 74
checktree 129
317



chmod command 98
chown 251
CLIST 92
colony address space 75
Component Broker 1
concurrent copy 38, 42, 106, 107
CONCURRENT keyword 106, 107
confighfs 6, 14, 56, 58, 68, 72, 133, 139, 140, 145, 148,
188, 201, 204, 259, 262, 276

examples 72
output description 69

Consistency checking 129
constructs 35
Copytree utility 109, 126, 128, 129, 131, 165, 286, 287,
292, 293, 294
copytree utility 109
couple data set 232
COUPLExx 234
CPIO 245
cpio 245

backing up 247
restoring 248

CPU 189
critical data 209, 215, 216, 218
cron daemon 211
cross-system sharing

considerations 174
CYCLESTARTDATE 54

D
D OMVS 72
DADSM 2, 74, 130, 151

PARTREL 2
data class 34, 35, 36
data page 5, 191
data set name 47
data set name type 35
data space 11
DCB 76
DD statement 36, 86
DDNAME(ddname) 60
deferred writes 185
DEFINE BACKUP 54
DELETE command 131
dependency 74, 75
dev directory 22
df command 143, 147, 252, 257
df shell command 99
df -v 150
DFS 62
DFSMS/MVS 1, 9, 74, 132, 185, 189, 217
DFSMSdss 2, 6, 74, 103, 104, 115, 117, 133, 140, 209,
216

COPY 2
COPY command 103
DUMP command 103, 153
RESTORE command 103
sample dump job 134
sample restore processing 136
serialization 173

DFSMShsm 2, 6, 41, 103, 108, 118, 130, 216, 245
backup 115, 116
considerations 121, 122
dump 117
migration 115
recall 125
recover 117
restore 117

DFSMShsm migration 54
DFSORT 15
directory structure 22
discardable data 209, 211, 215, 218
Disk Operating System

See DOS
DISPLAY OMVS system command 99
DISPLAY system command 257, 269
Distributed File System 62
Domino for S/390 213

FIXED and VIRTUAL setting 203
recommended HFS allocations 213, 217

Domino/390 1, 14
DOS 21
DRAIN 65
DSCB 76, 140
DSNTYPE 21, 77, 86

direct specification 77
indirect specification 77

DSORG 76, 265
dual copy 38
dump class 118
dump processing 103, 117

E
EDC515I 253
ENQ 106
ENTRYPOINT(entry_name) 57
ESDS 75
etc directory 22, 211
EXCLUDE 104
executable file 74
expiration attributes 40
expiring 298

F
FACILITY class 63, 92
FIFO special file 26, 76
File Sequence Number

See FSN
file system 4
file system size

displaying 143
increasing 132

file system statistics 70
FILESYSTEM 66
FILESYSTEM('fsname') 60
FILESYSTEM(file_system_name) 63, 65
FILESYSTYPE 11, 14, 18, 56, 254

examples 59
filter 111
318 Hierarchical File System Usage Guide



FIXED 14, 188, 199
considerations 202

Fixed Storage 69
fixed storage

distributing 203
FIXED(min) 58
FMID

HDZ11EH 75
FORCE 65
FPM 4
Fragment Parcel Map

See FPM 4
FROMSYS 66
FSN 4, 5
fsync 191, 204
full-function mode 17, 18
full-volume dump 117

G
GFUAINIT 57, 61
GID 25, 29
global HFS statistics 69
group 25
group identifier

See GID
GROUP permission 26
GRS 171, 175
GRSRNLxx 171
guaranteed backup frequency 45
guaranteed space 38, 78

considerations 78

H
HBACKDS 120
HDZ11EH 75
HFRFN 6, 71, 108, 131, 260
HFS 1, 20, 56

allocating 77
buffering 187
caching 187
characteristics 2
coexistence issues 75
deleting 131
externals 33
file statistics 195
global statistics 193
hardware dependencies 75
increasing 132
installing services 150
maintenance issues 75
managing 103
migrate 125
mount status 99
mounting 91
new enhancements 13
optimizing performance 199
overview 1
performance 185
processing restrictions 75

removing 131
requirements 73
restrictions 73
security 24
sharing 167
software dependencies 74
structure 2, 4, 7
summary of allocations 91
transporting 132

HFS statistics report 192
HFSDSP01 12, 188
HFSDSP02 12
HFSDSP03 12
HFSDSP04 12
Hierarchical File System

