
IMS Primer

Rick Long, Mark Harrington, Robert Hain, Geoff Nicholls

International Technical Support Organization

SG24-5352-00

www.redbooks.ibm.com

International Technical Support Organization SG24-5352-00

IMS Primer

January 2000

© Copyright International Business Machines Corporation 2000. All rights reserved
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (January 2000)

This edition applies to IBM Information Management System (IMS), Transaction and Database Server for System 390
Program Number 5697-B89 for use with the OS/390 operating systems.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix A,
“Special notices” on page 259.

Take Note!

Contents

Contents . iii

Figures . xi

Tables . xv

Preface . xvii
The team that wrote this redbook .xvii
Comments welcome . xix

Part 1. Overview of IMS. .1

Chapter 1. Introduction .3
1.1 IMS product .3
1.2 Overview of the IMS product .3

1.2.1 IMS Transaction Manager .4
1.2.2 IMS Database Manager. .5
1.2.3 IMS system services .5
1.2.4 IMS and OS/390 operating systems .5

1.3 IMS Transaction Manager .6
1.3.1 Network access to IMS/TM .6
1.3.2 IMS Transaction Manager messages .6
1.3.3 Connecting to other IMS and CICS systems .6

1.4 IMS Database Manager .7
1.4.1 Functions of IMS Database Manager. .7
1.4.2 Implementation of IMS databases .7
1.4.3 Full Function IMS DB (DL/1 DB) .8
1.4.4 Fast Path Data Entry Database (DEDB) .9
1.4.5 IMS and DB2. .9

1.5 Additional availability and recovery features .9
1.5.1 Database Recovery Control (DBRC) .9
1.5.2 Additional features for increased availability (XRF and RSR)10

1.6 Description of XRF and RSR. .10
1.6.1 Extended Recovery Facility (XRF). .10
1.6.2 Remote Site Recovery (RSR) .11

Chapter 2. IMS and OS/390 .13
2.1 Structure of IMS subsystems .13

2.1.1 IMS control region .13
2.1.2 IMS system dependent regions .15
2.1.3 Application dependent regions .16
2.1.4 Batch application address space .18
2.1.5 Internal Resource Lock Manager (IRLM) .19

2.2 Running of IMS subsystems .20
2.3 Running multiple IMS systems on one OS/390 system21

2.3.1 IMS subsystems .21
2.3.2 Address Spaces .22
2.3.3 Starting application dependent regions .22

2.4 Use of OS/390 services .23
2.4.1 MVS TCP/IP .23
2.4.2 APPC/MVS .24
© Copyright IBM Corp. 2000 iii

2.4.3 Security server for OS/390 (RACF) . 24
2.4.4 Transaction server for OS/390 (CICS) . 25

2.5 Other hardware/operating system platforms . 26

Chapter 3. IMS TM and DB general information . 27
3.1 IMS startup . 27
3.2 IMS shutdown . 28
3.3 Logging . 28
3.4 Security . 28
3.5 IMS generation . 28
3.6 IMS recovery . 28

Part 2. IMS Transaction Manager . 29

Chapter 4. The IMS control region . 31
4.1 The IMS message . 31
4.2 An IMS transaction flow . 32

Chapter 5. Processing input from a terminal . 35
5.1 Input message types . 35
5.2 Terminal types . 36
5.3 Input message origin . 36
5.4 Terminal input destination . 36
5.5 Message queueing . 37

5.5.1 Queue size and performance considerations 38
5.5.2 Multiple message queues . 38
5.5.3 Shared Queues . 39
5.5.4 Fast Path transactions . 39
5.5.5 APPC triggered transactions . 39
5.5.6 OTMA triggered transactions . 40
5.5.7 Message scheduling . 40
5.5.8 Transaction scheduling and priority . 41
5.5.9 Scheduling conditions . 42
5.5.10 Scheduling in a dependent region . 42

5.6 Database processing intent . 45
5.6.1 Scheduling a BMP . 45
5.6.2 Shared Queues . 45

Chapter 6. Fast-Path transactions . 47
6.1 IMS Fast Path exclusive transactions . 47
6.2 IMS Fast Path potential transactions . 47

Chapter 7. Non-terminal related input . 49
7.1 Inter-System Communications (ISC) . 49
7.2 Multiple Systems Coupling (MSC) . 49
7.3 Advanced Program-to-Program Communication (APPC) 50
7.4 Open Transaction Manager Access (OTMA) . 51

Chapter 8. The master terminal . 53
8.1 The primary master . 53
8.2 The secondary master . 54
8.3 Using the MVS console as master terminal . 54
8.4 Extended MCS/EMCS Console Support . 54
iv IMS Primer

Chapter 9. Application program processing overview55
9.1 MPP processing .55
9.2 Role of the PSB .56
9.3 DL/I message calls .56
9.4 Program isolation and dynamic logging .56
9.5 Internal resource lock manager (IRLM) .58
9.6 Application program abnormal termination .58
9.7 Conversational processing .58
9.8 Output Message Processing .59
9.9 Logging and checkpoint / restart .59

9.9.1 Logging .59
9.9.2 Checkpointing .59

9.10 Message Switching .59

Part 3. IMS Database Manager .61

Chapter 10. Database basics .63
10.1 The database design process .63

10.1.1 Entities .63
10.1.2 Data attributes. .63
10.1.3 Entity relationships .64
10.1.4 Application functions .64
10.1.5 Access paths. .64
10.1.6 Normalization .65

10.2 What is a database ? .65
10.3 Why use a database ? .66
10.4 The database administrator role .67

Chapter 11. The IMS hierarchical database model69
11.1 Basic segment types in a hierarchical data structure70
11.2 Sequence fields and access paths .71
11.3 Additional access paths to segments .72
11.4 Logical relationships .72
11.5 Secondary indexing. .76

Chapter 12. Implementation of the IMS database model79
12.1 Segments, records, and pointers. .80
12.2 Physical storage of the data .81

12.2.1 HDAM .83
12.2.2 HIDAM .86
12.2.3 Index databases .88
12.2.4 DEDB .89
12.2.5 GSAM .92
12.2.6 Sequential .93

12.3 Selecting database organization .93
12.3.1 When to choose HISAM .93
12.3.2 When to choose HDAM .94
12.3.3 When to choose HIDAM .95

12.4 Physical segment design. .95
12.5 Operating system access methods .96

12.5.1 VSAM or OSAM .96
12.5.2 IMS and system managed storage (SMS) .98

12.6 IMS checkpoints: preserving application data integrity98
v

12.7 Locking: sharing IMS data between multiple tasks 100

Chapter 13. Choosing the correct type of database 103
13.1 Applications suitable for Full Function (DL/I) . 103
13.2 Applications suitable for Fast Path (DEDB) . 103

13.2.1 Very large databases . 104
13.2.2 High availability requirements . 104
13.2.3 Highly active databases . 105
13.2.4 Limited data lifetime . 105
13.2.5 Extreme performance levels. 105
13.2.6 DEDB: reduced I/O usage . 106
13.2.7 DEDB: CPU utilization . 106

13.3 Applications suitable for Fast Path. 106

Chapter 14. Database reorganization processing 109
14.1 Why is reorganization necessary ? . 109
14.2 When to reorganize . 110
14.3 Monitoring the databases. 112
14.4 Reorganization processing overview . 113
14.5 The reorganization process description . 113

14.5.1 Database unload processing . 114
14.5.2 Defining databases . 115
14.5.3 Database reload processing. 115

14.6 Fast Path reorganization . 121

Chapter 15. Database recovery processing . 123
15.1 About this chapter . 123
15.2 Overview of database recovery . 123

15.2.1 When is recovery needed ? . 123
15.2.2 Online programs . 124
15.2.3 DLI batch update programs . 124

15.3 The database utilities. 124
15.4 Overview of backup/recovery utilities . 125

15.4.1 Database image copy utility (DFSUDMP0) 126
15.4.2 Database change accumulation utility (DFSUCUM0) 127
15.4.3 Database recovery utility (DFSURDB0) . 128
15.4.4 Database batch backout utility (DFSBBO00) 129

Part 4. IMS application development . 131

Chapter 16. Application programming overview 133
16.1 Overview . 133
16.2 Program structure . 133

16.2.1 Entry to application program . 135
16.2.2 Termination . 135
16.2.3 Calls to IMS . 135
16.2.4 PCB mask. 136
16.2.5 Status code handling . 140
16.2.6 IMS control blocks . 140
16.2.7 Generation of IMS control blocks . 141

16.3 The IMS database application programming interface (API). 142
16.3.1 Get unique (GU) . 142
16.3.2 Get next (GN) . 142
vi IMS Primer

16.3.3 Hold form of get calls .142
16.3.4 Insert. .142
16.3.5 Delete .143
16.3.6 Replace. .143
16.3.7 System service calls .143

16.4 The data communication PCB .143
16.4.1 The database PCB .144
16.4.2 Additional processing intent options .144
16.4.3 Application control block generation (ACBGEN)145
16.4.4 IMS/DB2 resource translate table (RTT) assembly145

Chapter 17. Application coding for IMS Transaction Manager147
17.1 Application Program Processing .147

17.1.1 Role of the PSB. .148
17.1.2 DL/I message calls .148
17.1.3 Application program abnormal termination148
17.1.4 Conversational processing .149
17.1.5 Output message processing .149
17.1.6 Logging and checkpoint/restart .149

17.2 The data communication design process .150
17.2.1 Concepts of online transaction processing150
17.2.2 Application characteristics .151
17.2.3 Terminal user characteristics. .151
17.2.4 IMS characteristics .151
17.2.5 Transaction response time considerations.151
17.2.6 Choosing the right characteristics .152
17.2.7 Online program design .152
17.2.8 Basic screen design .154

Chapter 18. IMS message format service .157
18.1 Message format service overview .157
18.2 MFS and the 3270. .159
18.3 Relationship between MFS control blocks .159

18.3.1 MFS control block chaining .159
18.3.2 Linkage between DFLD and MFLD .160
18.3.3 Linkage between LPAGE and DPAGE. .161
18.3.4 Optional message description linkage .161
18.3.5 3270 Device considerations relative to control blocking linkage. . .162

18.4 MFS Functions .163
18.4.1 Input message formatting .163
18.4.2 Output message formatting .164
18.4.3 MFS formats supplied by IMS .169

18.5 MFS control statements .169
18.5.1 Relations between source statements and control blocks170
18.5.2 MFS control block generation .170
18.5.3 MFS library maintenance. .172

Chapter 19. Application coding for IMS Database Manager173
19.1 Introduction to database processing .173

19.1.1 Interface to IMS. .173
19.1.2 Status code handling. .177
19.1.3 Sample presentation of a call .178

19.2 Processing against a single database structure.178
19.2.1 DL/I positioning concept .178
vii

19.2.2 Retrieving segments . 179
19.2.3 Updating segments . 182
19.2.4 Calls with command codes. 185
19.2.5 Database positioning after DL/I call . 187
19.2.6 Using multiple PCBs for one database . 188
19.2.7 Processing GSAM databases. 189

19.3 COBOL programming considerations. 190
19.4 PL/I programming considerations . 191
19.5 Processing with logical relationships . 192

19.5.1 Accessing a logical child in a physical database 193
19.5.2 Accessing segments in a logical database 193

19.6 Processing with secondary indices . 194
19.6.1 Accessing segments via a secondary index 194
19.6.2 Secondary index creation. 196

19.7 Loading databases . 196
19.7.1 Loading a database . 196
19.7.2 Loading databases with logical relationships 197
19.7.3 Loading a database with secondary indices 198

19.8 Batch checkpoint/restart . 200
19.8.1 Using the XRST and CHKP calls . 201

Part 5. IMS system adminstration . 205

Chapter 20. Database recovery control (DBRC). 207
20.1 DBRC usage . 207

20.1.1 DBRC options . 207
20.1.2 DBRC configurations . 208
20.1.3 Database authorization . 209
20.1.4 Access intent . 209

20.2 RECON data sets . 210
20.2.1 Database related information . 211
20.2.2 Subsystem . 211
20.2.3 Database name . 211
20.2.4 RECON definition and creation . 212

20.3 Initializing RECON data sets . 212
20.4 Allocation of RECON data sets to subsystems. 213
20.5 Placement of RECON data sets . 214
20.6 RECON data set maintenance . 214

20.6.1 RECON backup . 214
20.6.2 DELETE.LOG INACTIVE command . 214
20.6.3 LIST.RECON STATUS command . 215

20.7 RECON reorganization . 215
20.8 Reorganizing RECON data sets. 215
20.9 Recreating RECON data sets . 216
20.10 PRILOG record size. 217
20.11 Summary of recommendations for RECON data sets 219

Chapter 21. RECON record types . 221
21.1 RECON records. 221

21.1.1 Control records . 221
21.1.2 Log records . 221
21.1.3 Change accumulation records . 221
21.1.4 DBDS group records . 221
viii IMS Primer

21.1.5 Database records .222
21.2 RECON header record .222
21.3 RECON header extension record .222
21.4 DB record .223
21.5 DBDS record .224
21.6 SUBSYS record .225
21.7 DBDSGRP record .226
21.8 CAGRP record .227
21.9 CA record .228
21.10 PRILOG/SECLOG record .229
21.11 PRISLDS/SECSLDS record .230
21.12 PRIOLD/SECOLD record .231
21.13 LOGALL record .232
21.14 ALLOC record .233
21.15 IC record .234
21.16 REORG record .235
21.17 RECOV record .236
21.18 AAUTH record. .236
21.19 Interim log records .237

Chapter 22. IMS logging .239
22.1 Checkpointing .239
22.2 IMS log buffers .239
22.3 Online log data sets (OLDS) .240

22.3.1 OLDS dual logging .240
22.3.2 Dynamic backout. .240
22.3.3 Archiving .241
22.3.4 OLDS I/O errors .242
22.3.5 DBRC .242
22.3.6 Lack of OLDS .242

22.4 Write ahead data sets (WADS) .242
22.4.1 Dual WADS .243
22.4.2 WADS redundancy .243

22.5 System log data sets (SLDS) .243
22.6 Recovery log data sets (RLDS) .244

Chapter 23. IMS system generation process .245
23.1 Types of IMS generation .245
23.2 IMS generation macros .246
23.3 The IMS generation process .248

23.3.1 Stage1 .249
23.3.2 Stage2 .250
23.3.3 JCLIN .251
23.3.4 Re-apply SMP/E maintenance not accepted251
23.3.5 IMS security maintenance utility generation.251

23.4 Automating the IMS system generation process252

Chapter 24. IMS security overview. .253
24.1 Background to IMS security .253
24.2 The security macro .253
24.3 Protecting IMS terminals .254
24.4 Protecting IMS commands .254
24.5 Protecting IMS transactions .256
24.6 Protecting IMS dependent region(s) and the IMS online system256
ix

24.7 Protecting IMS PSBs and online application programs. 257
24.8 Protecting IMS control program and region application programs 257

Appendix A. Special notices .259

Appendix B. Related publications .261
B.1 International Technical Support Organization publications261
B.2 Redbooks on CD-ROMs .261
B.3 Other publications .262

How to get ITSO redbooks . 263
IBM Redbook Fax Order Form .264

Glossary . 265

List of abbreviations . 271

Index . 273

ITSO redbook evaluation . 277
x IMS Primer

Figures

1. Interfaces to IMS . 4
2. Structure of IMS DB/DC subsystem. 14
3. Structure of IMS DBCTL system . 18
4. Structure of IMS batch region . 19
5. Transmission, message, and segment relationship . 32
6. A message segment . 32
7. The IMS regions, and their control / data flow . 33
8. Input message processing . 35
9. Message queuing . 37
10. Message scheduling . 40
11. Transaction definition in IMS stage 1 input . 41
12. MPR PROC statement example . 43
13. /ASSIGN CLASS command example . 43
14. Display active . 44
15. Master terminal screen. 53
16. Secondary master spool JCL . 54
17. Basic MPP/BMP flow . 55
18. Entities, attributes, and relationships . 66
19. Hierarchical data structure . 69
20. Segment types and their relationships . 71
21. Entities and relationships with physical and logical databases mapped on . . . 73
22. Two Logically related physical databases, PARTS and ORDERS 74
23. Two additional logical DB’s after relating PARTS and ORDER DB’s. 75
24. A database and its secondary index database . 76
25. Elements of the physical implementation. 79
26. Segment Layout . 80
27. Database record and pointers . 81
28. HDAM — database in physical storage . 84
29. HDAM database — free space management . 85
30. HIDAM database in physical storage . 87
31. Overall structure of Fast Path DEDB . 90
32. Database unload processing . 114
33. Database reload only . 116
34. Reload processing with secondary indices . 117
35. Database reload with logical relationships . 118
36. Database reload with secondary indices and logical relationships 120
37. Overview of recovery utilities . 125
38. Image copy utility . 126
39. Change accumulation utility . 127
40. Recovery utility . 128
41. Batch backout utility . 129
42. Structure of an application program . 134
43. Application PSB structure . 137
44. On-line application PCB mask . 137
45. DLI application PCB mask . 138
46. Concatenated keys . 139
47. Testing Status Codes. 140
48. IMS control block generation . 141
49. General MPP Structure and Flow . 147
50. Message formatting using MFS . 157
© Copyright IBM Corp. 2000 xi

51. Overview of message format service .158
52. Chained control block linkage .159
53. Linkage between message fields and device fields .160
54. LPAGE -- DPAGE linkage. .161
55. Optional message description linkage .162
56. MFS Input Formatting .163
57. MFS output formatting. .165
58. An output message definition with one LPAGE .166
59. An output message definition with multiple pages .167
60. Creation of MFS control blocks .171
61. Testing status codes .177
62. Sample call presentation. .178
63. Basic GU call. .179
64. Unqualified GN call .180
65. Qualified GN call .181
66. GN call with qualified SSA .181
67. Basic REPL call. .183
68. Basic DLET call .184
69. Basic ISRT call .185
70. SSA with D and P command codes .185
71. Sample path retrieve call. .186
72. COBOL batch program .190
73. PL/I batch program structure. .192
74. PSB with secondary index defined .195
75. GU call using a secondary index. .195
76. Database load with logical relationships .198
77. Database load with secondary indices .199
78. Database load with logical relationships and secondary indices200
79. Example of RECON data set definition .212
80. Dynamic allocation of RECON data sets .213
81. PRILOG record size calculation formula .217
82. PRILOG record size calculation formula example 1 .218
83. PRILOG record size calculation formula example 2 .218
84. HEADER record .222
85. HEADER RECON information .223
86. DB record .223
87. DB information .224
88. DBDS record .224
89. DBDS information .225
90. SUBSYS record .225
91. SUBSYS information. .226
92. DBDSGRP record .226
93. DBDSGRP information .227
94. CAGRP record .227
95. CAGRP information. .228
96. CA record .228
97. CA information .229
98. PRILOG/SECLOG record .229
99. PRILOG information .230
100.PRISLDS/SECLDS record .230
101.PRISLDS information .231
102.PRIOLDS/SECOLDS record .231
103.PRIOLD/SECOLD information .232
xii IMS Primer

104.LOGALL record . 232
105.LOGALL information . 233
106.ALLOC record . 233
107.ALLOC information . 234
108.IC record . 234
109.IC information . 235
110.REORG record . 235
111.REORG information. 235
112.RECOV record. 236
113.RECOV information . 236
114.AAUTH record . 236
115.IMS log archive utility. 241
116.Summary of the two stages of system definition processing 249
xiii

xiv IMS Primer

Tables

1. Comparison of XRF and RSR . 12
2. Support for region types by IMS control region type . 16
3. IMS procedure member names . 21
4. Valid combinations of the EOS / EOM / EOD symbols 31
5. Database organization types . 81
6. IMS access method availability by application address space type 82
7. Program return statements . 135
8. IMS call argument list . 136
9. PCB statement . 144
10. DLI function descriptions . 174
11. Segment access . 174
12. Segment name, command code and qualifications . 175
13. Relational operator values . 176
14. GSAM status codes . 189
15. Database load status codes. 197
16. Types of IMS system definitions . 245
© Copyright IBM Corp. 2000 xv

xvi IMS Primer

Preface

This redbook is called a primer, as it is intended to be an introductory book to
help familiarize the reader with the basics of IMS. Much of the original content of
this book was in an early IMS manual called the IMS Primer, which was
discontinued a number of years ago.

This redbook will help you understand some of the basic functions of IMS. It also
tries to position IMS with regard to some of the other IBM products, and it gives a
broad understanding of the architecture of IMS. The book is meant as an
overview of the IMS product. It contains general information on many of the
features of IMS.

The first part of the book contains an overview of the transaction and database
managers. This entails describing the basic function of each. It also includes an
overview of how IMS interfaces with other products like the OS/390 operating
system.

The second part of the book provides a more detailed explanation of the IMS
Transaction Manager. It covers a detailed explanation of message processing. It
also contains an introduction to the application programming interface to the IMS
system.

The third part of the book provides a more detailed explanation of the IMS
Database Manager. It starts out with some basic database concepts and includes
the hierarchical model and how it is implemented in IMS. It provides some
information on database design and choosing the right database types. It also
includes an explanation of the database backup, recovery, and reorganization
utilities.

The fourth part of the book explains application programming within the IMS
environments. This includes both transaction and database programming
interfaces as well as the message format services (MFS).

The fifth part of the book explains some basic IMS administration functions.
These include database recovery (DBRC), RECON record information, IMS
logging and the IMS system generation procedure.

This edition applies to IBM Information Management System (IMS), Transaction
and Database Server for System 390 Program Number 5697-B89 for use with the
OS/390 operating systems.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Rick Long is an IMS systems specialist at the International Technical Support
Organization, San Jose Center. He writes extensively and teaches IBM classes
worldwide on all areas of IMS. Before joining the ITSO 1 year ago, Rick worked in
the DBDC Systems Programming department, IBM Global Services Australia, as
an IMS systems programmer.
© Copyright IBM Corp. 2000 xvii

Mark Harrington is an IMS systems programmer working for IBM Global
Services in the United Kingdom. He holds a degree in Computer Science from
Portsmouth Polytechnic, UK. He has been working in IT for the past 22 years, the
last 18 years on IBM S/370 and S/390 mainframes. He has worked as an
application programmer, application designer, systems programmer, product
installer, and database administrator, using IMS and CICS under both MVS and
VSE operating systems. His main area of expertise is the IMS Database Manager,
used with both IMS and CICS TP monitors.

Robert Hain is an IMS systems programmer, with IBM Global Services, Australia
(IGSA), working with the Telstra Alliance, in Melbourne. He gained a Bachelor of
Science, majoring in Computer Science from the University of Melbourne, then
joined a large bank in Australia where he started working with IMS Fast Path. He
joined the phone company Telstra 3-1/2 years ago, and then IGSA as part of the
Telstra outsourcing arrangement. He has been an IMS systems programmer for
over 13 years, working specifically as a specialist using the IMS Transaction
Manager for most of that time. Tasks have included installation, maintenance,
tuning, and problem diagnosis, as well as working in detail with IMS Fast Path,
APPC, security, and many IMS exits.

Geoff Nicholls is an IMS specialist in the Worldwide IMS Technical Support Team,
which is part of the IMS development organization. Previously, he was an IMS
specialist with the International Technical Support Organization, San Jose
Center. Geoff has a Science degree from the University of Melbourne, Australia,
majoring in Computer Science. He worked as an application programmer and
database administrator for several insurance companies before specializing in
database and transaction management systems with Unisys and IBM. Since
joining IBM in 1989, Geoff has worked extensively with IMS customers in
Australia and throughout Asia.

Thanks to the following people for their invaluable contributions to this project:

Jim Boyle
IBM Australia

Phil Vasile, Steve Perry, Pete Sadler
IMS Development, Santa Teresa Lab, San Jose

Chloe Long
International Technical Support Organization, San Jose Center

Yvonne Lyon
International Technical Support Organization, San Jose Center

Elsa Martinez
International Technical Support Organization, San Jose Center
xviii IMS Primer

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO redbook evaluation” on page 277 to the
fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internal note to redbook@us.ibm.com
xix

xx IMS Primer

Part 1. Overview of IMS

This part consists of three chapters:

1. An introduction to the IMS product and its components. Refer to Chapter 1,
“Introduction” on page 3.

2. A discussion of IMS and how it relates to the OS/390 product and services.
Refer to Chapter 2, “IMS and OS/390” on page 13.

3. A general look at a few of the IMS startup commands. Refer to Chapter 3,
“IMS TM and DB general information” on page 27.
© Copyright IBM Corp. 2000 1

2 IMS Primer

Chapter 1. Introduction

This chapter contains an overview of the entire IMS product. It will include both
the data communication and database components. The following topics are
covered:

1. 1.1, “IMS product” on page 3

2. 1.2, “Overview of the IMS product” on page 3

3. 1.3, “IMS Transaction Manager” on page 6

4. 1.4, “IMS Database Manager” on page 7

5. 1.5, “Additional availability and recovery features” on page 9

6. 1.6, “Description of XRF and RSR” on page 10

1.1 IMS product

IMS/ESA is an IBM program product that provides transaction management and
database management functions for large commercial application systems. It was
originally introduced in 1968. There are two major parts to IMS, a data
communication manager (DC) and a Database Manager (DB).

IMS TM is a message-based transaction processor that is designed to use the
OS/390 or MVS/ESA environment to your best advantage. IMS TM provides
services to process messages received from the terminal network (input
messages) and messages created by application programs (output messages). It
also provides an underlying queueing mechanism for handling these messages.

IMS DB is a hierarchical database manager which provides an organization of
business data with program and device independence. It has a built in data share
capability.

It has been developed to provide an environment for applications that require
very high levels of performance, throughput and availability. The development
has been designed to make maximum use of the facilities of the operating system
and hardware on which it runs, currently OS/390 on S/390 hardware.

1.2 Overview of the IMS product

IMS consists of three components, the Transaction Manager (TM) component,
the Database Manager (DB) component, and a set of system services that
provide common services to the other two components. The functions provided
by these components are described in more detail in the following chapters.

The Transaction Manager and Database Manager components can be ordered
and paid for separately if the functions of the other component are not required.
The appropriate system services are provided for the component ordered.

As IMS has developed, new interfaces have been added to meet new business
requirements. It is now possible to access IMS resources using a number of
interfaces to the IMS components. IMS applications can also access databases
managed by IBM’s DB2 relational database manager.
Introduction 3

IMS has been developed so that each new release of IMS is upwardly
compatible, so investment in existing applications is preserved. To accommodate
the changing requirements of IT systems, many new features have been added.
This has also resulted in a number of IMS features being wholly or partially
superseded by newer features normally providing better functionality. This should
be kept in mind when looking at IMS documentation. The interfaces to IMS are
pictured in Figure 1.

Figure 1. Interfaces to IMS

Applications written to use IMS functions can be written in a number of
programming languages. Programming languages currently supported are
Assembler, C, COBOL, Pascal, PL/I and REXX. The IMS resources are accessed
by the application by calling a number of standard IMS functions. Applications
access these functions through a standard application programming interface
(API) for both the Transaction Manager and Database Manager components.
This interface is normally referred to as Data Language I (DL/I).

1.2.1 IMS Transaction Manager
The IMS Transaction Manager provides users of a network with access to
applications running under IMS. The users can be people at terminals or
workstations, or other application programs, either on the same OS/390 system,
on other OS/390 systems, or on other non-OS/390 platforms.

A transaction is a specific setup of input data that triggers the execution of a
specific business application program. The message is destined for an
application program, and the return of any results is considered one transaction.

ACF/
VTAM

MVS
TCP/IP

Transaction
Manager

Database
Manager

IMS System DB2

DB2
Tables

IMS
Databases

IMS
Message Queues

IMS
Logs

MVS
Console

SNA
Network

TCP/IP
Network

ITOC

APPC/

MVS

MQ

Series
4 IMS Primer

Network access to IMS Transaction Manager was originally via IBM’s systems,
which evolved into the Network Architecture (SNA), as implemented in the VTAM
program product. Also, there are now a number of ways to access IMS resources
via networks using the Transmission Control Protocol / Internet Protocol (TCP/IP)
network product.

1.2.2 IMS Database Manager
The IMS Database Manager provides a central point of control and access for the
data (excluding DB2 Tables) that is processed by IMS applications. The Database
Manager component of IMS supports databases using IMS’s own hierarchic
database model. It provides access to these databases from applications running
under the IMS Transaction Manager, the CICS transaction monitor (now known
as Transaction Server for OS/390), and OS/390 batch jobs.

It provides facilities for securing (backup/recovery) and maintaining the
databases. It allows multiple tasks (batch and/or online) to access and update the
data, while retaining the integrity of that data. It also provides facilities for tuning
the databases by reorganizing and restructuring them.

The IMS databases are organized internally using a number of IMS’s own internal
database organization access methods. The database data is stored on disk
storage using the normal operating system access methods.

1.2.3 IMS system services
There are a number of functions that are common to both the Database Manager
and Transaction Manager:

• Restart and recovery of the IMS subsystems following failures.

• Security — controlling access to IMS resources.

• Managing the application programs — dispatching work, loading application
programs, providing locking services.

• Providing diagnostic and performance information.

• Providing facilities for the operation of the IMS subsystems.

• Providing an interface to the other OS/390 subsystems that the IMS
applications interface with.

1.2.4 IMS and OS/390 operating systems
IMS runs on S/370 and S/390 architecture IBM or compatible mainframes,
running the MVS or OS/390 operating systems. In fact, there is a symbiotic
relationship between IMS and OS/390. Both are tailored to provide the most
efficient use of the hardware and software components.

An IMS subsystem runs in several address spaces in an OS/390 system. There is
one controlling address space and several dependent address spaces providing
IMS services and running IMS application programs.

For full details on the compatibility of IMS releases with versions of the operating
system and associated products, refer to the current release planning guides.
For IMS 5.1, this is IMS/ESA Release Planning Guide, GC26-8031. For IMS 6.1,
this is IMS/ESA Release Planning Guide, GC26-8744.
Introduction 5

1.3 IMS Transaction Manager

The IMS Transaction Manager can be ordered and installed with or without the
Database Manager.

1.3.1 Network access to IMS/TM
IMS is written to interact with networks via IBM’s Systems Network Architecture
(SNA), as currently implemented using the VTAM program product. It can now
also be accessed by networks using Transmission Control Protocol/ Internet
Protocol (TCP/IP).

The Transaction Manager interacts directly with VTAM. Access via TCP/IP is
made via another address space, this address space uses the IMS Open
Transaction Manager Access (OTMA) function. The other address space can be
either one available with IMS, such as the IMS TCP/IP OTMA Connector (ITOC),
or another program product such as IBM’s MQ Series. For further details on the
options available for accessing IMS via TCP/IP, refer to the ITSO Publication
Connecting IMS to the World Wide Web: A Practical Guide to IMS Connectivity,
SG24-2220, and IMS e-Business Connect Using the IMS Connectors,
SG24-5427.

1.3.2 IMS Transaction Manager messages
The network inputs and outputs to IMS Transaction Manager take the form of
messages that are input/output to/from IMS and the “physical” terminals
(or application programs) on the network (normally referred to as destinations).

These messages are processed asynchronously (that is, IMS will not always
send a reply immediately, or indeed ever, when it receives a message, and
unsolicited messages may also be sent from IMS). The messages can be of four
types:

• Transactions — the data in these messages is passed to IMS application
programs for processing

• Messages to go to another logical destination (network terminals, etc.)

• Commands for IMS to process

• Messages for the IMS APPC feature to process. As IMS uses an
asynchronous protocol for messages, but APPC uses synchronous protocols
(that is, it always expects a reply when a message is sent), the IMS TM
interface for APPC has to perform special processing to accommodate this.

If IMS is not able to process an input message immediately, or cannot send an
output message immediately, then the message is stored on a message queue
external to the IMS system. IMS will not normally delete the message from the
message queue until it has received confirmation that an application has
processed the message, or it has reached its destination.

1.3.3 Connecting to other IMS and CICS systems
IMS has special protocols for connecting to other IMS systems, such as Multiple
System Connection (MSC), and to other CICS and IMS systems, such as
InterSystem Connection (ISC), which allow work to be routed to/from these other
systems for processing.
6 IMS Primer

The MSC connections can be via the network to other IMS systems on the same
or other OS/390 systems, via channel-to-channel connections to the same or
another channel attached OS/390 system, or via cross memory services to
another IMS subsystem on the same OS/390 system.

The ISC links to other CICS or IMS systems is provided over the network via
VTAM’s LU 6.1 protocol.

1.4 IMS Database Manager

The IMS Database Manager can be ordered and installed with or without the IMS
Transaction Manager

1.4.1 Functions of IMS Database Manager
A database management system (DBMS) provides facilities for business
application transaction or process to access stored information. The role of a
DBMS is to provide the following functions:

1. Allow access to the data for multiple users from a single copy of the data.

2. Control concurrent access to the data so as to maintain integrity for all
updates.

3. Minimize hardware device and operating systems access method
dependencies.

4. Reduce data redundancy by maintaining only one copy of the data.

The IMS Database Manager provides a central point for the control and access to
application data. IMS provides a full set of utility programs to provide all these
functions within the IMS product.

1.4.2 Implementation of IMS databases
IMS TM and IMS DBCTL both support multiple forms of enterprise databases, so
that varied application requirements can be met by exploiting whichever database
technology best suits the users' requirements.

These database technologies are:

IMS Database Often referred to as "DL/1 database" or colloquially as
"Full Function databases"

IMS DEDBs The Data Entry database, often referred to colloquially as
"Fast Path databases"

IMS MSDB Main storage databases

IBM Database2 DB2 provides for relational databases

IMS uses a hierarchical model for its database, described in more detail in
Chapter 11, “The IMS hierarchical database model” on page 69. The data stored
in the IMS databases is organized internally using a number of internal IMS
access methods. Each of these access methods suits certain types of access to
the database. The choice of the appropriate access method is discussed in detail
Chapter 12, “Implementation of the IMS database model” on page 79.
Introduction 7

No single technology is the best option for all applications — even though
fashions may suggest that an organization standardize on only one database
type. To do this, for example, to say that you wish to use only relational database
technology (DB2), would preclude consideration of other technologies that, for
suitable applications, would make massive savings in processing or application
development costs — far in excess of the small additional cost of introducing
DEDBs to your organization.

Each of the database implementations supported by IMS has different
characteristics:

DL/1 DL/1 databases provide a hierarchically structured database,
that can be accessed by record or sequentially, and by other
sequences that were planned and provided for when the
database was designed. DL/1 databases are limited in size to
4GB or 8GB per data set unless a portioning database
product is used.

DEDBs DEDBs are particularly suited for use where large databases,
or very low processing costs are required, or when
particularly high data availability or very high performance is
required. DEDBs were originally part of a separately priced,
optional feature. This results in the documentation and code
being separate from that for the Full Function (FF) databases.

DB2 DB2 provides well for unstructured or unplanned access to
data, and so provides flexibility in the support of future
application requirements. However, DB2 usually has a
significantly higher processing cost than any IMS database.

The IMS access methods are underpinned by the use of operating system access
methods to store data on disk storage. The software access methods which IMS
makes use of are:

• VSAM

• OSAM

1.4.3 Full Function IMS DB (DL/1 DB)
IMS Full Function Databases were design to support most types of database
requirements. These can be used in a wide variety of applications. Most IMS
applications make use of Full Function databases unless there are specific
requirements for one of the other types of databases. The major characteristics of
Full Function databases are:

• Small or large databases.

• Access to records via unique or non-unique keys.

• Many types of segments (up to 15 levels allowed).

• Records can be stored in key sequence, but it is not a requirement.
8 IMS Primer

1.4.4 Fast Path Data Entry Database (DEDB)
The Data Entry Database (DEDB) was designed to support particularly intensive
IMS database requirements, primarily in the banking industry, for:

• Large databases containing millions of records, extending well beyond the
original 4GB database limits of DL/1 databases

• Access to each database record that can be achieved by access via a key
field

• Lower processing costs per database record and per update than are required
for DL/1 databases

• The capability to support higher transaction workloads than DL/1 can sustain,
while maintaining the per-transaction cost advantages mentioned above

• Improved availability, with reduced requirements for database outage,
especially for database maintenance activities such as database
reorganizations

• Lower processing costs for particular types of processing, where data are
inserted online and retrieved in batches for further processing, and eventually
deleted in batches

• The possibility of eliminating transaction-related I/O from database
processing.

All the above requirements were satisfied, while maintaining the conventional
DL/1 application interface, so that application programming for the exploitation of
DEDBs is little different from that for DL/1 databases.

1.4.5 IMS and DB2
IMS applications running in an IMS subsystem can also access data stored in a
DB2 database. The updating of the DB2 tables is coordinated with the update to
the IMS resources (databases and messages) to ensure all updates are
consistently applied.

While the IMS databases provide high performance for the transaction
processing environment, you may also want to perform ad-hoc queries on all or
part of the data, more suitable to the relational database model implemented by
DB2. The IBM Data Propagator product can be used to automatically duplicate
data from IMS databases to DB2 tables.

1.5 Additional availability and recovery features

IMS provide many features to provide high availability and complete recovery of
the IMS system in all operation environments.

1.5.1 Database Recovery Control (DBRC)
DBRC is that part of IMS which provides the recovery services so much a part of
the IMS system. DBRC controls the allocation and use of all IMS logs in an online
environment.

DBRC uses a control file, the Recovery Control (RECON) file to store the control
information to fulfill these functions.
Introduction 9

A more detailed description of DBRC is found in Chapter 20, “Database recovery
control (DBRC)” on page 207.

1.5.2 Additional features for increased availability (XRF and RSR)
There are two additional features of IMS that can, optionally, be used to increase
the availability of IMS systems and the data in IMS databases. Both rely on
duplicating IMS subsystems and data on another OS/390 system.

The first of these is the extended recovery facility (XRF). XRF is delivered as an
integral part of the IMS program product. It is intended to provide increased
availability for IMS subsystems. There is an overhead, both in machine usage
and support, in using XRF. However, if you have an application that can only
tolerate minimal outages, then you may wish to consider XRF.

The second of these features is Remote Site Recovery (RSR). RSR is a
separately priced component available with IMS. It provides similar facilities to
XRF, but with some differences.

Both features rely on having another IMS subsystem, situated on another OS/390
system, that tracks the update activity of the primary IMS subsystem (only one for
XRF, one or more for RSR) to provide a backup.

The differences between the two features is discussed elsewhere in this
document, but to summarize:

• XRF is suitable for situations where you have a single IMS DB/DC system that
requires very high system availability (greater that 99.5%). However the
second OS/390 containing the tracking IMS system must be channel attached
to the OS/390 System the first IMS is running on.

• RSR is suitable for situations where you have one or more IMS subsystems,
running in a number of address spaces on a single OS/390 system, where you
wish to minimize data loss in a failure situation, but can tolerate outages of
around an hour. RSR uses network connections between the two OS/390
systems, so there are no restrictions on the distance separating them.

1.6 Description of XRF and RSR

XRF and RSR are features of IMS which provide increased availability for the IMS
system and their related applications. They provide different types of functions
but both increase the availability for IMS Systems.

1.6.1 Extended Recovery Facility (XRF)
XRF works by having a second, alternative, IMS system running. This alternative
IMS system runs on a separate OS/390 image, which should be on a physically
separate machine. This tracks the work on the active IMS system via the UNS log
data sets. You want the ability to perform hardware maintenance and
maintenance on other system software products without interrupting the
availability of the IMS application.

XRF is delivered as an integral part of the IMS program product. It is intended to
provide increased availability for IMS subsystems. There is an overhead, both in
machine usage and support, in using XRF. However, if you have an application
that can only tolerate minimal outages, then you may wish to consider XRF.
10 IMS Primer

The principal drawbacks of XRF are:

• It will not protect against application errors. If the outage is caused by an
application error, the same application message may be re-presented on the
alternate IMS and cause it to fail.

• It will not, in itself, protect against network outages. You will have to plan for
this separately.

• XRF does not support DB2 databases. However, if you are designing an
application of this sort, it would be better to use IMS databases, particularly
the Data Entry Database (DEDB). The DEDB has provisions for performing
most database maintenance with the databases remaining available. It will
also automatically maintain multiple copies of the data sets containing the data
to guard against media failure.

• Some maintenance to the IMS software requires it to be applied to both the
active and standby IMS systems at the same time.

So, while XRF can prevent most unplanned and planned outages, it cannot keep
the IMS system available indefinitely. You will eventually have to have plan
outages for software maintenance and upgrades, and some changes to the IMS
configuration. IMS systems running with XRF have achieved continuous
availability for business applications figures measured in years.

1.6.2 Remote Site Recovery (RSR)
RSR is a separately priced component available with IMS. It provides similar
facilities to XRF, but with some differences.

RSR can track details of IMS full function databases, Fast path DEDB’s, IMS/TM
message queues and the current IMS/TM telecommunication network on an
alternate machine. This machine is connected the machine with the active
systems on by a network connection using the VTAM APPC protocol. The VTAM
connection is between separate transport manager subsystems (TMS) on the
active and tracking machines.

The transport manager subsystem on the active machine collects all log data
from all IMS systems (DB/DC, DCCTL, DBCTL and batch) that are defined for
RSR tracking and sends this data across to the tracking machine.

The TMS on the tracking machine receives this data and passes it to a single IMS
DB/DC region. This processes the data and logs it using normal IMS logging.
Depending on what level of tracking has been requested, the IMS region may
also apply the updates to the IMS databases.

If there are any interruptions to the network connection, RSR will note the gaps in
the logging and perform catch up processing when the link is re-established.

The IMS system on the tracking machine normally can only process input from
the TMS. It only becomes a fully functioning system if it has to take over.
Introduction 11

Not all databases are tracked. You define the databases that are to be tracked by
specifying this when you define them to DBRC. Table 1 gives a comparison of the
features of XRF and RSR.

Table 1. Comparison of XRF and RSR

To summarize:

• XRF is suitable for situations where you have a single IMS DB/DC system that
requires very high system availability (greater that 99.5%). However the
second OS/390 must be channel attached to the OS/390 system the first IMS
is running on.

• RSR is suitable for situations where you have one or more IMS applications,
which may run in a number of address spaces, and where you wish to
minimize data loss in a failure situation, but can tolerate outages of around an
hour. RSR uses network connections between the two OS/390 systems, so
there are no restrictions on the distance separating them.

RSF XRF

Uses same physical log data sets and
database data sets for active and tracking
system

Uses completely separate log data sets and
database data sets

Active and tracking system must be within
channel attach distance of each other

Active and tracking systems are connected
by network, only limit on separation is
network response

Active and tracking systems must use
IMS/TM

Active systems can be any system updating
IMS resources DB/DB, TM only, DB only, or
batch. The tracking system must be DB/dC.

One-to-one relationship between active and
tracking system.

One tracking system tracks many active
systems

All committed updates recorded on tracking
system

Possible for gap in data at tracking system
after unplanned takeover

Switching to/from alternative comparatively
simple.

Takeovers more complex than XRF

Switches over to alternate in order of one
minute.

Switch to alternate can take an hour or
more.
12 IMS Primer

Chapter 2. IMS and OS/390

This chapter describes how IMS subsystems are implemented on an OS/390
system. It then gives an overview of IMS’s use of OS/390 facilities. The following
topics will be covered:

• 2.1, “Structure of IMS subsystems” on page 13

• 2.2, “Running of IMS subsystems” on page 20

• 2.3, “Running multiple IMS systems on one OS/390 system” on page 21

• 2.4, “Use of OS/390 services” on page 23

• 2.5, “Other hardware/operating system platforms” on page 26

2.1 Structure of IMS subsystems

This section describes the various types of OS/390 address spaces and their
relationship with each other. The core of an IMS subsystem is the control region,
running in one OS/390 address space. This will have a number of dependent
address spaces running in other regions that provide additional services to the
control region, or in which the IMS application programs run.

In addition to the control region, some applications and utilities used with IMS run
in separate batch address spaces. These are separate to an IMS subsystem and
its control region, and have no connection with it.

For historical reasons, some documents describing IMS use the term region to
describe an OS/390 address space, for example, IMS Control Region. In this
book we have used the term region wherever this is in common usage. You can
take the term region as being the same as an OS/390 address space.

2.1.1 IMS control region
The control region (CTL) is an MVS address space that can be initiated through
an MVS start command, or by submitting JCL.

The IMS control region provides the central point for an IMS subsystem.
It provides the interface to the SNA network for the Transaction Manager
functions, and the Transaction Manager OTMA interface for access to non-SNA
networks. It provides the interface to OS/390 for the operation of the IMS
subsystem. It controls and dispatches the application programs running in the
various dependent regions.

The control region provides all logging, restart and recovery functions for the IMS
subsystems. The terminals, message queues, and logs are all attached to this
region, and the Fast Path database data sets are also allocated by the CTL
region address space.

A type 2 supervisor call routine (SVC) is used for switching control information,
message and database data between the CTL region, and all other regions, and
back.

There are three different types of IMS control region, depending on whether the
Database Manager and/or Transaction Manager components are being used.
These three control region types are:
IMS and OS/390 13

• DB/DC — This is a control region with both Transaction Manager and
Database Manager components installed. It provides the combined
functionality of both the other two types of control region. Note that when a
DB/DC region is providing access to IMS databases for a CICS region, it is
referred to in some documentation as providing DBCTL services, though it
may in fact be a full DB/DC region and not just a DBCTL region.

• DBCTL — This is a control region with only the Database Manager component
installed. This can provide IMS database functions to batch application
programs connected to the IMS control region (BMPs, see below), to
application transaction’s running in CICS Transaction Manager regions, and to
other OS/390 address spaces (for example, DB2 stored procedures) via the
Open DataBase Access (ODBA) interface.

• DCCTL — This type of control region has only the Transaction Manager
component installed. It provides access to the IMS message queues for IMS
applications running in the MPP, IFP and BMP application address spaces
described Figure 2 below.

Figure 2. Structure of IMS DB/DC subsystem

Application
Program

BMP

Application
Program

IFP

Application
Program

MPPDLI
Seprate
Address
Space

DBRC
Region

Network

IMS
Message Queues

Control
Region
Address
Space

Logs

Full
Function
Databases

System Address Spaces Application Region Address Spaces
Up to 99 in total

Dependent
Region
Address
Spaces

RECONs

IMS
System

Fast Path DatabasesIMS Libraries
14 IMS Primer

In some of the IMS documentation, the above terms are also used to refer to what
sort of IMS system is being generated during an IMSGEN, that is, for what
functions will code be generated into the IMS code libraries. This is distinct from
the functions provided by a single IMS subsystem, which we are describing here.

2.1.2 IMS system dependent regions
The control region will have a number of dependent system address spaces
(dependent regions) to provide some of the services of the IMS subsystem.

These dependent regions are automatically started by the IMS control region as
part of its initialization, and the control region will not complete initialization until
these dependent regions have started and connected to the IMS control region.
Every IMS control region has a DBRC region. The other two dependent system
address spaces are optional, depending on the IMS features used. For the DL/I,
separate address space options can be specified at IMS initialization.

2.1.2.1 DBRC region
This address space contains the code for the DBRC component of IMS. It
processes all access to the DBRC recovery control data sets (RECON). It also
performs all generation of batch jobs for DBRC, for example, for archiving the
online IMS log. All IMS control regions have a DBRC address space, as it is
needed, at a minimum, for managing the IMS logs.

2.1.2.2 DLI separate address space (DLISAS)
This address space performs most data set access functions for the IMS
Database Manager component (except for the fast path DEDB databases,
described later). The FF database data sets are allocated by this address space.
It also contains some of the control blocks associated with database access and
some database buffers.

This address space is not present with a DCCTL system, since the Database
Manager component is not present.

For a DBCTL control region, this address space is required, and always present.

For a DB/DC control region, you have the option of having IMS database
accesses performed by the control region, or having the DB/DC region start a
DL/I separate address space. For performance and capacity reasons, you would
normally use a DLI separate address space.

2.1.2.3 Common queue server (CQS) address space
This is used by IMS DCCTL and DB/DC control regions only if they are
participating in an OS/390 sysplex sharing of the IMS message queues. It
provides access to the shared IMS message queues in the sysplex coupling
facility, which replace the IMS messages queue data sets on DASD. The CQS
address space is only available with IMS Version 6 onwards. See the ITSO
publication IMS/ESA Version 6 Shared Queues, SG24-5088 for further details.
IMS and OS/390 15

2.1.3 Application dependent regions
IMS provides dependent region address spaces for the execution of system and
application programs that use the services provided by the IMS. The previously
discussed region types (DBRC and DLISAS), as mentioned in “IMS system
dependent regions” on page 15, are automatically started by the IMS control
region.

These application dependent regions are started as the result of JCL submission
to the operating system by the IMS CTL region, following an IMS command being
entered.

Once they are started, the application programs are scheduled and dispatched by
the control region. In all cases, the OS/390 address space executes an IMS
region control program. The application program is then loaded and called by the
IMS code.

There can be up to 999 application dependent regions connected to one IMS
control region, made up of any combination of the following dependent region
types:

• Message processing region (MPP)

• IMS Fast Path region (IFP)

• Batch message processing region (BMP)

• DBCTL thread (DBT)

• Other utility type regions, such as HSSP processing (BMH) and Fast Path
utility program (FPU)

The combination of what region type can be used in the various types of IMS TL
regions, can be found in Table 2.

Table 2. Support for region types by IMS control region type

(1) BMP attached to a DCCTL control region can only access the IMS
message queues and DB2 databases.

2.1.3.1 Message processing region (MPP)
This type of address space is used to run applications to process messages input
to the IMS Transaction Manager component (that is, online programs). The
address space is started by IMS submitting the JCL as a result of an IMS
command. The address space does not automatically load an application
program but will wait until work becomes available.

Application Address
Space type

DCCTL DBCTL DB/DC

MPP Y N Y

IFP Y N Y

BMP (txn oriented) Y(1) N Y

BMP (batch) N Y Y

Batch N N N

DBT N Y Y
16 IMS Primer

There is a complex scheme for deciding which MPP to run the application
program. We will give a brief description below. When the IMS dispatching
function determines that an application is to run in a particular MPP region, the
application program is loaded into that region and receives control. It processes
the message, and any further messages for that transaction waiting to be
processed. Then, depending on options specified on the transaction definition,
the application either waits for further input, or another application program will
be loaded to process a different transaction.

2.1.3.2 IMS Fast Path message region (IFP)
These address spaces also run application programs to process messages for
transactions which have been defined as Fast Path transactions.

IMS Transaction Manager component, the applications are broadly similar to the
programs that run in an MPP. Like MPRs, the IFP regions are started by the IMS
control regions submitting the JCL as a result of an IMS command. The difference
with IFP regions is in the way IMS loads and dispatches the application program,
and handles the transaction messages. To allow for this different processing, IMS
imposes restrictions on the length of the application data that can be processed
in an IFP region as a single message.

IMS employs a user exit, which you have to write, to determine whether a
transaction message should be processed in an IFP region, and which IFP region
it should be processed in. The different dispatching of the transaction messages
by the control region is called Expedited Message Handling (EMH). The intention
is to speed the processing of the messages by having the applications loaded
and waiting for input messages, and, if the message is suitable, dispatching it
directly in the IFP region, bypassing the IMS message queues. Fast Path was
originally a separately priced function available with IMS, intended to provide
faster response and allow higher volumes of processing. It is now part of the IMS
base product.

2.1.3.3 Batch message processing region (BMP)
Unlike the other two types of application dependent regions, the BMP is not
started by the IMS control region, but is started by submitting a batch job, for
example by a user via TSO, or via a job scheduler such as OPC/ESA. The batch
job then connects to an IMS control region defined in the execution parameters.
There are two types of applications run in BMP address spaces:

• Message Driven BMPs (also called transaction oriented), which read and
process messages off the IMS message queue.

• Non-message BMPs (batch oriented), which do not process IMS messages.

BMPs have access to the IMS databases, providing that the control region has
the Database Manager component installed. BMPs can also read and write to
OS/390 sequential files, with integrity, using the IMS GSAM access method
DBCTL Thread (DBT)

When a CICS system connects to IMS DBCTL, or to an IMS DB/DC system using
DBCTL facilities, each CICS system will have a pre-defined number of
connections with IMS. Each of these connections is called a thread. See Figure 3.
IMS and OS/390 17

Although these threads are not jobs in their own right, from IMS’s perspective,
each thread appears just like another dependent region, and when CICS requires
a DL/I call to IMS, the program will effectively be running in one of these DBT
regions.

Figure 3. Structure of IMS DBCTL system

2.1.3.4 Other utility regions
Other types of regions are BMH, used for HSSP processing, and FPU, used for
Fast Path utility programs. For further discussion on these, please refer to the
appropriate level of the IMS/ESA V6 Install Volume 2, GC26-8737.

2.1.4 Batch application address space
In addition to the dependent application address spaces above, IMS application
programs that only use IMS Database Manager functions can be run in a
separate MVS address space, not connected to an IMS control region. This would
normally be done for very long running applications, that perform large numbers
of database accesses.

Application
Program

CICSDLI
Seprate
Address
Space

DBRC
Region

Network

Control
Region
Address
Space

Full
Function
Databases

System Address Spaces Application Region Address Spaces
Up to 99 in total

Dependent
Region
Address
Spaces

RECONs

IMS DBCTL
System

Logs

Fast Path Databases

IMS Libraries

Application
Program

BMP
18 IMS Primer

This is similar to a BMP, in that the JCL is submitted via TSO or a job scheduler.
However, all IMS code used by the application resides in the address space the
application is running in. The job executes an IMS region controller that then
loads and calls the application. See Figure 4.

Figure 4. Structure of IMS batch region

The batch address space opens and reads the IMS database data sets directly. If
there are requirements for other programs, either running via an IMS control
region or in other batch regions, to access the databases at the same time, then
see the discussion elsewhere in this book on methods of data sharing.

The batch address space writes its own separate IMS log. In the event of a
program failure it may be necessary to take manual action (for example, submit
jobs to run IMS utilities) to recover the databases to a consistent point (with
dependent application address spaces this would be done automatically by the
IMS control region). DBRC, if properly set up, can be used to track the IMS logs
and ensure that correct recovery action is taken in the event of a failure.

An application can be written so that it can run in both a batch and BMP address
space without change. Some reasons you may want to change programs
between batch and BMP address spaces include length of run time, need of other
applications to access the data at the same time, and your procedures for
recovering from application failures.

2.1.5 Internal Resource Lock Manager (IRLM)
There is one final address space that is, optionally, used with IMS. This is the
IRLM address space, and is only needed if you are going to use block level or
sysplex data sharing for the IMS databases. The IRLM address space is started
before the IMS control region, via the MVS start command. The IMS control
region, if the start up parameters specify use of IRLM, connects to the IRLM
specified on startup, and will not complete initialization until connected.

IMS Batch Region Controller

Application
Program

IMS DLI
ModulesAppl

Files

Logs

RECONs
Appl
Databases

MVS Address Space
IMS and OS/390 19

There is one IRLM address space running on each OS/390 system to service all
IMS subsystems sharing the same set of databases. For more information on
data sharing in sysplex environment, see IMS/ESA Data Sharing in a Parallel
Sysplex, SG24-4303.

IRLM is delivered as an integral part of the IMS program product, though as
mentioned, you do not have to install or use it unless you wish to perform block
level or sysplex data sharing. IRLM is also used as the (only) lock manager for
the DB2 database program product, and for DB2 you must install IRLM. Because
the tuning requirements of IMS and DB2 are different, and conflicting, you are
recommended not to use the same IRLM address space for IMS and DB2. Since
the IRLM code is delivered with both the IMS and DB2 program products, and
interacts closely with both these products, you may wish to install the IRLM code
for IMS and DB2 separately (that is, separate SMP/E zones) so you can maintain
release and maintenance levels independently. This can be helpful if you need to
install prerequisite maintenance on IRLM for one database product, as it will not
affect the use of IRLM by the other.

2.2 Running of IMS subsystems

The procedures to run IMS address spaces are supplied by IBM. The procedures
will be available in the PROCLIB data set. There are procedures for each type of
region:

• DB/DC control region

• DCC control region

• DBCTL control region

• DLI separate address space

• DBRC address space

• IRLM address space

• Message processing region (MPR)

• IMS batch region (BMP)

• Fast Path region (IFP)

• Fast Path utility region

• DLI batch region

• IMSRDR region

These procedures should be modified with the correct data set names for each
IMS system. Table 3 contains the procedure member names as found in the
PROCLIB.
20 IMS Primer

Table 3. IMS procedure member names

For details of these and other procedures supplied in the PROCLIB, see
Procedures in the IMS/ESA Installation Volume 2: System Definition and
Tailoring, GC26-8737.

2.3 Running multiple IMS systems on one OS/390 system

Multiple IMS systems can be run on a single OS/390 image. One instance of an
IMS system (control region and all dependent regions) is referred to as one IMS
subsystem. In many cases these would be production and testing subsystems.

2.3.1 IMS subsystems
Each IMS subsystem should have unique VTAM ACB and IMSID names. The
application dependent regions use the IMSID to connect to the corresponding
IMS control region. If the dependent region starts and there is no control region
running using that IMSID, it will produce a message to the MVS system console
and then wait for a reply. Each IMS subsystem can have up to 99 dependent
regions. However, there are other limiting factors.

If the IRLM is used, it must be started before the IMS control region is. If IMS
starts to come up first, it will write a message to the MVS system console and
wait for a reply. If the IRLM is specified, IMS will not run without it.

The number of subsystems you can run on a single image of OS/390 will depend
on a lot of factors. In most installations you can run up to 4 subsystems, although
some installations have gotten as many as 8 small ones running concurrently.
The number will vary depending on the size of each IMS systems. The amount of
CSA required by each IMS system is often one of the most limiting factors in the
equation.

Region Name Procedure Member Name

DB/DC control region IMS

DC control region DCC

DBCTL control region DBC

DLI separate address space DLISAS

DBRC DBRC

IRLM DXRJPROC

Message processing region (MPR) DFSMPR

IMS batch processing region (BMP) IMSBatch

Fast Path region (IFP) IMSFP

Fast Path utility region FPUTIL

DLI batch region DLIBATCH

IMSRDR region IMSRDR
IMS and OS/390 21

2.3.2 Address Spaces
All the address spaces can either run as a started task or as a JOB. In most
cases the IMS control region and the system dependent regions will run as
started tasks. The application dependent regions are run as either.

When a control region is started, it will issue an MVS start command as shown in
the example below:

/START xxxxxxxx,PARM=(DLS,imsid)
/START xxxxxxxx,PARM=(DRC,imsid)

The xxxxxxx fields are the procedure names. These commands will start the
DLISAS and DBRC regions respectively.

2.3.3 Starting application dependent regions
IMS will not automatically start application dependent regions. There are several
ways to have these regions started.

• The Time Control Option (TCO) of IMS can be used to issue /START REGION
commands.

• Automation of some kinds can issue either IMS or MVS start commands.

• A JOB scheduling system can submit JOBS based on time or the notification
of IMS being start via some automated messages.

2.3.3.1 Message processing regions
IMS MPR regions are normally started by an IMS start region command as shown
below:

/START REGION xxxxxxxx

The xxxxxx fields are the member names in a library. Them members contain the
JOBs for the MPR regions. The IMSRDR procedure is used if the MPRs are
JOBs. The IMSRDR procedures is customized to point at the correct library to
find the JOB JCL. If you are running multiple IMS systems on an MVS system,
they normally use a different version of the IMSRDR procedure each pointing at
different libraries. The procedure name is specified on the IMSCTF macro in the
system definition. See IMSCTF MACRO in IMS/ESA Installation Volume 2:
System Definition and Tailoring, GC26-8737, for more information.

2.3.3.2 Fast Path application regions
Fast Path application regions are normally treated just like MPRs and follow the
same rules and procedures.

2.3.3.3 Batch message processing regions
These regions are almost always started outside of IMS. Most BMPs are
scheduled at appropriate times to meet application requirements. As long as the
IMS control region is available, the BMPs can be run. BMP can execute even
though there are no MPR running at the time.
22 IMS Primer

2.4 Use of OS/390 services

IMS is designed to make the best use of the features of the OS/390 operating
system. This includes:

1. Running in multiple address spaces — IMS subsystems (except for IMS/DB
batch applications and utilities) normally consist of a control region address
space, dependent address spaces providing system services, and dependent
address spaces for application programs. Running in multiple address spaces
gives the following advantages:

• Maximizes use of CPUs when running on a multiple processor CPC.
Address spaces can be dispatched in parallel on different CPUs.

• Isolates the application programs from the IMS systems code. Reduces
outages from application failures.

2. Runs multiple tasks in each address space — IMS, particularly in the control
regions, creates multiple OS/390 subtasks for the various functions to be
performed. This allows other IMS subtasks to be dispatched by OS/390 while
one IMS subtask is waiting for system services.

3. IMS uses OS/390 cross memory services to communicate between the
various address spaces making up an IMS subsystem. It also uses the
OS/390 Common System Area (CSA) to store IMS control blocks that are
frequently accessed by the address spaces making up the IMS subsystem.
This minimizes the overhead in running in multiple address spaces.

4. IMS uses the OS/390 subsystem feature — IMS dynamically registers itself as
an OS/390 subsystem. It uses this facility to detect when dependent address
spaces fail, prevent cancellation of dependent address spaces (and to interact
with other subsystems like DB2 and MQ?).

5. From V5 of IMS Database Manager and V6 of IMS Transaction Manager, IMS
can make use of an OS/390 sysplex. Multiple IMS subsystems can run on the
OS/390 systems making up the sysplex and access the same IMS databases
(IMS V5) and the same message queue (IMS V6). This gives:

• Increased availability — OS/390 systems and IMS subsystems can be
switched in and out without interrupting the service.

• Increased capacity — the multiple IMS subsystems can process far greater
volumes.

For further details on sysplex data sharing and shared queues, refer to the ITSO
publications IMS/ESA Data Sharing in a Parallel Sysplex, SG24-4303, and
IMS/ESA Version 6 Shared Queues, SG24-5088.

2.4.1 MVS TCP/IP
IMS uses a function called OTMA to provide access to TCP/IP application. Any
TCP/IP application can have access to IMS via the OTMA. IMS has introduced a
function called the IMS TOC Connector, which provides an interface. For more
details on OTMA and the IMS TOC Connector, refer to the redbook IMS
e-Business Using the IMS Connectors, SG24-5427.
IMS and OS/390 23

2.4.2 APPC/MVS
Advanced Program to Program Communications/IMS (APPC/IMS) support for
Logical Unit type 6.2 supports the formats and protocols for program-to-program
communication.

APPC/IMS enables applications to be distributed throughout your entire network
and to communicate with each other regardless of the underlying hardware.

In the host environment, APPC/VTAM has been added to the VTAM base to
facilitate the implementation of APPC/IMS support. In addition, APPC/MVS works
with APPC/VTAM to implement APPC/IMS functions and communication services
in an MVS environment. APPC/IMS takes advantage of this structure and uses
APPC/MVS to communicate with LU 6.2 devices. Therefore, all VTAM LU 6.2
devices supported by APPC/MVS can access IMS using LU 6.2 protocols to
initiate IMS application programs, or conversely be initiated by IMS.

APPC/IMS provides compatibility with non-LU 6.2 device types by providing a
device-independent API. This allows an application program to work with all
device types (LU 6.2 and non-LU 6.2) without any new or changed application
programs.

IMS supports APPC conversations in two scenarios:

Implicit In this case, IMS supports only a subset of the APPC functions, but
enables an APPC incoming message to trigger any standard IMS
application that is already defined in the normal manner to IMS, and
uses the standard IMS message queue facilities, to schedule the
transaction into any appropriate dependent region.

Explicit In this case, the full set of CPIC command verbs can be used, and the
IMS application is written specifically to cater only for APPC triggered
transactions. The standard IMS message queues are not used in this
case, and the IMS control region only helps create the APPC
conversation directly between the APPC client and the IMS dependent
region to service this request. The IMS control region takes no further
part, regardless of how long the conversation may be active.

For further details, refer to 7.3, “Advanced Program-to-Program Communication
(APPC)” on page 50.

2.4.3 Security server for OS/390 (RACF)
IMS was developed prior to the introduction of RACF. As a result, it initially
incorporated its own security mechanisms to control user access to the various
IMS resources, transactions, databases, etc. This security was controlled by a
number of means. A number of security exits were provided. Also, a series of
bitmaps defined users and their access to resources. This is referred to as a
security matrix. These are load modules, produced by the IMS security
maintenance utility following the generation of an IMS system.

With the introduction of RACF, IMS has been enhanced to make use of RACF for
controlling access to IMS resources. It is now possible to use the original IMS
security features, the new RACF features, and combinations of these. Using
RACF provides more flexibility than the older security features, so we would
recommend using these where possible.
24 IMS Primer

The normal features of RACF can also be used to protect IMS data sets, both
system and database.

For further information, refer to Chapter 24., “IMS security overview” on page
253, and for full details on using RACF to protect IMS resources, refer to the
IMS/ESA Administration Guide: System, SC26-8013.

2.4.4 Transaction server for OS/390 (CICS)
The Transaction Server for OS/390, historically referred to as CICS, is able to
connect to IMS in several different ways.

2.4.4.1 DBCTL
Prior to IMS Version 3, any CICS users who required access to IMS databases
were required to use CICS Local DLI. In this case, the IMS system was not run on
its own, but the CICS system was used to manage IMS hierarchical databases.
The IMS software needed to be installed, and then the relevant components
linked into the CICS system and ran in the CICS address space.

IMS Version 3 introduced IMS DBCTL, which is an IMS system that is connected
to CICS transaction management systems. DBCTL is an IMS subsystem that
allows access to DL/I Full Function databases and Data Entry Databases
(DEDBs) from CICS environments. Access from transaction management
subsystems (excluding the IMS/ESA Transaction Manager) is provided through
the DBCTL coordinator controller (CCTL) interface. The IMS/ESA Database
Manager may be connected through DBCTL to any CICS system from CICS/ESA
Version 3, or higher.

With IMS/ESA Version 5, CICS applications can no longer access DL/I databases
through local DL/I. Therefore, IMS DBCTL must be used.

IMS can be generated to run purely in DBCTL mode, if IMS TM has not been
installed. If IMS TM has been installed, then a standard IMS DB/DC system can
still be used to provide the DBCTL services required by CICS.

2.4.4.2 Intersystem Communication (ISC) links
ISC links between IMS and CICS use the standard LU 6.1 protocol available
within the network. They can use standard VTAM connections, or direct
connections.

ISC is a part of the IMS Transaction Manager. It is one of the ways to connect
multiple subsystems. The other means of connection is multiple systems coupling
(MSC).

As defined under SNA, ISC is an LU 6.1 session that:

• Connects different subsystems to communicate at the application level.

• Provides distributed transaction processing permitting a terminal user or
application in one subsystem to communicate with a terminal or application in
a different subsystem and, optionally, to receive a reply. In some cases, the
application is user-written; in other cases, the subsystem itself acts as an
application.

• Provides distributed services. Thus, an application in one subsystem can use
a service (such as a message queue or database) in a different subsystem.
IMS and OS/390 25

SNA makes communication possible between unlike subsystems and includes
SNA-defined session control protocols, data flow control protocols, and routing
parameters.

For further details, refer to 7.1, “Inter-System Communications (ISC)” on page 49.

2.5 Other hardware/operating system platforms

The non-OS/390 mainframe platforms where all or part of the IMS functions can
be used are as follows:

• A subset of the IMS Database Manager component functions are available on
the IBM VSE/ESA operating system running on the S/390 platform. As the
Transaction Manager component is not available, this is normally used with
CICS for transaction processing. The internal structures of the databases are,
broadly, similar. However, it is not normally possible to access IMS databases
on an OS/390 system from a VSE/ESA system, and it is not possible to access
an IMS database on a VSE/ESA system from an OS/390 system. Limited
access from CICS systems running on one operating system platform to IMS
databases on the other operating system platform are available via CICS
function shipping.

• The IBM P/390 product, which, by means of a standard expansion board,
implements OS/390 functionary on a PC workstation or UNIX server, enables
an IMS subsystem to be run on that workstation/server. However, this would
not normally be able to support production volumes, though it may be suitable
for a legacy application with very low throughput. It is however, suitable for
development and unit testing by individual application programmers. It
provides one possible solution to the problem of running multiple application
copies for unit testing. As the P/390 card implements the S/390 instruction set
as specified in the S/390 Principles of Operation, it is also suitable for systems
programming development, testing and problem investigation. However, it
cannot be used with functions implemented in microcode and hardware (for
example, logical partitioning (LPARs), running sysplex coupling facility code).

• Third party products available from Micro Focus and Computer Associates
implement part or all of the IMS API on a PC workstation. This provides similar
facilities to the P/390, although as it only implements the application
interfaces, it is really only suitable for application development.
26 IMS Primer

Chapter 3. IMS TM and DB general information

This chapter contains general information about the IMS start processes.
The topics covered are:

1. 3.1, “IMS startup” on page 27

2. 3.2, “IMS shutdown” on page 28

3. 3.3, “Logging” on page 28

4. 3.4, “Security” on page 28

5. 3.5, “IMS generation” on page 28

6. 3.6, “IMS recovery” on page 28

3.1 IMS startup

This section describes the common types of IMS startup commands, applicable
to both transaction management and/or database management.

• Cold start

An IMS CTL region cold start is done at the first time you start the system.
During cold start, we format (initialize) the message queues, dynamic log and
restart data sets.

• Emergency restart

In case of failure, IMS is restarted with the log active at the time of failure.
Restart processing will back-out the database changes of incomplete MPPs
and BMPs. The output messages inserted by these incomplete MPPs will be
deleted.

After back-out, the input messages are re-enqueued, the MPPs are restarted,
and the pending output messages are (re)-transmitted. If a BMP was active at
the time of failure, it must be resubmitted via MVS job management. If the
BMP uses the XRST/CHKP calls, it must be restarted from its last successful
checkpoint. In this way, missing or inconsistent output is avoided.

• Normal restart

Normal restart or warm start is done from a previous normal IMS termination.
The message queues are preserved in this way.

• Automatic restart

In most cases, this should be the default. With an automatic restart, IMS will
startup, using either normal restart, or emergency restart, depending on the
previous shutdown status.

If the last IMS shutdown was successful, then a normal restart will be done. If
the last IMS shutdown was an abend, then an emergency restart will be
automatically done.

• Other restarts

There are numerous other types of manual starts possible with IMS, each with
unique requirements. Refer to the IMS Operator’s Reference Manual,
SC26-8742.
IMS TM and DB general information 27

3.2 IMS shutdown

There are also several different ways of shutting down IMS, depending on what
type of control region you are running (DB/BC, DBCTL, DCCTL), and whether or
not the IMS message queues are required following the next startup. Refer to the
IMS Operator’s Reference Manual, SC26-8742, for further details.

3.3 Logging

During IMS execution, all information necessary to restart the system in the event
of hardware or software failure is recorded on a system log data set.

For further details, refer to Chapter 22, “IMS logging” on page 239.

3.4 Security

IMS itself has security built in, and also has the ability of more extensive security
by using RACF, or with user exits.

The security can cover such things as:

• Signon security

• Transaction security

• Program security

For further details, refer to Chapter 24, “IMS security overview” on page 253.

3.5 IMS generation

All optional features of IMS, including what type of control region is required
(DB/DC, DBCTL, DCCTL), must be specified in the IMS generation.

Almost all programs, databases, transactions, and terminals (unless the ETO
feature is used) within IMS must also be predefined within the IMS generation.

For further details, refer to Chapter 23, “IMS system generation process” on page
245.

3.6 IMS recovery

There are also a number of tools and features available with IMS to help in
recovery scenarios:

• Extended Recovery Facility (XRF), for use in having a hot standby system
ready to take over within the same site.

• Remote Site Recovery (RSR), for use in complete site disasters, to recover
the complete IMS system(s) very quickly at another site.

Both of these are mentioned here for completeness. For more details, refer to the
relevant IMS manuals.
28 IMS Primer

Part 2. IMS Transaction Manager

This part is intended to provide the data communication and system analyst with
a detailed description of the IMS data communication and online functions. The
following main topics are covered in these chapters:

• A description of the different roles the control region has to play, what an IMS
message looks like, and a summary of the life of a transaction. Refer to
Chapter 4, “The IMS control region” on page 31.

• A description of how inputs to IMS are processed when they originate from a
terminal. Refer to Chapter 5, “Processing input from a terminal” on page 35.

• A description of IMS Fast Path transactions. Refer to Chapter 6, “Fast-Path
transactions” on page 47.

• A description of non-terminal related IMS inputs. Refer to Chapter 7,
“Non-terminal related input” on page 49.

• A description of the IMS master terminal. Refer to Chapter 8, “The master
terminal” on page 53.

• An overview of application processing within IMS. Refer to Chapter 9,
“Application program processing overview” on page 55.
© Copyright IBM Corp. 2000 29

30 IMS Primer

Chapter 4. The IMS control region

The control region (CTL) is an MVS address space that can be initiated through
an MVS start command, or by submitting JCL. The terminals, message queues,
and logs are all attached to this region. The control region will start two
dependent regions: the DLI separate address space (DLISAS), and the DBRC
address space. The databases will be attached to the DLISAS region. The
application databases will be attached to the DLISAS region. A type 2 supervisor
call routine is used for switching control information, message and database data
to the other regions, and back.

The CTL region normally runs as a system task and uses MVS access methods
for terminal and database access.

4.1 The IMS message

The goal of IMS is to perform online transaction processing. This consists of:

1. Receiving a request for work to be done. The request is entered at a remote
terminal. It is usually made up of a transaction code which identifies to IMS the
kind of work to be done, and some data which is to be used in doing the work.

2. Initiating and controlling a specific program which will use the data in the
request to do the work the remote operator asked to be done, and to prepare
some data for the remote operator in response to the request for work (for
example, acknowledgment of work done, answer to a query, etc.).

3. Transmission of the data prepared by the program back to the terminal
originally requesting the work.

The above sequence is the simplest form of a transaction. It involves two
messages: an input message from the remote operator requesting that work be
done, and an output message to the remote operator containing results or
acknowledgment of the work done.

A message, in the most general sense, is a sequence of transmitted symbols. In
the context of IMS, this is called a transmission. A transmission may have one or
more messages, and a message may have one or more segments. A segment is
defined by an end-of-segment (EOS) symbol, a message is defined by an
end-of-message (EOM) symbol, and a transmission is defined by an end-of-data
(EOD) symbol. The valid combinations of the conditions represented by EOS,
EOM, and EOD can be found in Table 4.

Table 4. Valid combinations of the EOS / EOM / EOD symbols

The relationship between transmission, message, and segment is shown in
Figure 5.

Condition Represents

EOS End of segment

EOM End of segment / end of message

EOD End of segment / end of message /
end of data
The IMS control region 31

Figure 5. Transmission, message, and segment relationship

The character values or conditions that represent the end of segment and/or
message are dependent on the terminal type.

In our subset, 3270 terminals only, the physical terminal input will always be a
single segment message and transmission. The EOS, EOM and EOD condition
will all be set after the enter or program function key is pressed and the data is
transmitted.

On the output side, a message can be divided into multiple segments. Also an
application program can send different messages to different terminals, that is, a
message to a printer terminal and a message to the input display terminal. Each
segment requires a separate insert call by the application program.

The format of a message segment as presented to or received from an
application program is shown in Figure 6, where:

LL Total length of the segment in bytes, including the LL and ZZ fields.

ZZ IMS system field

DATA Application data, including the transaction code.

Figure 6. A message segment

4.2 An IMS transaction flow

Once the CTL region is started, it will start the system dependent regions
(DLISAS and DBRC). The MPRs and BMP regions can be started various ways.

• By IMS commands

• By JOB submission

• By automated operations commands

The general flow of a message from a message processing program (MPP) is
shown in Figure 7. This diagram is intended to give a general flow of the message
through the system and not a complete detailed description.

Segment Segment Segment SegmentSegment SegmentSegment

EOS EOS EOS EOSEOM EOM EOD

LL ZZ Data

2 2 n
32 IMS Primer

Figure 7. The IMS regions, and their control / data flow

A further description of Figure 7 follows:

1. The input data from the terminal is read by the data communication modules.
After editing by message format service (MFS), and verifying that the user is
allowed to execute this transaction, this input data is put in the IMS Message
Queues. These are sequenced by destination, which could be either
transaction code (TRAN) or logical terminal (LTERM). In the case of input
messages, this would be the TRAN.

2. The scheduling modules will determine which MPP is available to process this
transaction, based on a number of system and user specified considerations,
and will then retrieve the message from the IMS message queues, and start
the processing of a transaction in the MPP.

3. Upon request from an MPP the DL/I modules pass a message or database
segment to or from the MPP.

Note: In MVS, the DL/I modules, control blocks, and pools reside in the
common storage area (CSA or ECSA) and the CTL region is not needed for
most DB processing (the exception being Fast Path).

4. Once the MPP has finished processing, the message output from the MPP is
also put into the IMS Message Queues, in this case, queued against the
logical terminal (LTERM).

Message
Input

Message
Handler

Message
Buffers

MFS

FORMAT

MFS
pool

Queue
Mgmt

Tran

LTERM
Q DS
Buffers

Msg Queue
Datasets

WADS

OLDS

OLDS
Buffers

Logging

DLI
Seperate
Address
Space

ACBs

Scheduler

Database
Buffers

Application
Program

Databases

DLI
Modules

Database changes

ACBs

Program
Isolation
(PI)

Control Region Address Space

GU segment
ISRT segment
REPL segment
DLET segment

GU IOPCB
ISRT IOPCB
ISRT ALTPCB

Message
Processing
Region
The IMS control region 33

5. The communication modules retrieve the message from the message queues,
and send it to the output terminal. MFS is used to edit the screen and printer
output.

6. All changes to the message queues and the databases are recorded on the
logs. In addition, checkpoints for system (emergency) restart and statistical
information are logged.

Notes:

• The physical logging modules run as a separate task and use MVS ESTAE
for maximum integrity.

• The checkpoint identification and log information are recorded in the restart
and RECON data sets.

7. Program Isolation (PI) locking assures database integrity when two or more
MPPs update the same database. It also backs out (undoes) database
changes made by failing programs. This is done by maintaining a short-term,
dynamic log of the old database element images. IRLM is also optionally
available to replace the PI locking, but required if the IMS is taking part within
a data sharing environment.

The control module provides multi-tasking for the above activities. These
separate functions, that is, input processing, queueing, MPP processing,
database call processing, output processing, etc., can be executed
asynchronously for multiple transactions. However, they will be executed in
sequence for a unique transaction occurrence.The MVS EVENT facility is used
for the control of the multi-tasking and input/output operations.
34 IMS Primer

Chapter 5. Processing input from a terminal

IMS can accept input messages from 3270 type terminals. This input can consist
of three types of messages. Refer to Figure 8 for the following discussion.

Figure 8. Input message processing

When IMS reads data from a terminal via the telecommunication access method,
it first checks the type of input data.

5.1 Input message types

The three basic types of terminal input are:

• An input transaction message

This message is routed to an application program for processing with the first
1-to-8 bytes of the message identifying the transaction code.

• A message switch

This message is routed to another terminal, with the first 1-to-8 bytes used as
the name of the destination logical terminal (LTERM). The LTERM may be a
USERID if the Extended Terminal Option (ETO) is used.

A program may issue an input message to another application program with
the first 1-to-8 bytes of the message identifying the transaction code.

• A command

A command starts with a slash (/), and is processed by IMS itself.

Data Communication Modules

Receive
Queue
Log
Determine Destionation
Format Message

Queue
Buffers

Log
Buffers

Message
Queue
Datasets

Log
Datasets

Master
Terminal

User
Terminal

Text
Transaction
Code

password

/command password Text

Logical
Terminal

Text
Processing input from a terminal 35

5.2 Terminal types

There are two basic types of terminals that can connect to IMS. They are either:

Static The terminal is specifically defined to IMS in the IMS gen, and this
determines what physical terminal name (NODE NAME), and logical
terminal name (LTERM) is available for use.

Dynamic If a terminal is not statically defined to IMS in the IMS gen, IMS can
create a dynamic terminal definition. This requires either the IMS
Extended Terminal Option (ETO), a separately ordered feature of IMS
or other third-party vendor products. Dynamic terminals have not been
previously defined to IMS — their definitions are generated by ETO
when the user logs on/ signs on.

If a terminal user attempts to connect to IMS using a terminal that is defined to
IMS as static, then the user will use the defined NODE NAME / LTERM name
combination.

If a terminal user attempts to connect to IMS using a terminal that is not defined
to IMS as static, and dynamic terminal support is available, then the dynamic
terminal product (such as ETO) will be used to determine what the LTERM name
is; and whether it is based on the users USERID, the NODE NAME, or some
other value.

If a terminal user attempts to connect to IMS using a terminal that is not defined
to IMS as static, and dynamic terminal support is not enabled, then the user will
be unable to logon to IMS.

5.3 Input message origin

IMS maintains the name of the terminal or user from which an input message is
received. When a message is passed to an application program, this is also made
available to that program, via its program communication block (PCB).

This origin is the logical terminal name (LTERM). The LTERM name may be
specific to the user, or may be specific to the physical location, depending on how
the IMS system is defined. Refer to 5.2, “Terminal types” on page 36.

5.4 Terminal input destination

The destination of the terminal input is dependent upon the type of input.

An input command goes directly to the IMS command processor modules, while a
message switch or a transaction are stored on the message queue. When a
3270-based message is received by IMS, the message input is first processed by
message format service (MFS), except when input is from previously cleared or
unformated screen. MFS provides an extensive format service for both input and
output messages. It is discussed in detail in Chapter 18, “IMS message format
service” on page 157.
36 IMS Primer

When the input message is enqueued to its destination in the message queue,
the input processing is completed. If more that one LTERM is defined or assigned
to a physical terminal, they are maintained in a historical chain: the oldest
defined/assigned first. Any input from the physical terminal is considered to have
originated at the first logical terminal of the chain. If, for some reason (such as
security or a stopped LTERM), the first logical terminal is not allowed to enter the
message, all logical terminals on the input chain are interrogated in a chain
sequence for their ability to enter the message. The first appropriate LTERM
found is used as message origin. If no LTERM can be used, the message is
rejected with an error message.

5.5 Message queueing

All Full Function input and output messages in IMS are queued in message
queues. Refer to Figure 9. For Fast Path transactions — refer to 5.5.4, “Fast Path
transactions” on page 39.

Figure 9. Message queuing

output
message

Data
Communication
Modules

Queue Buffers

Queue Management Modules

MSG
TRANID

MSG
USERID

MSG
LTERM

output
message

Static
Terminal

Dynamic
Terminal

MSG
TRANID

Message Queue Datasets

Input
message

Input
message
Processing input from a terminal 37

The use of message queues allows input processing, output processing,
command processing, and application program processing to be performed
asychronously, to a large extent. This means, for example, that the input
processing of message A can be done in parallel with the database processing
for message B and the output processing for message C. Messages A, B, and C
can be different occurrences of the same or different message types and/or
transaction codes.

Messages in the IMS message queues are stored by destination, priority, and the
time of arrival in IMS. A destination can be:

• A message processing program (MPP), which is for transaction input.
Ordering is by transaction code.

• A logical terminal (LTERM), which is for a message switch, command
responses, and output generated by application programs.

• A USERID, which is for a message created by this USERID on any physical
terminal.

The message queue buffers are maintained in main storage (defined by the
MSQQUEUE macro). Should the memory-based message queue buffers become
full, messages are then stored on the message queue data sets on DASD. The
queue blocks in main storage and on direct access storage are reusable. As far
as possible messages are stored in the message queue buffers, to minimize the
number of I/O operations required during processing.

5.5.1 Queue size and performance considerations
Messages in the IMS message queue are primary held in buffers in main storage.
However, when messages are added to the queues faster than IMS can process
these messages, the message queue buffers can fill. In this situation, any new
messages are written to the message queue data sets. The performance of these
data sets then becomes very important. The data sets should be on a DASD
volume with fast response times, and the data sets should be appropriately sized
to ensure that there is always space available.

5.5.2 Multiple message queues
Since IMS Version 4, the IMS Queue Manager now supports concurrent I/O
operations to its message queue data sets, allowing the IMS message queue to
be distributed across multiple physical queue data sets. This enhancement
supports the long and short message queue data sets.

This enhancement is activated when more than one DD statement per message
queue data set is provided. You can supply up to ten DD statements for each
queue data set. These DD statements can be allocated on different device types,
but LRECL and BLKSIZE must be the same for all the data sets of a single
queue.

It is strongly recommended that multiple queue data sets be used, so that in an
emergency situation, the IMS systems performance will not degrade while trying
to handle a large volume of messages going to and from the message queue data
sets.
38 IMS Primer

Refer to the IMS/ESA V6 Install Volumes 1 & 2 (GC26-8736 and GC26-8737
respectively) for further detailed guidelines for selecting message queue
parameters such as block sizes, QPOOL size, queue data set allocation etc.

5.5.3 Shared Queues
IMS Version 6 provides the facility for multiple IMS systems in a sysplex to share
a single set of message queues. This function is known as IMS Shared Queues,
and the messages are held in structures in a coupling facility. All the IMS
subsystems in the sysplex share a common set of queues for all non-command
messages (that is, input, output, message switch, and Fast Path messages). A
message that is placed on a Shared Queue can be processed by any of several
IMS subsystems in the share queues group as long as the IMS has the resources
to process the message.

The Shared Queues function of IMS version 6 is optional, and you may continue
to process with the message queue buffers and message queue data sets
provided in earlier versions of IMS.

The benefits in using Shared Queues enables automatic workload balancing
across all IMS subsystems in a Sysplex. New IMS subsystems can be
dynamically be added to the Sysplex, and share the queues as workload
increases, allowing in incremental growth in capacity The use of Shared Queues
can also provide increased reliability and failure isolation: if one IMS subsystem
in the Sysplex fails, any of the remaining IMS subsystems can process the work
that is waiting in the Shared Queues.

5.5.4 Fast Path transactions
Fast Path transactions do not use the standard IMS message queues. Fast Path
transactions are scheduled by a separate function within the IMS transaction
manager, called the Expedited Message Handler (EMH). For further scheduling
information, refer to Chapter 6, “Fast-Path transactions” on page 47.

5.5.5 APPC triggered transactions
There are two types of APPC transactions, implicit and explicit. With implicit
APPC transactions, IMS receives a transaction request via APPC. This
transaction is placed onto the IMS message queues in the same way as a
3270-generated transaction. The message is passed to an MPP for processing,
and the response is routed back to the originating APPC partner. The MPP
program uses the DL/I interface to receive the message from the message
queue, and put the response back onto the message queue.

With explicit APPC transactions, IMS schedules a program into an MPR
(message processing region). This program uses APPC verbs to communicate
with the APPC partner program to process the transaction.

For further details, refer to 7.3, “Advanced Program-to-Program Communication
(APPC)” on page 50.
Processing input from a terminal 39

5.5.6 OTMA triggered transactions
OTMA allows IMS to receive a message through a different communications
protocol (for example, TCP/IP sockets, MQ, remote procedure calls, etc.). The
message is received by IMS, and it placed into the IMS message queue for
processing in the usual manner. The response message is passed back to the
originator through OTMA.

5.5.7 Message scheduling
Scheduling is the loading of the appropriate program into a message processing
region. IMS can then pass messages stored on the IMS message queue to this
program when it issues the GU IOPCB call.

Once an input message is available in the message queue, it is eligible for
scheduling. Scheduling is the routing of a message in the input queue to its
corresponding application program in the message processing region. See Figure
10.

The linkage between an input message (defined by its transaction code) and an
application program (defined by its name) is established at system definition time.
Multiple transaction codes can be linked to a single application program, but only
one application program can be linked to a given transaction code.

Figure 10. Message scheduling

The class in which a transaction code with run is defined in two ways:

• On the APPLCTN macro

• On the MSGTYPE parameter of the TRANSACT macro

DB Control Block

DB Control Block

DB Control Block

Message Processing Region (MPR)

Linkage defined at IMS generation
(APPLCTN & TRANSACT Macros)

Trans-code A & Message Trans-code B & Message

Scheduling based
on transaction class

PSB Control Block
40 IMS Primer

If the class is specified on the APPLCTN macro, it need not be defined on the
TRANSACT macro. If it is specified on both, then the class on the TRANSACT
macro will override the APPLCTN macro specification. Figure 11 illustrates the
definition of a transaction.

Figure 11. Transaction definition in IMS stage 1 input

Notice the following about these transaction definitions:

• Transaction DFSIVP1 has the class defined as the third parameter on the
MSGTYPE parameter on the TRANSACT macro.

• Transaction DFSIVP2 has the class defined on the APPLCTN macro.

• Both transactions are assigned to class 1.

5.5.8 Transaction scheduling and priority
The transaction scheduling algorithm can be a very sophisticated algorithm, as it
needs to make use of all the IMS and system resources in the most efficient manner
possible. However, most users do not need to use the power of the scheduling
algorithms, as the resources available in IMS today (such as the number of message
processing regions) are much greater than when these algorithms were designed
several decades ago.

The are a few parameters on the transaction definition which will affect the
scheduling options:

• PROCLIM

• PARLIM

• MAXRGN

• PRTY

5.5.8.1 Parallel scheduling
A transaction will only process in one MPR at a time unless parallel processing is
specified. To allow more than one MPR to schedule a transaction type at a time,
code the SCHDTYP parameter on the APPLCTN macro:

APPLCTN PSB=DFSIVP1,PGMTYPE=(TP,1),SCHDTYP=PARALLEL

Unless there are application restrictions on processing the message in strict
first-in, first-out sequence, parallel scheduling should be applied to all
transactions. This will allow IMS to make the best use of IMS resources while
providing the best possible response time to individual transactions.

The PARMLIM parameter on the TRANSACT macro will determine when a
transaction will be scheduled in another region. When the number of messages
on the queue for this transaction exceeds the value on the PARLIM, another
region will be used.

APPLCTN PSB=DFSIVP1,PGMTYPE=TP
TRANSACT CODE=IVTNO,MODE=SNGL, X

MSGTYPE=(SNGLSEG,NONRESPONSE,1)
APPLCTN PSB=DFSIVP2,PGMTYPE=(TP,1)

TRANSACT CODE=IVTNO2,MODE=SNGL, X
MSGTYPE=(SNGLSEG,NONRESPONSE)
Processing input from a terminal 41

The MAXRGN parameter is used to restrict the number of MPRs which can
process a transaction at any one time. This is done to avoid the situation of all the
MPRs being tied up by a single transaction type.

5.5.8.2 Priority
The PRTY parameter on the TRANSACT macro sets the priority of a transaction.
This is how to differentiate one transaction from another if they run in the same
transaction class. A transaction of a higher priority will be scheduled before a
lower priority one. However an MPR will process a transaction in a higher class
(for this MPR, see 5.5.10, “Scheduling in a dependent region” on page 42 for
more details) before a transaction in a lower class regardless of the priority. A
transaction priority will increase once the number of transactions on the message
queue exceed the value set on the third value of the PRTY keyword. It will
increase to the value set on the second parameter of the PRTY keyword. This
has the effect of trying to avoid a long queue on any single transaction code by
giving it a higher priority.

Another factor in transaction scheduling is the PROCLIM value. This is discussed
in 5.5.10.2, “PROCLIM processing” on page 44.

5.5.9 Scheduling conditions
The following conditions must be met for a successful scheduling:

1. An MPR region must be available. Actually, the termination of a prior
transaction running in an MPR region triggers the scheduling process.

2. There must be a transaction input message in the queue.

3. The transaction and its program are not in a stopped state.

4. Enough buffer pool storage is available to load the program specification block
(PSB) and the referenced database control blocks if not already in main
storage.

5. The database processing intent does not conflict with an already active
application program (a BMP for instance). Processing intent is discussed in
more detail in 12.5, “Data Base Processing Intent” on page 91.

If the first transaction code with a ready input message does not meet all the
above conditions, the next available input transaction is interrogated, and so
forth. If no message can be scheduled, the scheduling process is stopped until
another input message is enqueued. If the scheduling is successful, the IMS
routines in the dependent region load the corresponding MPP and pass control
to it.

5.5.10 Scheduling in a dependent region
The IMS scheduler will assign the application transaction processing to an
dependent MPR. The number of MPRs available to an IMS system is 999
dependent regions.

The transactions are assigned to classes. The maximum number of transactions
classes is set at system generation time by the MAXCLAS parameter of the
IMSCTRL macro.
42 IMS Primer

5.5.10.1 Class processing
Each dependent MPR can run up to four transaction classes. The order in which
they are specified is a priority sequence. That means that the transaction class
named first is the highest and the one named last is the lowest. Each MPR can
have a different sequence of the same or different transaction combinations. The
classes are named on the PROC statement of the JCL running the MPR. Figure
12 shows an example of the MPR JCL. The MPR can be run as a JOB or a
started task.

Figure 12. MPR PROC statement example

The classes which the MPR runs can be changed while the MPR is running. This
is done through and /ASSIGN command. When the ASSIGN command is
executed, only those classes specified on the command will be available to that
MPR. The changes will be maintained until the MPR is restarted, at which time
the values on the PROC statement will be used again. Figure 13 illustrates an
example of an ASSIGN command. Again the order of classes on the command is
the priority sequence of those classes.

Figure 13. /ASSIGN CLASS command example

To list the classes assigned to an MPR the /DISPLAY ALL command can be
used. Figure 14 shows the /DISPLAY ACTIVE command and the output.

//IVP6TM11 EXEC PROC=DFSMPR,TIME=(1440),
// AGN=BMP01, AGN NAME
// NBA=6,
// OBA=5,
// SOUT='*', SYSOUT CLASS
// CL1=001, TRANSACTION CLASS 1
// CL2=006, TRANSACTION CLASS 2
// CL3=013, TRANSACTION CLASS 3
// CL4=000, TRANSACTION CLASS 4
// TLIM=10, MPR TERMINATION LIMIT
// SOD=, SPIN-OFF DUMP CLASS
// IMSID=IMSY, IMSID OF IMS CONTROL REGION
// PREINIT=DC, PROCLIB DFSINTXX MEMBER
// PWFI=N PSEUDO=WFI
//*

/ASSIGN CLASS 1 4 5 8 TO REGION 3
Processing input from a terminal 43

Figure 14. Display active

Note the following from the information from Figure 14:

• There are two MPRs.

• The MPR named SJIMSYM1 run classes 1, 4, 6, and 9.

• The MPR named SJIMSYM2 runs classes 2, 3, 5, 1.

• Class 1 has the highest priority in MPR SJIMSYM1 and the lowest in MPR
SJIMSYM2.

When an MPR is looking to find the a transaction to schedule, it will use the
following criteria:

1. The highest priority transaction ready in the highest priority class

2. Any other transaction in the highest priority class

3. The highest priority transaction ready in the second highest priority class

4. Any other transaction in the second priority class

This sequence of priorities will be used for all the available classes for this MPR.

NOTE: If a transaction has a class for which there are no MPRs currently allowed
to run that class, the transaction will not be scheduled and will remain on the
input queue.

5.5.10.2 PROCLIM processing
IMS also tries to increase throughput of the MPR by processing more than one
message for the same transaction. This is to make use of the fact that the
program has already been loading into the MPR’s storage, and the PSB and DBD
control blocks also have been loaded. This will increase the throughput of the
number of messages processed by this MPR, as it will avoid some of the
overhead with reloading the program and control blocks.

At the completion of the transaction, IMS with check the PROCLIM value on the
TRANSACT macro for this transaction. The MPR will process the number of
messages allowed in the first value of this keyword before looking to see what
other transactions are available to be scheduled. This means the MPR can
process more transactions without having to go through the scheduling logic for
each transaction.

/DIS ACTIVE
REGID JOBNAME TYPE TRAN/STEP PROGRAM STATUS CLASS IMSY

1 SJIMSYM1 TP WAITING 1, 4, 6, 9 IMSY
2 SJIMSYM2 TP WAITING 2, 3, 5, 1 IMSY
BATCHREG BMP NONE IMSY
FPRGN FP NONE IMSY
DBTRGN DBT NONE IMSY
SJIMSYDB DBRC IMSY
SJIMSYDL DLS IMSY

VTAM ACB OPEN -LOGONS DISABLED IMSY
IMSLU=N/A.N/A APPC STATUS=DISABLED IMSY
OTMA GROUP=IMSCGRP STATUS=ACTIVE IMSY
APPLID=SCSIM6YA GRSNAME= STATUS=DISABLED IMSY
LINE ACTIVE-IN - 1 ACTIV-OUT - 0 IMSY
NODE ACTIVE-IN - 0 ACTIV-OUT - 0 IMSY
99298/155826 IMSY
44 IMS Primer

5.6 Database processing intent

A factor that significantly influences the scheduling process is the intent of an
application program toward the databases it uses. Intent is determined by
examining the intent last associated with the PSB to be scheduled. At initial
selection, this process involves bringing the intent list into the control region. The
location of the intent list is maintained in the PSB directory. If the analysis of the
intent list indicates a conflict in database usage with a currently active program in
MPP or BMP region, the scheduling process will select another transaction and
try again.

The database intent of a program as scheduling time is determined via the
PROCOPT= parameters in the PSB.

An conflicting situation during scheduling will only occur if a segment type is
declared exclusive use (PROCOPT=E) by the program being scheduled and a
already active program references the segment in its PSB (any PROCOPT), or
vice versa.

5.6.1 Scheduling a BMP
A BMP is initiated in a standard MVS address space via any regular job
submission facility. This could be from either:

• TSO and SUBMITing the job

• Some job scheduling system

However, during its initialization the IMS scheduler in the control region is
invoked to assure the availability of the database resources for the BMP.

5.6.2 Shared Queues
Scheduling of transactions in a Shared Queues environment is similar to those in
a non-Shared Queues environment, however, all the checks are across all the
IMS systems in the Shared Queues environment, and obviously, there are extra
considerations as well. For further information on this, refer to the appropriate
IMS manuals, as well as IMS/ESA Version 6 Shared Queues, SG24-5088, and
IMS/ESA Shared Queues: Planning Guide, SG24-5257.
Processing input from a terminal 45

46 IMS Primer

Chapter 6. Fast-Path transactions

Apart from standard IMS transactions, there are two types of Fast Path online
transactions. They are:

• Fast Path exclusive

• Fast Path potential

6.1 IMS Fast Path exclusive transactions

Fast Path schedules input messages by associating them with a load balancing
group. A load balancing group (LBG) is a group of Fast Path input messages that
are ready for balanced processing by one or more copies of a Fast Path program.
One LBG exists for each unique Fast Path message-driven application program.

The messages for each LBG are processed by the same Fast Path program. The
EMH controls Fast Path messages by:

• Managing the complete execution of a message on a first-in-first-out basis

• Retaining the messages that are received in the control program's storage
without using auxiliary storage or I/O operations

• Supporting multiple copies of programs for parallel scheduling

• Requiring that programs operate in a wait-for-input mode

6.2 IMS Fast Path potential transactions

Fast Path potential transactions are a mixture of standard IMS Full Function and
Fast Path exclusive transactions.

The same transaction code can be used to trigger either a Full Function, or a Fast
Path transaction, with an exit used to determine whether this instance of the
transaction will be Full Function, or Fast Path.
Fast-Path transactions 47

48 IMS Primer

Chapter 7. Non-terminal related input

This chapter covers the non-terminal related input, not already covered. This
includes:

• Inter-System Communications (ISC)

• Multiple Systems Coupling (MSC)

• Advanced Program to Program Communication (APPC)

• Open Transaction Manager Access(OTMA)

7.1 Inter-System Communications (ISC)

ISC links between IMS and CICS use the standard LU 6.1 protocol available
within the network.

They can use standard VTAM connections, or direct connections.

ISC is a part of the IMS Transaction Manager. It is one of the ways to connect
multiple subsystems. The other means of connection is Multiple Systems
Coupling (MSC).

As defined under SNA, ISC is an LU 6.1 session that:

• Connects different subsystems to communicate at the application level.

• Provides distributed transaction processing permitting a terminal user or
application in one subsystem to communicate with a terminal or application in
a different subsystem and, optionally, to receive a reply. In some cases, the
application is user written; in other cases, the subsystem itself acts as an
application.

• Provides distributed services. Thus, an application in one subsystem can use
a service (such as a message queue or database) in a different subsystem.

SNA makes communication possible between unlike subsystems and includes
SNA-defined session control protocols, data flow control protocols, and routing
parameters.

7.2 Multiple Systems Coupling (MSC)

Multiple Systems Coupling (MSC) permits you to link multiple IMS systems and to
distribute processing loads and system databases among them to satisfy your
particular geographic and business requirements. Transactions entered in one
IMS system can be passed to another IMS system for processing and the results
returned to the initiating terminal. Terminal operators are unaware of these
activities; their view of the processing is the same as that presented by
interaction with a single system.

MSC links between 2 IMS systems use an IMS internal protocol for
communications, making MSC only available between 2 IMS systems, known as
the “front-end” system, which is where the transaction is entered by the terminal
user, and the “back-end” system, where the transaction is processed.
Non-terminal related input 49

The transaction is entered in the “front-end” system, and based on the definitions
in the IMS stage 1 generation, the transaction is “shipped” to the “back-end”
system. Once there, all standard IMS scheduling techniques apply. After
processing, the results are shipped back to the “front-end” system, who then
returns the results to the terminal user, who was unaware that any of this
occurred.

7.3 Advanced Program-to-Program Communication (APPC)

Advanced Program-to-Program Communications/IMS (APPC/IMS) support for
Logical Unit type 6.2 supports the formats and protocols for program-to-program
communication.

APPC/IMS enables applications to be distributed throughout your entire network
and to communicate with each other regardless of the underlying hardware.

In the host environment, APPC/VTAM has been added to the VTAM base to
facilitate the implementation of APPC/IMS support. In addition, APPC/MVS works
with APPC/VTAM to implement APPC/IMS functions and communication services
in an MVS environment. APPC/IMS takes advantage of this structure and uses
APPC/MVS to communicate with LU 6.2 devices. Therefore, all VTAM LU 6.2
devices supported by APPC/MVS can access IMS using LU 6.2 protocols to
initiate IMS application programs, or conversely be initiated by IMS.

APPC/IMS provides compatibility with non-LU 6.2 device types by providing a
device-independent API. This allows an application program to work with all
device types (LU 6.2 and non-LU 6.2) without any new or changed application
programs.

IMS supports APPC conversations in two scenarios:

Implicit In this case, IMS supports only a subset of the APPC functions, but
enables an APPC incoming message to trigger any standard IMS
application that is already defined in the normal manner to IMS, and
uses the standard IMS message queue facilities, to schedule the
transaction into any appropriate dependent region.

Explicit In this case, the full set of CPIC command verbs can be used, and the
IMS application is written specifically to cater only for APPC triggered
transactions. The standard IMS message queues are not used in this
case, and the IMS Control Region only helps create the APPC
conversation directly between the APPC client and the IMS dependent
region to service this request. The IMS Control Region takes no
further part, regardless of how long the conversation may be active
for.
50 IMS Primer

7.4 Open Transaction Manager Access (OTMA)

Open Transaction Manager Access (OTMA) is a function of IMS that was
introduced with IMS/ESA Version 5. OTMA is a transaction based connectionless
client-server protocol that provides an access path and an interface specification
for sending and receiving transactions and data from IMS.

IMS supports various network protocols, such as Systems Network Architecture
(SNA). These protocols are network-based, and so require specific installation
and tuning as your network grows or changes. OTMA is not network-based; it is
transaction-based, and so need not be changed as your network grows or
changes. OTMA uses MVS sysplex services, in particular the MVS cross-system
coupling facility (XCF). OTMA does not use VTAM, or any other IBM access
method to manage its message processing.

The OTMA client handles all device-dependencies for a particular network
protocol so that IMS TM can operate without needing to understand any of the
device characteristics. And the OTMA client need not know anything of how the
IMS system is defined. Because the OTMA client is the interface between IMS
TM and the network, you do not need to change your application programs to use
the network.

In a client/server environment, the IMS Transaction Manager is the
high-performance server; the OTMA feature lets you attach many different MVS
client subsystems. An OTMA client acts as an interface between IMS TM and:

• Other IMS TM systems

• MQSeries for MVS/ESA

• Transmission Control Protocol / Internet Protocol (TCP/IP)

• Distributed Computing Environment / Remote Procedure Call (DCE/RPC)

By itself, OTMA is not sufficient for a connection to one of the above. You need an
OTMA client, which is an MVS application that acts an interpreter between the
network or messaging protocol it supports and the IMS TM messaging protocol.
Thus, for example, you can use one OTMA client for a network file system (NFS)
connection to IMS TM, and another client for a TCP/IP connection to IMS TM
(ITOC).
Non-terminal related input 51

52 IMS Primer

Chapter 8. The master terminal

When the IMS system is generated, the IMS master terminal MUST be included,
and consists of two components:

• Primary master

• Secondary master

All messages are routed to both the primary and secondary master terminals.
Special MFS support is used for the master terminal.

8.1 The primary master

Traditionally, the primary master was a 3270 display terminal of 1920 characters
(24 lines by 80 columns). A sample traditional IMS master terminal is shown in
Figure 15.

Figure 15. Master terminal screen

The display screen of the master terminal is divided into four areas.

• The message area is for IMS command output (except /DISPLAY and
/RDISPLAY), message switch output that uses a message output descriptor
name beginning with DFSMO (see MFS), and IMS system messages.

• The display area is for /DISPLAY and /RDISPLAY command output.

• The warning message area is for the following warning messages: MASTER
LINES WAITING, MASTER WAITING, DISPLAY LINES WAITING, and USER
MESSAGE WAITING. To display these messages or lines, press PA 1. An
IMS password may also be entered in this area after the “PASSWORD” literal.

• The user input area is for operator input.

Program function key 11 or PA2 request the next output message and program
function key 12 request the Copy function if it is a remote terminal.

99/04/01 14:49:48 IMSC
DFS249 14:43:46 NO INPUT MESSAGE CREATED
DFS994I COLD START COMPLETED
DFS0653I PROCECTED CONVERSATION PROCESSING WITH RRS/MVS ENABLED
DFS2360I 14:29:28 XCF GROUP JOINED SUCCESSFULLY.

-- -

PASSWORD:
-

The master terminal 53

8.2 The secondary master

Traditionally, the secondary master was a 3270 printer terminal.