See HFS
High Formatted Relative Frame Number

See HFRFN
high threshold 45

I
IDCAMS 88, 115, 131, 133, 137, 271, 273
IEASYSxx 17, 56
IEBCOPY 2, 74
IEC143I 151
IEFBR14 115, 131, 274
IGW020I 177, 178
IMMEDIATE 65
INCLUDE 104
incremental backup 103, 115, 117, 209
index 10
index data 188
index joins 71
index new tops 71
index read hit 71
index read miss 71
index shadowing 201
index splits 71
index structure 4
index write hit 71
index write miss 71
INDYNAM 104, 113
information APAR II12221 51
inode 144
interval migration 45
IPL 22, 56, 125
ISHELL 77, 89, 92, 95, 147, 187
ISMF 33, 35, 148
ISPF 77, 79, 83, 92, 95, 131, 146, 257, 258, 265, 269,
280

J
JCL 36, 51, 257

K
KSDS 130
319



L
LFS 186
linear data set 76
LISTCAT 138, 141, 257, 270, 278
logging file system 218
logical dump 104, 109, 173, 262

samples 110
logical file system

See LFS
logical full volume dump 266
logical processing 104
logical restore

samples 114
LOGINDD 104
LOGINDDNAME 104
LOGINDYNAM 104
long sync interval 201
lookup cache hit 70
lookup cache miss 70
lookup hit 71
lookup miss 71
Lotus HFS data set 215, 217
low threshold 45
low-level qualifier 47

M
MACRF 76
mail HFS data set 215
mail HFS data sets 217
maintenance procedures 51
MAKEMULTI 134, 270
management class 34, 118
MapName 250
maximum number of files 74
metadata 5, 185, 187, 188, 191
migrate 55
migration 125
migration attributes 40
MIGRATIONLEVEL1DAYS 55
millisecond response

See MSR
minimum mode 17
miscellaneous implementation topics 245
MKDIR command 92
mkdir command 211, 249
ML1 41, 116
ML2 41, 126
MODE(access) 61
Monitor II 192

setting up 197
Monitor III 192
MOUNT 22
mount 220
MOUNT command 24, 63, 91, 93

example 64
format 93

mount integrity 14, 175
MOUNT Statement 99
MOUNT statement 60

examples 62
mount table 244
mountable file system 20
MOUNTPOINT 66
MOUNTPOINT('pathname') 60
mountx shell command 98
MSR 37
multi-volume 14, 37, 74, 85, 87, 88, 90, 133, 134, 269

allocation considerations 78
preallocating 79

multi-volume non-SMS managed HFS data sets 52
MVS/ESA 1

N
Name Directory

See ND
nanagement class 39
ND 4
NDs 9
Network File System Server 209, 219
new top processing 5
NFS 1, 56, 76, 219
NOAUTOMOVE 61
non-critical data 209, 211, 215
non-SMS 33
non-SMS managed HFS data sets 51
NOPREF 38
NORMAL 65
not_already_fixed 70
Notesdata HFS data set 215, 217
Noteslog HFS data set 215, 217
NOWRITEPROTECT 61, 63

O
OCOPY 21
octal value bits 27
OESTACK 18
OGET 21, 246
OMVS 12, 17, 19, 22, 92, 125, 188
OMVSINIT 19
OpenEdition 1, 17
OPUT 21
OS/2 21
OS/390 74, 209
OS/390 Security Server 29
OS/390 Security Service 24
OS/390 UNIX System Services

See USS 1
OUTDDNAME 115, 136
OUTDYNAM 115, 136
OW39886 72
OWNER permission 26

P
PARM('parameter') 61
PARM('parm') 57
PARM(’parameter_string’) 63
partial release 40
320 Hierarchical File System Usage Guide



participating group 167
PARTREL 2, 74, 130
passwd file 24
pax 245

backing up 245
restoring 246

PDSE 11, 19, 174, 188
performance

single user read/write 190
small file 189

performance data 189
permission bits 26

default 28
examples 28

permissions 220
PFS 68, 254
physical dump 112, 174, 268

samples 113
Physical File System

See PFS
physical processing 104
physical restore

samples 115
pool number 70
pools 56
POSIX 1, 2, 74, 185, 246
preference scheme 189
prevent migration 56
preventive service planning