This usage has also been phased out in many sites, who now have the secondary
master defined as spooled devices to IMS, in effect writing the messages to
physical data sets.

In this way, the secondary master can be used as an online log of events within
IMS. To accomplish this, the definitions in Figure 16 needs to be put into the IMS
Stage 1 gen. These definitions need to follow the COMM macro and before any
VTAM terminal definitions.

Figure 16. Secondary master spool JCL

To complete the definitions simply code SPL1 and SPL2 DD statements in the
IMS Control region JCL. The data sets should be allocated with the following DCB
information:

DCB=(RECFM=VB,LRECL=1404,BLKSIZE=1414).

8.3 Using the MVS console as master terminal

IMS always has a communications path with the MVS system console. The
write-to-operator (WTO) and write-to-operator-with-reply (WTOR) facilities are
used for this. Whenever the IMS CTL region is active, there is an outstanding
message requesting reply on the MVS system console. This can be used to enter
commands for the CTL region. All functions available to the IMS master terminal
are available to the system console. The system console and master terminal can
be used concurrently, to control the system. Usually, however, the system
console’s primary purpose is as a backup to the master terminal. The system
console is defined as IMS line number one by default.

8.4 Extended MCS/EMCS Console Support

Since IMS Version 6 for IMS TM systems (and IMS Version 3 with DBCTL
systems), IMS can be also communicated with, using the MCS/EMCS console
support.

Any MVS console can issue a command directly to IMS, using either a command
recognition character (CRC) as defined at IMS startup, or using the 4 character
IMS-ID to be able to issue commands.

This interface has the option of command security, by using RACF, or exits. For
further details, refer to Chapter 24, “IMS security overview” on page 253.

*
LINEGRP DDNAME=(SPL1,SPL2),UNITYPE=SPOOL

LINE BUFSIZE=1420
TERMINAL FEAT=AUTOSCH

NAME (SEC,SECONDARY)
54 Authoring Redbooks in FrameMaker

Chapter 9. Application program processing overview

Once an application program is scheduled in a dependent region, it is loaded into
that region by IMS.

9.1 MPP processing

After the load of the scheduled program in the MPR, it is given control. The
normal processing steps of an MPP are described below in Figure 17.

Figure 17. Basic MPP/BMP flow

1. Retrieve the input message via a DL/I message call.

2. Check the input message for syntax errors.

3. Process the input message, requesting necessary DL/I database accesses.

4. Send output to the originating and/or other (for example, printer) logical
terminals via DL/I message calls.

5. Retrieve the next input message or terminate.

MPP or BMP Address Space

Get Message GU IOPCB
GN IOPCB

Access DB

Send Reply

Go Back

GU DBPCB
ISRT DBPCB
REPL DBPCB
DLET DBPCB

ISRT IOPCB

DBD

DBD
Buffer Pool

DBD
Buffer Pool

L
T
E
R
M

T
R
A
N

Control Region DLI Address Space

Message Queue
Buffer Pool

DatabasesMsg Queue Datasets

DC PCB

DB PCB
Application program processing overview 55

9.2 Role of the PSB

The program specification block (PSB) for an MPP or a BMP contains, besides
database PCBs, one or more PCB (s) for logical terminal linkage. The very first
PCB always identifies the originating logical terminal (IOPCB). This PCB must be
referenced in the get unique (GU) and get next (GN) message calls. It must also
be used when inserting output messages to that LTERM. In addition, one or more
alternate output PCBs can be defined. Their LTERM destinations can be defined
in the PCBs or set dynamically with change destination calls.

9.3 DL/I message calls

The same DL/I language interface which is used for the access of databases is
used to access the message queues.

The principal DL/I message call function codes are:

• GU, get unique. This call must be used to retrieve the first, or only, segment of
the input message.

• GN, get next. This call must be used to retrieve second and subsequent
message segments.

• ISRT, insert. This call must be used to insert an output message segment into
the output message queue. Note: these output message (s) will not be sent
until the MPP terminates or requests another input message via a get unique.

• CHNG, change destination. This call can be used to set the output destination
for subsequent insert calls.

9.4 Program isolation and dynamic logging

When processing DL/I database calls, the IMS program isolation function will
ensure database integrity.

With program isolation, all activity (database modifications and message
creation) of an application program is isolated from any other application
program(s) running in the system until an application program commits, by
reaching a synchronization point, the data it has modified or created. This
ensures that only committed data can be used by concurrent application
programs. A synchronization point in our subset is established with a get unique
call for a new input message (single mode) and/or a checkpoint call (BMP only),
or program normal termination (GOBACK or RETURN).

Program isolation allows two or more application programs to concurrently
execute with common data segment types even when processing intent is
segment update, add, or delete.

This is done by a dynamic enqueue/dequeue routine which enqueues the
affected database elements (segments, pointers, free space elements, etc.)
between synchronization points.

At the same time, the dynamic log modules log the prior database record images
between those synchronization points.
56 IMS Primer

This makes it possible to dynamically back out the effects of an application
program that terminates abnormally, without affecting the integrity of the
databases controlled by IMS. It does not affect the activity of other application
program(s) running concurrently in the system.

With program isolation and dynamic backout, it is possible to provide database
segment occurrence level control to application programs. A means is provided
for resolving possible deadlock situations in a manner transparent to the
application program.

One example of a deadlock occurs in the following sequence of events:

1. Program A updates database element X.

2. Program B updates database element Y.

3. Program A requests Y and must wait for the synchronization point of program
B.

4. Program B in turn requests X and must wait for the synchronization point of
program A.

A deadlock has now occurred: both programs are waiting for each other’s
synchronization point. The dynamic enqueue/dequeue routines of IMS intercept
possible deadlocks during enqueue processing (in the above example, during
enqueue processing of event 4).

Upon detecting a deadlock situation, one of the application programs involved in
the deadlock is abnormally terminated (pseudo abend). The activity of the
terminated program will be dynamically backed out to a previous synchronization
point. Its held resources are freed. This allows the other program(s) to process to
completion. The transaction that was being processed by the abnormal
terminated program will be saved. The application program is rescheduled if it
was an MPP. For a BMP region, the job must be restarted. This process is
transparent to application programs and terminal operators.

There are two situations where the enqueue/dequeue routines of program
isolation are not used in processing a database call:

1. If PROCOPT=GC (read only) is specified for the referenced segment (s) of the
call.

2. If PROCOPT=E (exclusive) is specified for the referenced segment (s) in the
call.

Notice that possible conflicts with exclusive extent are resolved during scheduling
time and, as such, cannot occur at call time.

Notes:

1. With the GO option, a program can retrieve data which has been altered or
modified by another program still active in another region, and database
changes made by that program are subject to being backed out.

2. Exclusive intent may be required for long-running BMP programs that do not
issue checkpoint calls. Otherwise, an excessively large enqueue/dequeue
table in main storage may result.
Application program processing overview 57

3. Even when PROCOPT=E is specified, dynamic logging will be done for
database changes. The ultimate way to limit the length of the dynamic log
chain in a BMP is by using the XRST/CHKP calls. The chain is deleted at each
CHKP call because it constitutes a synchronization point.

4. If, as can occur in our subset, one MPP and one BMP get involved in a
deadlock situation, the MPP will be subject to the abnormal termination,
backout, and reschedule process.

9.5 Internal resource lock manager (IRLM)

When IMS is involved in a data sharing environment with other IMS systems, then
IRLM is used instead of program isolation. Refer to 2.1.5, “Internal Resource
Lock Manager (IRLM)” on page 19 for further details.

9.6 Application program abnormal termination

Upon abnormal termination of a message or batch-message processing
application program for other reasons than deadlock resolution, internal
commands are issued to prevent rescheduling. These commands are the
equivalent of a /STOP command. They prevent continued use of the program and
the transaction code in process at the time of abnormal termination. The master
terminal operator can restart either or both stopped resources. At the time
abnormal termination occurs, a message is used to the master terminal and to
the input terminal that identifies the application program, transaction code, and
input terminal. It also contains the system and user completion codes. In addition,
the first segment of the input transaction, in process by the application at
abnormal termination, is displayed on the master terminal. The database
changes of a failing program are dynamically backed-out. Also, any of its output
messages that were inserted in the message queue since the last
synchronization point are cancelled.

9.7 Conversational processing

A transaction code can be defined as belonging to a conversational transaction
during IMS system definition. If so, an application program that processes that
transaction, can interrelate messages from a given terminal. The vehicle to
accomplish this is the scratch pad area (SPA). A unique scratch pad area is
created for each physical terminal which starts a conversational transaction. Each
time an input message is entered from a physical terminal in conversational
mode, its SPA is presented to the application program as the first message
segment (the actual input being the second segment). Before terminating or
retrieving another message (from another terminal), the program must return the
SPA to the control region with a message ISRT call. The first time a SPA is
presented to the application program when a conversational transaction is started
from a terminal, IMS will format the SPA with binary zero’s (X’00). If the program
wishes to terminate the conversation, it can indicate this by inserting the SPA with
a blank transaction code.
58 IMS Primer

9.8 Output Message Processing

As soon as an application reaches a synchronization point, its output messages
in the message queue become eligible for output processing. A synchronization
point is reached whenever the application program terminates or requests a new
message/SPA from the input queue via a GU call.

In general, output messages are processed by the message format service
before they are transmitted via the telecommunications access method.

Different output queues can exist for a given LTERM, depending on the message
origin. They are, in transmission priority:

1. Response messages, that is, messages generated as a direct response
(same PCB) to an input message from this terminal.

2. Command responses.

3. Alternate output messages, messages generated via an alternate PCB.

9.9 Logging and checkpoint / restart

To ensure the integrity of its databases and message processing, IMS uses
logging and checkpoint/restart. In case of system failure, either software or
hardware, IMS can be restarted. This restart includes the repositioning of users’
terminals, transactions, and databases.

9.9.1 Logging
For further information on IMS logging facilities, refer to Chapter 22, “IMS
logging” on page 239.

9.9.2 Checkpointing
At regular intervals during IMS execution, checkpoints are written to the logs.
This is to limit the amount of reprocessing required in the case of emergency
restart. A checkpoint is taken after a specified number of log records are written
to the log tape after a checkpoint command. A special checkpoint command is
available to stop IMS in an orderly manner.

A special disk restart data set is used to record the checkpoint identification and
log tape volume serial numbers. This restart data set (IMSVS.RDS) is used
during restart for the selection of the correct restart checkpoint and restart logs.

9.10 Message Switching

In this case, a program that is already executing can request that a new
transaction be put on the IMS message queues for standard scheduling and
execution.

This second transaction:

• Can continue the processing of the first transaction (which, in this case, has
probably terminated), and respond (if required) to the originating terminal,
which is probably still waiting for a response.
Application program processing overview 59

• Can be a second transaction, purely an offshoot from the first, without any
relationship or communications with the originating terminal. In this case, the
original transaction must respond to the terminal, if required.

The basic format of a message switch is the destination LTERM name followed
by a blank and the message text.
60 IMS Primer

Part 3. IMS Database Manager

This part consists of the following chapters:

• An introduction to database basics: what is a database, and why would you
use one? There is also a discussion of the role of a central database
administrator. Refer to Chapter 10, “Database basics” on page 63.

• An overview of the IMS hierarchical database model. Refer to Chapter 11,
“The IMS hierarchical database model” on page 69.

• A description of the physical implementation of the IMS database model. Refer
to Chapter 12, “Implementation of the IMS database model” on page 79.

• Some reasons why one database type would be chosen over another. Refer to
Chapter 13, “Choosing the correct type of database” on page 103.

• The database reorganization tasks that need to be performed by the IMS
database administrator function. Refer to Chapter 14, “Database
reorganization processing” on page 109.

• The backup and recovery tasks that need to be performed by the IMS
database administrator function. Refer to Chapter 15, “Database recovery
processing” on page 123.
© Copyright IBM Corp. 2000 61

62 IMS Primer

Chapter 10. Database basics

This chapter gives an overview of basic database concepts. The database
models discussed are intentionally kept simple, as is the description of the design
choices for IMS databases. Many more design options are available for IMS
databases than are addressed in this chapter. For more details on database
models, please visit your favorite local bookshop. For more details on IMS
database design options, see the IMS library.

10.1 The database design process

The process of database design, in its simplest form, can be described as
follows: The structuring of the data elements for the various applications, in such
an order that:

• Each data element is readily available by the various applications, now and in
the foreseeable future.

• The data elements are efficiently stored.

• Controlled access is enforced for those data elements with specific security
requirements.

Database design is an area in which a number of different models for databases
have been developed over the years (such as relational or object) so that there is
no consistent vocabulary for describing the concepts involved.

10.1.1 Entities
A database contains information about entities. An entity is something that:

• Can be uniquely defined

• We may collect substantial information about, now or in the future

In practice, this definition is limited to the context of the applications and/or
business under consideration. Examples of entities are: parts, projects, orders,
customers, trucks, etc. It should be clear that defining entities is a major step in
the database design process. The information we store in databases about
entities is described by data attributes.

10.1.2 Data attributes
A data attribute is a unit of information that specifies a fact about an entity. For
example, suppose the entity is a part. Name=Washer, Color=Green, and
Weight=143 are three facts about that part. Thus these are three data attributes.
A data attribute has a name and a value. A data attribute name tells the kind of
fact being recorded; the value is the fact itself. In the above example, Name,
Color, and Weight are data attribute names; while Washer, Green, and 143 are
values. A value must be associated with a name to have a meaning.

An occurrence is the value of a data attribute for a particular entity. An attribute is
always dependent on an entity. It has no meaning by itself. Depending on its
usage an entity can be described by one single data attribute or more. Ideally, an
entity should be uniquely defined by one single data attribute, for example, the
order number of an order. Such a data attribute is called the key of the entity. The
Database basics 63

key serves as the identification of a particular entity occurrence, and is a special
attribute of the entity. Keys are not always unique. In such cases, entities with
equal key values are called synonyms. For instance, the full name of a person is
generally not a unique identification. In such cases we have to rely on other
attributes such as full address, birthday or an arbitrary sequence number. A more
common method is to define a new attribute, which serves as the unique key, for
example, employee number.

10.1.3 Entity relationships
The entities identified will also have connections between them, relationships.
For example, an order will be for a number of parts. Again these relationships
only have meaning within the context of the application and business.

These relationships can be one to one (that is, one occurrence of an entity relates
to a single occurrence of another entity), one to many (one occurrence of an
entity relates to many occurrences of another entity) or many to many (many
occurrences of one entity have a relationship with many occurrences of another
entity).

Relationships can also be recursive, an entity can have a relationship with other
occurrences of the same entity. For example a part, say a fastener, may consist
of several other parts, bolt, nut, washer.

10.1.4 Application functions
Data itself is not the ultimate goal of a database management system. It is the
application processing performed on the data which is important. The best way to
represent that processing is to take the smallest application unit representing a
user interacting with the database. For example, one single order, one part
inventory status. In the following chapters we will call this an application function.

Functions are processed by application programs. In a batch system, large
numbers of functions are accumulated into a single program (that is, all orders of
a day), then processed against the database with a single scheduling of the
desired application program. In the online system, just one or two functions may
be grouped together into a single program to provide one iteration with a user.
Although functions are always distinguishable, even in batch, some people prefer
to talk about programs rather than functions. But, especially in a DB/DC
environment, a clear understanding of functions is mandatory for good design.
Once you have identified the functional requirements of the application, you can
decide how to best implement them as programs using IMS. The function is, in
some way, the individual usage of the application by a particular user. As such, it
is the focal point of the DB/DC system.

10.1.5 Access paths
Each function bears in its input some kind of identification with respect to the
entities used (for example, the part number when accessing a Parts database).
These are referred to as the access paths of that function. In general, functions
require random access, although for performance reasons sequential access is
sometimes used. This is particularly true if the functions are batched, and if they
are numerous, relative to the database size, or if information is needed from most
database records.
64 IMS Primer

For efficient random access, each access path should utilize the entities key. With
proper database design, DL/I generally provides fast physical access via a key.
Therefore, identification of the function’s access path is essential for a design to
yield good performance.

10.1.6 Normalization
One formal technique that is used with entity/relationship data models is
normalization, sometimes referred to as getting the data model to third normal
form. This technique is not covered in detail, but is mentioned here, as some of
the techniques used are useful for getting the data model to a form where you
can design the hierarchical structures for an IMS database. Some of the goals of
normalization, which are relevant to the final IMS database design, are to get the
data model to a state where:

1. All entities are uniquely identified.

2. There is only one occurrence of each data attribute in each entity, that is,
it has no repeating fields.

3. There are no many-to-many relationships between entities.

To transfer the data model to a physical IMS database design, you must achieve
the first goal for entities that will become root segments. It can also aid the design
if you try and achieve this for other entities that will become dependents.

To achieve the second goal, normalization will create a new entity to contain each
of the occurrences of the data attribute, that will have a one to many relationship
with the original entity. If there is only a fixed number of occurrences of the
attribute, and you are certain there will only ever be that maximum number of
occurrences, then you may want to leave the attribute in the entity. If you are
unsure of the number of occurrences, its better to create another entity.

If you leave a many to many relationship in the data model, then it is not possible
to implement this in an IMS database. Normalization will create another new
entity in the path of the relationship that has a one to many relationship with each
of the two original entities.

If you do decide to normalize the data model, you should adopt a pragmatic
approach when you map the design to physical IMS databases. You may want to
go back on some of the changes you made for normalization for performance
reasons. Normalization is just a technique for getting a data model that provides
a sound starting point for the physical design.

10.2 What is a database ?

A database provides for the storing and control of business data, independent
from (but not separate from the processing requirements of) one or more
applications. If properly designed and implemented, the database should provide
a single consistent view of the business data, that can be centrally controlled and
managed.
Database basics 65

One way of describing a logical view of this collection of data is to use an
entity/relationship model. The database will record details (attributes) of particular
items (entities) and the relationships between the different types of entities. For
example, for the stock control area of an application, you would have Parts,
Purchase Orders, Customers, Customer Orders (entities). Each entity would
have attributes, the PART would have a Part No, Name, Unit Price, Unit Quantity,
etc. These entities would also have relationships between them; a Customer
would be related to orders he had placed, these would be related to the part that
had been ordered, and so on. Figure 18 illustrates an entity relationship mode.

Figure 18. Entities, attributes, and relationships

A database management system (DBMS), such as the IMS Database Manager
component, or the DB2 product, provide a method of storing and using the
business data in the database

10.3 Why use a database ?

When computer systems were first developed, the data was stored on individual
files, unique to an application, or even a small part of an individual application.

The same details might be stored in several different places, for example the
details of a customer might be in both the ordering and invoicing application.This
caused a number of problems:

• As the details were stored and processed independently, details that were
supposed to be the same, for example a customers name and address, might
be inconsistent in the various different applications.

• When common data had to be changed, it had to be changed in several
places, causing a high workload. If any copies of the data were missed, it
resulted in the problems detailed in the previous point.

Shipment

Shipment No
Dispatch
Date

Customer No
Customer
Address

Order No
Quanity
Delivery
Address

Customer
Customer

Order

Shipment
to Customer

Customer
Orders Parts

Order
for Part

Purchase
of Part

Relationships
Part No
Name
Unit Price

.

. Order No
Quantity

.

.
Attributes

Purchase Order

Part
66 IMS Primer

• There was no central point of control for the data, to ensure it was secure,
both from loss and from unauthorized access

• The duplication of the data wasted space on storage media.

The use of a database management system, such as the IMS Database Manager
component, to implement the database also provides additional advantages:

• The DBMS allows multiple tasks to access and update the data
simultaneously while preserving database integrity. This is particularly
important where large numbers of users are accessing the data via an online
application.

• The DBMS will provide facilities for the application to update multiple
databases/database records and ensure the application data in the different
records remains consistent even if an application failure occurs.

• The DBMS provides utilities that control and implement backup and recovery
of the data, preventing loss of vital business data.

• The DBMS will provide utilities to monitor and tune the access to the data.

The use of a database and database management system will not, in itself,
produce the advantages detailed above. It also requires the proper design and
administration of the databases, and development of the applications. This book
describes, by use of examples, one way of doing this using the IMS product.

10.4 The database administrator role

The centralization of data and control of access to this data is inherent to a
database management system. One of the advantages of this centralization is the
availability of consistent data to more than one application. As a consequence,
this dictates tighter control of that data and its usage. Responsibility for an
accurate implementation of control lies with the database administrator (DBA)
function. Indeed, to gain the full benefits of using a centralized database, you
must have a central point of control for it. Because the actual implementation of
the DBA function is dependent on a company’s organization, we limit ourselves to
a discussion of the roles and responsibilities of a DBA. The group fulfilling the
DBA role will need experience in both application and systems programming.

DBA roles and responsibilities in a typical installation might be as follows:

• The DBA provides standards for, and controls the administration of, the
databases and their use.

• The DBA provides guidance, review, and approval of database design.

• The DBA determines the rules of access to the data and monitors their
security.

• The DBA controls the database integrity and availability, monitoring the
necessary activities for reorganization backup/recovery.

• The DBA is not responsible for the actual content of databases — this is the
responsibility of the user. Rather, the DBA enforces procedures for accurate,
complete, and timely update of the databases.

• The DBA approves the operation of new programs with existing production
databases, based on results of testing with test data.
Database basics 67

In general, the DBA is responsible for the maintenance of current information
about the data in the database. Initially, this responsibility might be carried out
using a manual approach. But it can be expected to grow to a scope and
complexity sufficient to justify, or necessitate, the use of a data dictionary
program.
68 IMS Primer

Chapter 11. The IMS hierarchical database model

IMS uses a hierarchical model as the basic method of storing data. Unlike the
relational model used by DB2, which was the result of theoretical work, this was
arrived at as a pragmatic way of storing the data and implementing the
relationships between the various type of entities.

In this model, the individual entity types are implemented as segments in a
hierarchical structure. The hierarchical structure is determined by the designer of
the database, based on the relationship between the entities and the access
paths required by the applications.

Note that in the IMS program product itself, the term database is used slightly
differently to its use in other DBMS’s. In IMS, a database is commonly used to
describe the implementation of one hierarchy, so that an application would
normally access a large number of IMS databases. Compared to the relational
model, an IMS database is approximately equivalent to a table.

The hierarchical data structure in Figure 19 describes the data as seen by the
application program. It does not represent the physical storage of the data. The
physical storage is of no concern to the application program.

The basic building element of a hierarchical data structure is the parent/child
relationship between segments of data, also illustrated in Figure 19.

Figure 19. Hierarchical data structure

Each occurrence (or instance) of a parent segment has associated with it 0, 1, 2,
or more occurrences of a child segment. Each child segment occurrence has
associated with it one, and only one, occurrence of a parent segment.

Sometimes it is necessary to distinguish between a segment type, that is, the
kind of segment; and the segment occurrence, that is, the particular instance of
its contents and location.

PART

STOCK PURCHASE
ORDER

DETAIL DETAIL

Parent of STOCK
and

PURCHASE ORDER

Child of PART
and

Parent of DETAIL

Child of
PURCHASE
ORDER

Level 1

Level 2

Level 3
The IMS hierarchical database model 69

As shown in Figure 19, a parent can have several child segment types. Also, a
child segment can, at the same time, be a parent segment; that is, it can have
children itself. The segment with no parent segment, that is, the one at the top, is
called the root segment.

All the parent/child occurrences for a given root segment are grouped together in
a DL/I database record. The collection of all these like database records is a DL/I
database.

Only one segment can appear at the first level in the hierarchy, but multiple
segments can appear at lower levels in the hierarchy. For example, multiple
STOCK and ORDER segments can exist for one PART segment. Since each
dependent segment in the hierarchy has only one parent, or immediate superior
segment, the hierarchical data structure is sometimes called a tree structure.
Each branch of the tree is called a hierarchical path. A hierarchical path to a
segment contains all consecutive segments from the top of the structure down to
that segment.

In Figure 19, each PART segment with its dependent STOCK, ORDER, and
DETAIL segments constitutes a database record. The collection of all these
records for all PARTS is called a database, that is, the PARTS database.

Through the concept of program sensitivity, DL/I allows a program to be restricted
to “seeing” only those segments of information that are relevant to the processing
being performed. For example, an inventory program could be written to see only
the PART and STOCK segments of the database record shown in Figure 19 on
page 69. The program need not be aware of the existence of the ORDER
segment.

DL/I allows a wide variety of data structures. The maximum number of different
segment types is 255 per hierarchical data structure. A maximum of 15 segment
levels can be defined in a hierarchical data structure. There is no restriction on
the number of occurrences of each segment type, except as imposed by physical
access method limits.

11.1 Basic segment types in a hierarchical data structure

Following is a detailed description of the various segment types and their
interrelations within the hierarchical data structure. Refer to Figure 19 on page 69
and Figure 20 on page 71 when reading this description.

• The segment on top of the structure is the root segment. Each root segment
normally has a key field which serves as the unique identifier of that root
segment, and as such, of that particular database record (for example, the
part number).

• A dependent segment relies on the segments above it in the hierarchy for its
full meaning and identification.

• A parent/child relationship exists between a segment and its immediate
dependents.

• Different occurrences of a particular segment type under the same parent
segment are twin segments.

• Segment occurrences of different types under the same parent are sibling
segments.
70 IMS Primer

Figure 20. Segment types and their relationships

11.2 Sequence fields and access paths

To identify and to provide access to a particular database record and its
segments, DL/I uses sequence fields. Each segment normally has one field
denoted as the sequence field. The sequence fields in our subset should be
unique in value for each occurrence of a segment type below its parent
occurrence. However, not every segment type need have a sequence field
defined. Particularly important is the sequence field for the root segment, since it
serves as the identification for the database record. Normally, DL/I provides a
fast, direct access path to the root segment of the database record based on this
sequence field. This direct access is extended to lower level segments if the
sequence fields of the segments along the hierarchical path are specified, too.

Note: The sequence field is often referred to as the key field, or simply the key.

Using Figure 20, an example of an access path would be the PART, ORDER and
DETAIL segments. It must always start with the root segment. This is the access
path as used by DL/I. The application program, however, can directly request a
particular DETAIL segment of a given ORDER of a given PART in one single DL/I
request, by specifying a sequence field value for each of the three segment
levels.

PART
3

PART
1

STOCK
12

STOCK
11

ORDER
11

ORDER
22

ORDER
21

PART
2

STOCK
21

DETAIL
112

DETAIL
111

STOCK
31

ORDER
31

DETAIL
311

DETAIL
311These

are twins

All segments are
dependents of PART

Siblings
DETAIL is:
Dependent of ORDER
Dependent of PART
Child of ORDER
Grandchild of PART

Root segment
One per database
record

Record 1 Record 3Record 2

Parent of
DETAIL
The IMS hierarchical database model 71

11.3 Additional access paths to segments

In addition to the basic DL/I facilities discussed so far, IMS provides two
additional methods of defining access paths to a database segment. These are:

• Logical relationships

• Secondary indices

Both provide a method for an application to have a different access path to the
physical databases. They are defined to IMS in addition to the basic hierarchical
structure already defined. The logical relationships and secondary indices are
automatically maintained by IMS, transparent to the application.

Logical relationships allow a logical view to be defined of one or more physical
databases.To the application this will look like a single database.

Secondary indices give an alternate access path, via a root or dependent
segment, to the database record in one physical database.

You should only use these extra facilities if there are strong application and/or
performance reasons for doing so. Both involve additional overheads. The
following two sections (11.4, “Logical relationships” on page 72, and 11.5,
“Secondary indexing” on page 76) describe these facilities in more detail and
indicate where you might wish to use them.

11.4 Logical relationships

Through logical relationships, DL/I provides a facility to interrelate segments from
different hierarchies. In doing so, new hierarchical structures are defined which
provide additional access capabilities to the segments involved. These segments
can belong to the same database or to different databases. A new database can
be defined called a logical database. This logical database allows presentation of
a new hierarchical structure to the application program. Notice that although the
connected physical databases could constitute a network data structure, the
application data structure still consists of one or more hierarchical data
structures.

For example, given the entities and relationships illustrated in Figure 21, it may
have been decided that, based on the applications most common access paths,
the data should be implemented as two physical databases, with hierarchies as
shown in Figure 22 on page 74. However, there are some reasons why other
applications need to use the relationship between the PART and order DETAIL
(reasons for wanting to do this are discussed below). So a logical relationship is
to be built between PART and DETAIL.
72 IMS Primer

Figure 21. Entities and relationships with physical and logical databases mapped on

The basic mechanism used to build a logical relationship is to specify a
dependent segment as a logical child, by relating it to a second parent, the logical
parent.

In Figure 22, the logical child segment DETAIL exists only once, yet participates
in two hierarchical structures. It has a physical parent, ORDER, and logical
parent, PART. The data in the logical child segment and in its dependents, if any,
are called intersection data.

STOCK

PART's Physical Database

PARTPART 1

DETAIL

PART/ORDER Logical Database

ORDER Physical Database

SHIPMENT

Item
ordered

part ordered

PART
in stock

ORDER
shipped
The IMS hierarchical database model 73

Figure 22. Two Logically related physical databases, PARTS and ORDERS

By defining two additional logical databases, two new logical data structures
shown in Figure 23 can be made available for application program processing,
even within one single program.

The DETAIL/PART segment in Figure 23 is a concatenated segment. It consists
of the logical child segment plus the logical parent segment.The DETAIL/ORDER
segment in Figure 23 is also a concatenated segment, but it consists of the
logical child segment plus the physical parent segment. Logical children with the
same logical parent are called logical twins, for example, all DETAIL segments for
a given PART segment. As can be seen in Figure 22, the logical child has two
access paths. One via its physical parent, the physical access path, and one via
its logical parent, the logical access path. Both access paths are maintained by
DL/I and can be concurrently available to one program.

STOCK

PART Database

PART 1 ORDER

DETAIL SHIPMENT

Logical parent
of DETAIL

Physical parent
of DETAIL

Logical Relationship

Logical Children
of PART

Logical Twins Physical children
of ORDER

ORDER Database
74 IMS Primer

Figure 23. Two additional logical DB’s after relating PARTS and ORDER DB’s

Some reasons you may want to use logical relationships are:

• They provide an alternate access path for the application. For example, they
allow (depending on pointer choice) an application to have direct access from
a segment in one physical database to a lower level segment in another
physical database, without the application having to access the second
physical database directly and read down through the hierarchy.

• They provide an alternate hierarchical database structure for an application,
so that different applications, or parts of applications, can have a view of the
physical databases that most closely matches that application’s view of the
data.

• They can make IMS enforce a relationship between two segments in two
physically separate databases (that is, it will preserve referential integrity).
You can define the relationship such that a logical parent cannot be deleted if
it still has logical children, and a logical child cannot be added it there is no
logical parent. For example, referring to Figure 22 on page 74, you could
define the relationship such that no order DETAIL could be inserted if there
were no corresponding PART, and no PART could be deleted if there were still
order DETAILs for that part. Any application attempting to do this would have
the database call rejected by IMS.

ORDER

DETAIL PART SHIPMENT DETAIL ORDER

PART

STOCK SHIPMENT

ORDER/PART
Logical Database

PART/ORDER
Logical Database

STOCK
The IMS hierarchical database model 75

Potential disadvantages in using logical relationships are:

• There are performance overheads in maintaining the pointers used in the
logical relationships. Every time a segment participating in a logical
relationship is updated, the other segment (in another physical database) that
participates in the relationship may need to be updated. This can result in an
appreciable increase in physical I/Os to auxiliary storage.

• When a database needs to be reorganized, except with some very limited
pointer choices, all other databases that are logically related must be
reorganized at the same time, as the pointers used to maintain the logical
relationships rely on the physical position of the segments in that database,
which can be altered by the reorganization.

Before choosing to use logical relationships, you need to carefully weigh up the
performance and administrative overheads against the advantages of using
logical relationships.

For further details on implementing logical relationships refer to IMS/ESA
Administration Guide: Database Manager, SC26-8012

11.5 Secondary indexing

DL/I provides additional access flexibility with secondary index databases. Each
secondary index represents a different access path to the database record other
than via the root key. The additional access paths can result in faster retrieval of
data. For example, the PART and ORDER segments in Figure 24 could be
retrieved based on the order number in the ORDER segment, if an index were
defined for that field. Once an index is defined, DL/I will automatically maintain
the index if the data on which the index relies changes, even if the program
causing that change is not aware of the index.

Figure 24. A database and its secondary index database

STOCK

Key Field(s)
from Source
Duplicated in

PART

ORDER

Index
Source

Index
Target

Index Index
Pointer

PART's Physical Database
ORDER NUMBER
Database
76 IMS Primer

The secondary index is implemented by defining a secondary Index database to
IMS. This contains segments that point to the segment in the main physical
database that contains the key values the constitute the secondary index key. As
this Index database is itself a physical database, it may he accessed
independently by the applications.

The segments involved in a secondary index are depicted in Figure 24.

The index source segment contains the source field (s) on which the index is
constructed, for example, ORDER#.

• The index pointer segment is the segment in the index database that points to
the index target segment. The index pointer segments are ordered and
accessed based on the field (s) contents of the index source segment, for
example, the order number. This is the secondary processing sequence of the
indexed PARTS database. There is, in general, one index pointer segment for
each index source segment, but multiple index pointer segments can point to
the same index target segment.

• The index target segment is the segment which becomes initially accessible
via the secondary index. It is in the same hierarchical record as the index
source segment and is pointed to by the index pointer segment in the index
database. Quite often, but not necessarily, it is the root segment.

• The index source and index target segment may be the same, or the index
source segment may be a dependent of the index target segment as shown in
Figure 24.

The secondary index key (search field) is made up of from one to five fields from
the index source segment. The search field does not have to be a unique value,
but it is strongly recommended you make it a unique value to avoid the overhead
in storing and searching duplicates. There are a number of fields that can be
concatenated to the end of the secondary index search field to make it unique:

• A subsequence field, consisting of from one to five more fields from the index
source segment. This is maintained by IMS but, unlike the search field, cannot
be used by an application for a search argument when using the secondary
index.

• A system defined field that uniquely defines the index source segment, the
/SX variable.

• A system defined field the defines the concatenated key (i.e. the
concatenation of the key values of all the segment occurrences in the
hierarchical path leading to that segment) of the index source segment, the
/CX variable.

A further technique that can be used with secondary indices is sparse indexing.
Normally IMS will maintain index entries for all occurrences of the secondary
index source segment. However it is possible to cause IMS to suppress index
entries for some of the occurrences of the index source segment. You may wish
to do this if, say, you were only interested in processing segments that had a
non-null value if the field. In the example in Figure 24 say that the ORDER had a
field set in it to indicate the order could not be fulfilled immediately, but needed to
be back ordered. You could define a secondary index including this field, but
suppress all entries that did not have this field set, giving rapid access to all back
orders. As a rule of thumb only consider this technique if you expect 20% or less
The IMS hierarchical database model 77

of the index source segments to be created. The suppression can be either by
specifying all bytes in the field should be a specific character (NULLVAL
parameter) or by selection with the Index maintenance exit routine.

Some reasons you might want to use secondary indices are:

• Quick access, particularly random access by online transactions, by a key
which is not the primary key the database has been defined with.

• Access to the index target segment without having to negotiate the full
database hierarchy (particularly useful if the index target segment is not the
root segment). This is similar to using logical relationships, but provides a
single alternate access path into a single physical database. If this is all that is
required, then a secondary index is the better technique to use.

• Ability to process the index database separately, for example by a batch
process that needs to process only the search fields (but see also in the
manuals about adding user data to the secondary index database,

• A quick method of accessing a small subset of the database records via a
sparse index.

Potential disadvantages in using secondary indices are:

• The performance overheads in updating the secondary Index database every
time any of the fields making up the search field in the index source segment
is updated, or the index source segment is inserted or deleted.

• The administrative overheads in setting up, monitoring, backing up and tuning
the secondary index database.

• When the database containing the index source segment is reorganized, the
secondary index must also be re-built as the pointers used to maintain the
connection between the source segment and the secondary index database
rely on the physical position of the source segment in the database, which can
be altered by the reorganization.

As with logical relationships, consider carefully whether the benefits of using a
secondary index outweigh the performance and administrative overheads.

For further details on implementing secondary indices, refer to IMS/ESA
Administration Guide: Database Manager, SC26-8012. The index maintenance
exit routine is described in IME/ESA Customization Guide, SC26-8020.
78 IMS Primer

Chapter 12. Implementation of the IMS database model

The previous chapter described the logical model for IMS databases. This
chapter looks at how this model is physically implemented using the IMS
Database Manager component, and OS/390 services.

The application interfaces with IMS, both Database Manager and Transaction
Manager components, through functions provided by the IMS DL/I application
programming interface (API). In this section we will only address the functions
relevant to IMS Database Manager.

The individual elements that make up the database, segments, and database
records, are organized using a number of different IMS access methods: HDAM,
HIDAM, DEDB, etc. These methods are described in detail below. The choice of
access method can influence the functionality available to your application, the
order in which data is returned to the application, the functionality available to the
application, and the performance the application receives from the Database
Manager.

Underlying these IMS access methods, IMS uses various operating system
access methods to store the data on DASD and move the data between the
DASD and the buffers in the IMS address space, where it is manipulated.

The structure of the IMS databases, and a program’s access to them, is defined
by a set of IMS control blocks, the DBD, PSB and ACB. These are coded as sets
of source statements that then have to be generated into control blocks for use by
the Database Manager and application. This structure is described in Figure 25.

Figure 25. Elements of the physical implementation

Application

DL/I API

IMS Access Methods

Disk Storage

Operation System
Access Methods

Transaction
Manager
Component (IMS)

Database Manager (IMS)
Implementation of the IMS database model 79

12.1 Segments, records, and pointers

As described above, a segment is used to represent one entity, or grouping of
related fields. In IMS, unlike DB2 or many other DBMSs, it is not mandatory to
define all the fields to IMS, it is only necessary to define the segment as being
long enough to contain all the application data to be stored. The only fields you
must define to IMS are those you wish to use for identifying and searching for
segments. Specifying non-search fields (field level sensitivity) is optional.

One occurrence of a root segment, with all its dependent segments, is referred to
as a single database record.

In addition to the application data, each segment will also contain control
information used by IMS. This is at the start of the segment, in a segment prefix.
Figure 26 shows the layout of a segment with the prefix and application data
portions. This is automatically maintained by IMS, and is transparent, and not
accessible to, the application.This control information consists of various flags
and descriptive fields (segment type and delete byte) and pointers to implement
the hierarchical structure and access paths. The contents of the prefix will vary,
depending on the IMS access method and options chosen when the database is
defined.

Figure 26. Segment Layout

These pointers consist of the relative offset (number of bytes) of the segment
being pointed at, from the start of the data set being used to store the data. This
is commonly referred to as the relative byte address (RBA). For example, a root
segment would contain pointer fields in the prefix for, at a minimum all of the
dependent segment types under the root. IMS will automatically define the
minimum set of pointers to maintain the hierarchical structure. The database
designer has the option to specify additional pre-defined types of pointers above
those necessary for the minimum hierarchical structure. This pointer selection
can influence the performance of applications using the databases. Figure 27
contains a diagram of database segments with their pointers.

Segment
Type
Code

Application DataDelete
Byte

RBA
Pointer

RBA
Pointer

RBA
Pointer

Prefix Data
80 IMS Primer

Figure 27. Database record and pointers

12.2 Physical storage of the data

There are a number of different IMS access methods used to organize and store
the data segments and records. The choice of which access method to use
should be made after a careful analysis of the access requirements of the
applications. The choice of access method will affect the functionality available to
the application, the order in which segments are returned to the application, and
will influence database performance. Table 5 contains a list of the most commonly
used database organizations.

Table 5. Database organization types

The operating system access methods that underlays the IMS access methods
are mentioned in this section, but are discussed in more detail in the following
section.

The three major IMS access methods are:

• Hierarchical Direct — Consisting of the Hierarchical Direct Access Method
(HDAM) and the Hierarchical Indexed Direct Access Method (HIDAM). Both of
these methods are described in detail below.

Organization Database Type

Hierarchical Direct Access Method HDAM

Hierarchical Index Direct Access Method HIDAM

Simple Hierarchical Index Sequential Access Method SHISAM

Hierarchical Index Sequential Access Method HISAM

Generalized Sequential Access Method GSAM

Data Entry Database DEDB

Dependant 1
Occurrence 2

Root 2
P
T
F

Dependant 2
Occurrence 2

P
T
F

Dependant 2
Occurrence 3

P
T
F

P
T
B

P
C
F

P
C
F

P
T
F

P
T
B

P
C
F

P
C
F

P
T
F

Dependant 1
Occurrence 1

P
T
F

Dependant 2
Occurrence 1

P
T
F

Dependant 2
Occurrence 1

P
T
F

Dependant 1
Occurrence 1

P
T
F

Root 1
Implementation of the IMS database model 81

• Hierarchical Sequential — Consisting of the Hierarchical Sequential Access
Method (HSAM) and the Hierarchical Indexed Sequential Access Method
(HISAM). These are less used today, as the HD access methods have a
number of advantages. A short description of them, together with their
limitations, is given below.

• Data Entry DataBase (DEDB) — This was originally part of the separately
orderable IMS Fast Path feature, but is now delivered as part of the IMS base
product. It has characteristics that make it suitable for high performance
and/or high availability applications. However, the application must be
specifically designed and written to make use of these characteristics. It is
described in detail below.

The Hierarchical Direct (HD) and Hierarchical Sequential (HS) databases are
often referred to as Full Function (FF) databases, while the DEDB databases are
referred to as Fast Path. Because of its original development as a separately
orderable feature, Fast Path functions are normally described in separate
sections/chapters in the manuals. There is a second Fast Path database access
method, Main Storage Database (MSDB), but its functionality has been
superseded by the Virtual Storage Option (VSO) of the DEDB, so it is not
described in this book, and you are advised not to use it.

In addition, there are two more IMS access methods that provide additional
functionality:

• Index Databases — These are used to physically implement secondary
indices and HIDAM primary indices.

• Generalized Sequential Access Method (GSAM) — This is used to extend the
restart/recovery facilities of IMS Database Manager to non-IMS sequential
files being processed by IMS batch programs and BMPs. These files can also
be accessed directly via MVS access methods. Table 6 contains a list of
database organizations and which application regions can access each type.

Table 6. IMS access method availability by application address space type

IMS Access
Method

MPP IFP BMP Batch CICS

HDAM Y Y Y Y

HIDAM Y Y Y Y

HSAM Y Y Y Y

HISAM Y Y Y Y

DEDB Y Y N Y

GSAM N Y Y N

Secondary
Index

Y Y Y Y
82 IMS Primer

12.2.1 HDAM
Refer to Figure 28 for the following discussion. An HDAM database normally
consists of one VSAM ESDS or OSAM data set. To access the data in an HDAM
database, DL/I uses a randomizing module. The randomizing module is used by
DL/I to compute the address for the root segment in the database. This address
consists of the relative number of a VSAM Control Interval (CI) or OSAM block
within the data set and the number of an anchor point within that block. Anchor
point (s) are located at the beginning of the CI/blocks. They are used for the
chaining of root segments which randomize to that CI/block. All chaining of
segments is done using a 4 byte address, this address is the byte the segment
starts at, relative to the start of the data set (Relative Byte Address/RBA).

A general randomizing module, DFSHDC40, is supplied with IMS. This is suitable
for most applications. The IMS/ESA Customization Guide, SC26-8020 describes
this module. It also gives details if you wish to modify this module, or develop
your own randomizing routines. The VSAM ESDS or OSAM data set is divided
into two areas:

• The root addressable area. This is the first n control intervals/blocks in the
data set. You define it in your DBD.

• The overflow area is the remaining portion of the data set. The overflow area
is not explicitly defined, but is the remaining space in the data set after space
is allocated for the root addressable area.

The root addressable area (RAA) is used as the primary storage area for
segments in each database record. IMS will always attempt to put new/updated
segments in the RAA. The overflow area is used when IMS is unable to find
suitable space for a segment being inserted in the RAA.

IMS employs a number of techniques to distribute free space within the RAA, to
allow future segments to be inserted in the most desirable block. Since database
records will vary in length a parameter (in the DBD) is used to control the amount
of space used for each database record in the root addressable area (note that
this limitation only applies if the segments in the record are inserted at the same
time, see below). This parameter, “bytes” in the RMNAME= keyword, limits the
number of segments of a database record that can be consecutively inserted into
the root addressable area. When consecutively inserting a root and its
dependents, each segment is stored in the root addressable area until the next
segment to be stored will cause the total space used to exceed the specified
number of bytes.

The total space used for a segment is the combined lengths of the prefix and data
portions of the segment. When exceeded, that segment and all remaining
segments in the database record are stored in the overflow area. It should be
noted that the “bytes” value only controls segments consecutively inserted in one
database record. Consecutive inserts are inserts to one database record without
an intervening call to process a segment in a different database record.
Implementation of the IMS database model 83

Figure 28. HDAM — database in physical storage

When you initially load HDAM databases, you can specify that a percentage of
the space in each block should be left for subsequent segments to be inserted.
This freespace will allow subsequent segments to be inserted close to the
database record they belong to. This freespace percentage is specified on the
DBD. You can also specify in the DBD that a percentage of blocks in the data set
are left empty, but you should not do this with HDAM databases, as this will result
in IMS randomizing segments to a free block, then placing them in another block.
This would result in additional I/O (the block they randomize to, plus the block
they are in) each time the segment is retrieved. You should analyze the potential
growth of the database to enable you to arrive at a figure for this free space.

When IMS is inserting segments, it uses the HD space search algorithm to
determine which CI/block to put the segment in. This attempts to minimize
physical I/Os while accessing segments in a database record by placing the
segment in a CI/block as physically close as possible to other segments in the
database record. The HD space search algorithm is described in the chapter on
designing Full Function databases, in IMS/ESA Administration Guide: Database
Manager, SC26-8012.

STOCK
32

FREE
SPACE

DETAIL
41

DETAIL
13

DETAIL
12

PART
3

PART
4

STOCK
31

R
A
P

FREE
SPACE

ORDER
41

DETAIL
11

PART
2

STOCK
21

R
A
P

FREE
SPACE

FREE
SPACE

FREE
SPACE

FREE
SPACE

PART
1

R
A
P

STOCK
12

STOCK
11

FREE
SPACE

FREE
SPACE

ORDER
11

Randomiser
Module

Root Key

Root
Addressable
Area (RAA)

Overflow

HDAM Database

Blocks (OSAM)
or Control Intervals (VSAM)

RAP - Root Anchor Point

Dataset - VSAM ESDS
or OSAM
84 IMS Primer

In addition to organizing the application data segments in an HDAM database,
IMS also manages the freespace in the data set. As segments are inserted and
deleted, areas in the CI/blocks become free (in addition to the freespace defined
when the database is initially loaded). IMS space management allows this free
space to be re-used for subsequent segment insertion. To enable IMS to quickly
determine which CI/blocks have space available, IMS maintains a table (bit map)
that indicates which CI/blocks have a large enough area of contiguous free space
to contain the largest segment type in the database. Note that if a database has
segment types with widely varying segment sizes, even if the CI/block has room
for the smaller segment types, it would be marked as having no free space if it
cannot contain the largest segment type. The bit map consists of one bit for each
CI/block, set on (1) if space is available in the CI/block, set off (0) if space is not
available in the CI/block. The bit map is in the first (OSAM) or second (VSAM)
CI/block of the data set and occupies the whole of that CI/block. Figure 29
illustrates the free space management.

Within the CI/block itself, IMS maintains a chain of pointers to the areas of
freespace. These are anchored off a Free Space Element Anchor Point (FSEAP).
This contains the offset, in bytes from the start of the CI/Bock, to the first Free
Space Element (FSE), if freespace exists. Each area of freespace greater than 8
bytes contains a FSE containing the length of the freespace, together with the
offset from start of CI/block to the next FSE.

Figure 29. HDAM database — free space management

RAPFSEAP Root
Segment

Dependent
Segment

RAPFSEAP Root
Segment

Dependent
Segment

FSEFSE Dependent
Segment

RAPFSEAP Root
Segment

Dependent
Segment

FSEFSE

Dependent
Segment

Dependent
Segment

Free Space Bit Map

1 1 0 1 0 1 1

RAP Root Anchor Point
FSEAP Free Space Anchor Point
FSE Free Space Element

Blocks (OSAM)
CI's (VSAM)
Implementation of the IMS database model 85

All management of free space and application segments in the data sets is done
automatically by IMS and is transparent to the application. You only need to be
aware of these because of the performance and space usage implications.

A full description of the HDAM internal organization is given in the chapter on
Choosing a Database Type in IMS/ESA Administration Guide: Database
Manager, SC26-8012.

The principle features of the HDAM access method are:

• Fast random access to the root segments, via the randomizer.

• Quick access to segments in a database record, as IMS attempts to store
them in the same, or physically near, CI/block

• Automatic re-use of space after segment deletions

• Can have non-unique root segment keys

The principle weaknesses of the HDAM access method are:

• It is not possible to access the root segments sequentially, unless you create a
randomizing module that randomizes into key sequence, or incur the overhead
of creating and maintaining a secondary index.

• It is slower to load than HIDAM, unless you sort the segments into randomizer
sequence (for example by writing user exits for the sort utility that call the
randomizing module).

• It is possible to get poor performance if too many keys randomize to the same
anchor point.

Overall, if there are no requirements to regularly process the database in root
segment key sequence, and you do not require the special features of a DEDB,
choose HDAM.

Further details on the reasons for choosing the HDAM access method, and
choosing the options you can define for it, are given in the section on Database
design.

12.2.2 HIDAM
A HIDAM database in DASD is actually comprised of two physical databases that
are normally referred to collectively as a HIDAM database, see Figure 30. When
defining each through the DBD, one is defined as the HIDAM primary index
database and the other is defined as the main HIDAM database. In the following
discussion the term “HIDAM database” refers to the main HIDAM database
defined through DBD.

The main HIDAM database is similar to an HDAM database. The main difference
is in the way root segments are accessed. In HIDAM, there is no randomizing
module, and normally no RAPs. Instead, the HIDAM primary index database
takes the place of the randomizer in providing access to the root segments. The
HIDAM primary index is an indexed sequential file (VSAM KSDS) that contains
one record for each root segment, keyed on the root key. This record also
contains the pointer (RBA) to the root segment in the main HIDAM database.
86 IMS Primer

The HIDAM primary index database is used to locate the database records stored
in a HIDAM database. When a HIDAM database is defined through the DBD, a
unique sequence field must be defined for the root segment type. The value of
this sequence field is used by DL/I to create an index segment for each root
segment (record in the KSDS). This segment in the HIDAM primary index
database contains, in its prefix, a pointer to the root segment in the main HIDAM
database.

Figure 30. HIDAM database in physical storage

When the HIDAM database is initially loaded, the database records are loaded
into the data set in root key sequence. Providing root anchor points are not
specified, reading the database in root key sequence will also read through the
database in the physical sequence the records are stored in on the DASD. If you
are processing the databases in key sequence like this, and regularly inserting
segments and new database records, you should specify sufficient freespace
when the database is initially loaded so that the new segments/records can be
physically inserted adjacent to other records in the key sequence.

A full description of the HIDAM internal organization is given in the chapter on
“Choosing a Database Type” in IMS/ESA Administration Guide: Database
Manager, SC26-8012.

DETAIL
12

STOCK
21

FREE
SPACE

DETAIL
13

ORDER
11

PART
2

PART
1

FREE
SPACE

DETAIL
11

STOCK
11

FREE
SPACE

HIDAM Database

Dataset - VSAM ESDS
or OSAM

STOCK
12

PART
3

STOCK
31

STOCK
32

ORDER
41

PART
4

ORDER
42

ORDER
43

FREE
SPACE

FREE
SPACE

RBA
Pointer

Root
Key 3

Root
Key 2

RBA
Pointer

Root
Key 1

RBA
Pointer

Root
Key 4

RBA
Pointer

HIDAM Primary
Index Database

Dataset
VSAM KSDS
Implementation of the IMS database model 87

Free space in the main HIDAM database is managed in the same way as in an
HDAM database. IMS keeps track of the free space using Free space elements
anchor points. When segments are inserted, the HD free space search algorithm
is used to locate space for the segment. The HIDAM primary index database id
processed as a normal VSAM KSDS, and, consequently, a high level of
insert/delete activity will result in CI/CS splits, which may require the index to be
reorganized.

When the HIDAM database is initially loaded, free space can be specified as a
percentage of the CI/blocks to be left free, and as a percentage of each CI/block
to be left free. This is specified on the DBD.

The principle advantages of the HIDAM access method are:

• Ability to process the root segments and database records in root key
sequence.

• Quick access to segments in a database record, as IMS attempts to store
them in the same, or physically near, CI/block.

• Automatic re-use of space after segment deletions.

• Ability to reorganize the HIDAM primary index database in isolation from the
main HIDAM database (but NOT the other way round).

The principle weaknesses of the HIDAM access method are:

• Longer access path, compared to HDAM, when reading root segments
randomly by key. There will be at least one additional I/O to get the HIDAM
primary index record, before reading the block containing the root segment
(excluding any buffering considerations).

• Extra DASD space for the HIDAM primary index.

• If there is frequent segment insert/delete activity, the HIDAM primary database
will require periodic reorganization to get all database records back to there
root key sequence in physical storage.

Overall, only choose HIDAM if there are requirements to regularly process the
database in root segment key sequence. If there are also requirements for fast
random access to roots (from online systems), look at alternatives for the
sequential access, such as unload/sort or secondary indices.

12.2.3 Index databases
Index databases are used to implement secondary indices, and the primary index
of a HIDAM database. The index database is always associated with another HD
database. It cannot have an existence by itself. It can, however, be processed
separately by an application program.

The Index database consists of a single VSAM KSDS (Key Sequenced Data Set).
Unlike the VSAM ESDSs used by IMS, which are processed at block (Control
Interval) level, the index database is processed as a normal indexed file. IMS
uses the normal VSAM access method macros to access it.

The records in the KSDS contain the fields that make up the key, and a pointer to
the target segment. For a secondary index, the pointer can be direct (relative byte
address of the target segment) or symbolic (the complete, concatenated key of
the target segment). For a HIDAM primary index, it is always direct.
88 IMS Primer

As the indices are a normal VSAM KSDS (and no relative address are used for
data in the index database) they can be processed using the normal VSAM
Access Method Services (IDCAMS). For example you could use the REPRO
function to copy the database and remove CI/CA splits or resize the data set,
without having to perform any other IMS reorganization.

12.2.4 DEDB
Data Entry Databases (DEDBs) were originally part of the separately priced IMS
Fast Path functions. These functions are now delivered as part of the IMS base
product, though some of the documentation may still reflect this separation. The
Fast Path functions were originally developed for application that required higher
performance, capacity and/or reliability than was available with the normal IMS
functions. There is another database access method that was available with Fast
Path, Main Storage Databases (MSDB), but as this is now been superseded by
DEDBs using the virtual storage option described below, we will not describe it
further, and recommend that you do not use it. DEDBs are frequently referred to
in the documentation as Fast Path databases, as distinct from the HD and HS
databases, which are referred to as Full Function databases (the main
restrictions on Fast Path DEDBs are described below).

The DEDB’s implementation of the IMS hierarchical database model is broadly
the same as the IMS HDAM access method. However:

• The implementation of the IMS access method onto the operating system
access method data sets is different (and appreciably more complicated) than
with HDAM. This is done to provide the additional features offered by DEDBs.

• There are various restrictions on facilities available with this access method,
again a trade-off for the additional features provided.

The hierarchical structure of a database record within a DEDB is the same as
HDAM, except for an additional dependent segment type. There is one root
segment in each database record and from zero to 126 dependent segment
types. One of these segment types can, optionally, be a sequential dependent
segment type (See below for more details). As with HDAM, a randomizing module
is used to provide initial access to the database data set(s) containing the DEDB
database.

The highest level in the structure used to implement a DEDB is the area. A DEDB
can consist of from 1 to 240 areas. Each area is implemented as one VSAM
ESDS data set.

Each DEDB Area data set is divided into:

• A root addressable part — This contains VSAM CIs that are addressable by
the randomizing middle.

• An independent overflow part.

• A sequential dependent part — This is optional, and is only defined if the
DEDB has a sequential dependent segment defined in the hierarchical
structure.
Implementation of the IMS database model 89

The root addressable part is further subdivided into units of work (UOWs). These
should not be confused with the unit of work that encompasses an application’s
minimum set of updates to maintain application consistency. The DEDB UOW is
similar, however, as it is the smallest unit that some Fast Path utilities (for
example, reorganization) work with, and lock, preventing other transactions
accessing them. Each unit of work consists of from 2 to 32767 CIs, divided into a
base section of 1 or more CIs and a dependent overflow section, consisting of the
remaining CIs.

Figure 31 shows segments stored in a DEDB area data set.

Figure 31. Overall structure of Fast Path DEDB

The randomizing module works in a similar way to an HDAM database. It takes
the key value of the root segment and performs calculations on it to arrive at a
value for a root anchor point. However, for a DEDB this is the root anchor point
within the Area data set. The randomizer must also provide the value of the area
data set that contains the RAP. Again, there is a sample randomizer provided with
IMS, although due to DEDB’s unique characteristics, you should look closely at
whether you need to code your own.

CI 2

CI 1

CI 3

CI 2

CI 8

CI 5

CI 7

CI 6

Area
Dataset

1

CI 16

CI 11

CI 10

CI 9

CI 12

CI 15

CI 14

CI 13

Base

OF

Unit of work Unit of work

Root
Addressable
Area

Independent
Overflow part

Sequential
Dependent Part
(optional)

Area
Dataset

2

Area
Dataset

3

DEDB Database

Area
Dataset - VSAM

O/F - Dependent
Overflow in
UOW's
90 IMS Primer

The randomizer will produce the value of a root anchor point in the base section
of a unit of work. IMS will attempt to store all dependent segments (except
sequential dependents) of the root in the same UOW as the root. If more than one
root randomizes to the same RAP, then they are chained off the UOW in key
sequence. If there is insufficient space in the base section, then root and
non-sequential dependent segments are placed in the overflow section of that
UOW. If there is no space in the dependent overflow section in the UOW, a CI in
the independent overflow part of the DEDB Area is allocated to that UOW and the
segment stored there. This CI in the independent overflow part is then used
exclusively by that UOW, and is processed with that UOW by the DEDB
reorganization utility.

The free space between the data segments in the CIs in the root addressable part
and Independent overflow part of a DEDB area data set are managed in the same
way as in an HDAM data set. with a free space element anchor point at the start
of the CI pointing to a chain of free space elements. As with HDAM, space from
deleted segments is automatically re-used, and the UOW can be reorganized to
consolidate fragmented free space (without making the database unavailable).
Unlike an HDAM database, there is no free space map. The segments for a
database record can only be allocated in the same UOW (or attached segments
in dependent overflow) as the root segment. An out of space condition results if
insufficient free space is available in the UOW or Independent overflow and the
database is then unavailable while lengthy recovery action is taken.

The following, optional, features can also be used with a DEDB:

• Virtual Storage Option (VSO) — This stores the CIs of a DEDB in OS/390 data
spaces, eliminating I/O to the DASD system. The data can either be loaded
(partially or completely) when the database is opened, or loaded into the
dataspace as it is referenced.

• Multiple Area Data Sets — You can define DEDB areas so that IMS will
automatically maintain up to seven copies of each area. This can be used to
provide a backup if I/O errors occur, allow data sets to be re-defined on a
different device without taking the database offline, or to provide parallelism in
I/O access for very busy applications.

• High Speed Sequential Processing — This provides a facility is a function
provided by Fast Path to enhance the performance of programs that are
processing segments sequentially in a database. IMS issues a single I/O
request that reads 10 CIs at as time, to reduce the overhead of multiple I/O
request, and stores the CIs in a separate buffer pool. It also issues the read
request in advance of the program asking for the data, to provide parallel
processing. In this way, the segments in the database are available to the
program without any delays to wait for I/O processing. The overall runtime can
be significantly reduced, as long as the database is being read sequentially.

• Sequential Dependent Segments — A DEDB database can have one
sequential dependent segment type defined in the database record. This is
processed completely separately to the other dependent segments. Normal
application programs can only Insert new sequential dependent segments or
read existing sequential dependent segments. All other processing of these
sequential dependents is performed by IBM supplied utility programs. The
sequential dependents are stored in the Sequential dependent part of the area
data set in chronological sequence, and processed by the IMS utilities, to read
or delete them, in the same sequence.
Implementation of the IMS database model 91

The main situations where you might consider using Fast Path DEDBs are:

1. Where you have very high volumes of data to store. The DEDB can be spread
over up to 240 VSAM ESDS data sets, each with a maximum capacity of
4 GB. However not all this space is available for application data as some
space is needed for IMS and VSAM overhead and free space.

2. Where you have a small to medium database that needs extremely fast
access. you could use the DEDB VSO option and have the data held in an
OS/390 dataspace, making a major reduction in the physical I/O associated
with the database.

3. If you needed a database with very high availability. The use of multiple area
data sets, the ability to reorganize online and the DEDBs tolerance to I/O
errors mean the database can be kept available for extended periods.

4. Where an application needs to record large amounts of data very quickly (for
example journalling details of online financial transactions) but does not
require to update this data, except at specified times (for example, an
overnight process), then a DEDB with a sequential dependent segment could
provide the solution.

The principal disadvantages that have to be weighed against OSAM DEDBs to
see if they are a cost effective solution are:

• This method is more complicated than other IMS access methods.
Consequently, it requires a higher degree of support both for initial setup and
running.

• The person designing the application must understand the restrictions and
special features of DEDBs and design the application accordingly.

• The DEDBs are only available for applications running against an IMS control
region (MPP, IFP, BMP and CICS applications). There is no batch support
except indirectly via the IMS supplied utilities to extract the data.

• Fast Path DEDBs do not support logical relationships or secondary indices, so
these functions must be implemented in the application.

For more details on using DEDBs, together with samples of their use, refer to the
ITSO publication IMS Fast Path Solutions Guide,SG24-4301

The features of DEDBs are described in detail in chapters on designing a Fast
Path database in IMS/ESA Administration Guide: Database Manager,
SC26-8012.

The utilities used with DEDB are described in IMS/ESA Utilities Reference:
Database Manager, SC26-8034 and the randomizer and other Fast Path exits are
in IMS/ESA Customization Guide, SC26-8020.

12.2.5 GSAM
An OS/390 sequential file being used as an interface to or from an IMS
application can be defined to DL/I as a GSAM database. However, the normal
concepts of hierarchical structures do not apply to GSAM, as it just contains the
normal data records, with no IMS information.
92 IMS Primer

These files can be OS/390 Sequential files, or VSAM ESDSs. Before or after the
IMS application processes them, other applications can process them using the
normal BSAM, QSAM and VSAM access methods.

When using GSAM for sequential input and output files, DL/I will control the
physical access and position of those files. This is necessary for the repositioning
of such files in case of program restart. When using GSAM, DL/I will, at restart
time, reposition the GSAM files in synchronization with the database contents in
your application program’s working storage. To control this, the application
program should use the restart (XRST) and checkpoint (CHKP) calls. These calls
will be discussed in 19.8, “Batch checkpoint/restart” on page 200. Note that IMS
can not re-position VSAM ESDS files on restart. There are also some other
restrictions on restarting, detailed in the Designing Full Function Databases
chapter of IMS/ESA Administration Guide: Database Manager, SC26-8012.

Whenever you want your program to be restartable, you should use GSAM for its
sequential input and output files. There are two reasons why you should want to
do this. The first is to save time if a program rerun is required in case of program
system failure. This is normally only done for long-running update programs (one
or more hours). The other reason stems from a planned online usage of the
databases.

12.2.6 Sequential
The two hierarchical Sequential (HS) access methods, HSAM and HISAM have
now been superseded by the HD access methods. The HD access methods have
a number of features that would almost always make them a better choice.

The HSAM access method will not allow updates to a database after it was
initially loaded and the database can only be read sequentially. I was used in the
past to process operating system sequential files, but GSAM is now a better
choice.

The HISAM access method offers similar functionality to HIDAM, but has poorer
internal space management than the HD access methods that would normally
result in more I/O to retrieve data, and the need to reorganize the databases
much more frequently.

The HS access methods are described in IMS/ESA Administration Guide:
Database Manager, SC26-8012

12.3 Selecting database organization

Access methods can, in general, be changed during reorganization without
affecting application programs. Still, because the access method is one of the
most critical performance factors, it should be carefully selected. First we will
discuss selection of the DL/I access method, HDAM, HIDAM, or HISAM.

12.3.1 When to choose HISAM
HISAM is not a very efficient database organization. All HISAM databases can
easily be converted to HIDAM. The application should receive significant
performance improvements as a result. The only situation where HISAM may be
desirable over a HIDAM database is when it is a root-segment-only database.
Implementation of the IMS database model 93

Even so, segments are not deleted and free space reclaimed after a segment is
deleted until the next database reorganization.

12.3.2 When to choose HDAM
HDAM is recognized, in practice, to be the most efficient storage organization of
the DL/I. It should be considered first. After looking at all the required access to
the database, if there are not requirements to process a large section of the
database in key sequence, then HDAM should be chosen. If sequential access of
the root keys is required, the process can retrieve the data in physical sequence
and sort the output.

HDAM’s prime advantages are:

1. Fast direct access (no index accesses) with few I/O operations

2. Single data associated control blocks

3. Small working set in main storage for DL/I

4. Good physical sequential access

Some disadvantages of HDAM are:

1. You need a randomizing module.

2. Sequential access in root key order is not possible if the physical sequence of
database records in storage is not the same as the root key sequence. This is
dependent on the randomizing module and root key characteristics.

3. If the database exceeds the space in the RAA (root addressable area) it will
extend into overflow. Once in overflow, the performance of the access to these
segments can increase drastically.

4. To increase the space of the database, a DBDGEN is required to increase the
number of blocks in the RAA. This will also require an ACBGEN to rebuild the
online ACBs for use in the online system. This will require more time to
complete and to coordinate the change.

In many cases, the disadvantages for HDAM do not apply or can be
circumvented. The effort needed to circumvent should be weighed against the
savings in terms of main storage and CPU usage. There is no doubt, however,
that an application with only HDAM databases is the most compact one. Some
possible solutions for the above HDAM disadvantages are:

1. The IMS provides a general randomizing module, DFSHDC40, which can be
used for any key range.

2. If heavy sequential processing is required and a randomizing module which
maintains key sequence cannot be designed, then sort techniques can be
used:

• If the program is non-input driven, as is the case with many report
programs, simple get-next processing presents all the database records in
physical sequential order. The output could then be sorted in the desired
order. Also, in many instances, only certain selected segments are
required. So the output file of the extract can be a fairly small file.
94 IMS Primer

• If there are input transactions which would normally be sorted in root key
sequence. This can be readily done with an E61 sort exit routine which
passes each root key to the randomizing module for address calculation
and then sorts on the generated addresses plus the root key instead of the
root key itself.

3. A secondary index could be built with the root key as index search argument.
The cost of this should be weighed against the cost of sorting as in 2 above.
The secondary index provides full generic key search capability, however. A
secondary index on the root segment should never be used to process the
whole database, as this will cost a lot more I/Os than to process the database
is physical sequence.

12.3.3 When to choose HIDAM
HIDAM is the most common type of database organization. It has the advantages
of space usage like HDAM but also keeps the root keys available in sequence.
These days, with the speed of DASD the extra read of the primary index database
can be incurred without much overhead. The most effective way to do this is to
specify specific buffer pools for use by the primary index database, thus reducing
the actual IO to use the index pointer segments.

HIDAM does not need to be monitored as closely as HDAM.

12.4 Physical segment design

In the final steps of segment design, we must look at the physical parameters
more closely:

• The segment length:

IMS will use the segment length as defined in the DBD to store each segment.
If you have left free space at the end of the segment for future use, that space
will be physically hold space on DASD unless you have compressed the
segment. If the application is likely to have additional requirements later, it can
be easier to make use of this free space than to increase the segment length
later. You have to balance the cost of making the change to the databases and
programs against the cost of wasted DASD space.

• The number of occurrences per segment per parent:

Try to avoid long twin chains, that is, many occurrences of a particular
segment type under one parent. Chain lengths should be estimated in terms of
blocks needed to store each such segment.

• Location of segments in the hierarchy:

Try to locate the segments most often used together with the root segment
into one control interval/block. The segments are initially physically stored in
hierarchical sequence, so the most frequently used segments should be on
the left of the structure (low segment codes).

• Average database record size:

The average database record is calculated by the total bytes of all segments
under the root segment. Small segments with more twins than larger
segments with fewer twins, although having almost the same number of bytes,
results in better performance and space usage.
Implementation of the IMS database model 95

12.5 Operating system access methods

To underpin the IMS access methods, IMS uses two operating system access
methods to store the data on disk storage, and move the data between the disk
storage and the buffers in the IMS address space. These are:

• Virtual Sequential Access Method (VSAM). Two of the available VSAM access
methods are used, Key Sequenced Data Sets (KSDS) for Index databases,
and Entry Sequenced Data Sets (ESDS) form the primary data sets for HDAM,
HIDAM, etc. The data sets are defined using the VSAM Access Method
Services (AMS) utility program.

• Overflow Sequential Access Method (OSAM) — This access method is unique
to IMS and is delivered as part of the IMS product. It consists of a series of
channel programs that IMS executes to use the standard operating system
channel I/O interface. The data sets are defined using JCL statements. As far
as the operating system is concerned, an OSAM data set is described as a
physical sequential data set (DSORG=PS)

There are two types of data sets defined using these access methods:

• Indexed sequential data sets. These are all defined and accessed as VSAM
KSDSs, and are used to implement primary and secondary index databases.
These databases are processed using the standard record level instructions of
VSAM. A catalogue listing (VSAM LISTCAT) will show all current details of the
files. They are susceptible to the normal performance degradation of VSAM
KSDSs from CI/CS splits caused by insert/delete activity. They can, if
necessary, be processed using AMS utilities such as REPRO.

• Sequential data sets. These are defined and accessed either as VSAM
ESDSs or using OSAM. It is important to note that, while these data sets
appear as sequential data sets to the operating system, IMS accesses them
randomly. The data sets do not contain records as such. IMS always
processes them at the CI (VSAM) or block (OSAM) level. The internal
structure within each CI/block is arranged as described in the previous section
on IMS access methods. Interpreting catalogue listings of these files as if they
were sequential files can, at times, be misleading.

12.5.1 VSAM or OSAM
While most physical databases are implemented over a single VSAM ESDS or
OSAM data set, IMS provides facilities to spread an HDAM or HIDAM physical
database over up to nine additional data sets (multiple data set groups). The is
facility is restricted as, with the current release of IMS, the 1st, primary data set
group, that is always defined, must contain the root segments, and can contain
any dependent segment type. The other (secondary) data set groups can each
contain any dependent (non-root) segment type. However, each dependent
segment type can only be defined in one data set group. This is, aside from
performance implications, transparent to applications. If the database needs to be
reorganized, then all data sets that make up the physical database have to be
reorganized at the same time.
96 IMS Primer

Reasons why you may wish to use secondary data set groups are:

• To separate little used segments from the main data set, to leave more space
for frequently used segments. This will increase the chance the all regularly
accessed segments are in the same block with the root, and enhance
performance. For example, you might have a segment type that has a new
occurrence inserted each month, say month end audit totals. This is only
rarely accessed after insertion. Placing in this segment type in a secondary
data set group, while imposing an overhead on the program that inserted it,
could improve performance of all other programs as there is an increased
chance segments they access are in the same block as the root, and more
database records can be packed into one CI/block.

• If you have a database with one very large segment type, and a number of
other small segment types than, as described above, this can result in
unusable space as IMS space management only regards a CI/block within a
data set as having freespace if it can accommodate the largest segment type
stored in that data set. Putting this large segment type in a secondary data set
group means that the other data set groups will now only be regarded as full if
they could not contain the second largest segment type.

• You can specify different freespace parameters on the different data set
groups, so you could place non-volatile segment types in a data set group with
little free space, to increase packing in a CI/block, and consequently the
chances of having several segments a program is retrieving in the same block.
Volatile segment types (that is, frequent insert/delete) could be placed in a
data set group with a large freespace specification, allowing segments to be
inserted near related segments.

• For very large databases, you may be approaching the structural limit of the
data set access method (4 GB of data). If you have one or two segment types
that occur very frequently, the each of these segment types could be placed in
one or more secondary data set groups to provide more space. But in this
case, see also the additional features of OSAM below, and also look closely at
DEDBs, which can be spread over many more data sets.

When performing space calculations, you need to be aware that, in addition to the
overhead for IMS control information (pointers, etc.), VSAM data sets will also
contain a suffix area at the end of the CI that contains VSAM control information.
This makes the space available in the CI for IMS data slightly less than the VSAM
CI size.

The choice between OSAM and VSAM ESDS for the primary database data sets
will depend, to some extent, on whether your site already uses VSAM and
whether you need to make use of the additional features described below. The
choice between VSAM ESDS and OSAM is not final, as a database can be
changed from one access method to the other by unloading the database,
changing and regenerating the DBD, then re-loading the database.

As the OSAM access method is specific to IMS, it has been optimized for use by
IMS. Reasons you may want to use OSAM are:
Implementation of the IMS database model 97

• Sequential Buffering (SB) — With this feature, IMS will detect when an
application is processing data sequentially and pre-fetch blocks it expects the
application to request from DASD, so they will already be in the buffers in the
IMS address space when the application requests segments in the block. This
is manually activated for specific IMS databases/programs. It can appreciably
decrease run times for applications processing databases sequentially. It is
similar to the sequential prefetch available with some DASD controllers, but
has the advantage that the data if fetched into the address space buffer in
main memory, rather than the DASD controller cache at the other end of the
channel. Refer to the “Full Function DB Design Considerations” chapter in
IMS/ESA Administration Guide: Database Manager, SC26-8012 for details.

• The structural limit on the amount of data that IMS can store in a VSAM ESDS
is 4 GB of data. This also used to be the limit on OSAM. However, changes
have been made to OSAM to allow it to process a data set up to 8 GB in size.
This is part of the base IMS product, however it was retrofitted to IMS version
5 as maintenance. As this feature was retrofitted, it is not mentioned in the
IMS Version 5 manuals. Providing the maintenance has been applied to the
system, this feature can be used by simplifying defining the data set between
4 GB and 8 GB in size and, for HDAM adjusting the number of RAA to make
use of the increased space. If you have written your own HDAM randomizer
module(s) you should also review these.

• Overall, OSAM is regarded as more efficient as it is more efficient, buffering,
shorter instruction path

12.5.2 IMS and system managed storage (SMS)
Most of the IMS data sets can be managed by SMS. The only concern would be
OLDS data sets. If they should get migrated (not very likely in most installations)
the may be recalled with different attributes.

OLDS data sets must be allocated in contiguous space. It could also be possible
for both the primary and secondary OLDS data sets to be on the same volume.
This is a major problem if that volume becomes unreadable. You should use
management classes to avoid this.

WADS data sets have very high write rate and are very sensitive to slow
response. These data sets should be placed with some care. SMS may not
provide a good place to allocate them.

If any OLDS, RLDS or SLDS or image copy data sets are SMS managed, the
CATDS parameter must be set for the RECON. This will tell DBRC to use the
system catalog to find data sets and not be concerned if they are not on the same
volumes which they were originally allocated.

12.6 IMS checkpoints: preserving application data integrity

A database management system, such as IMS, provides facilities to keep all the
application data stored in the databases in a consistent state. This discussion is
principally concerned with keeping the application data consistent, from an
applications point of view. It relies on the application using the facilities provided
by IMS. However, the facilities to consistently update the database also ensure
that all internal IMS information (pointers, free space elements, etc.) are kept
consistent, though this is transparent to the application program.
98 IMS Primer

An application program may make updates to several IMS databases. If a
problem is encountered part of the way through these updates, either the
program fails, or application logic dictates it cannot continue with the processing,
then it will need to restore the data in the databases to the state when it started
updating them. For example, a program adds a detail to the order, in the order
database, and then needs to update the parts database to reduce the quantity of
the part available for ordering. If the program updates the order database, but
then fails before updating the parts database, the order is recorded, but the
quantity of the part is still shown as available for ordering on the parts database.
The update to the order database and the update to the parts database make up
a single unit of work (UOW). For the application data to be consistent, either all
the updates in a unit of work must be written to the database successfully
(committed) or none of the updates in the UOW must be committed.

To maintain database consistency, IMS uses the concept of the application
checkpoint. You should not confuse the application checkpoint, which applies to
the single execution of an application program, with the system checkpoints IMS
subsystems take. System checkpoints are taken to allow the IMS subsystem to
recover from a failure of the complete IMS subsystem. The application checkpoint
indicates to IMS the end of the applications unit of work and causes IMS to
commit all updates made in that UOW.

An applications UOW commences when the application program starts running.
By default, IMS takes an application checkpoint, and commits all updates when
the application terminates normally. You can also explicitly request a checkpoint,
using the CHKP function of the DL/I API. The CHKP call is also taken as starting
another UOW. If an application program terminates abnormally, then all database
changes are backed out to the last commit point (start of program or last CHKP
call). The application can also explicitly back out all updates within the current
UOW by using the ROLB, ROLL or ROLS functions of the DL/I API (the difference
between the calls relate to action taken by the Transaction Manager component,
if applicable, and whether the application regains control after the call). The use
of these functions is described fully in the section on maintaining database
integrity in IMS/ESA Application Programming: Database Manager, SC26-8015.

For long running batch and BMP application programs, you should issue explicit
checkpoint calls at regular intervals. As the programs read database records,
details of these database records (internal IMS addresses) are stored by the IMS
subsystem until the application reaches a commit point (issues a CHKP or
terminates). This is done to prevent other application programs updating these
database records while the application is working with them. These details are
stored in an internal buffer in the IMS address space. Failure to issues regular
checkpoints can cause the following problems:

• The IMS address space has insufficient storage to contain all the buffers
needed to contain these details, resulting in the application program being
terminated.

• If the application fails, or issues a ROLL, ROLB or ROLS call, IMS will have to
back out all the updates performed by the application. If it has been running
for a long time without checkpointing, it may well take the same time to back
out all the updates as it took to apply them. Equally, if you then correct the
problem and re-start the program, it will take the same time again to
re-process the updates.
Implementation of the IMS database model 99

• For BMPs, other applications processing the databases via the IMS control
region are prevented from accessing these database records. This can cause
severe response time problems if the other applications are being used by
online users. For Batch jobs, you can get similar problems if block level data
sharing is being used.

Long running programs should issue checkpoints based on the number of
database calls made. As a rule of thumb, initially issue batch checkpoints at
about every 500 database calls. You do not want to checkpoint too frequently, as
there is an overhead in writing out all updates and your application re-positioning
itself in all the IMS databases after the CHKP call. Obviously you cannot CHKP
more frequently than the number of calls in one UOW. As you may need to tune
the checkpoint frequency, it is recommended that you code the program so it can
be easily changed. It is best to code it in the program as a variable, possibly input
as a parameter at run time.

The functions described in the previous paragraphs are referred to as basic
checkpoint. For applications running in Batch and BMP address spaces, there is
also extended checkpoint functionality available. This is referred to as symbolic
checkpointing. Symbolic checkpointing provides the following additional facilities
that enable application programs running in batch or BMP address spaces to be
re-started.

• The XRST function call is made at the start of the program, and indicates to
IMS that the application is using symbolic checkpointing.

• The CHKP function is extended to allow the application to pass up to seven
areas of program storage to IMS. These areas are saved by IMS and returned
to the program if it is restarted. This can be used for any variables, (for
example, accumulated totals, parameters) that the application would need to
resume processing.

• Each CHKP call is identified by a unique ID. This is displayed in an IMS
message output to the operating system log when the checkpoint is
successfully complete,

• If the program fails, after correcting the problem, it can be restarted from
either the last, or any previous successful checkpoint in that run. IMS will
re-position databases (including non-VSAM sequential files accessed as
GSAM) to the position they were at when the checkpoint was taken. When the
XRST call is made on re-start, the program will receive the ID of the
checkpoint it is re-starting from, together with any user areas passed to IMS
when that CHKP call was issued.

Full details of symbolic checkpointing, along with various restrictions on what can
be done, are in the chapter on maintaining database integrity in IMS/ESA
Application Programming: Database Manager, SC26-8015.

12.7 Locking: sharing IMS data between multiple tasks

The other main facility a Database Management System (as distinct from the use
of a database) provides, is the ability for more than one application to
simultaneously access the database for update, while preserving database
integrity.
100 IMS Primer

This prevents situations such as in the following example: Application A reads a
record. While it is processing it (waiting for a user to respond at a terminal),
application B reads the same record. While application B is processing the
record, application A writes back the updated record. The user of application B
now responds, and application B writes back the updated record, overwriting the
update to the record made by application A.

The mechanism used to prevent this is to lock (enqueue) the database
segments/records until the application has finished processing them successfully,
that is reached the end of a unit of work, as described above. As in the previous
section, while this discussion is mainly concerned with ensuring application data
is updated consistently, the mechanisms used by IMS also ensure that IMS’s
internal information in the databases (pointers, etc.) remains consistent.

One problem that can occur from this enqueueing of database segments, is a
deadlock between two application programs. For example, application A reads
database record 1. While A is doing other processing, application B reads
database record 2, then tries to read database record 1, and is suspended
waiting for it, as it is enqueued by application A. Application A now attempts to
read database record 2, and is suspended, as it is enqueued by application B.
Both applications are now suspended waiting for a record enqueued by the other
— a deadlock. IMS detects this, and will abnormally terminate (abend) the
application it assesses has done the least work, backing out its updates to the
last commit point. The mechanism IMS uses to detect the deadlock depends on
what method of data sharing is being used (see below). This is either direct
detection of the deadlock from the details enqueued, or by timeout; that is,
terminating a task after a (parameter specified) period of waiting for a database
record.

If the application is accessing DB2 tables, DB2 also detects deadlocks by
timeouts and will instruct IMS to abend the program. The abend code issued is
the same as for an IMS database deadlock. What IMS cannot detect is a
deadlock between two applications where the two different resources the
applications are trying to get are being managed by two separate resource
managers. This is most common with CICS applications using IMS/DB
databases. For example, CICS task A reads, and enqueues a database record.
CICS task B then issues a CICS ENQ for a resource, for example to serialize on
the use of a TDQ. CICS task B then attempts to read the database record held by
task A, and is suspended, waiting for it. CICS task A then attempts to serialize on
the resource held by task B and is suspended. We now have a deadlock between
task A and B. But neither IMS or CICS is aware of the problem, as both can only
see the half of the deadlock they are managing. Unless IMS was using one of the
data sharing techniques that timed out application that wait for the database, or
CICS was set up to abend tasks after a very short time suspended, this deadlock
would have to be resolved manually.

The person designing an application that uses IMS databases needs to be aware
of the potential problems with database deadlocks, and design the application to
avoid them. If the application also locks resources managed by another product,
they also need to be aware of the potential for a deadlock developing between
the IMS database records and the resources managed by the other product.
Unfortunately, deadlocks often only occur when the application processes very
large volumes, as they often require very precise timing to occur. This means that
they are often not detected during testing with small volumes.
Implementation of the IMS database model 101

IMS supports three methods of sharing data between a number of application
tasks:

• Program isolation (PI) — This can be used where all applications are
accessing the IMS databases via a single IMS control region. IMS maintains
tables of all database records enqueued by the tasks in buffers in the control
region address space. This provides the lowest level of granularity for the
locking, and the minimum chance of a deadlock occurring. Deadlocks are
resolved by IMS checking the tables of database records enqueued to ensure
there is not a deadlock situation, and abending one of the tasks if there is.

• Block level data sharing — This allows any IMS control region or batch
address space running on an OS/390 system to share access to the same
databases. It uses a separate feature, the Internal Resource Lock Manager,
IRLM. This is delivered as part of the IMS product, but needs to be separately
installed. It runs in its own address space in the OS/390 system and maintains
tables of the locks in this address space. With block level data sharing IMS
locks the databases for the application at the block level. This locking is at a
higher level than with program isolation (that is, all database records in a block
are locked). Because of this coarser level of locking, there is an increased risk
of deadlocks and contention between tasks for database records. Deadlocks
are resolved by a timeout limit specified to the IRLM. If the disk storage the
databases are on is shared between two OS/390 systems, it is also possible to
share the databases between IMS applications running on the two OS/390
images, by running an IRLM address space on each of the two OS/390
images. The IRLMs communicate using VTAM but maintain lock tables in each
IRLM address space. IRLM is also used as the lock manager for DB2 but,
because of the different tuning requirements, you should use separate IRLM
address spaces for DB2 and IMS. IRLM was originally developed for IMS,
before adoption for use with DB2. It was originally known as the IMS Resource
Lock Manager (IRLM) and you may find it referred to by this name in older
publications.

• Sysplex data sharing — Where a number of OS/390 systems are connected
together in a sysplex, with databases on DASD shared by the sysplex, it is
possible for IMS control regions and batch jobs to run on any of these OS/390
images and share access to the databases. To do this, an IRLM address
space, running version 2 of IRLM, must be running on each OS/390 image the
IMS address spaces are running on. The IRLMs perform the locking at block
level, as in the previous case. However, instead of holding details of the locks
in the IRLM address space, the lock tables are stored in shared structures in
the sysplex coupling facility. Deadlocks are resolved by a timeout limit
specified to IRLM.

For further details on data sharing, refer to the chapter on administering a data
sharing environment in IMS/ESA Administration Guide: System, SC26-8013.

If you believe your application volumes may justify use of sysplex data sharing,
then there are two ITSO publications that may help you, IMS/ESA Data Sharing in
a Parallel Sysplex, SG24-4303, and IMS/ESA Sysplex Data Sharing: An
Implementation Case Study, SG24-4831.
102 IMS Primer

Chapter 13. Choosing the correct type of database

This chapter is intended to assist you in choosing the best type of database for
your applications.

13.1 Applications suitable for Full Function (DL/I)

DL/I is a general access database manager, thus it is suitable for a wide variety of
applications. There are as many types of applications are there are companies
using IMS. Unless you have specific application requirements which warrant the
use of IMS Fast Path databases, Full Function databases are generally the best
choice.

13.2 Applications suitable for Fast Path (DEDB)

Obviously, the application area for which the DEDB was originally designed —
the management of customer accounts in a retail bank — is an ideal candidate for
that database implementation, but it is far from the only one, and some of the
more recent additions to the functions of the DEDB (notably VSO, which has
been available since IMS/ESA V5) extend the application areas for which you
should consider using a DEDB.

Many users have not realized the dramatic operational and performance benefits
available with DEDBs and have, for various reasons, not familiarized themselves
with that database implementation. In one example, a customer who preferred to
use only DB2 for new databases was convinced to use a DEDB with a saving of
some 65% in the processor requirements for that very large application. Initially, it
may seem daunting to introduce a DEDB to an organization where the users are
unfamiliar with that technology, but practical experience has shown that user
education is really a small, easily contained issue, and the benefits of the DEDB
for well suited applications, greatly outweigh the additional effort for the
introduction of this new type of database.

Several different requirements should be considered as indicators as to whether
the DEDB is likely to be a suitable mechanism:

• 13.2.1, “Very large databases” on page 104

• 13.2.2, “High availability requirements” on page 104

• 13.2.3, “Highly active databases” on page 105

• 13.2.4, “Limited data lifetime” on page 105

• 13.2.5, “Extreme performance levels” on page 105

• 13.2.6, “DEDB: reduced I/O usage” on page 106

• 13.2.7, “DEDB: CPU utilization” on page 106
Choosing the correct type of database 103

13.2.1 Very large databases
The structure of the DEDB was designed to facilitate handling of very large
databases by implementing each database as 1-240 areas, each of which may be
as large as 4 GB. This relieves the size constraints of conventional DL/I
databases, and provides an effective mechanism for processing and managing
large databases as multiple units.

The areas are relatively independent of each other — and for batch-style
processing, multiple areas can easily be processed in parallel, which dramatically
reduces run times for such things as overnight update and report runs (executing
as bumps), image copy jobs, and similar tasks that involve processing entire
databases. If the area breakup can be in processing units, then individual areas
can be processed independently. For example, if an area is dedicated to one
subsidiary within a conglomerate business, then the processing for that
subsidiary can be optimized and performed independently of other subsidiaries.

The algorithm by which data records are assigned to area is entirely under the
user control, so data and application requirements can readily exploit the area
structures by using separate areas for groupings of data that have different
characteristics (and so require different space definitions for optimal
performance) or are processed on different schedules. For example, separate
areas could be used for records representing different business units, or different
regions for which processing is done on different cycles.

The high performance characteristics of the DEDB, discussed below, are
particularly important for large databases, as in many instances, the sheer size of
a database may impose a requirement for high performance, particularly in batch
or “whole of database” processing.

13.2.2 High availability requirements
Since the implementation of a DEDB is designed so that almost all maintenance
such as image copying or database reorganization can be done while the
database is online, the requirement for extended outages for planned
maintenance is dramatically reduced. During a database reorganization, only a
small part of the data, one unit of work (UOW), which might typically be a few
tens of control Intervals, is locked at any particular time. Thus online processing
can generally proceed with minimal impact during a reorganization.

Additionally, the scheduling of a PSB to access the DEDB does not depend on
the availability of all areas, so even when one area is not available for access,
say a database recovery is in progress, then all other areas are accessible and
transaction and BMP scheduling can occur. In one customer’s retail banking
DEDB, 20 areas located on 20 separate DASD device were used, so that even if
a single area or the DASD device on which it was located were unavailable, 95%
of the data should still be accessible.
104 IMS Primer

The DL/I programming interface to the DEDB provides for an application that
attempts to accesses data in an area that is currently not available to be given the
same DL/I status code as for an I/O error, which now generalizes the meaning of
that status code to be: “The data you requested is temporarily not available”. This
can be meaningfully handled by most existing programs. The net result of this is
that, when one area of database is unavailable, processing for other areas can
proceed normally, which is in contrast with an IMS Full Function database, where
unavailability of any part of the database precludes all scheduling.

13.2.3 Highly active databases
If the Virtual Storage Option (VSO) of the DEDB is exploited for one or more
areas, then all records in those areas are held in virtual storage during database
processing. Updates are logged for recoverability and written to DASD
periodically in an asychronous process. If the DEDB is participating in Parallel
Sysplex data sharing, then all database updates are written to structure in the
coupling facility to be shared with other IMSs. These mechanisms avoid I/O for
most database accesses.

13.2.4 Limited data lifetime
A user can define that one segment within a DEDB is stored in a form called the
sequential dependent segment. This is managed by IMS in a very different way
from other data segments in the DEDB (where the storage mechanisms are
rather similar to those used in a Full Function database). The data entry segment
type is designed to optimize the interim storage and retrieval of data (as the name
suggests) for which only a short lifetime is normal before the data is reprocessed
by some form of batch processing. The sequential dependent data storage
mechanism is therefore ideally suited to data entry style applications where data
may be inserted progressively over a period, is not accessed heavily by online
transactions, and is extracted for reprocessing in bulk at intervals, and deleted in
bulk at some time after that. This suits such applications as the maintenance of
an audit trail or the collection of transactions for batch reprocessing, sometimes
involving very high rates of data insertion into the database.

13.2.5 Extreme performance levels
There are several different aspects of the DEDB that are designed to minimize
the number of I/Os necessary for data access and update, to minimize the path
length of instructions used for a DEDB activity, and to ensure parallelism between
multiple nearly simultaneous applications. These improve the performance of
online and BMP processing, thus allowing either higher workloads on any given
processor, or reduced processing costs for a given application workload.

This capacity to handle extreme workloads has been amply demonstrated by
various Fast Path benchmarks showing the capability to exceed 1,000
transactions per second even in 1993. More recent work has far exceeded even
that performance level. Note that these benchmarks were achieved on
processors that are quite small by today’s standards.
Choosing the correct type of database 105

13.2.6 DEDB: reduced I/O usage
The space search and usage algorithms for the root and direct dependent
segment data in a DEDB are markedly simpler than other database
implementations, while usually providing good locality of data, thus reducing the
number of I/Os required for a given process compared to say a DL/I database
implementation.

If the sequential dependent segment type is used, the total number of I/Os
required for insertion of data and deletion is substantially less than for other
segment types for the typical insert-retrieve-delete sequence of processing.

When DEDB database control intervals are written as the result of
add/update/delete calls, the I/Os are asynchronous to the transaction or BMP unit
of work. The I/Os are done after the sync point is complete — which results in
improved transaction response times, and improved BMP elapsed times

If the high speed sequential processing (HSSP) functions of the DEDB are
employed, many of the Read I/Os to access data are also done asychronously,
which can again greatly reduce BMP elapsed times.

DEDB updates are logged in a slightly different manner from Full Function
database updates. During each Sync interval (an online transaction or BMP
Checkpoint), changed data is written to the database only after the sync point
processing has committed the changes. There is no requirement for “before”
image data to be logged as would happen for Full Function database updates,
thus substantially reducing the volumes of log data and thus reducing the total I/O
workload.

13.2.7 DEDB: CPU utilization
Since the DEDB implementation uses simpler algorithms for most functions than
IMS Full Function, the CPU utilization for similar processing workloads is typically
approximately one half that of IMS Full Function. It is also notable that almost all
processing for an online transaction, or for a BMP, takes place under the TCB of
the region processing that transaction or BMP, thus allowing a very high degree
of transaction parallelism.

All the mechanisms mentioned above to reduce I/Os have a secondary effect that
the CPU utilization to perform those I/Os is similar reduced.

13.3 Applications suitable for Fast Path

Obviously, the application for which the DEDB was originally built — retail
banking — is a suitable environment where the database designer should
consider using a DEDB, but there are many other circumstances where the
particular characteristics of the DEDB may be beneficial. The following examples
are drawn from many industries and show that, especially since the introduction
of VSO (IMS V5), the DEDB may be very effective.
106 IMS Primer

• Account database — retail bank:

This application exploits the characteristic effectiveness of the sequential
dependent to collect transactions for reprocessing (posting) at the end of the
business day. The low cost of deletion of the sequential dependent reduces
the overheads for very large numbers of transactions. The DEDB also allows
near-continuous operation and portioning of the data to ensure manageability
of the large databases involved.

Access to the account by account number requires only one I/O and almost all
processing can be done, with one read I/O and one write I/O since we can
practically ignore the I/Os for the sequential dependents.

One disadvantage is that the DEDB requires all access to the account be via
the account number, so a second database is necessary to access the
account record from another key. This would be the credit card database
mentioned below, and so access via the credit card would require one I/O to
the credit card database and one to the account database.

• Credit card database — retail bank:

To provide access to an account DEDB from a credit card number, a
cross-reference database is required and must be maintained by user
programming (unlike a secondary index). This is usually a root-only database
with little data in each segment, primarily the relevant account number to
which the credit card transactions are to be posted, and the status of the card
itself.

• Teller control database — retail bank:

Teller transaction journals can be readily kept as sequential dependents,
provided they are not usually required for online access. If online access is
necessary then a direct dependent segment would be more suitable.

• Account database — utility company:

A utility company (telephone, electricity, gas or water) requires very similar
processing to that for a retail bank and a similar data structure is very suitable.
All the remarks above for the banking application are relevant, though there is
one interesting difference. In the case of a telephone utility, there is a need to
refer to a meter database that is similar to a credit card database for the
banking environment.

• Meter database — utility company:

This database provides a cross reference from a meter identifier to the
account that is to be billed for usage recorded by that meter. Since meter
readings are input and processed in batches that tend to be quite predictable,
then it could be very effective to exploit this predictability, to put the meter data
into areas that correspond to the batches of data that are processed in one
BMP execution and to switch an area into VSO prior to each batch run, and
out of VSO afterwards.

• Audit and history database:

This database illustrates a good use of the sequential dependent segment
type to provide a historical journal of activities. For a non-shared DEDB, the
sequential dependents will be in absolute time sequence, and if the DEDB is
shared (IMS V6 onwards), then the segments can be readily sorted into time
sequence.
Choosing the correct type of database 107

• Status report database:

This database was designed to hold a few tens of lines of report data for each
of several thousand destinations. Each report was generated daily, and
access was required to each report for typically three days before it could be
purged. Access to the reports was occasional, and a high percentage of the
data was accessed either once or not at all.

By using the sequential dependent to store each report, the detail lines of
each report were kept in the same or adjacent CIs (as they were inserted
within one sync interval), so that online access to them was quite efficient.

As each report was generated, a summary was placed in the report summary
segment so that it could be accessed at the same time as the root segment.

• Bet status database — gambling system:

This database is designed to support an online totalizer system where the total
of all bets placed on a given horse is required to be kept up to date with very
high concurrency, and sometimes there are high transaction rates against a
few records for a relatively short period. Here, the judicious use of VSO can
allow records that are currently active to be held in VSO, while less active
records will stay on DASD. Note that there is an option to restrict this database
to a root-only design, obeying the constraints of the old main storage
database, and thus allowing the use of FLD calls that can reduce the scope
and duration of data locking. This should substantially increase the level of
maximum concurrency that can be achieved.
108 IMS Primer

Chapter 14. Database reorganization processing

In this chapter, we provide an overview of the database reorganization tasks that
will need to be performed by the IMS database administrator function. We start
with general background information regarding IMS database reorganization,
then look in more detail at reorganizing HD databases.

Specifically, this chapter:

• Introduces the function of database reorganization in a DL/I environment. It is
a first-time general introduction into the requirements for, and the process of,
IMS database reorganization.

• Gives a formal description of the available DL/I utilities for reorganizing HD
databases.

• Introduces the use of the utilities for particular situations. It describes what
needs to be run to reorganize an HD database with and without logical
relationships or secondary indices. It also looks at partial reorganization of HD
databases. Finally, there is a short discussion on initial loading of databases
with logical relationships/secondary indices, as this also requires the
reorganization utilities to build the logical relationships/secondary indices.

14.1 Why is reorganization necessary ?

Reorganization is the process of changing the physical storage and/or structure
of a database to better achieve the application’s performance requirements. We
distinguish between the following two types: physical reorganization, to optimize
the physical storage of the database; and restructuring, to alter the database
structure.

The most common reasons a database will need reorganizing are:

• To reclaim and consolidate free space that has become fragmented due to
repeated insertion and deletion of segments.

• To optimize the physical storage of the database segments for maximum
performance (get dependent segments that are in distant blocks, increasing
physical I/O, back in the same block as the parent and/or root). This situation
is normally the result of high update activity on the database.

• To alter the structure of the database, change the size of the database data
sets, alter the HDAM root addressable area, add or delete segment types.

The first two reasons would be described as reorganization, the last one as
restructuring. The need for reorganization is always due to change, either setting
up a new database, amending the structure of the database as application
requirements change, or as a result of update activity against the database. If you
do not update a database, then once you have gotten it to an optimum state for
performance, there is no further need to reorganize it.

Reorganizing and restructuring the databases is only part of the process of tuning
and monitoring access to IMS databases. There are also many things that can be
done to tune the database manager component in the IMS subsystem and the
applications accessing of the databases. This is covered in detail in Chapters 11
and 12 of the ITSO publication IMS Version 5 Performance Guide, SG24-4637.
Database reorganization processing 109

14.2 When to reorganize

There are no fixed rules about when to reorganize. There are two approaches to
deciding when to reorganize, reactive and proactive. You will probably do a
mixture of both. When you initially install the application and set up the
databases, a lot of the reorganization will be done reactively, as performance and
space problems manifest themselves (while you can reduce this by careful
analysis of the databases and application access to them, there will normally be
things that only come to light after implementation). As you develop a history of
the behavior of the application and the databases, the scheduling of
reorganization should become more proactive.

Reactive scheduling of reorganization will normally be a result of perceived
problems with the performance of the application, or problems with shortage of
freespace in the database.

Where there are perceived application performance problems, you need to
monitor closely what the application is doing. The initial thing to look at is, what
the average and maximum online response times and batch run times are. Are
they excessive for the amount of work the application is doing? The ITSO
publication IMS Version 5 Performance Guide, SG24-4637 covers in great detail
monitoring and investigating performance of IMS application and subsystems. If
there are performance problems, then go through the process described in the
document to monitor the performance and identify where the problems are.

Only once you have gone through the procedures detailed in this document and
identified potential problems with the databases should you start to look at
reorganizing the database. Do not look only at the total time that the application
program takes for database processing, but also look at the amount of database
calls it is processing. For example, if an online application is taking 10 seconds
for database processing, but is reading 3-4000 database segments, then there
may be little room for database tuning. However, you may want to look more
closely at why (and whether) the application really needs to read all these
segments. The solution to performance problems is normally an interactive
process involving the database administrator, application support function, and
the operating system support function, as all three control areas that affect
performance.

When you encounter problems due to shortage of space in database data sets,
there is little you can do but schedule a database reorganization to increase the
database size. However, you should then pursue the growth rate with the
application support function (this is where it is useful to have a history of the
volume of the application data stored in the database over time). Questions to ask
are whether growth will continue at the current rate, or at a different rate, and
whether this data all needs to be online. Remember there are finite architectural
limits to the size of the databases which vary depending on the IMS and
operating system access methods.
110 IMS Primer

The proactive approach to scheduling database reorganization relies on regular
monitoring of the databases. Some products for monitoring the databases are
covered in more detail in the next section. In addition, you should maintain a
history of the monitoring information you collect, so you can analyze this for
trends and schedule database reorganization and restructuring before any
problems occur. When you decide to make a change to a database, only change
one thing at a time, if possible, and then monitor application performance before
and after the change so you can see what effect this one change had.

The main things you will be doing when you look at the monitoring data will be to
try to minimize the physical I/O for each database access, and optimize the free
space available in the database so it is not excessive, but sufficient for normal
update access on the databases.

The physical I/O from the disk storage into the buffers in the IMS subsystem is the
major component of the elapsed time for database access. You will want to
minimize this by:

1. Making the best use of buffers in the IMS subsystem; the more requests for
database access you satisfy from the buffers, the fewer physical I/Os are
necessary. This is covered in the IMS Version 5 Performance Guide,
SG24-4637.

2. Minimizing the number of physical I/Os when a segment does have to be
retrieved from disk. For example, trying to place as many dependents as
possible in the same block/CI as its parent, ensuring HDAM root segments are
in the same block/CI as the RAP. This is where database reorganization and
restructuring is used.

While there are no fixed guidelines for when to reorganize an IMS database, the
following guidelines were used successfully with a medium-sized commercial
application using IMS HD databases stored in VSAM files. You may wish to use
them as a starting point for scheduling database reorganization and, when you
have monitored the effects of the reorganization, adjust these parameters
accordingly.

• For HDAM databases, less than 75% of root segments in the root addressable
area (RAA). Recalculate the RAA (as described in the database design
section). reorganize database, if calculation of RAA showed it needed to be
larger, then restructure at same time.

• For HD databases, less than 50% of database records have all segments
making up the record (root and dependents) in the same block/CI.

• For HDAM databases, less than 50% of root anchor points (RAP’s) point to
root segments in the same block/CI. (that is, the RAP points to a root that has
been placed in another block/CI because there is not room in this block/CI)
This causes two I/Os, one to the RAP block, and one to the block that the root
is in, instead of one I/O.

• Less than 20% freespace in an HD database. You way want to increase this
limit if you have volatile data or infrequent windows for reorganization.

• VSAM or OSAM file in secondary extents. You may wish to resize the file, if
this is caused by growth.

• VSAM KSDS (index) with CA splits or more than 15 CI splits.
Database reorganization processing 111

• VSAM KSDS (index) with less than 20% free space (as IMS manages
freespace in VSAM ESDS, this only applies to a KSDS).

14.3 Monitoring the databases

The database monitoring divides in to two categories. Monitoring program and
subsystem access to the databases, and monitoring the structure, space usage
and pointer chains in the actual database data sets.

The first type of monitoring is described in detail in the ITSO publication IMS
Version 5 Performance Guide, SG24-4637. The principle tools used to monitor
database access are:

• The IMS monitor, to gather details of buffer usage and database calls over a
specified time period in an IMS subsystem.

• The //DFSSTAT DD card, used in batch JCL to provide a summary of buffer
usage and database calls. As there is very little overhead in including this
(the details printed to the DD at region termination are accumulated by the
IMS region controller whether they are output or not), it is normally worthwhile
putting this in all batch jobs.

• Running the DB monitor on a batch job, to collect similar details to the IMS
monitor in an online system. As there is an overhead on running this, it would
normally only be turned on when specific problems are being investigated.

There are a number of products available to let you monitor the databases, and
the data sets in which they are stored. These include the following.

IMS Database Tools (DBT) V2, 5685-093, which consists of a collection of utility
programs that are very useful to the database administrator. The utilities include
pointer checkers for HD and DEDB databases that, besides confirming the
integrity of the databases, collect information that can be used for performance
analysis. This can also be fed into the historic reporting component of DBT to
provide trend analysis. There are two new redbooks related to the IMS database
tools: IMS/ESA Database Tools, Volume I: Database Manager Tools, SG24-5166;
and IMS/ESA Database Tools, Volume II: System Extension Tools, SG24-5242.

The VSAM Access Method Services (IDCAMS) utility can be used to list the
catalog details (LISTCAT command) for VSAM data sets. This can show space
usage, extents and CI/CA splits. Remember that IMS processes the ESDS’s at
the CI level, so some figures in the catalogue listing (for example, CI freespace)
will not be relevant.

There are various facilities in MVS (ISPF option 3.2) to get details of the OSAM
data sets from the catalogue.

The IMS database surveyor, DFSPRSUR, can provide some information about
the internal state of HD databases. See IMS/ESA Utilities Reference: Database
Manager, SC26-8034 for further details.
112 IMS Primer

14.4 Reorganization processing overview

The database reorganization process can vary from very simple to very complex,
depending on the databases involved. If the databases involved do not have IMS
logical relationships or secondary indices, then the process is very simple. When
logical relationships and secondary indices are involved the process becomes
more involved.

14.5 The reorganization process description

The process, in its simplest form, is to unload the database, delete and redefine
the physical data set, and then reload it. If the database is not involved in any
logical relationships and does not have any secondary indices, then that is the
complete process. Database reorganization of HD databases would normally take
the following steps if both logical relationships and secondary indices are
involved:

1. Back up the databases (both the data and, if you are changing them, the
appropriate control blocks, for example, DBDs) so you have a fallback point if
there are any problems during the reorganization. See Chapter 15, “Database
recovery processing” on page 123 for more information.