See PSP
program directory 75
PSP 75
PTF 171

Q
qname 170
QSAM 75
quiesce 105

R
R/O mode 174
R/W mode 174
RACF 24, 29
RAMAC 38
RAMAC Virtual Array

See RVA
random I/O reqs 71
read-only variable 47
Real Storage Manager

See RSM
record-oriented 21
REMOUNT(RDWR|READ) 65
RENAMEU 135, 263, 268
REPLACE 114, 135, 264
reserve 174
RESET 65
Resource Measurement Facility

See RMF
restore processing 114, 134

retention limit 40
REXX 20, 92, 98
RFS error flags 71
rlogin 18
RMF 185, 192, 202

HFS File System Statistics Report 193
HFS Global Statistics Report 193
new reports 192

rname 170
root directory 1, 20
root file system 20, 22, 62, 137, 210
ROOT statement 21, 62, 73

example 63
RSM 202
RVA 41, 106, 126, 216

S
SCDS 34, 46
SECURITY 64
security 24

overview 24
selective backup 297
SELECTMULTI 110, 134, 266
seq I/O reqs 71
sequence set 10
serialization considerations 170
SETGID 64
SETMIG 56
SETOMVS 60, 66, 148
SETSYS 52
SETSYS DAYS 55
SETUID 61, 63, 64
SETXCF 241
shadow writes 10
SHARE keyword 106
shell command 14
short sync interval 200
showattr 220
SIB4622E 151
size

increasing 275
SMS 18, 23, 33, 73

basic terms 33
considerations 23, 33
constructs 35

SMS complex 33
SMS definitions

examples 82
Snapshot 108, 216

considerations 150
sockets-only mode 17, 18
source control data set

See SCDS
space management 130
sparse files 129
SRM 199
static data 209, 210, 215
storage class 34, 37, 77
storage class ACS routine 51
storage group 23, 42, 82, 118
321



See SG
Storage Management Subsystem

See SMS
STORGRP 104
STORGRP parameter 266
subdirectory 1, 20
SUBFILESYSTYPE 18
superuser 24, 251
SUPERUSER.FILESYS.MOUNT 94
SVC99 76
symbolic link 26, 76
symlinks 225
SYNC 199
sync 10
Sync Daemon 11
sync daemon 14, 19, 185
sync interval 73, 187, 201

displaying 72
sync process 11
SYNC(t) 61, 63
SYNCDEFAULT 14, 57, 61, 199

setting 199
SYSBMAS 11, 12, 19, 188
SYSBMFDS 11, 12
SYSDA 85
SYSDSN 106, 170
syslogd daemon 211
SYSNAME 62
Sysplex 175
sysplex root 59, 221
SYSRES 51
system cloning 51
System Resource Manager

See SRM
system specific HFS 228, 236
SYSTEMS ENQ 175
SYSVTOC 174
SYSZDSN 170, 178

T
tar 132, 245

backing up 246
restoring 247

TCP/IP 17
Temporary File System

See TFS
TFS 17, 22, 56, 211
THRESHOLD 55
Tivoli Storage Management

See TSM
tmp directory 22, 211
TOL(ENQF) 112
TOLERATEENQFAILURE 152
Toleration PTFs 75
TSM 153, 216, 297

Archive 153, 159
Ifnewer 165, 289
Incrbydate 165, 298
Management policies 153
Options files 156

Progressive Incremental 153
Registration 158
Scheduler 153
Sysplex considerations 163
Unix System Services client 153

TSO 20, 36, 131
TYPE(file_system_type) 63
TYPE(type_name) 60
TYPRUN 266

U
u directory 22, 211
UCB 43, 76
UID 18, 24, 29, 96
uncataloged 52
UNIX file security 29
UNIX File System 20

overview 20
UNIXPRIV class 94
UNMOUNT command 64, 92, 131, 133

example 65
format 93

UNMOUNT commands 93
unmountx shell command 98
unused space

releasing 130
used pages 71
user identifier

See UID
USS 1, 9, 14, 17, 33, 56, 68, 186, 209, 210, 212, 216

address spaces 19
application services 18
introduction 17
operation level 17
recommended HFS allocations 212
security 24