2. Unload the existing database data sets to sequential files using the IMS
utilities. The process in discussed in 14.5.1, “Database unload processing” on
page 114.

3. Delete the database data sets. If you are making any changes to the
definitions of the database data sets, make them now, remembering to save
the old definitions as a fallback.

4. Redefine the database data sets.

5. This step is only necessary if you are making any changes to the database
structure by altering the DBD. Make the changes to the DBD and reassemble it
by running the DBDGEN utility. Then run the ACBGEN utility with DBD=
parameter to ensure all appropriate control blocks are regenerated. It cannot
be overemphasized that you must make sure all programs/utilities use the new
versions of the control blocks if you change the DBD; otherwise, database
corruption will result.

6. Run the IMS utilities to reload the database. If you have altered the DBD, the
utility, and any subsequent programs/utilities, should use the new DBD.

7. If the database has secondary indices, or participates in logical relationships,
then you will need to run additional utilities to rebuild these connections.
These connections (unless using symbolic pointers) rely on the database
segments relative position in the database, which has been altered by the
reorganization. The utilities will determine the new positions and amend the
direct pointers in the indices and logically related databases.

8. If your databases are registered with DBRC (and they should be), then you
will need to take an image copy of the reorganized databases. This is for the
same reason as above. IMS database forward recovery, using changes
recorded in IMS logs, relies on the position of the segments relative to the
start of the data set, which is altered by the reorganization. You need to take
the image copies to establish a new base from which the databases can be
rolled forward.
Database reorganization processing 113

14.5.1 Database unload processing
The unload processing for HD databases is very simple. The HD unload utility will
unload the main database and the primary index data set if the database is
HIDAM. The output of the utility is a sequential data set which is input to the HD
reload utility. If the database is a HIDAM database, then the primary index
database must also be present. The utility can only unload a single database at a
time. If there are logically related databases which are to be reorganized at the
same time then the step should be executed once for each database. Figure 32
shows a diagram of the utility.

Figure 32. Database unload processing

There are some considerations to be kept in mind:

• The database is allocated by the DD name(s) in the DBD. Dynamic allocation
cannot be used; the database DD card(s) must be present.

• If a HIDAM database is being unloaded, the primary index database DD card
must also be present.

• The utility will check with DBRC for database registration. If the database is
registered, then the utility will request RD access authorization. It will be
allowed to authorize the database even if the PROHIBIT AUTH flag is set on.

• If the database is being reorganized to change the structure of the database,
then the old DBD definition should be used.

• Regardless of how many database data set groups the database is divided
into, there is only one output data set.

• The reload utility can only unload one database per job step. To unload
multiple databases, you must use multiple job steps.

DB Unload
DFSURGU0

DBDLIB

Unloaded Database

DB Unload
DFSURGU0

RECONS

Database
114 IMS Primer

14.5.2 Defining databases
If the access method used for the database is VSAM, then an IDCAMS job step is
required to delete and redefine the VSAM cluster. The reload utility will fail if the
data sets are not empty. If OSAM is used, the a DISP=OLD can be used to
overwrite the data set. However, if the database is on more than a single DASD
volume, it is highly recommend that you delete the data set and redefine it
(IEFBR14) to ensure that the correct end-of-file marker is placed.

14.5.3 Database reload processing
The reload processing can be more complex then the unload processing. If the
database is does not have any secondary indices and is not involved in a logical
relationship, then the database can simply be reloaded. The following sections
will deal with each combination of reload processing required.

• Reload only

• Reload with secondary indices only

• Reload with logical relationship only

• Reload with both secondary indices and logical relationships

The reloading of the database itself is the same, however, there are additional
utility programs that need to be run before and after the database is reorganized
to rebuild logical relationships and secondary indices so they reflect the new
physical positions of the segments in the reorganized database. Until all this
processing is complete, the logical relationships and secondary indices are not
usable. If you attempt to use them before completing this process, the
applications will fail with IMS abend codes indicating that there are invalid IMS
pointers.

14.5.3.1 Reload only
The reload processing for a HD database without any logical relationships or
secondary indices is shown in Figure 33.
Database reorganization processing 115

Figure 33. Database reload only

There are some considerations to be kept in mind:

• The database is allocated by the DD name(s) in the DBD. Dynamic allocation
cannot be used; the database DD card(s) must be present.

• If a HIDAM database is being reloaded, the primary index database DD card
must also be present.

• The utility will check with DBRC for database registration. If the database is
registered, then the utility will request EX access authorization. It will be
allowed to authorize the database even if the PROHIBIT AUTH flag is set on.

• If the database is being reorganized to change the structure of the database,
then the new DBD definition should be used.

• Regardless of how many database data set groups the database is divided
into, there is only one input data set.

• The reload utility can only reload one database per job step. To reload multiple
databases you must use multiple job steps.

• The DFSURWF1 DD statement can be specified as DUMMY.

14.5.3.2 Reload with secondary indices
The reload processing for an HD database but with secondary indices requires
the use of the prereorganization utility. It is used to define which databases are
involved in the secondary index relationship. A control file is created with this
information and passed to the subsequent utilities.

The HISAM unload utility will read the DFSURIDX data set which contains the
unload secondary index segments and creates load files for each secondary
index. The secondary index database themselves can be empty.

DB Unload
DFSURGU0

Database

DBDLIB

Unloaded
Database

DB Reload
DFSURGL0

RECONS
116 IMS Primer

The HISAM reload utility can reload all the secondary index database unloaded
by the HISAM unload utility in one JOB step. Figure 34 illustrates the reload
process.

Figure 34. Reload processing with secondary indices

There are some considerations to be kept in mind:

• The database is allocated by the DD name(s) in the DBD. Dynamic allocation
cannot be used, the database DD card(s) must be present.

• If a HIDAM database is being reloaded, the primary index database DD card
must also be present.

• The utility will check with DBRC for database registration. If the database is
registered, then the utility will request EX access authorization. It will be
allowed to authorize the database even if the PROHIBIT AUTH flag is set on.

• If the database is being reorganized to change the structure of the database,
then the new DBD definition should be used.

• Regardless of how many database data set groups the database is divided
into, there is only one input data set.

• The reload utility can only reload one database per job step. To reload multiple
databases, you must use multiple job steps.

DFSUINPT

DFSURIDX

Unloaded
databases

DB

Databases

DBDLIB

Prefix Resolution
DFSURG10

DB Reload
DFSURGL0

Prereorg
DFSURPR0

Unload Secondary Index
DFSURUL0

Reload Secondary Index
DFSURRL0

Unloaded index
datasets

Secondary Index
databases

DB

Empty Secondary
Index databases

DB

RECONS

DBDLIB

RECONS

DFSURWF1
DFSURGU1
Database reorganization processing 117

• The DFSURWF1 DD statement can be specified as DUMMY, but it must be
present.

14.5.3.3 Reload with logical relationships
The reload processing for a HD database but with logical relationships requires
the use of the prereorganization utility. It is used to define which databases are
involved in the logical relationship. A control file is created with this information
and passed to the subsequent utilities. If all the databases logically related to
each other are being reloaded then the DBIL option on the control card should be
used. These will reset all the pointers and logical parent counters. If not then the
DBR option should be used.

All databases involved in the logical relationships should normally be reloaded.
The DFSURWF1 work files from all steps should be passed to the prefix update
utility as illustrated in Figure 35. The HISAM unload utility will read the
DFSURIDX data set, which contains the unload secondary index segments and
creates load files for each secondary index. The secondary index database
themselves can be empty.

The prefix resolution utility will extract the RBAs from the required segments and
sort them. This file will be passed the prefix update utility to update the database
segment prefixes.

Figure 35. Database reload with logical relationships

Prefix Resolution
DFSURG10

Prefix Update
DFSURGP0

DB Reload
DFSURGL0

Unloaded
databases

DB

Databases

DB

Databases

Prereorg
DFSURPR0

DBDLIB

RECONS

DBDLIB

RECONS

DFSUINPT

DFSURGU1 DFSURWF1

DFSURWF3
118 IMS Primer

There are some considerations to be kept in mind:

• The database is allocated by the DD name(s) in the DBD. Dynamic allocation
cannot be used, the database DD card(s) must be present.

• If a HIDAM database is being reloaded, the primary index database DD card
must also be present.

• The utility will check with DBRC for database registration. If the database is
registered then the utility will request EX access authorization. It will be
allowed to authorize the database even if the PROHIBIT AUTH flag is set on.

• If the database is being reorganized to change the structure of the database,
then the new DBD definition should be used.

• The reload utility can only reload one database per job step. To reload multiple
databases, you must use multiple job steps.

• The DFSURWF1 DD statement must be present.

• The prefix update utility will acquire EX access to the databases being
updated.

• The IMAGE COPY NEEDED flag will be set on by the reload utility.

14.5.3.4 Reload with logical relationship and secondary indices
The reload processing for both secondary indices and logical relationships is a
combination of both the individual processes described above.

The reload processing for a HD database but with secondary indices and logical
relationships requires the use of the prereorganization utility. It is used to define
which databases are involved in the relationships. A control file is created with
this information and passed to the subsequent utilities.

The prefix resolution utility will extract the RBAs from the required segments and
sort them. This file will be passed the prefix update utility to update the database
segment prefixes. It will also create a file with the secondary index information to
be passed the HISAM unload utility.

The HISAM unload utility will read the DFSURIDX data set which contains the
unload secondary index segments and creates load files for each secondary
index. The secondary index database themselves can be empty.

The HISAM reload utility can reload all the secondary index database unloaded
by the HISAM unload utility in one JOB step. Figure 36 illustrates the reload
process.
Database reorganization processing 119

j

Figure 36. Database reload with secondary indices and logical relationships

There are some considerations to be kept in mind:

• The database is allocated by the DD name(s) in the DBD. Dynamic allocation
cannot be used, the database DD card(s) must be present.

• If a HIDAM database is being reloaded, the primary index database DD card
must also be present.

• The utility will check with DBRC for database registration. If the database is
registered then the utility will request EX access authorization. It will be
allowed to authorize the database even if the PROHIBIT AUTH flag is set on.

• If the database is being reorganized to change the structure of the database,
then the new DBD definition should be used.

• The reload utility can only reload one database per job step. To reload multiple
databases you must use multiple job steps.

• The DFSURWF1 DD statement must be present.

P re f ix R es o lu tion
D F S U R G 10

P re fix U pda te
D FS U R G P 0

D B R e load
D F SU R G L0

D FS U R ID X

U n load S eco ndary Index
D F S U R U L0

U n loaded
da tab ases

R e loa d S eco nda ry Index
D F SU R R L0

U n loaded index
da ta se ts

S econda ry Index da tabas es

D B

E m pty S eco ndary
Index da tabas es

D B

D B

D atabas es

D B

D atabase s

P re reo rg
D F S U R P R 0

D B D LIB

R E C O N S

R EC O N S

R E C O N S

D B D LIB

D BD LIB

D FS U IN P T

D F S U R W F 1

D F SU R W F3

D F SU R G U 1
120 IMS Primer

• The prefix update utility will acquire EX access to the databases being
updated.

The IMAGE COPY NEEDED flag will be set on by the reload utility.

14.6 Fast Path reorganization

The process for reorganizing a Fast Path DEDB can be appreciably different.

If you are only reorganizing to reclaim fragmented free space and/or get the best
placement of the segments for performance (that is, DBD/data set definitions not
being changed), then you can run the high speed DEDB direct reorganization
utility DBFUHDR0. This can be run without making the database unavailable (that
is, no service outage). See IMS/ESA Utilities Reference: Database Manager,
SC26-8034 for further details.

If you are reorganizing a DEDB to alter the structure, then you need to have your
own user-written programs to unload and reload the database data set at the
appropriate points, or use the DEDB unload/reload utility programs from the
separately priced IMS Database Tools (DBT) V2, 5685-093. You also need to run
the DEDB initialization utility, provided with the IMS base product, immediately
prior to reloading the database. However, as the DEDB does not support
secondary indices and logical relationships, you do not have to worry about
running further utilities after the database is reloaded.

More information about the database reorganization process, and what steps you
have to take to alter specific attributes of the structure of the database are in the
chapter on monitoring and tuning the databases in IMS/ESA Administration
Guide: Database Manager, SC26-8012.

The IMS utilities available for database reorganization are described in IMS/ESA
Utilities Reference: Database Manager, SC26-8034.
Database reorganization processing 121

122 IMS Primer

Chapter 15. Database recovery processing

This chapter provides an overview of backup and recovery tasks that need to be
performed by the IMS database administrator function. It gives a general
background on IMS database backup and recovery, then looks in more detail at
the sample application.

15.1 About this chapter

This chapter discusses:

1. Overview of database recovery

2. Overview of database backup and recovery utilities:

• Image copy utility

• Recovery utility

• Batch backout utility

• Change accumulation utility

3. Implementing backup and recovery procedures

15.2 Overview of database recovery

Database recovery, in its simplest form, is the restoration of a database after its
(partial) destruction due to some failure. In order to facilitate this process, some
forward planning needs to be done.

Periodically, a copy of the data in the database is saved. This copy is normally
referred to as a backup or image copy. These image copies can reside on DASD
or cartridges. Though this process can be done anytime, it is normally done when
there is no other database activity at the same time. This creates a complete
backup. There are other strategies for taking a database backup, but they will not
be discussed in this book.

In addition to taking an image copy of the database(s), all changes made to the
data in the database can be logged and saved, at least until the next image copy.
These changes are contained in data sets called log data sets. This provides a
complete recovery environment so that no data is lost in the event of a system or
application failure.

There is an IMS facility called database recovery control (DBRC) which provides
database integrity and can be used to help ensure that there is always a recovery
process available. The use of DBRC to control database backup and recovery is
not mandatory, but is highly recommended.

15.2.1 When is recovery needed ?
Database recovery is normally on done when there has been a failure of some
sort. Most of the time it is done as a result of a system, hardware, or application
failure. However, it can be used to return a database to a point-in-time to recover
out of application logic failures.
Database recovery processing 123

In general, a database may need to be recovered under the following
circumstances:

1. A DLI batch update job fails after making at least one database update.

2. A failure has occurred on a physical DASD device.

3. A failure has occurred in a database recovery utility.

4. A failure of dynamic backout or batch backout utility has occurred.

5. An IMS online system failure and emergency restart has not been completed.

15.2.2 Online programs
IMS online transactions use dynamic backout to “undo” updates done in any
incomplete unit of work. Abending online programs are automatically backed out
by the online system using the log records. In addition, if the system should fail
while an application program is active, any updates made by that program will be
automatically backed out when the system is restarted.

If the program was a BMP, the updates are automatically backed out to its most
recent checkpoint. Because of this automatic backout, the recovery of individual
databases will not be needed.

At IMS restart time, if the emergency restart cannot complete the backout for any
individual transactions, then the databases affect by those updates are stopped,
and DBRC is requested to set the recovery needed flag to ensure that a correct
recovery is completed before the database is opened for more updates. In the
case of dynamic backout failure, a batch backout or database recovery needs to
be performed, depending on the reason for the backout failure.

15.2.3 DLI batch update programs
DLI Batch update programs can make use of dynamic backout like BMP, provided
the following JCL changes are done:

1. The BKO=Y parameter is set in the EXEC statement

2. A DASD log data set is provided in the IEFRDER DD statement

3. A ROLB Call is issued in the program code for non-system abends

The dynamic backout will then back out the updates to the last checkpoint found
on the log data set.

15.3 The database utilities

DL/I provides four utilities for recovering a database. The diagram in Figure 37
illustrates the relationship between these utilities.

A description of these utilities and their basic function follows:

1. Database image copy utility for creation of image copies of databases.

2. Database change accumulation utility for accumulation of database changes
from DL/I log tapes since the last complete image copy.

3. Database recovery utility for restoration of the database, using a prior
database image copy and the accumulated changes from DL/I log tapes.
124 IMS Primer

4. Database backout utility for removal of changes made to databases by a
specific application program.

A fifth utility program, the system log recovery utility (DFSULTRO), is used to
close a log data set in the event of an operating system or hardware failure, thus
enabling use of the log by the four principal programs of the recovery system.

For those databases which consist of multiple data sets, recovery is done by
individual data set. To recover a complete database composed of multiple data
sets, database recovery must be performed for each of its component data sets.

Figure 37. Overview of recovery utilities

15.4 Overview of backup/recovery utilities

This section will give a brief description of the four major utilities used in database
recovery.

Online
SLDS/RLDS
Datasets Batch RLDS

Datasets

New CA
Dataset

Old CA
Dataset

Image Copy
Utility

Recovery
Utility

Online
Archive
Utility

Change
Accumulation
Utility

Batch Backout
Utility

DLI Batch
Update
Program

Image Copy
Datasets

Databases

Updated
Databases

RECON
Datasets
Database recovery processing 125

15.4.1 Database image copy utility (DFSUDMP0)
The database image copy utility creates a copy of the data sets within the
databases. the output data sets is called an IMAGE COPY. It is a sequential data
set and can only be used as input to the database Recovery utility. The IMAGE
copy utility does not use DLI to process the database. Track I/O is used. There is
no internal checking to determine if all the IMS internal pointer are correct. There
are tools available to run as part of the image copy utility to do this checking. It is
recommended that at least periodic checking of these internal pointers is done.

There can be no changes to the DBD when this databases is recovered using the
IMS recovery utility. In order to make changes to the DBD, a database
reorganization is needed to implement those changes.

Multiple databases and data sets can be copied with one execution of the image
copy utility. All data sets of a database should be copied at the same time. In our
subset, we presume that all database data sets are dumped at the same time,
that is, no intervening database processing.

DBRC can be used to generate this utility if required. A redbook on DBRC,
Database Recovery Control (DBRC) Examples and Usage Hints, SG24-3333,
gives examples and usage hints, and contains an example of how to set up a
DBRC-generated image copy JCL.

A flow diagram of the database image copy utility is shown in Figure 38.

Figure 38. Image copy utility

DB Unload
DFSURGU0

DB

DBDLIB

Image copy
Datasets

Image Copy
DFSUDMP0

RECONS

Databases
126 IMS Primer

15.4.2 Database change accumulation utility (DFSUCUM0)
The function of the database change accumulation utility is to create a sequential
data set that contains only that database log records from all the log data sets
which are necessary for recovery. This accumulation log data set is to be used by
the database recovery utility. This accumulation is done by sorting only the
required log records in physical record within data set sequence. This provides
efficient database recovery whenever needed. The number of log data sets which
need to be kept will be significantly reduced.

The change accumulation utility can be run independently of DL/I application
programs. The new output database recovery utility.

It is highly recommended that DBRC be used to create the JCL for each
execution of this utility. DBRC will ensure that a complete set of log data sets is
used to create the change accumulation data set. The logs records must be
supplied to in the correct sequence.

A flow diagram of the change accumulation utility is shown in Figure 39.

Figure 39. Change accumulation utility

The input to the database change accumulation utility consists of:

1. All log data sets created since either the last image copy utility execution or
the last execution of this utility.

2. The previous change accumulation data set. This would be the output from the
last execution of this utility. The first change accumulation run after a new
image copy must not include any old change accumulation data set, that is,
those created during the previous period.

DB Unload
DFSURGU0

New CA
Dataset

Change
Accumulation
Utility

Old CA
Dataset

Online SLDS
Datasets

Batch RLDS
Datasets

RECON
Datasets
Database recovery processing 127

3. An optional control statement (ID).

Output from the database change accumulation utility consists of a new change
accumulation data set. This is a sequential data set containing the combined
database records for all database data sets.

15.4.3 Database recovery utility (DFSURDB0)
The database recovery utility program will restore a database data set. This utility
does not provide a means of recovery from application logic errors: it is the user’s
responsibility to ensure the integrity of the data in the database.

Unlike the image copy utility, the recovery utility recovers one database data set
per job step. Thus to recover multiple data sets for a database the utility must be
run once for each data set.

It is highly recommend that DBRC be used to create each execution of this utility.
DBRC will ensure that all the correct inputs are supplied.

The recovery utility can be run in a number of ways depending on what input is
required. Generally the main input to the recovery utility is the image copy data
set. Other input can consist of any log data sets or change accumulation data
sets which might be needed. The utility can be run with only the log information
as input, in this case the database already existing would be used.

The input to the recovery utility consists of an image copy data set and, optionally,
an accumulated change data set and any log data sets not included in the change
accumulation data set.

A flow diagram is shown in Figure 40.

Figure 40. Recovery utility

DB Unload
DFSURGU0

DBDLIB

Image copy
Dataset

Recovery
DFSURDB0

RECONS

Database

Change Accumulation
Dataset

RLDS/SLDS
Datasets
128 IMS Primer

The database recovery utility program is executed in a DL/I batch region. It will
allocate the database in exclusive mode so that there can be no other database
activity at the time.

15.4.4 Database batch backout utility (DFSBBO00)
Batch backout, in it simplest form, is the reading of log data set(s) to back out all
database updates. This is done by using the “before image data” in the log record
to re-update the database segments. It has the effect of undoing the previous
updates.

The database backout utility removes changes in the database which were made
by a specific failing program. The following limitations apply:

• The log data set of the failing program must be on DASD.

• No other update programs should have been executed against the same
database (s) between the time of the failure and the backout.

The program operates as a normal DL/I batch job. It uses the PSB used by the
program whose effects are to be backed out. All databases updated by the
program must be available to the backout utility. Figure 41.

Figure 41. Batch backout utility

A log data set is created during the backout process. This data set, preceded by
the log data set produced for the failing job, must be included in the next change
accumulation run, as any other log data set. This data set must not be used as
input to any subsequent backout attempt.

DB Unload
DFSURGU0

DBDLIB
PSBLIB

Batch RLDS
Dataset

Batch Backout
Utility

RECONSDatabases

Batch RLDS
Database recovery processing 129

Notes:

1. If checkpoint/restart is not used, then backout always backs out all the
database changes of the program.

2. If checkpoint/ restart is used (program uses XRST and CHKP-ID calls), then
backout will only do backout if the specified CHKP-ID is found on the log data
set during read forward. If no CHKP-ID is specified, then the last one on the
log data set is used (the first one encountered during read backward).

3. If, when using checkpoint/restart, you want to be able to completely back out a
job (steps), you must issue a CHKP call immediately after the XRST call, that
is, before any real database activity. The CHKP-ID of this call can then be
used for a full backout operation.

4. To run batch backout for a DLI batch which had completed successfully, the
DBRC=”C” parameter must be added to the EXEC PARM keyword.
130 IMS Primer

Part 4. IMS application development

This part contains four chapters:

• An application programming overview. Refer to Chapter 16, “Application
programming overview” on page 133.

• A discussion of application programming for the IMS Transaction Manager.
Refer to Chapter 17, “Application coding for IMS Transaction Manager” on
page 147.

• A discussion of the message formatting services that are used by application
programs running in the IMS Transaction Manager. Refer to Chapter 18, “IMS
message format service” on page 157.

• A discussion of application programming for the IMS Database Manager.
Refer to Chapter 19, “Application coding for IMS Database Manager” on page
173.
© Copyright IBM Corp. 2000 131

132 IMS Primer

Chapter 16. Application programming overview

This chapter explains the basics for any programming running in an IMS
environment. It consists of three sections:

• Overview of application programs

• Application program structure

• IMS control blocks

16.1 Overview

IMS programs (online and batch) have a different structure than non-IMS
programs. An IMS program is always called as a subroutine of the IMS region
controller. It also has to have a program specification block (PSB) associated with
it. The PSB provides and interface from the program to IMS services which the
program needs to make use of. These services can be:

• Sending or receiving messages from online user terminals

• Accessing database records

• Issuing IMS commands

• Issuing IMS service calls

• Checkpoint calls

• Sync call

The IMS services available to any program are determined by the IMS
environment in which the application is running.

16.2 Program structure

During initialization, both the application program and its associated PSB are
loaded from their respective libraries by the IMS system. The IMS modules
interpret and execute database CALL requests issued by the program. These
modules may reside in the same or different MVS address spaces depending on
the environment in which the application program is executing.

Application programs executing in an online transaction environment are
executed in a dependent region called the message processing region (MPR)
The programs are often called message processing programs (MPP). The IMS
modules which execute online services will execute in the control region (CTL)
while the database services will execute in the DLI separate address space
(DLISAS). The association of the application program and the PSB is defined at
IMS system generation time via the APPLTN and TRANSACTION macros.

Batch application programs can execute in two different types of regions.

1. Application programs which need to make use of message processing
services or databases being used by online systems are executed in a batch
message processing region (BMP).

2. Application programs which can execute without messages services execute
in a DLI batch region.
Application programming overview 133

For both these types of batch application programs, the association of the
application program to the PSB is done on the PARM keyword on the EXEC
statement.

The application program interfaces with IMS via the following program elements:

• An ENTRY statement specifying the PCBs utilized by the program

• A PCB-mask which corresponds to the information maintained in the
pre-constructed PCB and which receives return information from IMS

• An I/O for passing data segments to and from the databases

• Calls to DL/I specifying processing functions

• A termination statement

The PCB mask (s) and I/O areas are described in the program’s data declaration
portion. Program entry, calls to IMS processing, and program termination are
described in the program’s procedural portion. Calls to IMS, processing
statements, and program termination may reference PCB mask(s) and/or I/O
areas. In addition, IMS may reference these data areas. Figure 42 illustrates how
these elements are functionally structured in a program and how they relate to
IMS. The elements are discussed in the text that follows:

Figure 42. Structure of an application program

Application Program

PROGRAM ENTRY
DEFINE PCB AREAS
GET INPUT RECORDS FROM INPUT FILE
CALLS TO DL/I DB FUNCTIONS

RETRIEVE
INSERT
REPLACE
DELETE

CHECK STATUS CODES
PUT OUTPUT RECORDS
TERMINATION

DLI modules

PCB-Mask

Call info
from DLI

E
N
T
R
Y

SEGMENTS
TO/FROM
DATABASES

IO AREA E
X
I
T

134 IMS Primer

16.2.1 Entry to application program
Referring to Figure 42, when the operating system gives control to the IMS
control facility, the IMS control program in turn passes control to the application
program (through the entry point as defined below). At entry, all the PCB-names
used by the application program are specified. The order of the PCB-names in
the entry statement must be the same as in the PSB for this application program.
The sequence of PCBs in the linkage section or declaration portion of the
application program need not be the same as in the entry statement.

Notes:

1. Batch DL/I programs cannot be passed parameter information via the PARM
field from the EXEC statement.

2. Online PCBs must proceed database PCBs in the PSB.

16.2.2 Termination
At the end of the processing of the application program, control must be returned
to the IMS control program. Table 7 shows examples of the termination
statements.

Table 7. Program return statements

Warning: Since IMS links to your application program, return to IMS causes
storage occupied by your program to be released. Therefore you should close all
non-DL/I data sets for COBOL and Assembler before return, to prevent abnormal
termination during close processing by MVS. PL/I automatically causes all files
to be closed upon return.

16.2.3 Calls to IMS
Actual processing of IMS messages, commands, databases and services are
accomplished using a set of input/output functional call requests. A call request is
composed of a CALL statement with an argument list. The argument list will vary
depending on the type of call to be made.The argument list will consists of the
following parameters:

• Function call

• PCB name

• IOAREA

• Segment search argument (SSA) (database calls only)

Table 8 shows a brief explanation of the argument list items. The argument list
items for database processing are discussed in more detail in Chapter 19,
“Application coding for IMS Database Manager” on page 173. The online services
and commands argument list items are discussed in more detail in the Chapter
17, “Application coding for IMS Transaction Manager” on page 147.

Language Return Statement

COBOL GOBACK.

PL/I RETURN;

ASSEMBLER RETURN(14,12),RC=0
Application programming overview 135

Table 8. IMS call argument list

16.2.4 PCB mask
A mask or skeleton database PCB must provide in the application program. One
PCB is required for each view of a database or online service. The program views
a hierarchical data structure via this mask.

One PCB is required for each data structure. A database PCB mask is shown in
Figure 45. An online PCB is shown in Figure 44.

As the PCB does not actually reside in the application program, care must be
taken to define the PCB mask as an assembler dsect, a COBOL linkage section
entry, or a PL/I based variable.

The PCB provides specific areas used by IMS to inform the application program
of the results of its calls. At execution time, all PCB entries are controlled by IMS.
Access to the PCB entries by the application program is for read-only purposes.
The PCB masks for an online PCB and a database PCB are different. An example
of both are shown in Figure 43.

Component Description

Function Identifies the DL/I function to be performed. This argument is
the name of the four character field which describes I/O
operation. The DL/I functions are described in the individual
chapters.

PCB-name Is the name of the database program communication block
(PCB). It is the name of the PCB within the PSB that identifies
which specific data structure the application program wishes to
process. The PCB is defined in more detail in “PCB mask” on
page 136

I/O Area Is the name of a I/O work area. This is an area of the application
program into which DL/I puts a requested segment, or from
which DL/I takes a designed segment. If this a common area is
used to process multiple calls it must be long enough to hold
the longest path of segments to be processed.

SSA1,... SSAn Are the names of the Segment Search Arguments (SSA).
These are optional depending on the type of call issued.

IOAREA An area of storage defined in the program for the call to use and
input or output. In the case of a database call the segments
would be written from or retrieved into this area.

Segment Search
Argument

This is only used for database calls. It provides information to
define the segment to be retrieved or written.
136 IMS Primer

Figure 43. Application PSB structure

16.2.4.1 Online PCB mask
Figure 44 shows an example of an online program’s PCB mask, which defines the
PCB area used by IMS to return the results of the call.

Figure 44. On-line application PCB mask

16.2.4.2 Database PCB mask
Figure 45 shows an example of a DLI program’s PCB mask, which defines the
PCB area used by IMS to return the results of the call.

01 PCBNAME.
02 DBD-NAME PICTURE X(8).
02 SEG-LEVEL PICTURE XX.

JUSTIFIED RIGHT.
02 STATUS-CODE PICTURE XX.
02 PROC-OPTIONS PICTURE XXXX.
02 RESERVE-DLI PICTURE S9(5)

COMPUTATIONAL.
02 SEG-NAME-FB PICTURE X(8).
02LENGTH-FB-KEY PICTURE S9(5)

COMPUTATIONAL.
02 NUMB-SENS-SEGS PICTURE S9(5).
02 KEY-FB-AREA PICTURE X(n).

Mask Written
in COBOL (Linkage Section)

8 Database Name
2 Segment Hierarchy level indicator

2 DL/I result Status Code

4 DL/I Processing Options
8 Segment Name Feedback Area

4 Length of Feedback Key Area

4 Number of Sensitive Segments
n Key Feedback Area

Bytes Function

Part

STOCK ORDER
PCB

PCB
MASK

Application Program Application
Data
Structure

01 PCBNAME.
02 DBD-NAME PICTURE X(8).
02 SEG-LEVEL PICTURE XX.
02 STATUS-CODE PICTURE XX.
02 PROC-OPTIONS PICTURE XXXX.
02 RESERVED-DLI PICTURE S9(5).
02 SEG-NAME PICTURE X(8).
02 LENGTH-FB-KEY PICTURE S9(5).
02 NUMB-SENS-SEGS PICTURE S9(5).
02 KEY-FB-AREA PICTURE X(n).
Application programming overview 137

Figure 45. DLI application PCB mask

The following items comprise a PCB for a hierarchical data structure from a
database.

1. Name of the PCB — This is the name of the area which refers to the entire
structure of PCB fields. It is used in program statements. This name is not a
field in the PCB. It is the 01 level name in the COBOL mask in Figure 45.

2. Name of the database — This is the first field in the PCB and provides the
DBD name from the library of database descriptions associated with a
particular database. It contains character data and is eight bytes long.

3. Segment hierarchy level indicator — IMS uses this area to identify the level
number of the last segment encountered which satisfied a level of the call.
When a retrieve is successfully completed, the level number of the retrieved
segment is placed here. If the retrieve is unsuccessful, the level number
returned is that of the last segment that satisfied the search criteria along the
path from the root (the root segment level being ‘01’) to the desired segment.
If the call is completely unsatisfied, the level returned is ‘00’. This field
contains character data: it is two bytes long and is a right-justified numeric
value.

4. DL/I status code — A status code indicating the results of the DL/I call is
placed in this field and remains here until another DL/I call uses this PCB. This
field contains two bytes of character data. When a successful call is executed,
DL/I sets this field to blanks or to an informative status indication. A complete
list of DL/I status codes can be found in the IMS application programming
manuals sextets.

5. DL/I procession options — This area contains a character code which tells
DL/I the “processing intent” of the program against this database (that is, the
kinds of calls that may be used by the program for processing data in this
database). This field is four bytes long. It is left-justified. It does not change
from call to call. It gives the default value coded in the PCB PROCOPT
parameter, although this value may be different for each segment. DL/I will not
allow the application to change this field, nor any other field in the PCB.

6. Reserved area for IMS — IMS uses this area for its own internal linkage
related to an application program. This field is one fullword (4 bytes), binary.

01 PCBNAME.
02 DBD-NAME PICTURE X(8).
02 SEG-LEVEL PICTURE XX.
02 STATUS-CODE PICTURE XX.
02 PROC-OPTIONS PICTURE XXXX.
02 RESERVED-DLI PICTURE S9(5).
02 SEG-NAME PICTURE X(8).
02 LENGTH-FB-KEY PICTURE S9(5).
02 NUMB-SENS-SEGS PICTURE S9(5).
02 KEY-FB-AREA PICTURE X(n).
138 IMS Primer

7. Segment name feedback area — IMS fills this area with the name of the last
segment encountered which satisfied a level of the call. When a retrieve call is
successful, the name of the retrieved segment is placed here. If a retrieve is
unsuccessful, the name returned is that of the last segment, along the path to
the desired segment, that satisfied the search criteria. This field contains eight
bytes of character data. This field may be useful in GN calls. If the status code
is ‘AI’ (data management open error), the DD name of the related data set is
returned in this area.

8. Length of key feedback area — This entry specifies the current active length
of the key feedback area described below. This field is one fullword (4 bytes),
binary.

9. Number of sensitive segments — This entry specifies the number of segment
types in the database to which the application program is sensitive. This would
represent a count of the number of segments in the logical data structure
viewed through this PCB. This field is one fullword (4 bytes), binary.

10.Key feedback area — IMS places in this area the concatenated key of the last
segment encountered which satisfied a level of the call. When a retrieve is
successful, the key of the requested segment and the key field of each
segment along the path to the requested segment are concatenated and
placed in this area. The key fields are positioned from left to right, beginning
with the root segment key and following the hierarchical path. When a retrieve
is unsuccessful, the keys of all segments along the path to the requested
segment, for which the search was successful, are placed in this area.
Segments without sequence fields are not represented in this area.

Note: This area is never cleared, so it should not be used after a completely
unsuccessful call. It will contain information from a previous call. See Figure 46
for an illustration of concatenated keys.

Figure 46. Concatenated keys

PART
01001020

ORDER

75456-01

DETAIL

03

STOCK

KBL07010001

01001020

0100102075456-01

0100102075456-0103

Sequence keys
01001020KBL07010001

Concatenated keys
Application programming overview 139

16.2.5 Status code handling
After each IMS call, a two-byte status code is returned in the PCB which is used
for that call. We distinguish between three categories of status code:

• The blank status code, indicating a successful call

• Exceptional conditions and warning status codes from an application point of
view

• Error status codes, specifying an error condition in the application program
and/or IMS

The grouping of status codes in the above categories is somewhat installation
dependent. We will, however, give a basic recommendation after each specific
call function discussion. It is also recommended that you use a standard
procedure for status code checking and the handling of error status code. The
first two categories should be handled by the application program after each
single call. Figure 47 gives an example using COBOL.

Figure 47. Testing Status Codes

Notice that it is more convenient to directly test the regular exceptions in-line
instead of branching to a status code check routine. In this way, you clearly see
the processing of conditions that you wish to handle from an application point of
view, leaving the real error situations to central status code error routine.

16.2.6 IMS control blocks
Before you execute an application program, a program specification block
generation (PSBGEN) must be performed to create the program specification
block (PSB) for the program. The PSB contains one PCB for each DL/I database
(logical or physical) the application program will access. The PCBs specify which
segments the program will use and the kind of access (retrieve, update, insert,
delete) the program is authorized to. The PSBs are maintained in one or more
IMS system libraries called a PSBLIB library.

All IMS databases require a database descriptor block (DBD) created to have
access to any IMS databases. The details of these control blocks are describe in
16.2.7, “Generation of IMS control blocks” on page 141. The database DBD is
assembled into a system library called a DBDLIB.

The IMS system needs to combine the PSB and DBD control blocks for an
application program into a access control blocks (ACB) to be executable. This
combination is called a ACB gen. In a batch DLI environment the ACB gen is
done dynamically at step initialization time. In an online environment the ACB gen
needs to be done before an application can be executed. The ACB gen is run
offline and the resulting control blocks are placed in an ACB library.

CALL ‘CBLTDLI’ USING
IF PCB-STATUS EQ ‘GE’ PERFORM PRINT-NOT-FOUND.
IF PCB STATUS NE ‘bb’ PERFORM STATUS-ERROR.
everything okay, proceed....
140 IMS Primer

The IMS system needs to access these control blocks (DBDs and PSBs) in order
to define the applications use of the varies IMS resources required. Depending
on which environment the application program is executed in will determine how
IMS accesses those control blocks. See Figure 48 to see a overview of the
processing.

16.2.7 Generation of IMS control blocks
In addition to database PCBs, a PSB for MPP/BMP contains one or more data
communication PCBs.

• The order of the PCBs in the PSB must be:

1. Data communication PCB’s

2. Database PCBs,

3. GSAM PCBs (not allowed for MPPs)

• One data communication PCB is always automatically included by IMS at the
beginning of each PSB of an MPP or BMP. This default data communication
PSB is used to insert output messages back to the originating LTERM or
USERID.

Note: By use of the COMPAT=YES keyword on the batch PSBGEN
statement, we already provided this to PCB to the batch program. In this way,
a batch program can be run as a BMP without change. The relative positions
of the database PCBs remain the same.

Figure 48. IMS control block generation

Note: Multiple BUILD statements can be coded for both DBDs and PSBs, but the
ones for DBDs must be first.

PSB
Object
Code

IMSBatch
Application
(BMP)

Assemble
and
Link Edit

DBD
Object
Code

Batch
Application
(DLI)

Assemble
and
Link Edit

Assemble
and
Link Edit

PSB
Source
Code

DBD
Source
Code

IMS
Control
REGION

ACBLIB

Online
Application
(MPP)

Fast Path
Application
(IFP)

Batch
Application
(DBB)
Application programming overview 141

16.3 The IMS database application programming interface (API)

IMS provides a standard set of functions to allow applications to access and
manipulate data managed by the IMS Database Manager. These functions also
allow applications to access and process messages managed by the IMS
Transaction Manager and to perform certain system functions.

Calls to these functions can be made in a number of ways:

• A language specific call interface. There is one for each programming
language that IMS applications can be written in.

• A language independent call interface for applications written in any language
that supports IBM’s language environment product.

• The application interface block (AIB) call interface.

• For CICS applications that access IMS databases, the application can use the
CICS command level interface to provide IMS/DB support.

• REXX EXEC’s can invoke IMS functions via the IMS adaptor for REXX.

16.3.1 Get unique (GU)
The GU (get unique) call is used to retrieve a specific segment or path of
segments from a database. At the same time it establishes a position in a
database from which additional segments can be processed in a forward
direction.

16.3.2 Get next (GN)
The GN (get next) call is used to retrieve the next or path of segments from the
database. The get next call normally moves forward in the hierarchy of a
database from the current position. It can be modified to start at an earlier
position than current position in the database through a command code, but its
normal function is to move forward from a given segment to the next desired
segment in a database.

16.3.3 Hold form of get calls
GHU (get hold unique), or GHN (get hold next), indicates the intent of the user to
issue a subsequent delete or replace call. A get hold call must be issued to
retrieve the segment before issuing a delete or replace call.

16.3.4 Insert
The ISRT (insert) call is used to insert a segment or a path of segments into a
database. It is used to initially load segments in databases, and to add segments
in existing databases.

To control where occurrences of a segment type are inserted into a database, the
user normally defines a unique sequence field in each segment. When a unique
sequence field is defined in a root segment type, the sequence field of each
occurrence of the root segment type must contain a unique value. When defined
for a dependent segment type, the sequence field of each occurrence under a
given physical parent must contain a unique value. If no sequence field is
defined, a new occurrence is inserted after the last existing one.
142 IMS Primer

16.3.5 Delete
The DLET (delete) call is used to delete a segment from a database. When a
segment is deleted from a DL/I database, its physical dependents, if any are also
deleted.

16.3.6 Replace
The REPL (replace) call is used to replace the data in the data portion of a
segment or path of segments in a database. Sequence fields cannot be changed
with a replace call.

16.3.7 System service calls
In addition to the functions above, used to manipulate the data, there are a
number of system service calls provided to allow the application to make use of
other facilities provided by the IMS Database Manager, such as
checkpoint/restart processing (CHKP, XRST, ROLB, ROLL, ROLS), described
below.

Refer to the sections on writing DL/I calls for database management and system
services in IMS/ESA Application Programming: Database Manager, SC26-8015
for full details of available functions.

16.4 The data communication PCB

Besides the default data communication PCB, which does not require PCB
statement, additional PCBs can be coded. These PCBs are used to insert output
messages to:

• LTERMs other than the LTERM which originated the input message. A typical
use of an alternate PCB is to send output to a 3270 printer terminal.

• A non-conversational transaction.

• Another USERID.

The destination of the output LTERM can be set in two ways:

• During PSBGEN by specifying the LTERM/TRANNAME in a alternate PCB.

• Dynamically by the MPP during execution, by using a change call against a
modifiable alternate PCB.

The method used depends on the PCB statement.

16.4.0.1 The PCB statement
This is the only statement required to generate an alternate PCB (multiple
occurrences are allowed). Its format is:

PCB TYPE=TP,LTERM=name,MODIFY=YES

See Table 9 for a description of the parameters.
Application programming overview 143

Table 9. PCB statement

16.4.1 The database PCB
The database PCB for an MPP or BPP is basically the same discussed above.
Two additional processing intent options can be specified with the
PROCOPT=keyword of the PCB and/or SENSEG statement.

16.4.2 Additional processing intent options
The PROCOPT=keyword is extended with two additional processing intent
options, “O” AND “E”.

Their meanings are:

O — Read only: no dynamic enqueue is done by program isolation for calls
against this database. Can be specified with only the G intent option, as GO or
GOP. This option is only valid for the PCB statement.

E — Forces exclusive use of this database or segment by the MPP/BMP.
No other program which references this database/segment will be scheduled
in parallel. No dynamic enqueue by program isolation is done, but dynamic
logging of database updates will be done. E can be specified with G, I, D, B,
and A.

CAUTION: If the ‘O’ option (read-only) is used for a PCB, IMS does not check the
ownership of the segments returned. This means that the read-only user might
get a segment that had been updated by another user. If the updating user should
then abnormal terminate, and he backed out, the read-only user would have a
segment that did not (and never did) exist in the database. Therefore, the ‘O’
option user should not perform updates based on data read with that option. An
ABEND can occur with PROCOPT=GO if another program updates pointers when
this program is following the pointers. Pointers are updated during insert, delete
and backout functions.

16.4.2.1 The PSBGEN statement
This is basically the same as for a database PCB. The IOEROPN= parameter
must be omitted, the COMPAT=YES parameter is ignored.

Keywork Description

TYPE=TP Is required for all alternative PCBs.

LTERM=name Specifies this PCB is pointing at a know
LTERM defined in the IMS system. The
name is optional.

MODIFY=YES If the modify is specified then the LTERM
name may be changed by a CHANGE call
within the application program.

Note: If MODIFY=YES is specified, the
MPP must specify a valid alternate output
LTERM with a change call before inserting
any message via this PCB.
144 IMS Primer

16.4.3 Application control block generation (ACBGEN)
Before PSBs and DBDs can be used by the CTL region, they must be expanded
to an internal control block format. This expansion is done by the application
control block generation (ACBGEN) utility. The expended control blocks are
maintained in the IMSVS. ACBLIB. This is a standard MVS partitioned data set.
JCL Requirements

An ACBGEN procedure is placed in IMSVS.PROCLIB during IMS system
definition.

Note: Multiple BUILD statements can be coded for both DBDs and PSBs, but the
ones for DBDs must be first.

16.4.4 IMS/DB2 resource translate table (RTT) assembly
When an IMS transaction accesses DB2, the plan name used is, by default, the
same as the PSB/APPLCTN name.

It is, however, possible to set up a translation table, the RTT, that translates an
APPLCTN to a different DB2 plan name.

This is described in the DB2 (not IMS) documentation for attaching DB2 to IMS.
Refer to Defining DB2 Plans for IMS Applications in DB2 for OS/390 V5
Installation Guide, GC26-8970. It is simply a table of macros, associating
APPLCTNs with DB2 plan names. This is assembled in a CSECT (with the name
the same as the label of the 1st macro in the table). This must then be placed in
an APF authorized library in the RESLIB concatenation of the IMS control region.
The RTT is pointed to in the PROCLIB member that defines the DB2 attachment.
If the RTT parameter is null, the RTT is not used.

The re-assembled table will be picked up the next time IMS is stopped/started or
when a stop (/STO SUBSYS xxxx) and restart (/STA SUBSYS xxxx) of the DB2
connection.
Application programming overview 145

146 IMS Primer

Chapter 17. Application coding for IMS Transaction Manager

This chapter, which deals with writing application programs in the IMS
Transaction Manager environment, is divided into two major sections:

• Basic application processing requirements

• Designing application programs in an IMS online environment

17.1 Application Program Processing

Basically, the MPP processing can be divided into five phases. See Figure 49.

Figure 49. General MPP Structure and Flow

1. Initialization. The clearing of working storage, which may contain data left-over
by the processing of a message from another terminal.

2. Retrieval of the SPA (optional) and the input message.

3. Input syntax check. All checks which can be done without accessing the
database, including a consistency check with the status of the conversation as
maintained in the SPA.

4. Database processing, preferably in one phase. This means that the retrieval of
a database segment is immediately followed by its update. Compare this to an
initial retrieve of all required segments followed by a second retrieve and then
update.

5. Output processing. The output message is built and inserted together with the
SPA (only for conversational transactions).

BLANK

OTHER QC

START

INITALIZE WORKING STORAGE

GU CALL FOR INPUT MESSAGE

INPUT VALIDATION

APPLICATION AND DATABASE PROCESSING

ISRT OUTPUT MESSAGE(S)

ERROR GOBACK

STATUS
CODE?
Application coding for IMS Transaction Manager 147

Note: After finishing the processing of one input message, the program should go
back to step 1 and request a new input message. If there are no more input
messages, IMS will return a status code indicating that. At that time, the MPP
must return control to IMS.

17.1.1 Role of the PSB
The program specification block (PSB) for an MPP or a BMP contains, besides
database PCBs, one or more PCB (s) for logical terminal linkage. The very first
PCB always identifies the originating logical terminal. This PCB must be
referenced in the get unique and get next message calls. It must also be used
when inserting output messages to that LTERM. In addition, one or more
alternate output PCBs can be defined. Their LTERM destinations can be defined
in the PCBs or set dynamically with change destination calls.

17.1.2 DL/I message calls
The same DL/I language interface which is used for the access of databases is
used to access the message queues.

The principal DL/I message call function codes are:

• GU, get unique. This call must be used to retrieve the first, or only, segment of
the input message.

• GN, get next. This call must be used to retrieve second and subsequent
message segments.

• ISRT, insert. This call must be used to insert an output message segment into
the output message queue. Note: these output message (s) will not be sent
until the MPP terminates or requests another input message via a get unique.

• CHNG. change destination. This call can be used to set the output destination
for subsequent insert calls.

For a detailed description of the DL/I database calls and guidelines for their use,
see Chapter 19, “Application coding for IMS Database Manager” on page 173.

17.1.3 Application program abnormal termination
Upon abnormal termination of a message or batch-message processing
application program for other reasons than deadlock resolution, internal
commands are issued to prevent rescheduling. These commands are the
equivalent of a /STOP command. They prevent continued use of the program and
the transaction code in process at the time of abnormal termination. The master
terminal operator can restart either or both stopped resources. At the time
abnormal termination occurs, a message is used to the master terminal and to
the input terminal that identifies the application program, transaction code, and
input terminal. It also contains the system and user completion codes. in addition,
the first segment of the input transaction, in process by the application at
abnormal termination, is displayed on the master terminal. The database
changes of a failing program are dynamically backed-out. Also, its output
messages inserted in the message queue since the last synchronization point are
cancelled.
148 IMS Primer

17.1.4 Conversational processing
A transaction code can be defined as belonging to a conversational transaction
during IMS system definition. If so, an application program that processes that
transaction, can interrelate messages from a given terminal. the vehicle to
accomplish this is the scratchpad area (SPA). A unique scratchpad area is
created for each physical terminal which starts a conversational transaction.
Each time an input message is entered from a physical terminal in conversational
mode, its SPA is presented to the application program as the first message
segment (the actual input being the second segment). Before terminating or
retrieving another message (from another terminal), the program must return the
SPA to the control region with a message ISRT call. The first time a SPA is
presented to the application program when a conversational transaction is started
from a terminal, IMS will format the SPA with binary zero’s (X’00). If the program
wishes to terminate the conversation, it can indicate this by inserting the SPA with
a blank transaction code.

17.1.5 Output message processing
As soon as an application reaches a synchronization point, its output messages
in the message queue become eligible for output processing. A synchronization
point is reached whenever the application program terminates or requests a new
message from the input queue via a GU call.

In general, output messages are processed by message format service before
they are transmitted via the telecommunications access method.

Different output queues can exist for a given LTERM, depending on the message
origin. They are, in transmission priority:

1. Response messages, that is, messages generated as a direct response
(same PCB) to an input message from this terminal.

2. Command responses.

3. Alternate output messages, messages generated via an alternate PCB.

17.1.6 Logging and checkpoint/restart
To ensure the integrity of its databases and message processing IMS uses
logging and checkpoint/restart. In case of system failure, either software or
hardware, IMS can be restarted. This restart includes the repositioning of users’
terminals, transactions, and databases.

17.1.6.1 Logging
During IMS execution all information necessary to restart the system in the event
of hardware or software failure, is recorded on a online log data sets (OLDS).

The following critical system information is recorded on the OLDS:

• The receipt of an input message in the input queue

• The start of an MPP/BMP

• The receipt of a message by the MPP for processing

• Before and after images of database updates by the MPP/BMP

• The insert of a message into the queue by the MPP
Application coding for IMS Transaction Manager 149

• The termination of an MPP/BMP

• The successful receipt of an output message by the terminal

In addition to the above logging, all previous database record unchanged data is
written to the log data set. This log information is only used for dynamic back-out
processing of a failing MPP/BMP. as soon as the MPP/BMP reaches a
synchronization point, the dynamic log information of this program is discarded.

17.1.6.2 Emergency restart
In case of failure, IMS is restarted with the log data set active at the time of
failure. Restart processing will back-out the database changes of incomplete
MPPs and BMPs. The output messages inserted by these incomplete MPPs will
be deleted.

After back-out, the input messages are re-enqueued, the MPPs restarted and the
pending output messages are (re) transmitted. If a BMP was active at the time of
failure, it must be resubmitted via MVS job management. If the BMP uses the
XRST/CHKP calls, it must be restarted from its last successful checkpoint. In this
way missing or inconsistent output is avoided.

17.2 The data communication design process

We will distinguish between the following areas in the IMS database/data
communication design process:

• Program design

• Message format service design

• Database design

In the program design section, we will concentrate on the design of message
processing programs (MPPs).

The MFS design will discuss the 3270 screen layouts and operator interaction.

Although we will cover each of the above areas in separate sections, it should be
realized that they are largely dependent upon each other. Therefore, an overall
system design must be performed initially and an overall system review must
follow the design phase of each section.

17.2.1 Concepts of online transaction processing
In an IMS online environment, one can view a transaction from three different
points:

• The application, that is, its processing characteristics and database accesses.

• The terminal user.

• The IMS system.

Each of the above constitutes a set of characteristics. A description of each set
follows.
150 IMS Primer

17.2.2 Application characteristics
From an application point of view, we can identify:

• Data collection with no previous database access). This is not a typical IMS
application but can be part of an IMS application system.

• Update. This normally involves database reference and the subsequent
updating of the database. This is the environment of most IMS applications.

In typical IMS multi-application environment, the above characteristics are often
combined. However, a single transaction normally has only one of the above
characteristics.

17.2.3 Terminal user characteristics
From the terminal user’s point of view, we distinguish:

• Single-interaction transactions.

• Multi-interaction transactions.

The single interaction transaction does not impose any dependency between any
input message and its corresponding output, and the next input message. The
multi-interaction transaction constitutes a dialogue between the terminal and the
message processing program (s). Both the terminal user and the message
processing rely on a previous interaction for the interpretation/processing of a
subsequent interaction.

17.2.4 IMS characteristics
From the IMS system point of view, we distinguish:

• Non-response transactions.

• Response transactions.

• Conversational transactions.

Note: These IMS transaction characteristics are defined for each transaction
during IMS system definition.

With non-response transactions, IMS accepts multiple input messages (each
being a transaction) from a terminal without a need for the terminal to first accept
the corresponding output message, if any. These non-response transactions will
not be further considered in our sample.

With response transactions, IMS will not accept further transaction input from the
terminal before the corresponding output message is sent and interpreted by the
user.

For conversational transactions, which are always response transactions IMS
provides a unique scratch pad area (SPA) for each user to store vital information
across successive input messages.

17.2.5 Transaction response time considerations
In addition to the above characteristics, the transaction response time is often an
important factor in the design of online systems. The response time is the
elapsed time between the entering of an input message by the terminal operator
and the receipt of the corresponding output message at the terminal.
Application coding for IMS Transaction Manager 151

Two main factors, in general, constitute the response time:

1. The telecommunication transmission time, which is dependent on such factors
as:

• Terminal network configuration

• Data communication access method and data communication line
procedure

• Amount of data transmitted, both input and output

• Data communication line utilization

2. The internal IMS processing time, which is mainly determined by the MPP
service time. The MPP service time is the elapsed time required for the
processing of the transaction in the MPP region.

17.2.6 Choosing the right characteristics
Each transaction in IMS can and should be categorized by one characteristic of
each of the previously discussed three sets.

Some combinations of characteristics are more likely to occur than others, but all
of them are valid.

In general, it is the designer’s choice as to which combination is attributed to a
given transaction. Therefore, it is essential that this selection of characteristics is
a deliberate part of the design process, rather than determined after
implementation.

Following are some examples:

1. Assume an inquiry for the customer name and address with the customer
number as input. The most straightforward way to implement this is clearly a
non-conversational response-type transaction.

2. The entry of new customer orders could be done by a single response
transaction. The order number, customer number, detail information, part
number, quantity etc., could all be entered at the same time. The order would
be processed completely with one interaction. This is most efficient for the
system, but it may be cumbersome for the terminal user because she or he
has to re-enter the complete order in the case of a an error.

Quite often, different solutions are available for a single application. Which one to
choose should be based on a trade-off between system cost, functions, and user
convenience. The following sections will highlight this for the different design
areas.

17.2.7 Online program design
This area is second in importance to database design. We will limit the discussion
of this broad topic to the typical IMS environment. We will first discuss a number
of considerations so that you become familiar with them. Next, we will discuss the
design of the two online sample programs. You will notice that some discussions
are quite arbitrary and may not have to be adjusted for your own environment. Do
remember, however, that our prime objective is to make you aware of the factors
which influence these decisions.
152 IMS Primer

17.2.7.1 Single versus multiple passes
A transaction can be handled with one interaction or pass, or with two or more
passes (a pass is one message in and one message out). Each pass bears a
certain cost in line time and in IMS and MPP processing time. So, in general, you
should use a few passes as possible. Whenever possible you should use the
current output screen to enter the next input. This is generally easy to accomplish
for inquiry transactions, where the lower part of the screen can be used for input
and the upper part for output. (See 17.2.8, “Basic screen design” on page 154.

For update transactions, the choice is more difficult. The basic alternatives are:

One-pass update:
After input validation, the database updates are all performed in the same pass.
This is the most efficient way from the system point of view. However, correcting
errors after the update confirmation is received on the terminal requires additional
passes or re-entering of data. An evaluation n of the expected error rate is
required.

Two-pass update:
On the first pass, the input is validated, including data bass access. A status
message is sent to the terminal. If the terminal operator agrees, the database will
be updated in the second pass. With this approach, making corrections is
generally much simpler, especially when a scratch pad area is used. However,
the database is accessed twice.

You should realize, that, except for the SPA, no correlation exists between
successive interactions from a terminal. So, the database can be updated by
somebody else and the MPP may process a message for another terminal
between two successive passes.

Multi-pass update:
In this case, each pass does a partial database update. The status of the
database and screen is maintained in the SPA. This approach should only be
taken for complex transactions. Also, remember that the terminal operator
experiences response times for each interaction. You also must consider the
impact on database integrity. IMS will only back-out the database changes of the
current interaction in the case of project or system failure.

Notes:

1. IMS emergency restart with a complete log data set will reposition the
conversation. The terminal operator can proceed from the point where he or
she was at the time of failure.

2. When a conversational application program terminates abnormally, only the
last interaction is backed out.

The application must resposition the conversation after correction. For complex
situations, IMS provides an abnormal transaction exit routine. This is not covered
in our subset.
Application coding for IMS Transaction Manager 153

17.2.7.2 Conversational versus non-conversational
Conversational transactions are generally more expensive in terms of system
cost than non-conversational ones. However, they give better terminal operator
service. You should only use conversational transactions when you really need
them. Also, with the proper use of MFS, the terminal operator procedures
sometimes can be enhanced to almost the level of conversational processing.
This will be discussed in the section about MFS Design.

17.2.7.3 Transaction/program grouping
It is the designer’s choice how much application function will be implemented by
one transaction and/or program. The following considerations apply:

• Inquiry-only. transactions should be simple transactions. These should be
normally implemented as non-conversational transactions. Also, they can be
defined as “non-recoverable inquiry-only””. If in addition, the associated MPPs
specify PROCOPT= GO in all their database PCB’s, no dynamic enqueue and
logging will be done for these transactions.

• Limited-function MPPs are smaller and easier to maintain. However, a very
large number of MPPs costs more in terms of IMS resources (control blocks
and path lengths).

• Transactions with a long MPP service time (many database accesses). should
be handled by separate programs.

Note: IMS provides a program-to-program message switch capability. This is not
part of our subset. With this facility, you can split the transaction processing in
two (or more) phases. The first (foreground) MPP does the checking and
switches a message (and, optionally, the SPA) to a (background) MPP in a lower
priority partition which performs the lengthy part of the transaction processing. In
this way the foreground MPP is more readily available for servicing other
terminals. Also, if no immediate response is required from the background MPP
and the SPA is not switched, the terminal is more readily available for entering
another transaction.

17.2.8 Basic screen design
Generally, a screen can be divided into five areas, top to bottom:

1. Primary output area, contains general, fixed information for the current
transaction. The fields in this area should generally be protected.

2. Detail input/output area, used to enter and/or display the more variable part of
the transaction data. Accepted fields should be protected (under program
control): fields in error can be displayed with high intensity and unprotected to
allow for corrections.

3. MPP error message area. In general, one line is sufficient. This can be the
same line as 5 below.

4. Primary input, that is requested action and/or transaction code for next input,
and primary database access information.

5. System message field, used by IMS to display system messages and by the
terminal operator to enter commands.
154 IMS Primer

For readability, the above areas should be separated by at least one blank line.
The above screen layout is a general one, and should be evaluated for each
individual application. It is recommended to develop a general screen layout and
set of formats to be used by incidental programs and programs in their initial test.

This can significantly reduce the number of format blocks needed and
maintenance. In any case, installation standards should be defined for a
multi-application environment.

17.2.8.1 MFS subset restriction
1. The maximum output length of a message segment is 1388 bytes: this is

related to our long message record length of 1500 bytes.

2. A format is designated for one screen size. This can be later changed via
additional MFS statements to support both screens and other devices with the
same set of format blocks. A 1920 character format can be displayed on the
top part of a 2560 or 3440 character display, and 480 character format can be
displayed on the top of a 960 character display.

3. A segment is one physical page, which is one logical page.

17.2.8.2 General screen layout guidelines
The following performance guidelines should be observed when making screen
layouts:

1. Avoid full-format operations. IMS knows what format is on the screen. So if the
format for the current output is the same as the one on the screen, IMS need
not retransmit all the literals and unused fields.

2. Avoid unused fields, for example, undefined areas on the screen. Use the
attribute byte (non-displayed) of the next field as a delimiter, or expand a
literal with blanks. Each unused field causes additional control characters (5)
to be transmitted across the line during a full-format operation.

Note: This has to be weighed against user convenience. For example, our
sample customer name inquiry format does not have consecutive fields but it is
user convenient. Also, this application rarely needs a new format so we are not
so much concerned with unused fields.

17.2.8.3 Including the transaction code in the format
IMS requires a transaction code as the first part of an input message. With MFS,
this transaction code can be defined as a literal. In doing so, the terminal operator
always enters data on a preformatted screen. The initial format is retrieved with
the /FORMAT command. To allow for multiple transaction codes on one format,
part of the transaction code can be defined as a literal in the MID. The rest of the
transaction code can then be entered via a DFLD. This method is very convenient
for the terminal operator because the actual transaction codes are not of his
concern. Any example of such a procedure is shown in our sample customer
order entry application.
Application coding for IMS Transaction Manager 155

17.2.8.4 Miscellaneous design considerations
The following design considerations should also be noted:

• The conversation will be terminated (insert blank transaction code in SPA)
after each successful order entry. This is transparent to the terminal operator,
because the output format is linked to a MID which contains the transaction
code, so the operator need not re-enter it.

• Each output message should contain all the data (except the MOD-defined
literals) to be displayed. You should never rely on already existing data on the
screen, because a clear or (re) start operation may have destroyed it.

• Using secondary indexing can significantly increase the accessibility of online
databases. Therefore, a wider use of this facility is discussed in 11.5,
“Secondary indexing” on page 76.
156 IMS Primer

Chapter 18. IMS message format service

The chapter contains an overview of the message format service. This the
function of IMS which describes the screen input and output interaction with IMS
online programs.

18.1 Message format service overview

Through the message format service (MFS), a comprehensive facility is provided
for IMS users of 3270 and other terminals/devices. MFS allows application
programmers to deal with simple logical messages instead of device dependent
data. This simplifies application development. The same application program may
deal with different device types using a single set of editing logic while device
input and output are varied to suit a specific device. The presentation of data on
the device or operator input may be changed without changing the application
program. Full paging capability is provided for display devices. This allows the
application program to write a large amount of data that will be divided into
multiple screens for display on the terminal. The capability to page forward and
backward to different screens within the message is provided for the terminal
operator. The conceptual view of the formatting operations for messages
originating from or going to an MFS-supported device is shown in Figure 50.

Figure 50. Message formatting using MFS

MFS has three major components

1. MFS language utility

2. MFS pool manger

3. MFS editor

The MFS language utility is executed offline to generate control blocks and place
them in a format control block data set named IMSVS.FORMAT. The control
blocks describe the message formatting that is to take place during message
input or output operations. They are generated according to a set of utility control
statements. There are four types of format control blocks:

1. Message input descriptor (MID)

2. Message output descriptor (MOD)

3. Device input format (DIF)

4. Device output format (DOF)

MFS
Supported
Device

MFS
Application
Program

MFS
MFS
Supported
Device

Device
Input

Input
Message

Output
Message

Device
Output
IMS message format service 157

The MID and MOD blocks relate to application program input and output message
segment formats, and the DIF and DOF blocks relate to terminal I/O formats. The
MID and DIF blocks control the formatting of input messages, while the MOD and
DOF blocks control output message formatting.

Notes:

• The DIF and the DOF control blocks are generated as a result of the format
(FMT) statement.

• The MID and the MOD are generated as a result of the various message
(MSG) statements.

• The initial formatting of a 3270 display is done via the “/FORMAT modname”
command. This will format the screen with the specified MOD, as if a null
message was sent.

Figure 51 provides an overview of the MFS operations.

Figure 51. Overview of message format service

Provided
by MFS
Application
Designer

Offline
Execution

MFS
Format
Language
Utility

MFS
Buffer
Pool

Message
&

Format
Control
Statements

MFS
Pool

Manager

MFS
Message
Editor

Message
Queues

Online Executions MFS Terminal

Message
Queue

Datasets

FORMAT
Library
158 IMS Primer

18.2 MFS and the 3270

The IMS message format service (MFS), described in the previous section, is
always used to format data transmitted between IMS and the devices of the 3270
information display system. MFS provides a high level of device independence for
the application programmers and a means for the application system designer to
make full use of the 3270 device capabilities in terminal operations. Although our
subset only considers the 3270, its use of MFS is such that it is open-ended to
the use of other MFS supported terminals when required.

18.3 Relationship between MFS control blocks

Several levels of linkage exist between MFS control blocks, as described in the
following sections.

18.3.1 MFS control block chaining
Figure 52 shows the highest-level linkage, that of chained control blocks.

Figure 52. Chained control block linkage

Legend:

1. This linkage must exist.

2. If the linkage does not exist, device input data from 3270 devices is not
processed by MPS. It is always used in our subset.

3. This linkage is provided for application program convenience. It provides a
MOD name to be used by IMS if the application program does not provide a
name via the format name option of the insert call. The default MOD, DFSM02,
will be used if none is specified at all, or if the input is a message switch to an
MFS-supported terminal.

Message
Output
(mod)

Message
Input
(mid)

Message
Output
(mod)

A

XB

C

X

Y

Device
Output
(dof)

Device
Input
(dif)

Device
Output
(dof)

4

IMS message format service 159

4. The user-provided names for he DOF and DIF used in one output/input
sequence are normally the same. The MFS language utility alters the internal
name for the DIF to allow the MFS pool manger to distinguish between the
DOF and DIF.

The direction of the linkage allows many message descriptions to use the
same device format if desired. One common device format can be used for
several application programs whose output and input message formats, as
seen at the application program interface, are quite different.

18.3.2 Linkage between DFLD and MFLD
Figure 53 shows the second level of linkage, that between message fields and
device fields. The arrows show the direction of reference in the MFS language
utility control statements, not the direction of data flow.

References to device fields by message fields need not be in any particular
sequence. An MFLD need not refer to any DFLD, in which case it simply defines
space in the application program segment to be ignored if the MFLD is for output,
and padded if the MFLD is for input. Device fields need not be referenced by
message fields, in which case they are established on the device, but no output
data from the output message is transmitted to them. Device input data is ignored
if the DFLD is not referenced by the input MFLD.

Figure 53. Linkage between message fields and device fields

Message Output
(MOD)

MFLD
MFLD
MFLD
MFLD

MFLD
MFLD
MFLD
MFLD

(MID)
Message Input

DFLD
DFLD
DFLD
DFLD

DFLD
DFLD
DFLD
DFLD

Device Output

Device Input

(DOF)

(DIF)
160 IMS Primer

18.3.3 Linkage between LPAGE and DPAGE
Figure 54 shows a third level of linkage, one which exists between the LPAGE and
the DPAGE.

Figure 54. LPAGE -- DPAGE linkage

The LPAGE in the MOD must refer to a DPAGE in the DOF. However, all DPAGEs
need not be referred to from a given MOD.

Because we will always have single segment input in our subset, the defined
MFLDs in the MID may refer to DFLDs in any DPAGE. But input data for any given
input message from the device is limited to fields defined in a single DPAGE.

18.3.4 Optional message description linkage
Figure 55 shows a fourth level of linkage. It is optionally available to allow
selection of the MID based on which MOD LPAGE is displayed when input data is
received from the device.

Message Output
(MOD)

LPAGE

LPAGE

LPAGE

LPAGE

Device Output
(DOF)

DPAGE

DPAGE

DPAGE
IMS message format service 161

Figure 55. Optional message description linkage

Legend:

1. The next MID name provided with the MSG statement is used if no name is
provided with the current LPAGE.

2. If the next MID name is provided with the current LPAGE, input will be
processed using this page.

3. For 3270 devices, all MIDs must refer to the same DIF. This is the same
user-provided name used to refer to the DOF when the MOD was defined.

18.3.5 3270 Device considerations relative to control blocking linkage
Since output to 3270 display devices establishes fields on the device using
hardware capabilities, and field locations cannot be changed by the operator,
special linkage restrictions exist. Because formatted input can only occur from a
screen formatted by output, the LPAGE and physical page description used for
formatting input is always the same as that used to format the previous output.
The MPS language utility enforces this restriction by ensuring that the format
name used for input editing is the same as the format name used for the previous
output editing. Furthermore, if the DIF corresponding to the previous DOF cannot
be fetched during online processing, an error message is sent to the 3270
display.

Message Output
(MOD)

LPAGE

LPAGE

LPAGE

Device Output
(DOF)

Device Input
(DIF)

Message Input
(MID)

Message Input
(MID)

Message Input
(MID)

X

X

D

C

B

A

1 1

2

3

3

2

3

162 IMS Primer

18.4 MFS Functions

The following sections contain a description of the basic MFS functions.

18.4.1 Input message formatting
All device input data received by IMS is edited before being passed to an
application program. The editing is performed by either IMS basic edit or MFS. It
tells how the use of MFS is determined and how, when MFS is used, the desired
message format is established based on the contents of two MFS control blocks
— the device input format (DIF) and the message input descriptor (MID).

All 3270 devices included in an IMS system use MFS. The 3270s always operate
in formatted mode except when first powered on, after the CLEAR key has been
pressed, or when the MOD used to process an output message does not name a
MID to be used for the next input data. While in unformatted mode, you can still
enter commands and transactions, but they will not be formatted by MFS.

18.4.1.1 Input data formatting using MFS
Input data from terminals in formatted mode is formatted based on the contents of
two MFS control blocks, the MID and the DIF. The MID defines how the data
should be formatted for presentation to the application program and points to the
DIF associated with the input device. See Figure 56.

Figure 56. MFS Input Formatting

LL ZZ AAAA BB DDDD CC

1. AAAA

2. BB

3. CC

4. DDDD

5.

DFLD1

DFLD2

DFLD3

DFLD4

DFLD5

MFLD1

MFLD2

MFLD3

MFLD4

MFLD5

DIF MID

Device MFS Program

MFLD 1 2 3 4 5
IMS message format service 163

The MID contains a list of message descriptor fields (MFLDs) which define the
layout of the input segment as is to be seen by an application program. The DIF
contains a list of device descriptor fields (DFLDs) which define what data is to be
expected from which part of the device (that is, the location on the screen). MFS
maps the data of the DFLDs into the corresponding MFLDs. The application
program is largely device independent because different physical inputs can be
mapped into the same input segment.

MFLD statements are to define:

• The device fields (DFLDs) defined in the DIF which contents will be included in
the message presented to the application program.

• Constants, defined as literals to be included in the message: a common use of
literals is to specify the transaction code.

In addition, the MFLD statement defines:

• The length of the field expected by the application program.

• Left or right justification and the fill character to be used for padding the data
received from the device.

• A ‘nodata’ literal for the MFLD if the corresponding DFLD does not contain any
input data.

It should be noted that all message fields as defined by MFLD statements will be
presented to the application program in our subset. Furthermore, there will
always be only one input message segment, except for conversational
transaction, in which case the first segment presented to the program is the SPA.
The SPA is never processed by MFS, however.

18.4.1.2 Input message field attribute data
Sometimes input messages are simply updated by an application program and
returned to the device. In such a case, it may simplify message definition layouts
in the MPP if the attribute data bytes are defined in the message input descriptor
as well as the message output descriptor.

Non-literal input message fields can be defined to allow for 2 bytes of attribute
data. When a field is so defined, MFS will reserve the first 2 bytes of the field for
attribute data to be filled in by the application program when preparing an output
message. In this way, the same program area can be conveniently used for both
input and output messages. When attribute space is specified, the specified field
length must include the 2 attribute bytes.

18.4.1.3 IMS passwords
If the input data is for a password protected transaction, a device field should be
designated for the password. The device field in which the operator keys in the
password will not be displayed on the screen.

18.4.2 Output message formatting
All output messages for 3270 devices are processed by MFS in a way similar to
input.
164 IMS Primer

18.4.2.1 Output data formatting using MFS
All MFS output formatting is based on the contents of two MFS control blocks --
the message output descriptor (MOD) and the device output format (DOF). See
Figure 57, the MOD defines output message content and optionally, literal data to
be considered part of the output message. Message fields ((MFLDs) refer to
device field locations via device field (DFLD) definitions in the DOF. The DOF
specifies the use of hardware features, device field locations and attributes, and
constant data considered part of the format.

Figure 57. MFS output formatting

The layout of the output message segment to be received by MFS from the
program is defined by a list of MFLDs in the MOD. The DOF in turn contains a list
of DFLDs which define where the data is to be displayed/printed on the output
device. MFS maps the data of the MFLDs into the corresponding DFLDs.

All fields in an output message segment must be defined by MFLD statements.
Fields can be truncated or omitted by two methods. The first method is to insert a
short segment. The second method is to place a NULL character (X3f’) in the
field. Fields are scanned left (including the attribute bytes, if any) to right for NULL
character. The first NULL character encountered terminates the field. If the first
character of a field is a NULL character, no data is sent to the screen for this field.
This means that if the field is protected and the same device format is used, the
old data remains on the screen. To erase the old data of a protected field, the
application program must send X’403F’ to that field.

LL ZZ AAAA BB DDDD CC

1. AAAA

2. BB

3. CC

4. DDDD

5.

DFLD1

DFLD2

DFLD3

DFLD4

DFLD5

MFLD1

MFLD2

MFLD3

MFLD4

MFLD5

DOF MOD

Device MFS Program

MFLD 1 2 3 4 5
IMS message format service 165

Positioning of all fields in the segment remains the same regardless of NULL
characters. Truncated fields are padded with a program tab character in our
subset. Furthermore, we always specify erase-unprotected-all in the display
device format. This erases all old data in unprotected fields on the screen.

Notes:

1. Device control characters are invalid in output message fields under MFS. The
control characters HT, CR, LF, NL, and BS will be changed to null characters
(X’CC’). All other nongraphic characters are X’40’ through X’FE’.

2. With MFS, the same output message can be mapped on different device types
with one set of formats. This will not be covered in our subset. The formatting
discussed will cover one device type per device format, not a mixture.
However, the mixture can be implemented later by changing the formats.

In addition to MFLD data, constants can be mapped into DFLDs. These constants
are defined as literals in DFLD or MFLD statements.

18.4.2.2 Multiple segment output messages
MPS allows mapping of one or more output segments of the same message onto
a single or multiple output screens In our subset, we will limit ourselves to a
one-to-one relationship between output message segments and logical output
pages. Also one logical output page is one physical output page (one screen).

18.4.2.3 Logical paging of output messages
Logical paging is the way output message segments are grouped for formatting.
when logical paging is used, an output message descriptor is defined with one or
more LPAGE statements. Each LPAGE statement relates a segment produced by
a application program to corresponding device page.

Using logical paging, the simplest message definition consists of one LPAGE and
one segment description. As shown in Figure 58, each segment produced by the
application program is formatted in the same manner using the corresponding
device page.

Figure 58. An output message definition with one LPAGE

MSG
DEFINITION

DEVICE
PAGE

APPLICATION
PROGRAM OUTPUT

OR

SEGMENT1
SEGMENT1
SEGMENT1

LPAGE1 DPAGE1 SEGMENT 1
166 IMS Primer

With the definition shown in Figure 58, each output segment inserted by the MPP
will be displayed with the same and only defined MOD/DOF combination.

If different formats are required for different output segments, one LPAGE and
SEG statement combination is required for each different format. Each LPAGE
can link to a different DPAGE if desired. (This would not be required if only
defined constants and MFLDs differ in the MOD.)

The selection of the DPAGE to be used for formatting is based on the value of a
special MFLD in the output segment. This value is set by the MPP. If the LPAGE
to be used cannot be determined from the segment, the last defined LPAGE is
used. See also the description of the COND parameter of the LPAGE statement.
Each LPAGE can refer to a corresponding DPAGE with unique DFLDs for its own
device layout. See Figure 59.

Figure 59. An output message definition with multiple pages

18.4.2.4 Operator paging of output messages
If an output message contains multiple pages, the operator requests the next one
with the program access key 1 (PA1). If PA1 is pressed after the last page is
received, IMS will send a warning message in our subset. If PA1 is then pressed
again, IMS will send the first page of the current output message again.

The operator can always request the next output message by pressing the PA2
key. Also, in our subset, when the operator enters data, the current output
message is dequeued.

18.4.2.5 Output message literal fields
Output message fields can be defined to contain literal data specified by the user
during definition of the MOD. MFS will include the specified literal data in the
output message before sending the message to the device.

MFS users may define their own literal field and/or select a literal from a number
of literal provided by MFS. The MFS - provided literals are referred to as system
literals and include various date formats, a time stamp, the output message
sequence number, the logical terminal name, and the number of the logical page.

18.4.2.6 Output device field attributes
Device field attributes are defined in DFLD statements. For 3270 display devices,
specific attributes may be defined in the ATTR= keyword of the DFLD statement.
If not, default attributes will be assumed. The message field definition (MFLD)
corresponding to the device field (DFLD) may specify that the application program
can dynamically modify the device field attributes.

MSG
DEFINITION

DEVICE
PAGE

APPLICATION
PROGRAM OUTPUT

LPAGE1 DPAGE1 SEGMENT 1
(LPAGE1 condition
specified)

SEG1
IMS message format service 167

When a field is so defined, the first 2 data bytes of the field are reserved for
attribute data. Any error in the 2-byte specification causes the entire specification
to be ignored, and the attributes defined or defaulted for the device field are used.

Note: The two attribute bytes should not be included in the length specification of
the device field (DFLD) in the DOF.

The default attributes for non-literal 3270 display device fields are alphabetic,
not-protected, normal display intensity, and not-modified. Literal device fields
have forced attributes of protected and not-modified and default attributes of
numeric and normal display intensity. Numeric protected fields provide an
automatic skip function on display terminals.

18.4.2.7 Cursor positioning
The positioning of the cursor on the 3270 display device is done in either of two
ways:

1. The DPAGE statement defines the default cursor position.

2. The program can dynamically set the cursor to the beginning of a field via its
attribute byte.

18.4.2.8 System message field (3270 display devices)
Output formats for 3270 display devices may be defined to include a system
message field. If so defined, all IMS messages except DFS057 REQUESTED
FORMAT BLOCK NOT AVAILABLE are not sent to the system message field
whenever the device is in formatted mode. Providing a system message field
avoids the display of an IMS message elsewhere on the screen, thereby
overlaying the screen data.

When MPS sends a message to the system message field, it activates the device
alarm (if any) but does not reset modified data tags (MDTs) or move the cursor.
Since an IMS error message is an immediate response to input, MDTs remain as
they were at entry and the operator merely has to correct the portion of the input
in error.

In our subset we will always reserve the bottom line of the screen for the system
message field. This field can also be used to enter commands, for example,
/FORMAT

18.4.2.9 Printed page format control
The 3270 printer devices are also supported via MFS. Three basic options can be
specified in the DEV statement (PAGE=operand):

• A defined fixed number of lines should always be printed for each page
(SPACE). This is the recommended option because it preserves forms
positioning.

• Only lines containing data should be printed. Blank lines are deleted (FLCAT).

• All lines defined by DFLDs should be printed, whether or not the DFLDs
contain data (DEFN).
168 IMS Primer

18.4.3 MFS formats supplied by IMS
Several formats are included in the IMSVS.FORMAT library during IMS system
definition. They are used mainly for the master terminal, and for system
commands and messages. All these formats start with the characters DFS. One
of the most interesting in our subset is the default output message format. This
format is used for broadcast messages from the master terminal and application
program output messages with no MOD name specified. It permits two segments
of input, each being a line on the screen. DFSDF2 is the format name, DFSM02
the MOD and DFSMI2 the MID name.

When the master terminal format is used, any message whose MOD name
begins with DFSMO (except DFSM03) is displayed in the message area. Any
message whose MOD name is DFSDP01 is displayed in the display area.

Messages with other MOD names cause the warning message USER MESSAGE
WAITING to be displayed at the lower portion of the display screen.

18.5 MFS control statements

This section describes the control statements used by the MFS language utility.
There are two major categories of control statements:

• Definition statements are used to define message formats and device formats.

• Compiler statements are used to control the compilation and listings of the
definition statements.

The definition of message formats and device formats is accomplished with
separate hierarchical sets of definition statements. The statement set used to
define message formats consists of the following statements:

MSG Identifies the beginning of a message definition.

LPAGE Identifies a related group of segment/field definitions.

PASSWORD Identifies a field to be used as an IMS password.

SEG Identifies a message segment.

MFLD Defines a message field. Interactive processing of MFLD
statements can be invoked by specifying DC and statements. To
accomplish interactive processing the DO statement is placed
before the MFLD statement (s) and the ENDDO after the MFLD
statements (s). See the following discussion on compilation
statements.

MSGEND Identifies the end of a message definition.

The statement set used to define device formats consists of the following
statements:

FMT Identifies the beginning of a format definition.

DEV Identifies the device type and operational options.

DIV Identifies the format as input, output, of both.

DPAGE Identifies a group of device fields corresponding to an LPAGE
group of message fields.
IMS message format service 169

DFLD Defines a device field. Interactive processing of DFLD statements
can be invoked by specifying DC and ENDDO statements. To
accomplish interactive processing, the DO statement is placed
before the DFLD statement (s) and the ENDD after the DFLD
statement(s). See the following discussion on compilation
statements.

FMTEND Identifies the end of the format definition.

Compilation statements have variable functions. The most common ones are:

DO Requests interactive processing of MFLD or DFLD definition
statements.

EJECT Ejects SYSPRINT listing to the next page.

END Defines the end of data for SYSIN processing.

ENDDO Terminates interactive processing of MFLD or DFLD

PRINT Controls SYSPRINT options.

SPACE Skips lines on the SYSPRINT listing.

TITLE Provides a title for the SYSPRINT listing.

Compilation statements are to be inserted at logical points in the sequence of
control statements. For example, TITLE could be placed first, and EJECT could
be placed before each MSG or FMT statement.

18.5.1 Relations between source statements and control blocks
In general, the following relations exists between the MFS source statements and
control blocks.

• One MSG statement and its associated LPAGE, SEG, and MFLD statements
generate one MID or MOD.

• One FMI statement and its associated DEV, DIV, DPAG and DFLD statements
generate one DIF and/or DOF. For displays, both the DIF and DOF are
generated, because the output screen is used for input too.

In addition the MFS utilities will establish the linkages between the MID, MOD,
DIF, and DOF. These are the result of the symbolic name linkages defined in the
source statements.

18.5.2 MFS control block generation
MFS control blocks are generated by execution of the MFS language utility
program. This is a two-stage process. See Figure 60.
170 IMS Primer

Figure 60. Creation of MFS control blocks

The MFS control block generated can be executed by an IMS supplied cataloged
procedure: MFSUTL. Multiple formats can be generated with one execution. In
general you would process a complete format set, i.e, the related message and
format descriptions, in one execution of MFSUTL. Three executions of MFSUTL
are involved to process the three sample format sets.

18.5.2.1 Step 1

Preprocessor

The MFS language utility preprocessor generates intermediate text blocks
(ITBs), based on the MFS language source statement. Definitions of the MFS
language utility source input are contained in this chapter under the topic
“MFS Control Statements.” The primary function of the preprocessor is to
perform syntax and relational validity checks on user specifications and
generate ITBs. The ITBs are then processed by phase 1 of the utility to
generate message (MSG) and format (FMT) descriptors. An ITB generated for
each MSG or FMT description can be re-used by the same or another format
set, once it has been successfully added to the IMSVS.REFERAL date set.
Each such description must start with a MSG or FMT statement and end with
a MSGND or FMTEND statement.

DFSUPAA0
Source
Statement
Preprocessor

DFSUNUB0
Phase 2
Processor

DFSUTSA0
Build
Index

DFSUNUA0
Phase 1
Processor

Step 1 Step 2 Step 3

MFS Source

IMS.REFERAL

SYSTEXT

SEQBLKS

IMS.FORMAT
IMS message format service 171

Phase 1

The preprocessor invokes phase 1 if the highest return code generated by the
preprocessor is less than 16. Phase 1 places the newly constructed
descriptors on the SEQBLKS data set. Each member processed has a control
record placed on the SEQBLKS data set identifying the member, its size, and
the date and time of creation. This control record is followed by the image of
the descriptor as constructed by phase 1. Alternatively, if an error is detected
during descriptor building, an error control record is placed on the SEQBLKS
data set for the description in error, identifying the member in error, and the
date and time the error control record was created. In addition, phase 1
returns a completion code of 12 to MVS. If execution of step 2 is forced, phase
2 will delete descriptors with build errors.

18.5.2.2 Step 2

Phase 2

Phase 2 receives control as a job step following phase 1. After final
processing, it will place the new descriptors into the IMSVS.FORMAT library.
Phase 2 passes a completion code to MVS for step 2 based on all the
descriptor maintenance to IMSVS.FORMAT for a given execution of the MFS
language utility.

18.5.2.3 Step 3
In our subset, we will always execute the MFS service utility after MFS control
block generation. This utility will build a new index directory block which will
eliminate the need for directory search operations during the IMS online
operation.

18.5.3 MFS library maintenance
The IMSVS.FORMAT and IMSVS.REFERAL libraries are standard MVS
partitioned data sets. Backup and restore operations can be done with the proper
MVS utility (IEBCOPY). However, care must be taken that both the
IMSVS.FORMAT and the IMSVS.REFERAL data sets are dumped and restored
at the same time.
172 IMS Primer

Chapter 19. Application coding for IMS Database Manager

This chapter, which covers database processing, is divided into four sections:

• The first section offers a general introduction to DL/I database processing.
It defines the basic structure of a DL/I application program.

• The second section introduces basic DL/I calls against a single hierarchical
database structure.

• The third section covers the processing of logical databases which are
implemented with the DL/I logical relationships function.

• The fourth section deals with the use of secondary indices.

19.1 Introduction to database processing

In general, database processing is transaction oriented. Generally, an application
program accesses one or more database records for each transaction it
processes. There are two basic types of DL/I application programs:

• The direct access program

• The sequential access program

A direct access program accesses, for every input transaction, some segments in
one or more database records. These accesses are based on database record
and segment identification. This identification is essentially derived from the
transaction input. Normally it is the root-key value an additional (key) field values
of dependent segments. For more complex transactions, segments could be
accessed in several DL/I databases concurrently.

A sequential application program accesses sequentially selected segments of all
of a consecutive subset of a particular database. The sequence is usually
determined by the key of the root-segment. A sequential program can also
access other databases, but those accesses are direct, unless the root-keys of
both databases are the same.

A DL/I application program normally processes only particular segments of the
DL/I databases. The portion that a given program processes is called an
application data structure. This application data structure is defined in the
program specification block (PSB). There is one PSB defined for each application
program. An application data structure always consists of one or more
hierarchical data structures, each of which is derived from a DL/I physical or
logical database.

19.1.1 Interface to IMS
During initialization, both the application program and its associated PSB are
loaded from their respective libraries by the IMS batch system The DL/I modules,
which reside together with the application program in one partition/region,
interpret and execute database CALL requests issued by the program.
Application coding for IMS Database Manager 173

19.1.1.1 Calls to DL/I
A call request is composed of a CALL statement with an argument list. The
argument list specifies the processing function to be performed, the hierarchic
path to the segment to be accessed, and the segment occurrence of that
segment. One segment may be operated upon with a single DL/I call. However, a
single call never will return more than one occurrence of one segment type.

The arguments contained within any DL/I call request have been defined in “Calls
to IMS” on page 135. The following is a sample for a basic CALL statement for
COBAL:

CALL “CBLTDLI” USING function,PCB-name,I/O Area, SSA1,...SSAn.

Table 10 describes the components of the CALL statement. Here you will find the
basic DL/I call functions to request DL/I database services.

Table 10. DLI function descriptions

Note: b stands for blank: each CALL function is always 4 characters.

Table 11 constitutes the various categories of segment access types.

Table 11. Segment access

In addition to the above database calls, there are the system service calls. These
are used for requesting systems services such as checkpoint/restart. All of the
above calls and some basic system service calls will be discussed in detail in the
following sections.

RSF DL/I Call Function

GET UNIQUE ’GUbb’

GET NEXT ’GNbb’

GET HOLD UNIQUE ’GHUb’

GET HOLD NEXT ’GHNb’

INSERT ’ISRT’

DELETE ’DLET’

REPLACE ’REPL’

Segment Access DL/I Call Function

Retrieve a segment GU, GN, GHU, GHN

Replace (Update) a segment REPL

Delete a segment DLET

Insert (add) a segment ISRT

Delete ‘DLET’

Replace ‘REPL’
174 IMS Primer

19.1.1.2 Segment search arguments
For each segment accessed in a hierarchical path, one SSA can be provided.
The purpose of the SSA is to identify by segment name and, optionally, by field
value, the segment to be accessed.

The basic function of the SSA permits the application program to apply three
different kinds of logic to a call:

• Narrow the field of search to a particular segment type, or to a particular
segment-occurrence.

• Request that either one segment or a path of segments be processed.

• Alter DL/I’s position in the database for subsequent call.

Segment Search Argument (SSA) names represent the fourth (fifth for PL/I)
through last arguments (SSA1 through SSAn) in the call statement. There can be
0 or 1 SSA per level, and, since DL/I permits a maximum of 15 levels per
database, a call may contain from 0 to 15 SSA names. In our subset, an SSA
consists of one, two or three elements: The segment name, command
code(s)and a qualification statement, as shown in Table 12. Table 13 shows the
values of the relational operators described in Table 12.

Table 12. Segment name, command code and qualifications

Operator Description

Segment Name The segment name must be eight bytes long, left-justified with
trailing blanks required. This is the name of the segment as
defined in a physical and/or logical DBD referenced in the PCB
for this application program.

Command Codes The command code are optional. They provide functional
variations to be applied to the call for that segment type. An
asterisk (*) following the segment name indicates the presence
of one or more command codes. A blank or a left parenthesis
is the ending delimiter for command codes. Blank is use when
no qualification statement exists.

Qualification statement The presence of a qualification statement is indicated by a left
parenthesis following the segment name or, if present,
command codes. The qualification statement consists of a field
name, a relational-operator, and a comparative-value.

Begin Qualification
Character

The Left parenthesis, “(“, indicates the beginning of a
qualification statement. If the SSA is unqualified, the eight-byte
segment name or if used, the command codes, should be
followed by a blank.

Field name Is the name of a field which appears in the description of the
specified segment type in the DBD. The name is up to eight
characters long, left-justified with trailing blanks as required.
The named field may be either the key field or any data field
within a segment. The field name issued for searching the
database, and must have been defined in the physical DBD.

Relational Operator Is a set of two characters which express the manner in which
the contents of the field, referred to by the field name, is to be
tested against the comparative-value. See Table 13 for a list of
the values.
Application coding for IMS Database Manager 175

Table 13. Relational operator values

Note: As used above, the lowercase b represents a blank character.

19.1.1.3 Qualification
Just as calls are “qualified” by the presence of an SSA, SSAs are categorized as
either “qualified” or “unqualified”, depending on the presence of absence of a
qualification statement. Command codes may be included in or omitted from
either qualified or unqualified SSAs.

In its simplest form, the SSA is unqualified and consists only of the name of a
specific segment type as defined in the DBD. In this form, the SSA provides DL/I
with enough information to define the segment type desired by the call.

Example: SEGNAMEbb last character blank to unqualified.

Qualified SSAs (optional) contain a qualification statement composed of three
parts: A field name defined in the DBD, a relational operator, and a comparative
value. DL/I uses the information in the qualification statement to test the value of
the segment’s key or data fields within the database, and thus to determine
whether the segment meets the user’s specifications. Using this approach. DL/I
performs the database segment searching. The program need process only
those segments which precisely meet some logical criteria.

Example: SEGNAMEb (fieldxxx>=value)

The qualification statement test is terminated either when the test is satisfied by
an occurrence of the segment type, or when it is determined that the request
cannot be satisfied.

Comparative-value Is the value against which the contents of the field, referred to
by the field name, is to be tested. The length of this field must
be equal to the length of the named field in the segment of the
database. That is, it includes leading or trailing blanks (for
alphameric) or zeros (usually needed for numeric fields) as
required. A collating sequence, not an arithmetic, compare is
performed.

End Qualification
Character

The right parenthesis, “)”, indicates the end of the qualification
statement.

Operator Meaning

b= or ‘EQ’ Must be equal to

>= or’GE’ Must be greater than or equal to

<= or’LE’ Must be less than or equal to

’b>’ or ’GT’ Must be greater than

’b<’ or ’LT’ Must be less than

’<>’ or ’NE’ Must not be equal to

Operator Description
176 IMS Primer

19.1.1.4 Command codes
Both unqualified and qualified SSAs may contain one or more optional command
codes which specify functional variations applicable to the call function or the
segment qualification. The command codes are discussed in detail later in this
chapter.

General Characteristics of segment search arguments:

• An SSA may consist of the segment name only (unqualified). It may optionally
also include one or more command codes and a qualification statement.

• SSAs following the first SSA must proceed down the hierarchical path. Not all
SSAs in the hierarchical path need be specified. That is, there may be
missing levels in the path. DL/I will provide, internally, SSAs for missing levels
according to the rules given later in this chapter. However, it is strongly
recommended to always include SSAs for every segment level.

Examples of SSAs will be given with the sample calls at each DL/I call discussion
in the following section.

19.1.2 Status code handling
After each DL/I call, a two-byte status code is returned in the PCB which is used
for that call. We distinguish between three categories of status code:

• The blank status code, indicating a successful call,

• Exceptional conditions and warning status codes from an application point of
view.

• Error status codes, specifying an error condition in the application program
and/or DL/I.

The grouping of status codes in the above categories is somewhat installation
dependent. We will, however, give a basic recommendation after each specific
call function discussion. It is also recommended that you use a standard
procedure for status code checking and the handling of error status code. The
first two categories should be handled by the application program after each
single call. Figure 61 gives an example using COBOL.

Figure 61. Testing status codes

Notice that it is more convenient to directly test the regular exceptions in-line
instead of branching to a status code check routine. In this way, you clearly see
the processing of conditions that you wish to handle from an application point of
view, leaving the real error situations to central status code error routine. A
detailed discussion of the error status codes and their handling will be presented
later in this chapter.

CALL ‘CBLTDLI’ USING
IF PCB-STATUS EQ ‘GE’ PERFORM PRINT-NOT-FOUND.
IF PCB STATUS NE ‘bb’ PERFORM STATUS-ERROR.
everything okay, proceed....
Application coding for IMS Database Manager 177

19.1.3 Sample presentation of a call
DL/I calls will be introduced in the following sections. For each call we will give
samples. These samples will be in a standard format, as shown in Figure 62.

Figure 62. Sample call presentation

All the calls in the samples are presented in COBOL format. The coding of a call
in PI/I or Assembler will be presented later. Each call example contains three
sections.

1. The first section presents the essential elements of working storage as
needed for the call.

2. The second part, the processing section, contains the call itself. Note that the
PCB-NAME parameter should refer to the selected PCB defined in the
Linkage Section. Sometimes we will add some processing function
description before and/or after the call, in order to show the call in its right
context.

3. The third section contains the status codes and their interpretation, which can
be expected after the call.

The last category of status code, labeled “other: error situation,” would normally
be handled by a status code error routine. We will discuss those error status
codes with the presentation of such a routine later in this chapter.

19.2 Processing against a single database structure

This is the section which deals with handling a single database record. A
database record is a root segment and all of its physically dependent child
segments.

19.2.1 DL/I positioning concept
To satisfy a call, DL/I relies on two sources of segment identification:

• The established position in the database as set by the previous call against
the PCB.

• The segment search arguments as provided with the call.

77 GU-FUNC PICTURE XXXX VALUE ‘GUbb’

01 SSA001-GU-SE1PART.
02 SSA001-BEGIN PICTURE ...
02 ...
02 ...

01 IOAREA PICTURE X(256).
--
CALL ‘CBLTDLI’ USING GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART.
--
STATUS CODES:

bb: succesfull call
--: exceptional but correct condition

other: error condition
178 IMS Primer

The database position is the knowledge of DL/I of the location of the last segment
retrieved and all segments above it in the hierarchy. This position is maintained
by DL/I as an extension of, and reflected in, the PCB. When an application
program has multiple PCBs for a single database, these positions are maintained
independently. For each PCB, the position is represented by the concatenated
key of the hierarchical path from the root segment down to the lowest level
segment accessed. It also includes the positions of non-keyed segments.

If no current position exists in the database, then the assumed current position is
the start of the database. This is the first physical database record in the
database. With HDAM this is not necessarily the root-segment with the lowest
key value.

19.2.2 Retrieving segments
There are two basic ways to retrieve a segment.

• Retrieve a specific segment - GU

• Retrieve the next segment in hierarchy - GN

If you know the specific key value of the segment you want to retrieve, then the
GU call will allow to retrieve only the required segment. If you don’t know the key
value or don’t care then the GN call will retrieve the next available segment which
meets your requirements.

19.2.2.1 The get unique call — GU
The basic get unique (GU) call, function code “GUbb” normally retrieves one
segment in a hierarchical path. The segment retrieved is identified by an SSA for
each level in the hierarchical path down to and including the requested segment.
Each should contain at least the segment name. The SSA for the root-segment
should provide the root-key value. To retrieve more then one segment in the path
see 19.2.4.1, “D Command code” on page 185. Figure 63 shows an example of
the get unique call.

Figure 63. Basic GU call

77 GU-FUNC PICTURE XXXX VALUE ‘GUbb’

01 SSA001-GU-SE1PART.
02 SSA001-BEGIN PICTURE x(19) VALUE ‘SE1PARTb(FE1PGPNRb=’.
02 SSA001-FE1PGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ‘)’.

01 IOAREA PICTURE X(256).
--
MOVE PART-NUMBER TO SSA001-FE1PGPNR.
CALL ‘CBLTDLI’ USING GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART.
--
STATUS CODES:

bb: succesfull call
GE: exceptional but correct condition

other: error condition
Application coding for IMS Database Manager 179

The main use of the GU call is to position yourself to a database record and
obtain (a path of) segment (s). Typically, the GU call is used only once for each
database record you wish to access. Additional segments within the database
record would then be retrieved by means of get next calls (See the following
section.) The GU call can also be used for retrieving a dependent segment, by
adding additional SSAs to the call. For example, if you add a second SSA which
specifies the stock location, you would retrieve a STOCK segment below the
identified part. If the SSA did not provide a stock location number, this would be
the first STOCK segment for this part.

19.2.2.2 The get next call — GN
The get next (GN) call, function code ‘GNbb’, retrieves the next segment in the
hierarchy as defined in the PCB. To determine this next segment, DL/I relies on
the previously established position.

19.2.2.3 Unqualified get next call
Figure 64 shows a get next call with no SSAs at all that will, if repeated, return the
segments in the database in hierarchical sequence. Only those segments are
returned to which the program is defined sensitive in its PCB. If this call was
issued after the get unique call in Figure 63, then it would retrieve the first
STOCK segment for this part (if one existed). Subsequent calls would retrieve all
other STOCK, PURCHASE ORDER, and DESCRIPTION segments for this part.
After this, the next part would be retrieved and its dependent segments, etc., until
the end of the database is reached. Special status codes will be returned
whenever a different segment type at the same level or a higher level is returned.
No special status code is returned when a different segment at a lower level is
returned. You can check for reaching a lower level segment type in the segment
level indicator in the PCB. Remember, only those segments to which the program
is sensitive via its PCB are available to you.

Figure 64. Unqualified GN call

Although the above unqualified GN call may be efficient, especially for report
programs, you should use a qualified GN call whenever possible.

77 GN-FUNC PICTURE XXXX VALUE ‘GNbb’

01 IOAREA PICTURE X(256).
--

CALL ‘CBLTDLI’ USING GN-FUNC,PCB-NAME,IOAREA.

--
STATUS CODES:

bb: if previous call retrieved a PART, then a STOCK segment will be
be retrieved

GK: a segment is returned in IOAREA, but it is a different type
at the SAME level, for instance, a PURCHASE ORDER segment
after the last STOCK segment.

GA: segment returned is IOAREA, but it is of a higher level than
the last one, that is, a new PART segment

GB: end of database reached, no segment returned
other: error condition
180 IMS Primer

19.2.2.4 The qualified get next call
This qualified GN call should at least identify the segment you want to retrieve. In
doing so, you will achieve a greater independence toward possible database
structure changes in the future. Figure 65 shows and example of a qualified GN
call. If you supply only the segment name in the SSA, then you will retrieve all
segments of that type from all database records with subsequent get next calls.

Figure 65. Qualified GN call

Repetition of the above GN call will retrieve all subsequent PURCHASE ORDER
segments of the database, until the end of the database is reached. To limit this
to a specific part, you could add a fully qualified SSA for the PART segment. This
would be the same SSA as used in Figure 63 on page 179.

An example of a qualified get next call with a qualified SSA is shown in Figure 66.

Figure 66. GN call with qualified SSA

77 GN-FUNC PICTURE XXXX VALUE ‘GNbb’

01 SSA002-GN-SE1PPUR PICTURE X(9) VALUE ‘SE1PPURbb’

01 IOAREA PICTURE X(256).
--
MOVE PART-NUMBER TO SSA001-FE1PGPNR.
CALL ‘CBLTDLI’ USING GN-FUNC,PCB-NAME,IOAREA,SSA002-GN-SE1PPUR.

--
STATUS CODES:

bb: next PURCHACE ORDER has been move to the IOAREA
GB: end of database reached, no segment returned

other: error condition

77 GN-FUNC PICTURE XXXX VALUE ‘GNbb’

01 SSA001-GU-SE1PART.
02 SSA001-BEGIN PICTURE x(19) VALUE ‘SE1PARTb(FE1PGPNRb=’.
02 SSA001-FE1PGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ‘)’.

01 SSA002-GN-SE1PPUR PICTURE X(9) VALUE ‘SE1PPURb’.
01 IOAREA PICTURE X(256).
--

CALL ‘CBLTDLI’ USING GN-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART
SSA002-GN-SE1PPUR.

--
STATUS CODES:

bb: next PURCHASE ORDER segment is in IOAREA
GE: segment not found; no more purchase orders for this part,

or part number in SSA001 does not exist
other: error condition
Application coding for IMS Database Manager 181

This fully qualified get next call should be primarily used. It always clearly
identifies the hierarchical path and the segment you want to retrieve.

19.2.2.5 Get hold calls
To change the contents of a segment in a database through a replace or delete
call, the program must first obtain the segment. It then changes the segment’s
contents and requests DL/I to replace the segment in the database or to delete it
from the database.

This is done by using the get hold calls. These function codes are like the
standard get function, except the letter ‘H’ immediately follows the letter ‘G’ in the
code (that is, GHU, GHN). The get hold calls function exactly as the
corresponding get calls for the user. For DL/I they indicate a possible
subsequent replace or delete call.

After DL/I has provided the requested segment to the user, one or more fields,
but not the sequence field, in the segment may be changed

After the user has changed the segment contents, he can call DL/I to return the
segment to, or delete it from the database. If, after issuing a get hold call, the
program determines that it is not necessary to change or delete the retrieved
segment, the program may proceed with other processing, and the “hold” will be
released by the next DL/I call against the same PCB.

19.2.3 Updating segments
Segments can be updated by application programs and returned to DL/I for
restoring in the database, with the replace call, function code ‘REPL’ Two
conditions must be met:

The segment must first be retrieved with a get hold call, (GHU or GHN), no
intervening calls are allowed referencing the same PCB.

The sequence field of the segment cannot be changed. This can only be done
with combinations of delete and insert calls for the segment and all its
dependents.

Figure 67 shows an example of a combination of GHU and REPL call. Notice that
the replace call must not specify a SSA for the segment to be replaced. If, after
retrieving a segment with a get hold call, the program decides not to update the
segment, it need not issue a replace call. Instead the program can proceed as if it
were a normal get call without the hold.

Because there is only a very small performance difference between the get and
the get hold call, you should use the get hold call whenever there is a reasonable
chance (about 5% or more) that you will change the segment.
182 IMS Primer

Figure 67. Basic REPL call

19.2.3.1 Deleting segments
To delete the occurrence of a segment from a database, the segment must first
be obtained by issuing a get hold (GHU, GHN) call. Once the segment has been
acquired, the DLET call may be issued.

No DL/I calls which use the same PCB can intervene between the get hold call
and the DLET call, or the DLET call is rejected. Quite often a program may want
to process a segment prior to deleting it. This is permitted as long as the
processing does not involve a DL/I call which refers to the same database PCB
used for the get hold/delete calls. However, other PCBs may be referred to
between the get hold and DLET calls.

DL/I is advised that a segment is to be deleted when the user issues a call that
has the function DLET. The deletion of a parent, in effect, deletes all the segment
occurrences beneath that parent, whether or not the application program is
sensitive to those segments. If the segment being deleted is a root segment, that
whole database record is deleted. The segment to be deleted must still be in the
IOAREA of the delete call (with which no SSA is used), and its sequence field
must not have been changed. Figure 68 gives an example of a DLET call.

77 GHU-FUNC PICTURE XXXX VALUE ‘GHUb’.
77 REPL-FUNC PICTURE XXXX VALUE ‘REPL’.

01 SSA001-GU-SE1PART.
02 SSA001-BEGIN PICTURE x(19) VALUE ‘SE1PARTb(FE1PGPNRb=’.
02 SSA001-FE1PGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ‘)’.

01 SSA002-GN-SE1PPUR PICTURE X(9) VALUE ‘SE1PPURbb’.
01 IOAREA PICTURE X(256).
--
MOVE PART-NUMBER TO SSA001-FE1PGPNR.
CALL ‘CBLTDLI’ USING GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART

SSA002-GN-SE1PPUR.
the retrieved PURCHASE ORDER segment can now be changed by the program
in the IOAREA.