USTAR 245, 247

V
var directory 22, 211
version HFS 222
VERSION statement 59
VERSIONS 53
VIO 42
VIRTUAL 14, 188, 199

considerations 201
virtual concurrent copy 38, 106, 107, 150
Virtual Storage 69
VIRTUAL(max) 58
VM guest 181
VOLCOUNT 135
VOLCOUNT(ANY) 135
VOLCOUNT(N(nn)) 135
VOLCOUNT(N(xx)) 136
volser 79, 138
volume count 37
volume selection 33, 34, 38
VSAM 75, 76, 130
VTOC 104, 113, 140
322 Hierarchical File System Usage Guide



W
WAIT 64
WebSphere 1
WebSphere for OS/390 218
Windows 21
WLM 20
working set size 202
Workload Manager

See WLM
write protection 175

X
XCF 204, 221, 234
323



324 Hierarchical File System Usage Guide



© Copyright IBM Corp. 1999, 2000 325

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a Redbook
"made the difference" in a task or problem you encountered. Using one of the following methods, please review the
Redbook, addressing value, subject matter, structure, depth and quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-5482-01
Hierarchical File System Usage Guide

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the following
groups:

O Customer
O Business Partner
O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may be
used to provide you with information
from IBM or our business partners
about our products, services or
activities.

O Please do not use the information collected here for future marketing or
promotional contacts or other communications beyond the scope of this
transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/ 




(0.5”
spine)

0.475”<->0.873”
250

<->
459

pages

Hierarchical File System
 Usage Guide   

  







®

SG24-5482-01 ISBN 0738419214

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL 
INFORMATION BASED ON 
PRACTICAL EXPERIENCE

IBM Redbooks are developed 
by the IBM International 
Technical Support 
Organization. Experts from
IBM, Customers and Partners 
from around the world create 
timely technical information 
based on realistic scenarios. 
Specific recommendations 
are provided to help you 
implement IT solutions more 
effectively in your 
environment.

For more information:
ibm.com/redbooks

Hierarchical File System 
Usage Guide

Learn how to manage 
HFS data

Optimize HFS 
performance

Set up sysplex 
sharing

This redbook explains the recent performance enhancements in 
the DFSMS/MVS Hierarchical File System as used by OS/390 
UNIX System Services. It shows you how to set up and manage 
sharing of HFS data sets in a sysplex and gives practical 
examples of how to back up and recover HFS (including 
multi-volume HFS) data sets in a sysplex environment. The use of 
Tivoli Storage Manager for file-level backup is also described.

http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/ 
http://www.redbooks.ibm.com/ 

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introduction to the Hierarchical File System
	1.1 HFS overview
	1.2 Structure of an HFS data set
	1.2.1 HFS track capacities on a 3380 and 3390 volume
	1.2.2 Index structure of an HFS data set
	1.2.3 Index updates through shadow writes
	1.2.4 Sync process

	1.3 New enhancements
	1.3.1 DFSMS/MVS 1.5 enhancements
	1.3.2 OS/390 2.9 enhancements
	1.3.3 Non-SMS HFS data sets
	1.3.4 DFSORT support of HFS data sets


	Chapter 2. Introduction to OS/390 UNIX System Services
	2.1 Required USS operation level to use HFS
	2.1.1 Minimum mode
	2.1.2 Sockets-only mode
	2.1.3 Full-function mode

	2.2 UNIX System Services and related address spaces
	2.3 UNIX file system overview
	2.3.1 UNIX file system structure
	2.3.2 Recommended file system structure

	2.4 HFS and UNIX System Services security
	2.4.1 UNIX file security overview
	2.4.2 UNIX users and superuser
	2.4.3 UNIX groups
	2.4.4 UNIX file security with the OS/390 Security Server (RACF)


	Chapter 3. HFS externals
	3.1 SMS considerations
	3.1.1 Basic SMS terms
	3.1.2 Defining SMS constructs for HFS data sets
	3.1.3 Data class
	3.1.4 Storage class
	3.1.5 Management class
	3.1.6 Storage group
	3.1.7 ACS routines

	3.2 Non-SMS considerations
	3.2.1 Non-SMS availability management
	3.2.2 Non-SMS space management

	3.3 HFS PARMLIB and command enhancements
	3.3.1 BPXPRMxx options
	3.3.2 TSO MOUNT command
	3.3.3 TSO UNMOUNT command
	3.3.4 SETOMVS system command
	3.3.5 confighfs shell command
	3.3.6 Displaying the SYNC interval settings

	3.4 Requirements and restrictions
	3.4.1 Restrictions for executable files (object modules)
	3.4.2 Additional dependencies, issues, restrictions, and requirements