CALL ‘CBLTDLI’ USING REPL-FUNC,PCB-NAME,IOAREA.
--
STATUS CODES:

bb: segment is replaced with contents in the IOAREA
other: error condition
Application coding for IMS Database Manager 183

Figure 68. Basic DLET call

19.2.3.2 Inserting segments
Adding new segment occurrences to a database is done with the insert call,
function code ‘ISRT’

The DL/I insert call is used for two distinct purposes: It is used initially to load the
segments during creation of a database. It is also used to add new occurrences
of an existing segment type into an established database. The processing
options field in the PCB indicates whether the database is being added to or
loaded. The format of the insert call is identical for either use.

When loading or inserting, the last SSA must specify only the name of the
segment being inserted. It should specify only the segment name, not the
sequence field. Thus an unqualified SSA is always required.

Up to a level to be inserted, the SSA evaluation and positioning for an insert call
is exactly the same as for a GU call. For the level to be inserted, the value of the
sequence field in the segment in the user I/O area is used to establish the insert
position. If no sequence field was defined, then the segment is inserted at the
end of the physical twin chain. If multiple non-unique keys are allowed, then the
segment is inserted after existing segments with the same key value.

Figure 69 shows an example of an ISRT call. The status codes in this example
are applicable only to non-initial load inserts. The status codes at initial load time
will be discussed under the topic 19.7.1, “Loading a database” on page 196.

77 GHU-FUNC PICTURE XXXX VALUE ‘GHUb’.
77 DLET-FUNC PICTURE XXXX VALUE ‘DLET’.

01 SSA001-GU-SE1PART.
02 SSA001-BEGIN PICTURE x(19) VALUE ‘SE1PARTb(FE1PGPNRb=’.
02 SSA001-FE1PGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ‘)’.

01 SSA002-GN-SE1PPUR PICTURE X(9) VALUE ‘SE1PPURbb’.
01 IOAREA PICTURE X(256).
--
MOVE PART-NUMBER TO SSA001-FE1PGPNR.
CALL ‘CBLTDLI’ USING GU-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART

SSA002-GN-SE1PPUR.

the retrieved PURCHASE ORDER segment can now be processed by the
program in the IOAREA.

CALL ‘CBLTDLI’ USING DLET-FUNC,PCB-NAME,IOAREA.
--
STATUS CODES:

bb: requested purchase order segment is deleted from the database;
all its dependents, if any, are deleted also.

other: error condition
184 IMS Primer

Figure 69. Basic ISRT call

Note: There is no need to check the existence of a segment in the database with
a preceding retrieve call. DL/I will do that at insert time, and will notify you with
an II or GE status code. Checking previous existence is only relevant if the
segment has no sequence field.

19.2.4 Calls with command codes
Both unqualified and qualified SSAs may contain one or more optional command
codes which specify functional variations applicable to either the call function or
the segment qualification. Command codes in an SSA are always prefixed by an
asterisk (*), which immediately follows the 8 byte segment name. Figure 70
illustrates an SSA with command codes D and P.

Figure 70. SSA with D and P command codes

19.2.4.1 D Command code
The ‘D’ command code is the one most widely used. It requests DL/I to issue
path calls. A “path call” enables a hierarchical path of segments to be inserted or
retrieved with one call. (A “path” was defined earlier as the hierarchical sequence
of segments, one per level, leading from a segment at one level to a particular
segment at a lower level.) The meaning of the ‘D’ command code is as follows:

77 ISRT-FUNC PICTURE XXXX VALUE ‘ISRT’.

01 SSA001-GU-SE1PART.
02 SSA001-BEGIN PICTURE x(19) VALUE ‘SE1PARTb(FE1PGPNRb=’.
02 SSA001-FE1PGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ‘)’.

01 SSA002-GN-SE1PPUR PICTURE X(9) VALUE ‘SE1PPURbb’.
01 IOAREA PICTURE X(256).
--
MOVE PART-NUMBER TO SSA001-FE1PGPNR.
MOVE PURCHASE-ORDER TO IOAREA.
CALL ‘CBLTDLI’ USING ISRT-FUNC,PCB-NAME,IOAREA,SSA001-GU-SE1PART

SSA002-GN-SE1PPUR.
--
STATUS CODES:

bb: new PURCHASE ORDER segment is inserted in database
II: segment to insert already exists in database
GE: segment not found; the requested part number (that is, a

parent of the segment to be inserted) is not in the database
other: error condition

01 SSA001-GU-SE1PART.
02 SSA001-BEGIN PICTURE x(19) VALUE ‘SE1PARTb*DP(FE1PGPNRb=’.
02 SSA001-FE1PGPNR PICTURE X(8).
02 SS1001-END PICTURE X VALUE ‘)’.
Application coding for IMS Database Manager 185

For retrieval calls, multiple segments in a hierarchical path will be moved to the
I/C area with a single call. The first through the last segment retrieved are
concatenated in the user’s I/C area. Intermediate SSAs may be present with or
without the ‘D’ command code. If without, these segments are not moved to the
user’s I/O area. The segment named in the PCB “segment name feedback area”
is the lowest-level segment retrieved, or the last level satisfied in the call in case
of a non-found condition. Higher-level segments associated with SSAs having
the ‘D’ command code will have been placed in the user’s I/O area even in the
not-found case. The ‘D’ is not necessary for the last SSA in the call, since the
segment which satisfies the last level is always moved to the user’s I/O area. A
processing option of ‘P’ must be specified in the PSBGEN for any segment type
for which a command code ‘D’ will be used.

For insert calls, the ‘D’ command code designates the first segment type in the
path to be inserted. The SSAs for lower-level segments in the path need not
have the D command code set, that is, the D command code is propagated to all
specified lower level segments.

Figure 71 shows an example of a path call.

Figure 71. Sample path retrieve call

The above example shows a common usage of the path call. Although we don’t
know if the requested part has a separate DESCRIPTION segment
(SE1PGDSC), we retrieve it at almost no additional cost if there is one.

The correct usage of path calls can have a significant performance advantage.
You should use it whenever possible, even if the chance of the existence or the
need for the dependent segment (s) is relatively small. For instance, if you
would need, in 10% or more of the occurrences, the first dependent segment
after you inspect the parent, then it is generally advantageous to use a path call
to retrieve them both initially.

77 GU-FUNC PICTURE XXXX VALUE ‘GUbb’.

01 SSA004-GU-SE1PART.
02 SSA004-BEGIN PICTURE x(21) VALUE ‘SE1PARTb*D(FE1PGPNRb=’.
02 SSA004-FE1PGPNR PICTURE X(8).
02 SS1004-END PICTURE X VALUE ‘)’.

01 SSA005-GN-SE1PGDSC PICTURE X(9) VALUE ‘SE1PGDSCb’.

01 IOAREA PICTURE X(256).
--

CALL ‘CBLTDLI’ USING GU-FUNC,PCB-NAME,IOAREA,SSA004-GU-SE1PART
SSA004-GN-SE1PGDSC.

--
STATUS CODES:

bb: both segments (PART and DESCRIPTION) have been placed in IOAREA
GE: segment not found; PART segment may be retrieved in IOAREA;

check segment name and level indicator in PCB.
other: error condition
186 IMS Primer

19.2.4.2 N command code
When a replace call follows a path retrieve call, it is assumed that all segments
previously retrieved with the path call are being replaced. If any of the segments
have not been changed, and therefore, need not be replaced, the ‘N’ command
code may be set at those levels, telling DL/I not to replace the segment at this
level of the path. The status codes returned are the same as for a replace call.

19.2.4.3 F command code
This command code allows you to back up to the first occurrence of a segment
under its parent. It has meaning only for a get next call. A get unique call always
starts with the first occurrence. Command code F is disregarded for the root
segment.

19.2.4.4 L command code
This command code allows you to retrieve the last occurrence of a segment
under its parent. This command code should be used whenever applicable.

19.2.4.5 - command code
The hyphen is a null command code. It s purpose is to simplify the maintenance
of SSAs using command codes.

19.2.5 Database positioning after DL/I call
As stated before, the database position is used by DL/I to satisfy the next call
against the PCB. The segment level, segment name and the key feedback areas
of the PCB are used to present the database position to the application program.

The following basic rules apply:

1. If a get call is completely satisfied, current position in the database is reflected
in the PCB key feedback area.

2. A replace call does not change current position in the database.

3. Database position after a successful insert call is immediately after the
inserted segment.

4. Database position after return of an II status code is immediately prior to the
duplicate segment. This positioning allows the duplicate segment to be
retrieved with a GN call.

5. Database position after a successful delete call is immediately after all
dependents of the deleted segment. If no dependents existed, database
position is immediately after the deleted segment.

6. Database position is unchanged by an unsuccessful delete call.

7. After an (partial) unsuccessful retrieve call, the PCB reflects the lowest level
segment which satisfied the call. The segment name or the key feed back
length should be used to determine the length of the relevant data in the key
feedback area. Contents of the key feedback area beyond the length value
must not be used, as the feedback area is never cleared out after previous
calls. If the level-one (root) SSA cannot be satisfied, the segment name is
cleared to blank, and the level and key feedback length are set to 0.
Application coding for IMS Database Manager 187

In considering ‘current position in the database’, it must be remembered that DL/I
must first establish a starting position to be used in satisfying the call. This
starting position is the current position in the database for get next calls, and is a
unique position normally established by the root SSA for get unique calls.

The following are clarifications of ‘current position in the database’ for special
situations:

• If no current position exists in the database, then the assumed current position
is the start of the database.

• If the end of the database is encountered, then the assumed current position
to be used by the next call is the start of the database.

• If a get unique call is unsatisfied at the root level, then the current position is
such that the next segment retrieved would be the first root segment with a
key value higher than the one of the unsuccessful call, except when end of the
database was reached (see above) or for HDAM, where it would be the next
segment in physical sequence.

You can always reestablish your database positioning with a GU call specifying
all the segment key values in the hierarchical path. It is recommended that you
use a get unique call after each not found condition.

19.2.6 Using multiple PCBs for one database
Whenever there is a need to maintain two or more independent positions in one
database, you should use different PCBs. This avoids the reissue of get unique
calls to switch forward and backward from one database record or hierarchical
path to another. There are on restrictions as to the call functions available in
these multiple PCBs. However, to avoid “position confusion” in the application
program, you should not apply changes via two PCBs to the same hierarchical
path. For simplicity reasons you should limit the updates to one PCB unless this
would cause additional calls.

19.2.6.1 System service calls
Besides call functions for manipulating database segments, DL/I provides special
system service calls. The most common ones are:

• STATISTICS (STAT) -- This call is used to obtain various statistics from DL/I.

• CHECKPOINT (CHKP) -- CHPK informs DL/I that the user has “checkpointed”
his program and that thus may be restarted at this point. The current position
is maintained in GSAM databases. For all other databases, you must
reposition yourself after each checkpoint call with a get unique call.

• RESTART (XRST) -- XRST requests DL/I to restore checkpointed user areas
and reposition GSAM database for sequential processing if a checkpoint ID for
restarting has been supplied by the call or in the JCL.

The XRST and CHKP calls will be discussed under the topic 19.8, “Batch
checkpoint/restart” on page 200.
188 IMS Primer

19.2.7 Processing GSAM databases
All accessing to GSAM databases is done via DL/I calls. A check is made by DL/
to determine whether a user request is for a GSAM database. if so, control is
passed to GSAM, which will be resident in the user region. If not, control is
passed to DL/I, and standard hierarchical processing will result.

Calls to be used for GSAM accessing are:

CALL ‘CBLTDLI’ USING call-func,pcb-name,ioarea.

where:

call-func

is the name of the field which contains the call function:

• OPEN Open GSAM database

• CLSE Close GSAM database

• GN Retrieve next sequential record

• ISRT Insert a new logical record (at end of database only)

The open and close call are optional calls to be used to explicitly initiate or
terminate database operations. The database will automatically be opened by
the issuance of the first processing call used and automatically closed at
“end-of-data” or at program termination.

Records may not be randomly added to GSAM data sets. The data set may be
extended by opening in the load mode, with DISP=MOD, and using the ISRT
function code.

pcb-name

is the name of the GSAM PCB

ioarea

is the name of the I/O area for GN/ISRT calls. See Table 14 for status codes.

Table 14. GSAM status codes

19.2.7.1 Record formats
Records may be fixed or variable length, blocked or unblocked. Records must not
have a sequence key. The record in the IOAREA includes a halfword record
length for variable length records.

The use of GSAM data sets in a checkpoint/restart environment is further
discussed later in this chapter.

Status Codes Meaning

bb Successful call, Proceed

GL end of input data (Get Next only)

other error situation
Application coding for IMS Database Manager 189

19.3 COBOL programming considerations

There are a few considerations that apply when you are coding DL/I programs in
COBOL. Refer to Figure 72 for this discussion as the numbers between
parenthesis in the text below refer to the corresponding code lines. Specific
parameter values and formats are explained elsewhere throughout this chapter.

Figure 72. COBOL batch program

• The DL/I function codes (7)(, IOAREA (11), and Segment Search Arguments
(12) should be defined in the Working-Storage Section of the Data Division.
Typically, either the IOAREA would be REDEFINED to provide addressability
to the fields of each segment, or separate IOAREAs would be defined for each
segment.

• The.program Communication Blocks (PCBS) Should be defined in the Linkage
Section of the Data Division (18). When there are multiple database
structures (thus multiple PCBs) in a program, there must be one PCB defined
in the Linkage Section for each PCB in the PSB. However, these PCBs need
not be in any specific order.

ID
DIVISION. 000001

000002
ENVIRONMENT DIVISION. 000003

000004
DATA DIVISION. 000005
WORKING-STORAGE SECTION. 000006
77 GU-FUNC PIC XXXX VALUE ‘GU ‘. 000007
77 GN-FUNC PIC XXXX VALUE ‘GN ‘. 000008
77 ERROPT PIC XXXX VALUE ‘1 '. 000009
77 DERRID PIC X(8) VALUE ‘DERROR01’. 000010
01 IOAREA PIC X(256) VALUE SPACES. 000011
01 SSA001-GU-SE1PART. 000012

02 SSA001-BEGIN PIC X(19) VALUE ‘SE1PART (FE1PGPNR =’. 000013
02 SSA001-FE1PGPNR PIC X(8). 000014
02 SSA001-END PIC X VALUE ‘)’. 000015

000016
LINKAGE SECTION. 000017
01 D1PC. 000018

02 D1PCDBN PIC X(8). 000019
02 D1PCLEVL PIC 99. 000020
02 D1PCSTAT PIC XX. 000021
02 D1PCPROC PIC XXXX. 000022
02 D1PCRESV PIC S9(5) COMP. 000023
02 D1PCSEGN PIC X(8). 000024
02 D1PCKFBL PIC S9(5) COMP. 000025
02 D1PCNSSG PIC S9(5) COMP. 000026
02 D1PCKFBA PIC X(20). 000027

000028
PROCEDURE DIVISION. 000029
ENTRY ‘DLITCBL’ USING D1PC. 000030
: 000031
: 000032
CALL ‘CBLTDLI’ USING GU-FUNC, D1PC, IOAREA, 000033

SSA001-GU-SE1PART. 000034
: 000035
CALL ‘CBLTDLI’ USING GN-FUNC, D1PC, IOAREA. 000036
IF D1PCSTAT NOT = ‘ ‘, 000037

CALL ‘ERRRTN’ USING D1PC, DERRID, IOAREA, ERROPT. 000038
MOVE +4 TO RETURN-CODE. 000039

: 000040
CALL DFSOAST USING D1PC. 000041
: 000043
: 000044
GOBACK. 000045
190 IMS Primer

• An ENTRY statement (30) should be coded at the entry to your program. A
parameter of the USING clause should exist for each database structure
(PCB) that is used in your program. The order of PCBs in this clause must be
the same as specified in the Program Specification Block (PSB) for your
program.

• Each DL/I CALL statement should be coded as in statement (33). The
parameters of the DL/I call are explained elsewhere in this chapter, and differ
in number for different functions.

• The status code in the PCB should be checked after each call (37). The
status-code error routine is discussed below (38),

• At the end of processing, control must be returned to DL/I via a GOBACK
statement (44). If you wish you may set the COBOL ‘RETURN-CODE’ (39). If
DL/I detects no errors, and thus does not set the return code, the COBOL
‘RETURN-CODE’ value will be passed on to the next job step.

19.4 PL/I programming considerations

This section refers to Figure 73 as the numbers between parenthesis in the text
refer to the corresponding code line.

When DL/I invokes your PL/I program it will pass the addresses, in the form of
pointers, to each PCB required for execution. These will be passed in the same
sequence as specified in PSB. To use the PCBs, you must code parameters in
your PROCEDURE statement, and declare them to have the attribute POINTER.

In the example, DC_PTR and DB_PTR are specified in the PROCEDURE
statement (6) and declared POINTER variables (15 and 16). These pointer
variables should be used in declaring the PCBs as BASED structures (18 and
21), and in calling DL/I(55).

The format of the PL/I CALL statement to invoke DL/I (55) IS:

CALL PLITDLI (parmcount, function, pcb-ptr, io-area,ssal,...,ssan):

where:

parmcount

is the number of arguments in this call following this argument. It must
have the attributes FIXED BINARY (31). See (38).

function

is the DL/I function code. It must be a fixed length character string of
length 4. pcb-ptr is a pointer variable containing the address of the PCB.
This is normally the name of one of the parameters passed to your program
at invocation.

io-area

is the storage in your program into/from which DL/I is to store/fetch data. It
can be a major structure, a connected array, a fixed-length character string
(CHAR (n)), a pointer to any of these or a pointer to a minor structure. It
cannot be the name of a minor structure of a character string with the
attribute VARYING.
Application coding for IMS Database Manager 191

ssal,...

is one or more optional segment search arguments. Each SSA argument
must be one of the same PL/I forms allowed for io-areas, described above.
See (47) in the example.

Upon completion of your program, you should return either via a RETURN
statement or by executing the main procedure END statement.

Figure 73. PL/I batch program structure

19.5 Processing with logical relationships

Generally, there is no difference between the processing of physical databases
and logical databases: all call functions are available for both. Some
considerations do apply, however, when accessing a logical child of a
concatenated segment.

/*---* /0000001
/* SAMPLE PL/I PROGRAM * /0000002
/*---* 0000003
PE2PROD: 0000005
PROCEDURE (DC PTR,DB_PTR) OPTIONS (MAIN); 0000006
/* DECLARE POINTERS AND PCBS. */0000008
DECLARE 0000010
PLITDLI ENTRY, /* DL/I WIlL BE CALLD*/ 0000012
DFSOAST ENTRY OPTIONS (ASSEMBLER INTER), /* STATISTICS PRINT */ 0000013
DFSOAER ENTRY OPTIONS (ASSEMBLER INTER), /* STATUS COOE PRINT */ 0000014
DC_PTR POINTER, /* CHPAT IN PSB */ 0000015
DB_PTR POINTER, /* ORDER DB PCB */ 0000016
01 ClPC BASED (DC_PTR), /* NOT USED IN */ 0000018

02 DUMMY CHAR (32), /* BATCH DL/I */ 0000019
01 DlPC BASED (DB_PTR), /* PHASE 2 ORDER DB */ 0000021

02 DlPCDBDN CHAR (8), /* DBD NAME */ 0000022
02 DlPCLEVL CHAR (2), /* SEGMENT LEVEL */ 0000023
02 DlPCSTAT CHAR (2), /* STATUS CODE */ 0000024
02 DlPCPROC CHAR (4), /* PROCESSING OPTN */ 0000025
02 OlPCRESV FIXED BINARY(31), /* RESERVED */ 0000026
02 DlPCSEGN CHAR (8), /* SEGMENT NAME */ 0000027
02 DlPCKFBL FIXED BINARY(31), /* KEY FEEOBACK LNG */ 0000028
02 DlPCNSSG FIXED BINARY(3l), /* N0. OF SENSEGS */ 0000029
02 DlPCKFBA CHAR (14); /* KEY FEEDBACK */ 0000030

/* DECLARE FUNCTION COOES, I/0 AREA, CALL ARG LIST LENGTHS */ 0000032
DECLARE 0000034
IO_AREA CHAR (256) /* I/0 AREA */ 0000036
GU_FUNC STATIC CHAR (4) INIT t’GU’I, /* CALL FUNCTION */ 0000037
FOUR STATIC FIXED BINARY (31) INIT I4), /* ARG LIST LENGTH */ 0000038
ERROPT1 CHAR (4) INIT (’0’) STATIC, /* OPTN FOR DFSOAER */ 0000039
ERROPT2 CHAR (4) INIT (’2’) STATIC, /* FINAL OPTN:DFSOAER*/ 0000040
DERRID CHAR (8) INIT (’DERFORO1’) STATIC; /* ID FOR DFSOAER */ 0000041

/* DECLARE SEGMENT SEARCH AFGUMENT (SSA) - ORDER SEGMENT. */ 0000043
DECLARE 0000045
01 SSA007_GU_SE2OPDER, 0000047

02 SSA007_BEGIN CHAR (19) INIT (’SE2ORDER(FE2OGPEF =’), 0000048
02 SSA007_FE2OG2EF CHAR (6), 0000049
02 SSA007_END CHAR (1) INIT (’1’); 0000050

/* PROCESSING PORTION OF THE PROGRAM */ 0000052
SSACO7_FE2OGREF = ’XXXXXXX’; /* SET SSA VALUE */ 0000054
CALL PLITDLI (FOUR,GU_FUNC,.DB_PTR,IO_AREA, /* THIS CALL WILL */ 0000055

SSA007_GU_FE2ORDER); /* RETURN ’GE’ STAT */ 0000056
IF DlPCSTAT -- ’ ’ THEN /* CALL EROOR PRINT */ 0000057

CALL DFSOAER (DlFC,DERRID,IO_AREA,ERROPTl); 0000058
CALL DFSOAER (DlPC,DERRID,IO AREA,ERROPT2); /* FINAL CALL TO ERR*/ 0000059

/* RETURN TO CALLER. */ 0000065
END PE2PORD; 0000067
192 IMS Primer

19.5.1 Accessing a logical child in a physical database
When accessing a logical child in a physical DBD, you should remember the
layout of the logical child. It always consists of the logical parent concatenated
key (that is, all the consecutive keys from the root segment down to and including
the logical parent) plus the logical child itself: the intersection data (see Figure 66
on page 181). This is especially important when inserting a logical child. You will
also get an IX status code when you try to insert a logical child and its logical
parent does not exist (except at initial load time). This will typically happen when
you forget the LPCK in front of the LCHILD.

Note: In general, physical databases should not be used when processing
logical relationships.

19.5.2 Accessing segments in a logical database
The following considerations apply for each call function when accessing
segments in logical DBDs

19.5.2.1 Retrieve calls
These calls function as before with the same status codes. Remember, however,
that the concatenated segment always consists of the logical child segment plus,
optionally (dependent on the logical DBD), the destination parent segment (see
Figure 69 on page 185).

19.5.2.2 Replace calls
In general, these calls function the same as before. When replacing a
concatenated segment you may replace both the logical child segment and the
destination parent. Remember, however, that you never can change a sequence
field. The following sequence fields can occur in a concatenated segment (see
also:

• Destination parent concatenated key.

• Real logical child sequence field, (that is, the sequence of the physical twin
chain as defined for the real logical child). This field can (partially) overlap the
logical parent concatenated key.

• Virtual logical child sequence field, (that is, the sequence of the logical twin
chain as defined for the virtual logical child). This field can (partially) overlap
the physical parent concatenated key.

• The key of the destination parent itself.

If any of the above fields is changed during a replace operation, a DA status code
will be returned, and no data will be changed in the database.

19.5.2.3 Delete calls
In general, these calls function the same as before. If, however, you delete a
concatenated segment (either of the two versions), only the logical child and its
physical dependents (that is, the dependents of the real logical child) will be
deleted. the destination parent can be deleted only via its physical path. In other
words: “The delete is not propagated upwards across a logical relation.” You
can delete only those dependents of concatenated segments which are real
dependents of the logical child. Examples:
Application coding for IMS Database Manager 193

• If the logical DBD of Figure 23 on page 75, a PART segment was deleted, the
associated STOCK and DETAIL segments are deleted, too. However, the
associated CUSTOMER ORDER and SHIPMENT segments remain.

• If the logical DBD of Figure 23 on page 75, a CUSTOMER ORDER segment
was deleted, the associated DETAIL and SHIPMENT segments are deleted
too. However, the associated PART and, STOCK segments remain.

Notice the logical child (and its physical dependents) is always deleted whenever
one of its parents is deleted.

19.5.2.4 Insert calls
Whenever you insert a concatenated segment, the destination parent must
already exist in the database. You can provide the destination parent together
with the logical child in the IOAREA, but it is not used. Besides the normal status
codes, an IX status code is returned when the destination parent does not exist.

19.6 Processing with secondary indices

Access segments via a secondary index allows a program to process segments
in a order which is not the physical sequence of the database. One good example
of this is the ORDER segment. To process an order when only the Customer
order number is known, the ORDER segment can be access via the customer
order number. This is the simplest from of secondary index.

Another basic use for a secondary index is to provide a method of processing a
subset of the segments in a database without having to read the entire
database.An example of this would be to provide a secondary index on a Balance
owning field in the customer database. The secondary index database could be
defined to only contain those database records for which a non-zero balance is
owning.

19.6.1 Accessing segments via a secondary index
The format of the CALL parameters for accessing segments via a secondary
index are identical to those access through the primary path. The difference is in
the PCB coded in the PSB. The second PCB in the PSB in Figure 74 shows how
to define a process using the secondary index.

19.6.1.1 Retrieving segments
The same calls are used as before. However, the index search field, defined by
an XDFLD statement in the DBD will be used in the SSA for the get unique of the
root segment. It defines the secondary processing sequence.
194 IMS Primer

Figure 74. PSB with secondary index defined

After the successful completion of this get unique call, the PCB and ICAREA look
the same as after the basic GU of Figure 63 on page 179, except that the key
feedback area now starts with the customer name field.

When using the secondary processing sequence, consecutive get next calls for
the CUSTOMER ORDER segment will present the CUSTOMER ORDER
segments in customer name sequence.

If both the primary and the secondary processing sequence are needed in one
program, you should use two PCBs as shown in Figure 75.

Figure 75. GU call using a secondary index

19.6.1.2 Replacing segments
To replace segments in the indexed database a combination of get hold and
replace calls can be used as before. Again, no sequence fields may be changed.
The index search fields, however, can be changed. If an index search field is
changed, DL/I will automatically update the index database via a delete old and
insert new pointer segment.

*
* PSB with Secondary index PCB
*

PCB TYPE=DB,PROCOPT=G,
DBDNAME=BE2CUST,,KEYLEN=6

PCB TYPE=DB,PROCOPT=G,
DBDNAME=BE2CUST,,PROCSEQ=FE2CNAM,,KEYLEN=20

*
SENSEQ NAME=SE2PSCUST

PSBGENG,LANG=COBOL,PSBNAME=SE2PCUST,CMPAT=YES
END

77 GU-FUNC PICTURE XXXX VALUE ‘GUbb’

01 SSA002-GU-SE2PCUST.
02 SSA002-BEGIN PICTURE x(19) VALUE ‘SE2PCUSTb(FE2PCNAMb=’.
02 SSA002-FE2PCNAM PICTURE X(20).
02 SS1002-END PICTURE X VALUE ‘)’.

01 IOAREA PICTURE X(256).
--
MOVE CUSTOMER-NAME TO SSA002-FE2PCNAM.
CALL ‘CBLTDLI’ USING GU-FUNC,PCB-NAME,IOAREA,SSA002-GU-SE2PCUST.
--
STATUS CODES:

bb: succesfull call
GE: exceptional but correct condition

other: error condition
Application coding for IMS Database Manager 195

Note: When using a secondary processing sequence, this could result in the later
re accessing of a database record

19.6.1.3 Deleting segments
When using a secondary processing sequence, you cannot delete the index
target segment (that is, the root segment). If you have a need to do so, you
should use a separate PCB with a primary processing sequence.

19.6.1.4 Inserting segments
Again, when using a secondary processing sequence, you cannot insert the index
target segment. In all other cases, the ISRT call will function as before.

19.6.2 Secondary index creation
A secondary index can be created during initial load of the indexed database or
later. The secondary index database is created with the DL/I reorganization
utilities. No application program requirements.

19.7 Loading databases

Loading databases with information has some considerations for the application
program and the PSB used.

19.7.1 Loading a database
Basically the load program inserts segments into the database from some kind of
input. It builds the segments and inserts them in the database in hierarchical
order. Quite often the data to be stored in the database already exists in one or
more files, but merge and sort operations may be required to present the data in
the correct sequence.

The process of loading database is different than updating a database with
segments already in the it. A database must be initialized before it can be used
by most application programs. A database can be initialize in several ways:

• Data reloaded by the database recovery utility

• Data loaded by a database reload utility

• Data loaded by a program with the PROCOPT of L

Once the database is initialize it will remains so until it has been deleted and
redefined. Therefore is it possible to have an empty initialize database. A
database which is not empty can not be used by a PSB with a PROCOPT of L nor
can it be recovered or loaded with the reload utility.

If the database has no secondary indices or logical relationship, then the load
process is very straight forward. Any program with a PROCOPT of L can load it.
Once that program has completed and close the database, the database can then
be used by any program for read or update.

The loading of database with logical relationships and secondary indices are
discussed next.
196 IMS Primer

19.7.1.1 Loading a HIDAM database
When loading a HIDAM database initially, you must specify PROCPT=LS in the
PCB. Also, the database records must be inserted in ascending root sequence,
and the segment must be inserted in their hierarchical sequence.

19.7.1.2 Loading an HDAM database
When initially loading an HDAM database, you should specify PROCOPT=L in
the PCB. There is no need for DL/I to insert the database records in root key
order, but you must still insert the segments in their hierarchical order. For
performance reasons it is advantageous to sort the database records into
sequence. The physical sequence should be the ascending sequence of the
block and root anchor point values as generated by the randomizing algorithms.
This can be achieved by using a tool from the IMS/ESA System Utilities/Database
Tools. This tool provides a sort exit routine, which gives each root key to the
randomizing module for address conversion, and then directs SORT to sort on
the generated address + root key value. Status Codes for Database Loading

The status codes, as shown in Table 15, can be expected when loading basic
databases after the ISRT call:

Table 15. Database load status codes

Status code error routine
There are essentially two categories of error status codes: those caused by
application program errors and those caused by system errors. Sometimes,
however, a clear split cannot be made immediately.

This listing is not complete, but does contain all the status codes you should
expect using our subset of DL/I. You should refer to Appendix B of the “IMS
Application Programming Reference Manual,” if you should need a complete
listing of all possible status codes.

19.7.2 Loading databases with logical relationships
To establish the logical relationships during initial load of databases with logical
relationships, DL/I provides a set of utility programs. These are necessary
because the sequence in which the logical parent is loaded is normally not the
same as the sequence in which the logical child is loaded. To cope with this, DL/I
will automatically create a workflow whenever you load a database which
contains the necessary information to update the pointers in the prefixes of the
logically related segments.

Status Code Return Explanation

bb or CK Segment is inserted in database

LB the segment already exists in database

IC key field of segment is out of sequence

LD no parent has been inserted for this segment in the database

other error situation
Application coding for IMS Database Manager 197

Before doing so, the work file is sorted in physical database sequence with the
prefix resolution utility (DFSURG10). This utility also checks for missing logical
parents. Next, the segment prefixes are updated with the prefix update utility
(DFSURGPO). After this, the database (s) are ready to use. The above database
load, prefix resolution and update should be preceded by the prereorganization
utility (DFSURPRO). This utility generates a control data set to be used by
database load, DFSURG10 and DFSURGP). Figure 76 illustrates the process.

If both any of the databases involved in the logical relationship also has
secondary indices, then the process for loading a database with secondary
indices must be used as well. See Figure 78 for an illustration of the complete
process.

Figure 76. Database load with logical relationships

Notes:

1. You cannot use a logical DBD when initially loading a database (PROCOPT=L
(S) in the PCB).

2. You must load all database involved in the logical relationship and pass the
work files to the prefix resolution utility.

19.7.3 Loading a database with secondary indices
To load a database which has secondary indices the primary database must be
uninitialized as shown in Figure 77. IMS will extract the required information into
the work file to build the secondary index database(s).

Databases

DB

DB

Databases
DBDLIB

Prefix Resolution
DFSURG10

Prefix Update
DFSURGP0

Load Program
PROCOPT=L

Prereorg
DFSURPR0

RECONS

DBDLIB

DFSURWF3

DFSURWF1
198 IMS Primer

Figure 77. Database load with secondary indices

Unloaded index
datasets

Secondary Index databases

DB

Empty Secondary
Index databases

Databases

DBDLIB

Prefix Resolution
DFSURG10

Load Program
PROCOPT=L

Unload Secondary Index
DFSURUL0

Reload Secondary Index
DFSURRL0

Prereorg
DFSURPR0

RECONS

RECONS

DB

DB

DBDLIB

DFSURWF1

DFSURIDX
Application coding for IMS Database Manager 199

Figure 78. Database load with logical relationships and secondary indices

19.8 Batch checkpoint/restart

The batch checkpoint/restart facility of DL/I allows long running programs to be
restarted at an intermediate point in case of failure. At regular intervals (CHKP
calls) during application program execution, DL/I saves on its log data set,
designated working storage areas in the user’s program, the position of GSAM
databases, and the key feedback areas of non-GSAM databases.

For each checkpoint, a checkpoint ID (message DFS681I) will be written to the
MVS system console and to the job system output.

At restart, the restart checkpoint ID is supplied in the PARM field of the EXEC
statement of the job. DL/I will then reposition the GSAM databases and restore
the designated program areas. This is accomplished with a special restart call
(XRST) which must be the very first DL/I call in the program. At initial program
execution, the XRST call identifies the potential program areas to be
checkpointed by later CHKP calls.

Prefix Resolution
DFSURG10

Prefix Update
DFSURGP0

Load Program
PROCOPT=L

DFSURIDX

Unload Secondary Index
DFSURUL0

Reload Secondary Index
DFSURRL0

Unloaded index
datasets

Secondary Index databases

DB

Empty Secondary
Index databases DB

DB

Databases

DB

Databases

Prereorg
DFSURPR0

DBDLIB

RECONS

RECONS

RECONS

DBDLIB

DFSURWF1

DFSURWF3

DBDLIB
200 IMS Primer

19.8.1 Using the XRST and CHKP calls
To utilize the checkpoint/restart function of DL/I for batch programs, you should
consider the following guidelines:

1. All the data sets that the program uses must be DL/I databaseS. GSAM
should be used for sequential input and output files, including SYSIN and
SYSOUT. Any other file cannot be repositioned by DL/I and can result in
duplicate or lost output.

2. The GSAM output data sets should use DISP=(NEW,KEEP,KEEP) for the
initial run and DISP=(OLD,KEEP,KEEP) at restart (s).

3. SYSOUT should not be used directly. The output should be written to a GSAM
file (as in 2) and be printed with the additional jobstep. IEBGENER can be
used for this purpose.

4. The first call issued to DL/I must be XRST call. Its format will be discussed
later.

5. The frequency of the checkpoint call is your choice. A basic recommendation
is on checkpoint for every 50 to 500 update transactions. It is good practice to
program for an easy adjustment of this frequency factor.

6. After each checkpoint call, you must reposition yourself in the non-GSAM
databases by issuing a get unique call for each of those databases.
Repositioning of GSAM databases is done by DL/I, and you should proceed
with a get next (input) or an insert (output) call.

19.8.1.1 The restart call
Upon receiving the restart call (XRST), DL/I checks whether a checkpoint ID has
been supplied in the PARM field of the EXEC card or in the work area pointed to
by the XRST call. If no ID has been supplied, a flag is set to trigger storing of
repositioning data and user areas on subsequent CHKP calls (that is, DL/I
assumes that this is the initial program execution, not a restart).

If the checkpoint at which restart is to occur has been supplied, the IMS batch
restart routine reads backwards on the log defined in the //IMSLOGR DD card to
locate the checkpoint records. User program areas are restored.

The GSAM databases active at the checkpoint are repositioned for sequential
processing. Key feedback information is provided in the PCB for each database
active at the checkpoint. The user program must reposition itself on all
non-GSAM databases, just as it must do after taking a checkpoint.

The format of the XRST call is:

COBOL:

CALL ‘CBITDLI’ using call-func,IOPCB-name, I/O-area-len,work-area
[,1st-area-len, 1st rea,...,nth-area-len,nth-area}.

PL/I:

CALL PLITDLI (parmcount,call-func,IOPCB-name. I/O-area-len,work-ar
[,1st-area-len,1st-area,...,nth-area-len,nth-area]):
Application coding for IMS Database Manager 201

ASSEMBLER:

CALL
ASMTDLI,(call-func,IOPCB-name,I/O-area-len,work-area[,1st-area-len,1st-area
,...,nth-area-len,nth-rea]),

where:

parmcount

is the name of a binary fullword field containing the number of arguments
following. PL/I only.

call-func

is the name of a field which contains the call function ‘XRST’.

ICPCB-name

is the name of the I/O PCB or the “dummy” I/O PCB supplied by the
CMPAT option in PSEGEN (C1PCB in the sample programs).

I/O-area-len

is the name of the length field of the largest I/O area used by the user
program: must be a fullword. work-area is the name of a 12 byte work
area. This are should be set to blanks (X’40’) before the call and tested on
return. If the program is being started normally, the area will be
unchanged. If the program is being restarted from checkpoint, the ID
supplied by the user in that CHKP call and restart JCL will be placed in the
first 8 bytes. If the user wishes to restart from a checkpoint using the
method other than IMS Program Restart, he may use the XRST call to
reposition GSAM databases by placing the checkpoint ID in this area
before issuing the call. This ID is the 8-byte left-aligned, user supplied ID.

1st-are-len

is the name of a field which contains the length of the first area to be
restored: must be a fullword.

1st area

is the name of the first area to be restored

nth-are-len

is the name of a field which contains the length of the nth area to be
restored (max n=7): must be a fullword. nth-area is the name of the nth
area to be restored (max n=7).

Notes:

1. The number of areas specified on the XRST call must be equal to the
maximum specified on any CHKP call.

2. The lengths of the areas specified on the XRST call must equal to or larger
than the lengths of the corresponding (in sequential order) areas of any CHKP
call.

3. The XRST call is issued only once and it must be the first request made to
DL/I.

4. The only correct status code is bb: any other implies an error condition.
202 IMS Primer

5. All “area-len” fields in PL/I must be defined as substructures. The name of the
major structure should, however, be specified in the call.

Example:

DCL 1 i/c-area-len,
2 L NTH FIXED BIN (31) INT (length):

19.8.1.2 The checkpoint call
When DL/I receives a CHKP call from a program which initially issued a XRST
call, the following actions are taken:

• All database buffers modified by the program are written to DASD.

• A log record is written, specifying this ID to the OS/VS system console and job
sysout.

• The user-specified areas (for example, application variables and control
tables) are recorded on the DL/I log data set. They should be specified in the
initial XRST call.

• The fully-qualified key of the last segment processed by the program on each
DL/I database is recorded on the DL/I log dataset.

the format of the CHKP call is:

COBOL:

CALL ‘OBLTDLI’ using call-func,IOPCB-name, I/O-area-len,I/O=area
[,1st-area-len,1st-area,...,nth-area-len,nth-area]).

PL/I:

CALL PLITDLI [parmcount, call-func,IOPCB-name,I/O-area-len, I/O-area
[,1st-area-len,1st-area,...,nth-area-len,nth-area]):

ASSEMBLER:

CALL ASMTDLI, (call-func,IOPCB-name,I/O-area-len,I/O-area
[,1st-area-len,1st-area,...,nth-area-len,nth-area]):

parmcount

is the name of a binary fullword field containing the number of arguments
following: PL/I only.

call-func is the name of a field with the call function “CHKP’.

IOPCB-name is the name of the I/O PCB or dummy PCB in batch.

I/O-area-len

is the name of the length field of the largest I/O area used by the application
program: must be a fullword.

I/O-area

is the name of the I/O area. The I/O area must contain the 8 byte checkpoint
ID. This is used for operator or programmer communication and should
consist of EBCDIC characters. In PI/I, this parameter should be specified as a
pointer to a major structure, an array, or a character string.
Application coding for IMS Database Manager 203

Recommended format:

MMMMnnnn

MMMM= 4 character program identification

nnnn = 4 checkpoint sequence number, incremented at each CHKP call.

1st-area-len (optional)

is the name of a field that contains the length of the first area to checkpoint:
must be a fullword.

1st-area (optional)

is the name of the first area to checkpoint

nth-area-len (optional)

is the name of the field that contains the length of the nth area to checkpoint
(max n=7): must be a fullword.

nth-area (optional)

is the name of the nth area to checkpoint (maxn n=7)

Notes:

1. The only correct status code in batch is bb: any other specifies an error
situation.

2. Before restarting a program after failure, you always must first correct the
failure and recover your databases. You must reestablish your position in all
IMS database (except GSAM) after return from the checkpoint (that is, issue a
get unique).

3. All “area-len” fields in PL/I must be defined as substructures see the example
under note 5 of the XRST call.

4. Because the log tape is read forward during restart, the checkpoint ID must be
unique for each checkpoint.
204 IMS Primer

Part 5. IMS system adminstration

This part contains five chapters:

• A discussion of database recovery control (DBRC). Refer to Chapter 20,
“Database recovery control (DBRC)” on page 207.

• A discussion of RECON record types. Refer to Chapter 21, “RECON record
types” on page 221.

• A discussion of IMS logging. Refer to Chapter 22, “IMS logging” on page 239.

• A discussion of the IMS system generation process. Refer to Chapter 23, “IMS
system generation process” on page 245.

• A discussion of IMS security. Refer to Chapter 24, “IMS security overview” on
page 253.
© Copyright IBM Corp. 2000 205

206 IMS Primer

Chapter 20. Database recovery control (DBRC)

DBRC includes the IMS functions which provide IMS system and database
integrity and restart capability.

DBRC records information in a set of VSAM data sets called RECONs. Two of
these RECONs are a pair of VSAM clusters which work as a set to record
information. A third RECON can be made available as a spare. IMS normally
works with two active RECONs. If one becomes unavailable, the spare will be
activated if it is available.

IMS records the following information in the RECON:

• Log data set information

• Database data set information

• Event information

• Allocation of a database

• Update of a database

• Image copy of a database

• Abend of a subsystem

• Recovery of a database

• Reorganization of a database

• Archive of a OLDS data set

20.1 DBRC usage

There are three aspects to DBRC usage, as discussed below.

20.1.1 DBRC options
The first option is whether the DBRC function is active in address spaces
executing IMS (controlled by parameters on the IMSCTRL macro, and overrides
at execution), whether databases must be registered in the RECON (controlled
by FORCER PARM on RECON header) and the level of DBRC functions offers
(controlled by SHARECTL/RECOVCTL on RECON header).

1. DBRC is always active in an IMS control region (DBCTL/DCCTL/DBDC). It is
required for log archive management, at least. Two sub parameters on the
DBRC= parameter of the IMSCTL macro in the IMSGEN control DBRC usage
in other environments -

• FORCE - this forces DBRC usage in all other address spaces. It cannot be
overridden in the JCL. Any job attempting to run with DBRC=N abends.
There are also YES,NO options, but these are only valid for a Batch
IMSGEN, not a DBCTL IMSGEN, for DBCTL you must have DBRC support
generated (even if its not forced for batch).

• YES/NO - this sets the default for DBRC usage for batch execution, it can
be overridden at execution time on the DBRC EXEC parm (unless, of
course, you defined DBRC=FORCED).
Database recovery control (DBRC) 207

A BMP does not have a DBRC usage parameter, its always active in the
DBCTL it connects to.

The above parameters only control whether DBRC is active in an address
space, the level of functions available is controlled by parameters in the
RECON header.

2. The FORCER/NOFORCER option on the RECON header controls whether
database:hp2.Must:ehp2. be registered in the RECON.

• If NOFORCER is specified, databases may, or may not be registered in the
RECON. If a database is not registered in the RECON, and DBRC is
active, you get a warning message each time the database is opened.

• If FORCER is specified, then, if DBRC is active in the address space, all
databases must be registered in the RECON, if not DBRC rejects
authorization and the job abends (or PSB fails to schedule in the DBCTL,
the DBCTL stays up). There is not much point in using this if you plan to
run regularly with DBRC=N, as you end up with an incomplete record of
updates, which is unless for recovery purposes.

If a database is registered in the RECON, and you run a job with DBRC=N, the
next time you run a job with DBRC=Y a warning message is issued flagging
the fact the database has been accessed outside of DBRC control (normal
suggestion is to take an Image copy at that point).

3. The SHARECTL option on the RECON header controls the level of information
stored in the RECON (and the checks performed when you run a job).

• If RECOVCTL is set, then all online IMS logs, and all batch logs for jobs
that have executed DBRC=Y are recorded in the RECON. Additionally, if a
database is registered in the RECON, all allocations (online and by batch
jobs executing DBRC=Y), links to the corresponding logs, change
accumulations, image copies, reorganizations and recoveries are recorded
in the RECON. This gives you (providing all batch jobs execute DBRC=Y) a
complete history of DB access. You can then use DBRC to generate
recovery jobs. IMS version 6 does not support RECOVCTL. RECOVCTL is
available only in version 5.

• If SHARECTL is specified, you get all the above, but in addition DBRC will
also ensure only one address space access a database for update at any
one time (providing the database is registered, and all jobs run DBRC=Y).
It allows multiple accesses by jobs with read intent (PROCOPT=G), or one
updater, plus multiple access by read without integrity (PROCOPT=GO).
DBRC will also prevent other address spaces accessing a database that
has outstanding backout action required (after address space failure).

20.1.2 DBRC configurations
How much DBRC support you use depends, to some degree, on the expectations
placed upon the DBA for database recovery.

1. If a DBA is always expected to recover databases, then a fairly tight
configuration should be used.

IMS should be generated with DBRC usage forced in batch, and all databases
should be registered in the RECONs.
208 IMS Primer

A separate IMSGEN should be run, with DBRC not forced, and kept in a
library only accessible to Systems Programming/DBA for use as last resort to
correct things.

2. If the application support personnel can be trusted to take correct recovery
actions, and are prepared to lose databases to last backup if they become
corrupt, then a slightly looser set up can be used.

The IMSGEN does NOT have DBRC usage forced, but the default is DBRC Y.
Databases are defined in the RECON.

3. If databases are regularly copied around between environments, and DBRC is
causing problems with this, then the second option can be used, but the copy
databases not registered in the RECONs.

If they become corrupt, they are restored by copying again.

20.1.3 Database authorization
A DBRC sharing environment introduces a new concept of database
authorization. This process determines if a subsystem (IMS online or IMS batch)
can have access to the requested databases. DBRC authorizes or refuses to
authorize the databases depending on the current authorizations and the access
intent of the subsystem.

20.1.4 Access intent
Access intent is determined by DBRC when a subsystem tries to allocate a
database:

• For a batch job, DBRC uses the processing option (PROCOPT) of the PSB for
each database to determine the access intent. If the PSB has multiple PCBs
for the same database, the highest intent for that database is used.

• For an IMS DC online system, the ACCESS parameter of the DATABASE
macro sets the access intent.

There are four processing intent attributes. They are listed below in reverse order,
from the highest access intent (the most restrictive), to the lowest (the least
restrictive):

1. Exclusive (EX)

The subsystem requires exclusive access of the database and no sharing is
allowed regardless of the share options registered in DBRC.

• PROCOPT of L or xE (batch) (where x = A,D,G,I,D)

• ACCESS of Ex (online)

2. Update (UP)

The subsystem may update the database. Even if no updates actually take
place the database is held in update mode. Any logs created with actual
changes during this process are required for recovery or change
accumulation.

• PROCOPT of A,I,R,D (batch)

• ACCESS of UP online
Database recovery control (DBRC) 209

3. Read with integrity (RD)

The subsystem only reads the database but it also checks any enqueue or
lock held by other subsystems. It waits the lock to be released before
processing.

• PROCOPT of G (batch)

• ACCESS of RD (online)

4. Read without integrity (RO)

The subsystem only reads the database and it does not check any lock or
enqueue held by other subsystems.

• PROCOPT of GO (batch)

• ACCESS of GO (online)

20.2 RECON data sets

The RECON data set is the most important data set for the operation of DBRC
and data sharing. The RECON data set holds all resource information and event
tracking information used

The RECON data set can consist of one, two, or three data sets:

1. The original data set

2. The copy of the original data set

3. The spare data set

Important: The best solution, from an availability point of view, is to use all three
data sets. This is strongly recommended. Using three data sets for the RECON
causes DBRC to use them in the following way:

• The first data set is known as copy1. It contains the current information.
DBRC always reads from this data set, and when some change has to be
applied, the change is written database first to this data set.

• The second data set is known as copy2. It contains the same information
as the copy1 data set. All changes to the RECON data sets are applied
to this copy2 only after the copy1 has been updated.

• The third data set (the spare) is used in the following cases:

• A physical I/O error occurs on either copy1 or copy2.

• DBRC finds, when logically opening the copy1 RECON data set, that a
spare RECON has became available, and that no copy2 RECON data
set is currently in use.

• The following command is executed:

CHANGE.RECON REPLACE(RECONn)

When the third RECON data set is used, the remaining valid data set is
copied to the spare. When the copy is finished the spare becomes
whichever of the data sets was lost, missing or in error.

Note: From the RECON point of view, the copy1 and the copy2 are normally
identified by a 1 or a 2 in a field of the RECON header information.
210 IMS Primer

20.2.1 Database related information
A database and its associated data sets should only be defined in one
RECON data set.

The fundamental principle behind the RECON data set is to store all recovery
related information for a database in one place. It is not possible to use
multiple RECON data sets in the recovery processing for the same database.

20.2.2 Subsystem
An IMS subsystem can only be connected to one set of RECON data sets.

All databases that are accessed by IMS DC subsystems under the control of
DBRC must be registered in the RECON referenced by the online subsystem only
if the RECON has the FORCER option set on.

All batch subsystems that access any database accessed by the online
subsystem should reference the same RECONs referenced by the online
subsystem.

20.2.3 Database name
The database names (DBD names) defined in one RECON data set must all be
unique.

The database records, stored in the RECON data set, are registered with a key
based on the DBD name. Therefore, DBRC cannot be used to control both test
and production databases, using the same RECON data sets, unless some
naming convention is adopted.

The rule can be simplified as follows. More than one set of RECON data set is
necessary if all the following conditions are true:

1. Multiple versions of the same database exist (for example, test and
production).

2. The same DBD name is used for the different versions of the database.

3. More than one version of the databases can be used by only one can be
registered to DBRC in the RECON data set. The other are treated as not
registered (unless FORCER has been set in the RECON).

The application of the previous rules usually results in the need for at least two
different sets of RECON data sets, one shared between the production
subsystems and one for the test subsystems.

Note: On the INIT.DBDS command, which is used to create the database data set
record in the RECON, the user must supply the database data set name (DSN).
When IMS opens the database, DBRC checks the DSN against the name
registered in the RECON. If this name does not match, DBRC treats this
database as if it was not registered. In this case, the test database—with a DSN
different than the production database, even if with the same DBD name and data
set name—can coexist with the production environment, but not under the control
of the DBRC.
Database recovery control (DBRC) 211

20.2.4 RECON definition and creation
The RECON data sets are VSAM KSDSs. They must be created by using the
VSAM AMS utilities.

The same record size and CI size must be used for all the RECON data sets.

The RECON data sets should be given different FREESPACE values so that CA
and CI splits do not occur at the same time for both active RECON data sets.

For availability, all three data sets should have different space allocation
specifications. The spare data set should be at least as large as the largest
RECON data set. Figure 79 shows an example of the RECON data set definition
that was used to define the RECON for the hands-on.

Figure 79. Example of RECON data set definition

20.3 Initializing RECON data sets

After the RECON data sets are created, they must be initialized by using the
INIT.RECON command of the DBRC recovery control utility. This causes the
RECON header records to be written in both current RECON data sets.

The RECON header records must be the first records written to the RECON
data sets because they identify the RECON data sets to DBRC.

When the INIT.RECON command is used to initialize the RECON, specify
either the RECOVCTL parameter or the SHARECTL parameter to select either:

• Recovery control environment

• Share control environment

Once one of these environments has been selected, it applies to all databases.
IMS Version 6 only support the share control environment.

DELETE STIMS220.RECONB

SET LASTCC=0

DEFINE CLUSTER (NAME(STIMS220.RECONB) -
VOLUMES (SBV0l0) -
INDEXED -
KEYS (24 0) -
CYLINDERS C5 2) -
RECORDSIZE (128 32600) -
SPANNED -
FREESPACE (30 80) -
CISZ(4096) -
NOREUSE -
NERAS SPEED REPL IMBD -
UNORDERED -
SHAREOPTIONS (3 3)) -

INDEX (NAME(STIMS220.RECONB.INDEX)) -
DATA (NAME(STIMS220.RECONB.DATA))
212 IMS Primer

20.4 Allocation of RECON data sets to subsystems

To allocate the RECON data set to an IMS subsystem, the user must choose
one of the following two ways:

• Point to the RECON data sets by inserting the DD statements in the start-up
JCL for the various subsystems.

• Use dynamic allocation.

If a DD statement is specified for RECON, DBRC does not use dynamic
allocation. Otherwise, DBRC uses dynamic allocation.

With multiple subsystems sharing the same databases and RECON data sets,
dynamic allocation for both the RECON data sets and the associated databases
should be used. This ensures that:

• The correct and current RECON data sets are used.