	Chapter 4. Allocating and mounting HFS data sets
	4.1 Allocating an HFS
	4.1.1 Multi-volume allocation considerations
	4.1.2 Guaranteed space considerations
	4.1.3 SMS definition examples
	4.1.4 Using ISPF
	4.1.5 Using DD statement in a batch job
	4.1.6 Miscellaneous allocation methods
	4.1.7 Using ISHELL
	4.1.8 Summary of HFS data set allocations

	4.2 Mounting an HFS
	4.2.1 Before mounting HFS data sets
	4.2.2 TSO MOUNT and UNMOUNT commands
	4.2.3 ISPF ISHELL
	4.2.4 OMVS mountx and unmountx shell commands
	4.2.5 After mounting HFS data sets
	4.2.6 Adding MOUNT Statements to BPXPRMxx
	4.2.7 Status of mounted HFS data sets


	Chapter 5. Managing HFS data sets
	5.1 DFSMSdss dump and restore
	5.1.1 Dump processing
	5.1.2 Restore processing

	5.2 DFSMShsm backup and migration
	5.2.1 Common DFSMShsm functions
	5.2.2 Backup processing
	5.2.3 Recovery and restore of HFS data sets
	5.2.4 Migrating and recalling an HFS data set

	5.3 Recovering files and directories
	5.3.1 Copytree utility
	5.3.2 Consistency checking of a file system

	5.4 Additional space management topics
	5.4.1 Releasing unused space
	5.4.2 Deleting or removing an HFS data set
	5.4.3 Transporting an HFS

	5.5 Increasing the size of an HFS data set
	5.5.1 Increasing the file system size using DFSMSdss
	5.5.2 IDCAMS ALTER to add candidate volumes
	5.5.3 USS confighfs command to change file system size

	5.6 Displaying the file system size
	5.6.1 Using the df UNIX command
	5.6.2 Using the UNIX confighfs command
	5.6.3 ISPF data set information
	5.6.4 TSO ISHELL — file system attributes
	5.6.5 ISMF data set information

	5.7 Moving and displaying the ownership for a shared HFS
	5.8 Installing service to products in the HFS
	5.9 Snapshot and DFSMSdss COPY considerations

	Chapter 6. Tivoli Storage Manager
	6.1 Introduction to Tivoli Storage Manager
	6.1.1 Why use Tivoli Storage Manager?
	6.1.2 Tivoli Storage Manager components

	6.2 Installing the Tivoli Storage Manager USS client
	6.2.1 Ordering the client software
	6.2.2 Initial installation
	6.2.3 Customizing the client
	6.2.4 Using the Tivoli Storage Manager client
	6.2.5 TSM server considerations
	6.2.6 HFS file sharing considerations

	6.3 Data management strategies
	6.3.1 DFSMSdss and Tivoli Storage Manager
	6.3.2 Disaster recovery considerations

	6.4 Performance considerations
	6.4.1 Tuning
	6.4.2 Reorganizing HFS for performance


	Chapter 7. Sharing and serialization for HFS data sets
	7.1 Serialization considerations
	7.1.1 ENQ usage for shared HFS (OS/390 2.9 and higher)
	7.1.2 Serialization by DFSMSdss

	7.2 Sharing considerations (OS/390 2.8 and below)
	7.2.1 Mount integrity (write protection) enhancements

	7.3 HFS sysplex sharing (OS/390 2.9 and above)
	7.3.1 Function shipping
	7.3.2 Sysplex sharing considerations


	Chapter 8. Optimizing HFS performance
	8.1 HFS performance restructure
	8.1.1 HFS deferred writes
	8.1.2 HFS caching and buffering
	8.1.3 Performance data

	8.2 RMF reporting enhancements
	8.2.1 New RMF reports for HFS
	8.2.2 Setting up RMF Monitor III
	8.2.3 HFS Postprocessor report
	8.2.4 Setting up RMF Monitor II

	8.3 Optimizing HFS performance
	8.3.1 SYNCDEFAULT and SYNC setting
	8.3.2 VIRTUAL and FIXED setting
	8.3.3 fsync call considerations

	8.4 Sysplex and HFS sharing
	8.4.1 XCF overhead
	8.4.2 Locally mounted versus remotely mounted HFS
	8.4.3 How shared HFS affects mount times

	8.5 Distributed File System considerations
	8.6 Using the copytree utility

	Chapter 9. Implementing HFS for selected applications
	9.1 Understanding your backup needs
	9.2 UNIX System Services (OS/390 2.8 and before)
	9.2.1 Recommended HFS structure and management (UNIX)
	9.2.2 Recommended HFS allocations (UNIX)

	9.3 UNIX System Services (OS/390 2.9 and later)
	9.4 Domino for S/390
	9.4.1 Recommended HFS structure and management (Domino)
	9.4.2 Recommended HFS allocations (Domino)

	9.5 WebSphere for OS/390 case
	9.5.1 Recommended HFS structure and management (WebSphere)

	9.6 OS/390 Network File System Server
	9.7 Other applications

	Chapter 10. HFS sysplex sharing implementation
	10.1 How HFS sysplex sharing works
	10.1.1 Sysplex root
	10.1.2 Version HFS
	10.1.3 System specific HFS
	10.1.4 OS/390 2.9 system without HFS sysplex sharing
	10.1.5 Single system image with read-only root
	10.1.6 Multiple systems on different releases
	10.1.7 System joins sysplex
	10.1.8 System leaves sysplex

	10.2 Implementation of HFS sysplex sharing
	10.2.1 Step 1 - Create OMVS couple data set
	10.2.2 Step 2 - Define the OMVS couple data sets to XCF
	10.2.3 Step 3 - Create sysplex root HFS
	10.2.4 Step 4 - Create system specific HFS
	10.2.5 Step 5 - Update BPXPRMxx parmlib member
	10.2.6 Step 6 - Dynamically add the OMVS couple data sets to XCF
	10.2.7 IPL the systems
	10.2.8 Implementation summary

	10.3 How to add another system to the sysplex for HFS sharing
	10.3.1 Change in ls command
	10.3.2 Automount facility
	10.3.3 Special files
	10.3.4 Cloning systems


	Appendix A. Miscellaneous implementation topics
	A.1 The pax, tar and cpio commands
	A.1.1 Using pax to back up and restore files
	A.1.2 Using tar to back up and restore files
	A.1.3 Using cpio to back up and restore files

	A.2 Automount facility
	A.2.1 Customizing the automount facility
	A.2.2 Changing which data sets get automounted
	A.2.3 Stopping the automount facility


	Appendix B. Sample JCL and output
	B.1 HFS data set related information
	B.1.1 D OMVS,F
	B.1.2 df
	B.1.3 df -P
	B.1.4 ISPF information for root HFS
	B.1.5 ISPF information for HFS OMVS.SC63.USERS
	B.1.6 ISPF information for HFS OMVS.STYRES1.HFS3
	B.1.7 confighfs /
	B.1.8 confighfs /u
	B.1.9 confighfs /u/guts output

	B.2 Sample DFSMSdss jobs
	B.2.1 Logical DUMP without ALLDATA(*)
	B.2.2 RESTORE with RENAMEU
	B.2.3 Logical DUMP with ALLDATA(*)
	B.2.4 RESTORE to a preallocated HFS with REPLACE
	B.2.5 Physical DUMP
	B.2.6 RESTORE (physical) with RENAMEU

	B.3 DFSMSdss multi-volume processing
	B.3.1 DUMP of root HFS
	B.3.2 RESTORE to multi-volume HFS data set using MAKEMULTI
	B.3.3 RESTORE to multi-volume HFS data set using VOLCOUNT(N((02))
	B.3.4 RESTORE to multi-volume HFS data set using VOLCOUNT(ANY)
	B.3.5 RESTORE to preallocated multi-volume HFS

	B.4 Increasing the size of an HFS data set
	B.4.1 Using confighfs -x
	B.4.2 Using confighfs -xn and IDCAMS ALTER ADDVOLUMES

	B.5 Shared HFS - DFSMSdss dump from client
	B.5.1 Mounting the HFS on system SC65
	B.5.2 Displaying the ownership
	B.5.3 Displaying the ENQ
	B.5.4 Performing the DFSMSdss logical dump

	B.6 Recovery samples
	B.6.1 Corrupt metadata recovery (example 1)
	B.6.2 Corrupt metadata recovery (example 2)
	B.6.3 Lost volume recovery (example 3)


	Appendix C. Special notices
	Appendix D. Related publications
	D.1 IBM Redbooks
	D.2 IBM Redbooks collections
	D.3 Other resources
	D.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	List of abbreviations
	Index
	IBM Redbooks review