• The correct RECON data sets are associated with the correct set of
databases.

It also allows recovery of a failed RECON data set, since DBRC dynamically
de-allocates a RECON data set if a problem is encountered with it.

To establish dynamic allocation, a special member naming the RECON data
sets must be added to IMS RESLIB or to an authorized library that is
concatenated to IMS RESLIB. This is done using the IMS DFSMDA macro. Figure
80 shows an example of the required macros for dynamic allocation of the
RECON data sets.

Figure 80. Dynamic allocation of RECON data sets

RECON data sets are always dynamically allocated with DISP=SHR specified.

When using multiple RECON data sets (for example, test and production), be
sure that each subsystem uses the correct RECON data set group. This can
be done by altering the SYSLMOD DD in the procedure IMSDALOC to place
the dynamic allocation parameter lists for the various RECON data set groups
in different IMS RESLIBs. The appropriate RESLIB or concatenated RESLIBs
must be included for each subsystem start-up JCL.

Important: When multiple processors are accessing the same RECON data set,
the dynamic allocation parameter lists must be kept synchronized in the IMS
RESLIBs being used by the different processors. This does not happen
automatically.

//DYNALL JOB..
//STEP EXEC IMSDALOC
//SYSIN DD *

DFSMDA TYPE=INITIAL
DFSMDA TYPE=RECON,DSNAME=PROD.RECON0l,

DDNAME=RECON1
DFSMDA TYPE=RECON,DSNAME=PROD.RECON02,

DDNAME=RECON2
DFSMDA TYPE=RECON,DSNAME=PROD.RECON03,

DDNAME=RECON3
Database recovery control (DBRC) 213

Important: The usage of dynamic allocation in some subsystems and JCL
allocation in others is not recommended.

20.5 Placement of RECON data sets

The placement of the RECON data sets in the DASD configuration is very
important. The primary rule is to configure for availability. This means, for
example, to place all three RECON data sets on:

• Different volumes

• Different control units

• Different channels

• Different channel directors

20.6 RECON data set maintenance

There are several procedures and commands that can be used to maintain
the RECON data set.

20.6.1 RECON backup
Operational procedures should be set up to ensure that regular backups of
the RECON data set are taken.

These backups should be performed using the BACKUP.RECON DBRC utility
command. The command includes a reserve mechanism to ensure that no
updating of the RECON takes place during the backup. If possible, the backup
should be taken when there are no subsystems active.

The backup copy is created from the copy1 RECON data set. The command to
create the backup copy invokes the AMS REPRO command, with its normal
defaults and restrictions. For instance, the data set that is receiving the
backup copy must be empty.

20.6.2 DELETE.LOG INACTIVE command
The only recovery related records in the RECON data set that are not
automatically deleted are the log records (PRILOG and LOGALL). These
records can be deleted using the DELETE.LOG INACTIVE command. This
command can be added to the job that takes a backup of the RECON data set.

A log is considered inactive when the following conditions are all true:

• The log volume does not contain any DBDS change records more recent
than the oldest image copy data set known to DBRC. This check is
performed on a database data set (DBDS) basis.

• The log volume was not opened in the last 24 hours.

• The log has either been terminated (nonzero stop time) or has the ERROR
flag in the PRILOG and SECLOG record set on.
214 IMS Primer

20.6.3 LIST.RECON STATUS command
Regular use should be made of the LIST.RECON STATUS command to
monitor the status of the individual RECON data sets.

Using the LIST.RECON command produces a formatted display of the
contents of RECON. The copy1 RECON data set is used as a source. DBRC
ensures that the second RECON data set contains the same information as
the first RECON data set.

The optional parameter STATUS can be used to request the RECON header
record information and the status of all RECON data sets. The use of this
parameter suppresses the listing of the other records.

This command should be executed two or three times a day during the
execution of an online system, to ensure that no problems have been
encountered with these data sets.

20.7 RECON reorganization

In addition to the regular backups, procedures to monitor utilization of the
RECON data sets space should be put in place.

Since all current levels of VSAM support CI reclaim (and DBRC does not turn
it off), the requirement to reorganize RECONs to reclaim space has
diminished. For instance, when all the records in a CI have been erased, the
CI is returned to the free CI pool in the CA. Some users have decided to
perform a monthly reorganization.

A plan for reorganizing the RECON data sets to reclaim this space on a
regular basis must be considered. The RECON data sets can be reorganized
while the IMS online systems are active

20.8 Reorganizing RECON data sets

The RECON data sets can be reorganized easily and quickly with the use of
a few DBRC and AMS commands. The AMS REPRO command copies one
RECON data set to another, reorganizing it during the process. This command,
combined with a DELETE and a DEFINE of the RECON data sets, is enough to
complete a reorganization.

Additional information to consider when designing the RECON reorganization
procedures, related to the IMS DC status, are as follows:

• If the online system is active:

A reorganization of the RECON data sets should be scheduled:

• During a period of low RECON activity.

• When no BMPs are running.

• A LIST.RECON STATUS command must be issued from each online
system which uses the RECON data sets, after the CHANGE.RECON
REPLACE command is issued, in order to de-allocate the RECON before
deleting and defining it again.

• If the online system is not active:
Database recovery control (DBRC) 215

A reorganization of the RECON data sets should be scheduled:

• After a BACKUP.RECON has been taken.

• When no subsystems are allocating the RECON data sets.

20.9 Recreating RECON data sets

The RECON data sets may need to be recreated, for instance:

• In a disaster recovery site

• After the loss of all the RECON data sets when no current backup is available

Recreating the RECON can be a long and slow process. When designing
procedures to handle this process, there are two basic alternatives:

• Restore the RECON from the last backup (if available) and update it to the
current status required.

• Recreate and re initialize the RECON data sets.

Both of these procedures have advantages and disadvantages. Which alternative
is best suited for an installation depends on:

• The time frame in which the system must be recovered and available

• The point-in-time to which it is acceptable to recover

• The type of processing environment (24 hours online availability or batch)

Further details for restoring RECON data sets:

Before deciding to recreate the RECON data sets from scratch, the following
details must be well understood:

• GENJCL functions are normally used to create procedures.

Without the RECON information, recovery procedures cannot be generated
until the RECON information is correct. Likewise, image copy procedures
cannot be generated until the database and image copy data set information
has been recreated.

• Recreation of DB, DBDS, DBDSGRP and CAGRP information must be
available.

If the original INIT commands were retained, then the registration can be
done easily. Changes made with CHANGE commands must somehow be
recorded and reapplied.

The DBDSGRP and CAGRP information is critical because any recovery
image copy or change accumulations JCL generated can cause serious
problems if incorrectly specified.

• Volume serial information is available.

Unless cataloged data sets are used, the volume serials of all image copy and
log data sets must be corrected.

• Image copy time must be adequate.

If the databases are restored with non-IMS utilities (pack restores), then the
time required to take an image copy or to notify DBRC of the image copy data
sets, also restored with pack restores, must be considered.
216 IMS Primer

In summary:

• For those installations using only Log control, it is probably easier to
re initialize the RECON data sets and reapply the information than to
update the RECON with the changed information.

• For those installations using Recovery or Share control where the
physical restoration of the databases is done outside of the DBRC
control, it might be easier to re initialize the RECON data sets.

• For those installations which require the online subsystem to be warm
restarted, the only alternative is to use the latest backup of the RECON
and to bring all information current to the required point-in-time.

20.10 PRILOG record size

One PRILOG record is created for each subsystem execution. This record
must contain all the information about the log data sets created during the life
of this subsystem.

The record size can be large if spanned records are used; however, the following
limitations should be considered before using spanned records:

• The maximum size of a record to be used by the VSAM REPRO command
is 32,760 bytes if the output is a non-VSAM data set.

• RECON backup and transfer to off-site storage is normally performed with a
sequential data set.

• PRILOG records are only deleted when every RLDS and SLDS data set
within that record is no longer required.

This is a problem only for those installations which have a high volume of log
data sets and the requirement for a continuous operation environment.

To calculate the size of the maximum required PRILOG record, the formula in
Figure 81 can be used.

Figure 81. PRILOG record size calculation formula

S = 52 + (120 D) + (32 V)

where:

S = the size for the PRILOG/PRISLDS record in bytes

52 = the required prefix of the PRILOG record

120 = the required number of bytes for each SLDS/RLDS entry

D = the number of SLDS/RLDS data sets created from archive for this
execution of the subsystem

32 = the required number of bytes for each volume that contains
SLDS/RLDS data sets

V = the number of volumes that can contain SLDS/RLDS data sets
Database recovery control (DBRC) 217

For example, assume that an installation has the following characteristics:

• An online subsystem is running for 23 hours a day.

• The subsystem fills up an OLDS every 30 minutes.

• Each OLDS is archived to one RLDS and one SLDS.

• There are 2 volumes that can contain RLDS or SLDS data sets.

• There are 46 RLDS and 46 SLDS data sets each day.

Using the formula in Figure 82, the size of the PRILOG record for this example is:

Figure 82. PRILOG record size calculation formula example 1

This is well under the maximum size, so there is no problem with this subsystem.

Assume, however, that the environment changes to allow the IMS to run 24 hours
a day for 6 days before being brought down. There are 48 RLDS and 48 SLDS
data sets each day, and a total of 576 for the 6 days. The calculation now
becomes like Figure 83.

Figure 83. PRILOG record size calculation formula example 2

This is now over the suggested maximum record size. One solution is to
switch to archiving after two OLDS are full. This reduces the number of RLDS
and SLDS data sets by half. This brings the PRILOG record size well below
the maximum size.

S = 52 + (80 D) + (14 V)

= 52 + (80 92) + (14 2)

= 52 + (7360) + (28)

S = 7440

S = 52 + (80 D) + (14 V)

= 52 + (80 576) + (14 2)

= 52 + (46,080) + (28)

S = 46,160
218 IMS Primer

20.11 Summary of recommendations for RECON data sets

• Use three RECON data sets — two current and one spare.

• Define the three RECON data sets with different space allocations.

• Put the RECON data sets on different devices, channels, and so on.

• Use dynamic allocation.

• Do not mix dynamic allocation and JCL allocation.

• Define the RECON data sets for AVAILABILITY, but keep performance
implications in mind.
Database recovery control (DBRC) 219

220 IMS Primer

Chapter 21. RECON record types

This chapter lists the record types that can be found in the RECON data sets, and
for each record, explains its purpose and its relationship with other record types.

The relationship is never imbedded in the records like a direct pointer, but can be
built by DBRC using the information registered in each record type. This allows
constant access of the related records through their physical keys.

21.1 RECON records

There are six general classes of RECON record types:

1. Control records

2. Log records

3. Change accumulation records

4. Database data set (DBDS) group records

5. Subsystem records

6. Database records

21.1.1 Control records
Control records are used for controlling the RECON data set and the default
values used by DBRC. This class of records includes:

• RECON Header record

• RECON header extension record

21.1.2 Log records
Log records are used for tracking the log data sets used by all subsystems. This
class of records includes:

• PRILOG and SECLOG records (including interim log records)

• LOGALL record

• PRIOLD and SECOLD records (including interim OLDS records)

• PRISLDS and SECSLDS records (including interim SLDS records)

21.1.3 Change accumulation records
Change accumulation records are used for tracking information about change
accumulation groups. This class of records includes:

• Change accumulation group records

• Change accumulation execution records

• Available change accumulation data set records

21.1.4 DBDS group records
Database Data Set Group (DBDSGRP) records are used to define the members
of a DBDS group. The only record type in this class is a DBDS group record.
© Copyright IBM Corp. 2000 221

21.1.5 Database records
Database records are used to track the state of:

• Databases

• DBDSs

• Resources required for recovery of DBDSs

This class of records includes:

• Database record

• AREA authorization record

• DBDS record

• Allocation record

• Image copy record

• Reorganization record

• Recovery record

21.2 RECON header record

The header is the first record registered in the RECON data set by the
INIT.RECON command as shown in Figure 84.

Figure 84. HEADER record

The header identifies the data set as a RECON data set and keeps information
related to the whole DBRC system. It also controls the concurrent update of the
RECON data set by several subsystems. The information kept in this record is
read when the RECON is opened and the values are placed in various control
blocks. Hence, the default values are accessible to other DBRC routines without
additional I/O operations to the RECON data set.

The RECON header record is related to the RECON header extension record.

21.3 RECON header extension record

The RECON header extension record identifies the individual RECON data sets.
It is also used in the synchronization process of the two primary RECON data
sets. It is created by the INIT.RECON command, together with the RECON
header record.

HEADER
EXTENSION

HEADER
222 IMS Primer

The RECON header extension record is related to the RECON header record, as
shown in Figure 85.

Figure 85. HEADER RECON information

21.4 DB record

The Database (DB) record describes a database. See Figure 86.

Figure 86. DB record

There is one DB record in the RECON data set for each database that has been
registered to DBRC through the use of the INIT.DB command.

A DB record is deleted when the DELETE.DB command is used. After use of
DELETE.DB, all DBDS records related to the particular DB record are also
deleted.

A DB record includes:

• Name of the DBDS for the database

• Share level specified for the database

• Database status flags

RECON
RECOVERY CONTROL DATA SET, IMS/ESA V6R1 COEXISTENCE ENABLED
DMB#=27 INIT TOKEN=99181F1848059F
FORCER LOG DSN CHECK=CHECK17 STARTNEW=NO
TAPE UNIT=3490 DASD UNIT=3390 TRACEOFF SSID=IMSY
LIST DLOG=NO CA/IC/LOG DATA SETS CATALOGED=YES
LOG RETENTION PERIOD=00.001 00:00:00.0

TIME STAMP INFORMATION:

TIMEZIN = %SYS

OUTPUT FORMAT: DEFAULT = LOCORG NONE PUNC YY
CURRENT = LOCORG NONE PUNC YY

-DDNAME- -STATUS- -DATA SET NAME-
RECON1 COPY1 IMS.SJIMSY.RECON1
RECON2 COPY2 IMS.SJIMSY.RECON2
RECON3 SPARE IMS.SJIMSY.RECON3

DB

SUBSYS DBDS

DB
RECON record types 223

• Current authorization usage

A DB record is symbolically related to:

• The DBDS record for each database data set

• The SUBSYS record for each subsystem currently authorized to use the
database.

See Figure 87 below.

Figure 87. DB information

21.5 DBDS record

The Database Data Set (DBDS) record describes a database data set in Figure
88. There is a DBDS record in the RECON data set for each database data set
that has been defined to the DBRC using the INIT.DBDS command.

Figure 88. DBDS record

A DBDS record is deleted from RECON with the DELETE.DBDS or the
DELETE.DB command.

The DBDS record includes:

• Data set name

• DD name for the data set

• DBD name of the database

• Data set, database organization

• Status flags for the data set

• Information related to image copy or change accumulation

DB
DB DBD=BE3PARTS DMB#=24 TYPE=IMS

SHARE LEVEL=1 GSGNAME=**NULL** USID=0000000001
AUTHORIZED USID=0000000000 RECEIVE USID=0000000000 HARD USID=0000000000
RECEIVE NEEDED USID=0000000000
FLAGS: COUNTERS:

BACKOUT NEEDED =OFF RECOVERY NEEDED COUNT =0
READ ONLY =OFF IMAGE COPY NEEDED COUNT=1
PROHIBIT AUTHORIZATION=OFF AUTHORIZED SUBSYSTEMS =0
RECOVERABLE =YES HELD AUTHORIZATION STATE =0

EEQE COUNT =0
TRACKING SUSPENDED =NO RECEIVE REQUIRED COUNT =0
OFR REQUIRED =NO

-

DBDS

ALLOC REORG RECOV DB CAGRP AAUTHIC
224 IMS Primer

• Name of the JCL member to be used for GENJCL.IC or GENJCL.RECOV.

A DBDS record has the following relationship to other records:

• DB record for the database to which the data set belongs

• CAGRP record for the change accumulation group to which the database data
set belongs (when a change accumulation group has been defined)

• ALLOC, IC, REORG, RECOV, AAUTH records.

See Figure 89 below.

Figure 89. DBDS information

21.6 SUBSYS record

The Subsystem (SUBSYS) record informs DBRC that a subsystem is currently
active, as shown in Figure 90.

Figure 90. SUBSYS record

A SUBSYS record is created any time a subsystem signs on to DBRCA.

A SUBSYS record is deleted when:

• The subsystem terminates normally

• The subsystem terminates abnormally, but without any database updates

• DBRC is notified of the successful completion of the subsystem recovery
process (IMS emergency restart or batch backout).

The SUBSYS record includes:

DBDS
DSN=IMS.SJIMSY.BE3PARTS TYPE=IMS
DBD=BE3PARTS DDN=BE3PARTS DSID=001 DBORG=HDAM DSORG=VSAM
CAGRP=**NULL** GENMAX=10 IC AVAIL=0 IC USED=0 DSSN=00000000
NOREUSE RECOVPD=0
DEFLTJCL=PARTDFLT ICJCL=ICJCL OICJCL=OICJCL RECOVJCL=PARTRECV
RECVJCL=ICRCVJCL
FLAGS: COUNTERS:
IC NEEDED =ON
RECOV NEEDED =OFF
RECEIVE NEEDED =OFF EEQE COUNT =0

SUBSYS

PRIOLDS DBPRISLDS PRILOG
RECON record types 225

• ID of the subsystem

• Start time of the log

• Subsystem status flags

• DBDS name for each database currently authorized to the subsystem.

A symbolic relationship exists with the following record types:

• PRILOG record for the log that the subsystem is creating (or PRIOLD or
PRISLDS depending on the type of subsystem)

• DB record for each database currently authorized to the subsystem.

See Figure 91.

Figure 91. SUBSYS information

21.7 DBDSGRP record

The Database Data Set Group (DBDSGRP) record describes a DBDS group, as
shown in Figure 92.

Figure 92. DBDSGRP record

The DBDSGRP is created with the use of the INIT.DBDSGRP command.

It is deleted with the use of the DELETE.DBDSGRP command.

The DBDSGRP record includes:

• DBDSGRP name

• Name of all the DBDSs for the databases defined in the group

SSYS
SSID=IMSY LOG START=99.207 14:05:48.7
SSTYPE=ONLINE ABNORMAL TERM=OFF RECOVERY STARTED=NO BACKUP=NO
TRACKED=NO TRACKER TERM=OFF SHARING COVERED DBS=NO
IRLMID=**NULL** IRLM STATUS=NORMAL GSGNAME=**NULL**

AUTHORIZED DATA BASES/AREAS=4 VERSION=6.1
ENCODED

-DBD- -AREA- -LEVEL- -ACCESS INTENT- -STATE-
BE3PARTS **NULL** 1 UPDATE 6
BE3PSID1 **NULL** 1 UPDATE 6
BE3ORDER **NULL** 1 UPDATE 6
BE3ORDRX **NULL** 1 UPDATE 6

DBDBGRP

DB DBDS
226 IMS Primer

• DD name for all the DBDS of the databases defined in the group.

The DBDSGRP record is symbolically related to each:

• DB record defined in the group

• DBDS record defined in the group.

See Figure 93.

Figure 93. DBDSGRP information

21.8 CAGRP record

The Change Accumulation Group (CAGRP) record describes a change
accumulation group as shown in Figure 94. Each CAGRP record lists up to 1024
DBDSs whose change records are accumulated together during an execution of
the CAGRP utility.

Figure 94. CAGRP record

The CAGRP record is created when the INIT.CAGRP command is used to define
the CAGRP to DBRC.

The CAGRP record is deleted when the DELETE.CAGRP command is used. This
command also deletes all the CA records related to this particular CAGRP record.

The CAGRP record includes:

• CAGRP name

• DBDS name and the DD name for each DBDS belonging to the CAGRP

• Information related to the CA records

• Skeletal JCL name to be used when the GENJCL.CA command is used

DBDSGRP
GRPNAME=DBGGRP1 #MEMBERS=4 -DBD- -DDN/AREA-

BE3PARTS BE3PARTS
BE3PSID1 BE3PSID1
BE3ORDER BE3ORDER
BE3ORDRX BE3ORDRX

DB

DBDS CA

CAGRP
RECON record types 227

The CAGRP record in Figure 95 below is symbolically related to:

• DBDS record for each member of the CAGRP

• CA records each describing a change accumulation output data set (either
used or only pre-allocated).

Figure 95. CAGRP information

21.9 CA record

The Change Accumulation (CA) record in Figure 96, describes a change
accumulation data set. There is a CA record for each used change accumulation
output data set and one for each change accumulation output data set predefined
to DBRC but not yet used.

Figure 96. CA record

The INIT.CA command is used to predefine a change accumulation data set to
DBRC when the REUSE parameter has been chosen on the INIT.CAGRP
command.

The DELETE.CA command (dealing with a single CA record) or the
DELETE.CAGRP command (dealing with all the CA records related to a given
CAGRP record) can delete the CA records.

The CA record includes:

• Name of the CAGRP to which it belongs

• Data set name of the change accumulation output data set and the volume
serial information

• List of purge times for each of the logs input to the change accumulation.

CAGRP
GRPNAME=DBGCA GRPMAX=3 CA AVAIL=0 CA USED=1
NOREUSE CAJCL=DBGCA DEFLTJCL=**NULL**

#MEMBERS=4 -DBD- -DDN-
BE3PARTS BE3PARTS
BE3PSID1 BE3PSID1
BE3ORDER BE3ORDER
BE3ORDRX BE3ORDRX

CAGRP

CA
228 IMS Primer

The CA record in Figure 97 below, is symbolically related to the CAGRP record to
which it belongs.

Figure 97. CA information

21.10 PRILOG/SECLOG record

The Primary Recovery Log (PRILOG) record or the Secondary Recovery Log
(SECLOG) record in Figure 98, describes a log RLDS created by an IMS DC or
CICS/OS/VS online system, a batch DL/I job, or the archive utility.

Figure 98. PRILOG/SECLOG record

A PRILOG record is created, together with a LOGALL record, whenever a log is
opened. If the subsystem is an IMS batch job and dual log is in use, a SECLOG
record is also created.

A PRILOG record is deleted in the following cases:

• The command DELETE.LOG INACTIVE deletes all the log records no longer
needed for recovery purposes.

• The command DELETE.LOG TOTIME deletes all the inactive log records
older than the specified time.

• The command DELETE.LOG STARTIME deletes a particular log record.

CA
DSN=IMS.SJIMSY.DBG.CALOG.G000lV00 FILE SEQ=1
CAGRP=DBGCA UNIT=3400
STOP = 99.207 11:22:48.9 VOLS DEF=1 VOLS USED=1

VOLSER=STIMS5
RUN = 99.207 11:24:17.6

-DBD- -DDN- -PURGETIME- -CHG-CMP- -LSN- -DSSN-
BE3PARTS BE3PARTS 99.207 11:11:50.5 YES YES 000000000000 00000003
BE3PSID1 BE3PSID1 99.207 11:12:06.6 NO YES 000000000000 00000000
BE3ORDER BE3ORDER 99.207 11:12:26.2 YES YES 000000000000 00000003
BE3ORDRX BE3ORDRX 99.207 11:12:42.9 YES YES 000000000000 00000003

DB

LOGALL SUBSYS

PRILOG

SECLOG
RECON record types 229

The PRILOG (SECLOG) record in Figure 99 below is symbolically related to:

• The LOGALL record for the same log

• The SUBSYS record for the subsystem creating the log (primary or dual) when
the subsystem is active

Figure 99. PRILOG information

21.11 PRISLDS/SECSLDS record

The Primary System Log (PRISLDS) record or the Secondary System Log
(SECSLDS) record in Figure 100 describes a system log SLDS created by an
IMS DC online system.

Figure 100. PRISLDS/SECLDS record

PRISLDS record is created, along with a LOGALL record, whenever a system log
is opened. A SECSLDS record can be created at archive time.

A PRISLDS record is deleted in the following cases:

• The command DELETE.LOG INACTIVE deletes all the log records no longer
needed for recovery purposes.

• The command DELETE.LOG TOTIME deletes all the inactive log records
older than the specified time.

• The command DELETE.LOG STARTIME deletes a particular log record.

PRILOG
START = 99.207 11:14:43.9* STOP = 99.207 11:19:55.3
SSID=BATCHJ1 #DSN=1 IMS

DSN=IMS.SJIMSY.DBG.B0lLOG.G0003V00 UNIT=3400
START = 99.207 11:14:43.9 STOP = 99.207 11:19:55.3
FILE SEQ=0001 #VOLUMES=0001 -VOLSER- -STOPTIME-

TOTIMS1 99.207 11:19:55.3

DB

LOGALL SUBSYS

PRISLDS

SECSLDS
230 IMS Primer

The PRISLDS (SECSLDS) record in Figure 101 below is symbolically related to:

• The LOGALL record for the same log

• The SUBSYS record for the subsystem creating the log (primary or dual) when
the subsystem is active

Figure 101. PRISLDS information

21.12 PRIOLD/SECOLD record

The Primary OLDS (PRIOLD) record and the Secondary OLDS (SECOLD) record
in Figure 102 describe the IMS DC Online Data Sets (OLDS) defined for use.
Whenever an OLDS is defined to IMS DC, the PRIOLD record is updated. If IMS
dual logging is in use, the SECOLD record is also updated. The PRIOLD
(SECOLD) record is deleted by the DELETE.LOG command.

Figure 102. PRIOLDS/SECOLDS record

The PRIOLD (SECOLD) record in Figure 103 is symbolically related to the
SUBSYS record for the subsystem using the OLDS (primary or dual).

PRISLD
START = 99.207 12:41:15.3* STOP = 99.207 13:03:26.1
SSID=I220 #DSN=1

DSN=IMS.SJMISY.SLDS.G0003V00 UNIT=3400
START = 99.207 12:41:15.3 STOP = 99.207 13:03:26.1
FILE SEQ=0001 #VOLUMES=0001 - VOLSER- -STOPTIME-

TOTIMS1 99.207 13:03:26.1

DB

SUBSYS

PRIOLDS

SECOLDS
RECON record types 231

Figure 103. PRIOLD/SECOLD information

21.13 LOGALL record

The Log Allocation (LOGALL) record in Figure 104 lists the DBDSs for which
database change records have been written to a particular log.

Figure 104. LOGALL record

A LOGALL record is created whenever a PRILOG record is created.

A LOGALL record is deleted from RECON whenever its corresponding PRILOG
record is deleted.

PRIOLD
SSID=I220 # DD ENTRIES=3

DDNAME=DFSOLP02 DSN=STIMS220.OLP02
START = 88.319 18:46:13.6 STOP = 88.319 19:01:57.0
STATUS=ARC COMPLT FEOV=NO AVAIL
PRILOG TIME=88.319 18:39:58.7 ARCHIVE JOB NAME=ST220ARC

DDNAME=DFSOLP01 DSN=STIMS220.OLP01
START = 88.321 17:24:41.8 STOP = 88.321 17:27:33.3
STATUS=ARC COMPLT FEOV=NO AVAIL
PRILOG TIME=88.321 17:15:53.9 ARCHIVE JOB NAME=ST220ARC

DDNAME=DFSOLP00 DSN=STIMS220.OLP00
START = 88.327 12:41:15.3 STOP = 88.327 13:03:26.1
STATUS=ARC COMPLT FEOV=NO AVAIL
PRILOG TIME=88.327 12:41:15.3 ARCHIVE JOB NAME=ST220ARC

SECOLD
SSID=I220 # DD ENTRIES=3
DDNAME=DFSOLS02 DSN=STIMS220.OLS02
START = 88.319 18:46:13.6 STOP = 88.319 19:01:57.0

AVAIL

PRILOG TIME=88.319 18:39:58.7
·
DDNAME=DFSOLS01 DSN=STIMS22O.0LSO1
START = 88.321 17: 24:41.8 STOP = 88.321 17:27:33.3

AVAIL
PRILOG TIME=88.321 17:15:53.9

DDNAME=DFSOLS00 DSN=STIMS220.OLS00
START = 88.327 12:41:15.3 STOP = 88.327 13:03:26.1

AVAIL
PRILOG TIME=88.327 12:41:15.3

CAGRP

LOGALL

ALLOC PRISLDS
232 IMS Primer

The LOGALL record contains a list of the names of DBDSs that have change
records on the log. There is a one-to-one correspondence between entries in this
list and ALLOC records. Entries are added in this list when ALLOC records are
created and deleted when ALLOC records are erased. When there are no more
ALLOC records, this list is empty and the log is no longer needed for future
recovery.

The LOGALL record in Figure 105 below is symbolically related to:

• The ALLOC record for each of the entry in the LOGALL record

• The PRILOG record for the same recovery log

• The PRISLDS record for the same system log

Figure 105. LOGALL information

21.14 ALLOC record

The Allocation (ALLOC) record in Figure 106 shows that a DBDS has been
changed, and that database change records have been written to a particular log.

Figure 106. ALLOC record

An ALLOC record is created for a DBDS when a subsystem, signed on to DBRC,
updates that DBDS for the first time. The ALLOC record, if still active when the
need for recovery arises, shows that the related log must be included in the
recovery process.

LOGALL

START = 99.207 11:14:43.9*
DBDS ALLOC=4 -DBD- -DDN- -ALLOC-

BE3PARTS BE3PARTS 1
BE3PSID1 BE3PSID1 1
BE3ORDER BE3ORDER 1
BE3ORDRX BE3ORDRX 1

DB

DBDS LOGALL

PRILOG

ALLOC
RECON record types 233

The ALLOC record is deleted when its DEALLOC time-stamp becomes older than
the oldest image copy registered to DBRC for the DBDS.

The ALLOC record in Figure 107 is symbolically related to:

• The DBDS record for the DBDS to which the ALLOC record belongs

• The LOGALL record for the log that the ALLOC record identifies

• The PRILOG record through the LOGALL record

Figure 107. ALLOC information

21.15 IC record

The Image Copy (IC) record in Figure 108 describes an image copy output data
set.

Figure 108. IC record

This record can be created:

• Automatically, when the image copy utility is executed to create a standard
image copy

• With the NOTIFY.IC command, when a standard image copy has been created
with DBRC = NO

• With the NOTIFY.UIC command, when another nonstandard image copy has
been created

• In advance, and reserved for future use with the INIT.IC command, when the
related DBDS record has the REUSE option

• By the HISAM reload utility, which creates an IC record pointing to the unload
data set if the REUSE option is not being used for the DBDS under reload.

This record is deleted when the maximum image copy generation count is
exceeded and its time-stamp is beyond the recovery period.

ALLOC
ALLOC = 99.207 11:20:48.5 START = 99.207 11:20:40.4

DSSN=00000003

ALLOC
ALLOC = 99.207 12:56:53.0 START = 99.207 12:41:15.3
DEALLOC = 99.207 12:59:10.3 DSSN=00000004

DBDS

IC
234 IMS Primer

An option available with the image copy utility allows the user to create two
copies of the same IC, referred to as image copy-1 and image copy-2. Both
copies are described by the IC record.

The IC record is symbolically related to the DBDS record for the DBDS to which it
belongs. See Figure 109 below.

Figure 109. IC information

21.16 REORG record

The Reorganization (REORG) record in Figure 110 informs DBRC that a
reorganization of a particular DBDS has taken place.

Figure 110. REORG record

With this information, DBRC will not allow recovery operations beyond the
time-stamp of this reorganization.

The REORG record is created when:

• A HISAM or HDAM reload utility is successfully executed

• A prefix update utility is executed

The REORG record is deleted when its creation time-stamp is older than the last
IC associated with the database data set.

The REORG record in Figure 111 is symbolically related to the DBDS record for
the database data set to which it belongs.

Figure 111. REORG information

IMAGE
RUN = 99.207 13:49:10.5 * RECORD COUNT =81
STOP = 00.000 00:00:00.0 BATCH USID=0000000001

IC1
DSN=IMS.SJIMSY.BE3PARTS.BKUP.G0001V00 FILE SEQ=0001
UNIT=3390 VOLS DEF=0001 VOLS USED=0001

VOLSER=TSMS12

DBDS

REORG

REORG
RUN = 99.20911:51:35.1*
RECON record types 235

21.17 RECOV record

The Recovery (RECOV) record in Figure 112 informs DBRC that the recovery of a
particular DBDS has taken place. With this information, DBRC knows when a
time-stamp recovery has been performed.

Figure 112. RECOV record

The RECOV record is created when the IMS DB recovery utility is successfully
executed.

A RECOV record is erased when its creation time-stamp is found to be older than
the oldest IC record associated with the DBDS.

The RECOV record in Figure 113 below is symbolically related to the DBDS
record for the database data set to which it belongs.

Figure 113. RECOV information

21.18 AAUTH record

The Authorization (AAUTH) record in Figure 114 indicates the sharing status of a
Fast Path Database Area.

Figure 114. AAUTH record

It is symbolically related to the DBDS record for the DBDS to which it belongs.

DBDS

RECOV

RECOV
RUN = 99.209 12:24:15.3*

DBDS

AAUTH
236 IMS Primer

21.19 Interim log records

During the DUP phase of the IMS log recovery utility DFSULTRO, interim log
records are created for the RECON data set. All these records are temporary
records and are deleted when:

• The REP phase of the utility successfully completes

• The DUP phase resolves all errors

These interim log records are as follows:

• IPRILOG Interim primary recovery log record

• ISECLOG Interim secondary recovery log record

• IPSLDS Interim primary system log record

• ISSLDS Interim secondary system log record

• IPRIOLD Interim primary OLDS record

• ISECOLD Interim secondary OLDS record
RECON record types 237

238 IMS Primer

Chapter 22. IMS logging

During IMS execution, all information necessary to restart the system in the event
of hardware or software failure is recorded on a system log data set.

The following critical system information is recorded on the logs:

• The receipt of an input message in the input queue

• The start of an MPP/BMP

• The receipt of a message by the MPP for processing

• Before and after images of data base updates by the MPP/BMP

• The insert of a message into the queue by the MPP

• The termination of an MPP/BMP

• The successful receipt of an output message by the terminal

The IMS logs are made up of a number of components, which are described in
the following sections:

• Log Buffers, on page 239.

• Online Log Data sets (OLDS), on page 240.

• Write Ahead Data sets (WADS), on page 242.

• System Log Data sets (SLDS), on page 243.

• Recovery Log Data sets (RLDS), on page 244.

22.1 Checkpointing

At regular intervals during IMS execution, checkpoints are written to the log
without having to wait to do any physical I/O. A checkpoint is taken after a
specified number of log records are written to the log since the previous
checkpoint, or after a checkpoint command. Special checkpoint commands are
available to stop IMS in an orderly manner.

22.2 IMS log buffers

The log buffers are used for IMS to write any information required to be logged,
without having to do any real I/O.

Whenever a log buffer is full, the complete log buffer is scheduled to be written
out to the OLDS as a background, asynchronous task. In a busy system, IMS will
generally chain these log buffer writes together.

Should any application or system function require a log record to be externalized
(that is, IMS believes that for recoverability, this log record must be physically
written to DASD before proceeding), then the WADS data set is used. Refer to
“Write ahead data sets (WADS)” on page 242.

The OLDS buffers are used in such a manner as to keep available as long as
possible the log records that may be needed for dynamic backout. If a needed log
record is no longer available in storage, one of the OLDS buffers will be used for
reading the appropriate blocks from the OLDS.
IMS logging 239

The number of log buffers is an IMS start-up parameter, and the maximum is 999.
The size of each log buffer is dependent on the actual blocksize of the physical
OLDS. The IMS log buffers now reside in extended private storage, however,
there is a log buffer prefix that still exists in ECSA.

22.3 Online log data sets (OLDS)

The OLDS are the data sets which contain all the log records required for restart
and recovery. These data sets must be pre-allocated (but need not be
pre-formatted) on DASD and will hold the log records until they are archived.

The OLDS is written by BSAM. OSAM is used to read the OLDS for dynamic
backout.

The OLDS are made up of multiple data sets which are used in a wrap around
manner. At least 3 data sets must be allocated for the OLDS to allow IMS to start,
while an upper limit of 100 is supported.

Only complete log buffers are written to the OLDS, to enhance performance.
Should any incomplete buffers need to be written out, the are written to the
WADS. The only exceptions to this are at IMS shutdown, or in degraded logging
mode, when the WADS are unavailable, then the WADS writes will be done to the
OLDS.

All OLDS should be dynamically allocated, by using the DFSMDA macro, and not
hardcoded in the IMS control region JCL.

22.3.1 OLDS dual logging
Dual logging can also be optionally implemented, with a primary and secondary
data set for each defined OLDS.

• A primary and secondary data set will be matched and, therefore, the pair
should have the same space allocation. Because an OLDS pair will contain
the same data, extra space allocated to one will not be used in the other.

• Secondary extent allocation cannot be used

• OLDS can be allocated on different supported DASD

• All OLDS must have the same blocksize, and be a multiple of 2Kb (2048
bytes). the maximum allowable blocksize is 30kb.

22.3.2 Dynamic backout
In addition to the above logging, all previous database record images are written
to the OLDS, and can also be used for dynamic back-out processing of a failing
MPP/BMP. As soon as the MPP/BMP reaches a synchronization point, the
dynamic log information of this program is discarded.
240 IMS Primer

22.3.3 Archiving
The current OLDS (both primary and secondary) is closed and the next OLDS is
used whenever one of the following situations occurs:

• OLDS becomes full

• I/O error occurs

• MTO command is entered to force a log switch (such as /SWI OLDS)

• MTO command is issued to close a database (such as /DBR DB) without
specifying the NOFEOV parameter.

DBRC is automatically notified that a new OLDS is being used. When this occurs,
IMS may automatically submit the archive job.

IMS can define whether the log archive process will occur with every log switch,
or every second log switch, and the DBRC skeletal JCL that controls the
archiving, can be defined to also create 1 or 2 System Log data sets, and 0, 1 or
2 Recovery Log Data sets. After the last allocated OLDS has been used, the first
OLDS will again be used in a wrap around fashion, as long as it has been
archived.

The IMS log archive JCL is in DBRC skeletal JCL, and can be tailored to create
the required SLDS, and optionally dual SLDS, 1 or 2 RLDS data sets, and any
user data sets. Refer to the IMS log archive utility in the IMS Utilities Reference
Manual applicable to your IMS release. Figure 115 shows the data sets for the
archive utility.

Figure 115. IMS log archive utility

Log Archive
DFSARC0

RECONS

SLDS datasets RLDS Datasets

OLDS Datasets
IMS logging 241

22.3.4 OLDS I/O errors
In the case of a write error, the subject OLDS (or pair of OLDS) will be put into a
stopped status and will not be used again. This is equivalent to a user issuing the
command /STO OLDS.

If using dual OLDS, then the data set without error will be used for IMS archives.

If data set errors result in only a single OLDS remaining, a /CHE FREEZE
command is internally scheduled by IMS. If an error occurs on the very last
OLDS, IMS will abend with a U0618.

22.3.5 DBRC
Information is kept in the RECON data set about the OLDS for each IMS system.
The data in the RECON indicates whether an OLDS contains active log data
which must be archived, or whether it is available for use.

22.3.6 Lack of OLDS
IMS issues messages when it is running out of OLDS.

During the use of the last available OLDS, IMS will indicate that no spare OLDS
are available.

When all the OLDS are full, and the archives have not successfully completed,
then IMS will stop, and have to wait until at least 1 OLDS has been archived. The
only thing IMS will do is repeatedly issue messages to indicate that it is has run
out of OLDS, and is waiting.

22.4 Write ahead data sets (WADS)

The WADS is a small direct access data set which contains a copy of committed
log records which are in OLDS buffers, but have not yet been written to the
OLDS.

When IMS processing requires writing of a partially filled OLDS buffer, a portion
of the buffer is written to the WADS. If IMS or the system fails, the log data in the
WADS is used to terminate the OLDS, which can be done as part of an
Emergency Restart, or as an option on the IMS Log Recovery Utility.

The WADS space is continually reused after the appropriate log data has been
written to the OLDS. This data set is required for all IMS systems, and must be
pre-allocated and formatted at IMS start-up when first used.

In addition, the WADS provide extremely high performance. This is achieved
primarily through the physical design of the WADS. Each WADS track is divided
into 2080 byte blocks with a 1 byte key. Each block has the same key (key value
= 0). This was done for efficiency on conventional rotational DASD, and is still
valid for newer types of DASD.

All WADS should be dynamically allocated by using the DFSMDA macro, and not
hardcoded in the control region JCL.

All the WADS must be on the same device type and have the same space
allocation.
242 IMS Primer

22.4.1 Dual WADS
Dual WADS is supported to provide backup in the event of a read error while
terminating the OLDS from the WADS. The primary and secondary WADS will
contain the same data. Single or Dual WADS logging is determined from an IMS
start-up parameter.

22.4.2 WADS redundancy
Regardless of whether there are single or dual WADS, there can be up to 10
WADS defined to any IMS. (WADS0, WADS1,...., WADS9).

WADS0 (and WADS1 if running dual WADS) are active, and the rest remain as
spares in case any active WADS has an I/O error. The next spare will then
replace the one with the error.

22.5 System log data sets (SLDS)

The SLDS is created by the IMS log archive utility, possibly after every OLDS
switch. It is usually placed on TAPE or CARTIDGE, but can reside on DASD. The
SLDS can contain the data from one or more OLDS data sets.

The SLDS can also be used as input to all IMS log utilities, and IMS restart.

Information about SLDS is maintained by DBRC in the RECON data set. Calls to
DBRC are made by the Archive Utility identifying the OLDS being archived and
the SLDS being created. OLDS that have been archived are then available for
reuse by IMS.

Dual SLDS
Dual archiving to 2 SLDS data sets (primary and secondary) is supported.

When archiving to TAPE or CARTRIGE, the user can also force the primary and
secondary volumes to contain the same data by specifying the number of log
blocks per volume. When this number is reached, a force-end-of-volume (FEOV)
will occur on both the primary and secondary SLDS. In this way, both primary and
secondary SLDS are identical and interchangeable should a subsequent I/O error
occur on one of them.

The user can also specify which records are copied from the OLDS to the SLDS.
Generally, the SLDS should contain all the log records from the OLDS, but if the
user wants to omit types of log records from the SLDS, these can be specified
within the log archive utility.

The SLDS must always contain those log records required for database recovery,
batch backout or system recovery.

The blocksize of the SLDS is independent of the OLDS blocksize, and can be
specified to maximize space on the SLDS device type.
IMS logging 243

22.6 Recovery log data sets (RLDS)

When the IMS log archive utility is run, the user can request creation of an output
data set that contains all of the log records needed for database recovery. This is
the RLDS and is also known to DBRC.

The RLDS is preferred by many instillations. All database recoveries and change
accumulation jobs will always use the RLDS if one exists, and this can
considerably speed up any of these processes because the only contents of
these data sets are database recovery log records. All other IMS TM, application
scheduling and checkpoint log records are not included on the RLDS’s.

The RLDS is optional, and you can also have dual copies of this, in a similar way
to the SLDS.
244 IMS Primer

Chapter 23. IMS system generation process

The IMS system generation process is used to build the IMS system, at
installation time, as well as at maintenance upgrade, as well as when standard
application definition changes are required.

The IMS generation process (usually called “IMS gen”) assumes a working
knowledge of SMP/E, required for the installation and is included within parts of
the IMS gen process.

23.1 Types of IMS generation

There are 7 different levels of IMS system definitions, as documented in Table 16.

Table 16. Types of IMS system definitions

After your initial system definition, usually with an ALL gen, the ON-LINE,
CTLBLKS, and NUCLEUS types of generation are used to implement most
changes. These generations require a cold start of the IMS online system to take
effect.

However, for certain modifications and additions, you can take advantage of the
online change method using the MODBLKS generation. The changes are made
active during the execution of the online system and do not require a restart
operation.

IMSCTRL option When Used Result

ALL Typical initial generation,
usually needed at maintenance
time.

Builds most IMS libraries.
Includes BATCH and ONLINE
options.

ON-LINE Major update, or initial
generation. Often required for
maintenance.

Builds most IMS libraries.
Includes all but BATCH option.

NUCLEUS Major maintenance, affecting
the contents of the IMS
nucleus, or required to build a
new nucleus with a new suffix.

Builds IMS nucleus and control
blocks. Includes CTLBLKS
option.

CTLBLKS Convenience update. Includes
link-edit of existing nucleus with
the same suffix, and required
for most communications
related updates.

Control block generation.
Includes MSVERIFY and
MODBLKS.

MODBLKS Convenience update. Used for
changes installable using
on-line change, such as
programs, transactions and
database definitions.

Builds control blocks that
enable database, program,
transaction, and Fast Path
routing code changes to be cut
over during online operation.

MSVERIFY Only appropriate for MSC. Builds control blocks for the
MSC Verification utility.

BATCH Only for the batch environment. Builds batch environment
libraries.
IMS system generation process 245

23.2 IMS generation macros

As these change from release to release of IMS, please refer to the IMS/ESA V6
Installation Volume 2, (GC26-8737) (or equivalent for you release of IMS) for
details of the various macros. They have been summarized here very briefly:

APPLCTN The APPLCTN macro allows you to define the program resource
requirements for application programs that run under the control of
the IMS DB/DC environment, as well as for applications that
access databases through DBCTL. An APPLCTN macro combined
with one or more TRANSACT macros defines the scheduling and
resource requirements for an application program. Using the
APPLCTN macro, you only describe programs that operate in
message processing regions, Fast Path message-driven program
regions, batch message processing regions, or CCTL threads. You
do use the APPLCTN macro to describe application programs that
operate in batch processing regions. When defining an IMS data
communication system, at least one APPLCTN macro is required.

BUFPOOLS The BUFPOOLS macro statement is used to specify default
storage buffer pool sizes for the DB/DC and DBCTL environments.
The sizes specified are used unless otherwise expressly stated for
that buffer or pool at control program execution time for an online
system.

COMM The COMM macro is used to specify general communication
requirements that are not associated with any particular terminal
type. COMM is always required for terminal types supported by
VTAM. It is optional for BTAM, BSAM, GAM, and ARAM terminal
types. It can also be required to specify additional system options,
such as support for MFS on the master terminal

CONFIG The CONFIG macro statement provides the configuration for a
switched 3275 terminal. Because the configuration provided by
CONFIG is referenced when the named 3275 dials into IMS,
differently configured 3275s can use the same communication line.
All CONFIG macro statements must be between the LINEGRP
macro and the LINE macros. LINE macros can refer to named
CONFIG macros defined previously in this line group or in
previously defined line groups.

CTLUNIT The CTLUNIT macro statement specifies 2848, 2972, and 3271
control unit characteristics. CTLUNIT is valid only for 3270 remote
line groups.

DATABASE The DATABASE macro statement is used to define the set of
physical databases that IMS is to manage. One DATABASE macro
instruction must be specified for each HSAM, HISAM, and HDAM
database. Two DATABASE macro instructions are required for a
HIDAM database: one for the INDEX DBD and one for the HIDAM
DBD. One DATABASE macro instruction must be included for each
secondary index database that refers to any database defined to
the online system. For Fast Path, a DATABASE macro statement
must be included for each Main Storage Database (MSDB) and
Data Entry Database (DEDB) to be processed.
246 IMS Primer

FPCTRL The FPCTRL macro statement defines the IMS Fast Path options
of the IMS control program, and the DBCTL environment. It is
ignored when the IMSCTRL statement specifies that only a
BATCH or MSVERIFY system definition is to be performed.

IDLIST The IDLIST macro statement is used to create a terminal security
list for switched 3275s.

IMSCTF The IMSCTF macro statement defines parameters to IMS, and to
the DBCTL environment.

IMSCTRL The IMSCTRL macro statement describes the basic IMS control
program options, the MVS system configuration under which IMS
is to execute, and the type of IMS system definition to be
performed. The IMSCTRL macro instruction must be the first
statement of the system definition control statements.

IMSGEN IMSGEN specifies the assembler and linkage editor data sets and
options, and the system definition output options and features.
The IMSGEN must be the last IMS system definition macro,
and it must be followed by an assembler END statement.

LINE The LINE macro statement describes both switched and
nonswitched communication lines.

LINEGRP The LINEGRP macro statement defines the beginning of a set of
macro instructions that describe the user's telecommunications
system.

MSGQUEUE You must include the MSGQUEUE macro statement when the type
of generation specified in the IMSCTRL macro statement is ALL,
ON-LINE, CTLBLKS, or NUCLEUS. This statement defines the
characteristics of the three message queue data sets (QBLKS,
SHMSG, and LGMSG). The information you specify in this macro
is also used in a shared queues environment.

MSLINK The MSLINK macro statement defines a logical link to another
system.

MSNAME The MSNAME macro statement provides a name for the remote
and local system identifications that it represents.

MSPLINK The MSPLINK macro statement defines a physical MSC link.

NAME The NAME macro statement defines a logical terminal name
(LTERM) associated with a physical terminal. Preparation of the
NAME macro can be required for each of the following macros:
TERMINAL, SUBPOOL, MSNAME,

POOL The POOL macro statement describes a pool of logical terminals
that are to be associated with a set of switched communication
lines.

RTCODE The RTCODE macro statement is used one or more times with the
APPLCTN macro statement that defines an IMS Fast Path
application program. It specifies the routing codes that identify the
program named in the preceding APPLCTN macro statement. A
TRANSACT macro statement that specifies an IMS Fast
Path-exclusive transaction generates an internal RTCODE macro
statement with a routing code identical to the transaction code.
IMS system generation process 247

SECURITY The SECURITY macro statement lets you specify optional security
features to be in effect during IMS execution unless they are
overridden during system initialization.

STATION The STATION macro statement describes the physical and logical
characteristics of the System/3 or System/7.

SUBPOOL The SUBPOOL macro statement, when used:

• in a VTAM macro set, is a delimiter between groups of NAME
macro statements to create LU 6.1 LTERM subpools, or

• in a switched communication device macro set, defines a set
of logical terminals.

TERMINAL The TERMINAL macro statement defines physical and logical
characteristics of VTAM nodes and non-VTAM communication
terminals.

TRANSACT The TRANSACT macro statement is used one or more times with
each APPLCTN macro statement to identify transactions as IMS
exclusive, IMS Fast Path potential, or IMS Fast Path exclusive. It
specifies the transaction codes that cause the application program
named in the preceding APPLCTN macro to be scheduled for
execution in an IMS message processing region. It also provides
the IMS control program with information that influences the
application program scheduling algorithm.

TYPE The TYPE macro statement defines the beginning of a set of
communication terminals and logical terminal description macro
statements which include TERMINAL and NAME. The TYPE
macro statement begins a description of one set, that contains one
or more terminals of the same type. TYPE defines terminals
attached to IMS through VTAM. It is equivalent to the
LINEGRP/LINE macro set used to define terminals attached to
IMS by means other than VTAM.

VTAMPOOL This macro, required for parallel session support, begins the
definition of the LU 6.1 LTERM subpools.

23.3 The IMS generation process

The IMS gen process is made up of any steps, some which only occur depending
on the type of IMS gen being undertaken. Some of these steps are:

• Stage1 assembly

• Stage2 assembly, including the optional MFS gen and PROCLIB updates.

• JCLIN

• Re-apply unaccepted maintenance.

• Security Gen

For on overview of the Stage1 and Stage2 components of the gen process,
please refer to Figure 116.
248 IMS Primer

Figure 116. Summary of the two stages of system definition processing

23.3.1 Stage1
The IMS Stage1 job is a simple assembler step, with the SYSIN being the IMS
macros, as discussed in 23.2, “IMS generation macros” on page 246. Other
references are to the IMS distribution macro libraries (GENLIB, GENLIBA,
GENLIBB)

The output of the IMS Stage1 includes:

• Standard assembler listing output with any appropriate error messages.

• IMS Stage2 input JCL, also for use as JCLIN.

IMS.GENLIB
IMS.GENLIBA
IMS.GENLIBB

IMS System Definition: Stage 1

IMS.REFERAL
IMS.FORMAT
IMS.TFORMAT

IMS.Libraries
MVS.Libraries

Load Default
Formats

IMS System Definition: Stage 2

Stage 2 Input

Link-edit Load
Modules

Assemble control
blocks and Feature
or MVS dependent
modules

Stage 1 Input

Run
Assembler
Program

Listing of
input and
errors

Stage 2
JOB stream
listIMS Macro

statements

Stage 1
output deck

Run IMS
Stage 2
JOB stream

IMS.
FORMATS

IMS.
RESLIB

IMS.
MODBLKS

IMS.
OBJDSET

IMS.
PROCLIB

IMS.
MACLIB

IMS.
OPTIONS
members
IMSPS
DFSVTAM
DFSFP

Defined
IMS
Systemz
IMS system generation process 249

23.3.2 Stage2
The output of the Stage1 is then used as the JCL to run the Stage2 gen.

Depending on the Stage1 definitions within the IMSGEN macro, the Stage2 can
be divided up into a single job with many steps, or many jobs with fewer steps.
This is all dependant on how your site prefers to run this process.

The Stage2 will do all the module assembling and linking as required to build all
the necessary load modules, depending on what type of gen is being run.

NOTE:

1. In the case of an ALL gen, it is advisable to empty all target libraries first
(RESLIB, MACLIB, MODBLKS, MATRIX), to ensure all modules generated are
valid, and none are left lying around from previous options no longer in use.

2. An ALL gen will assemble/link almost all modules, whereas a MODBLKS gen
will only assemble/link those modules required to define the programs,
transactions databases.

As for the Stage1, these steps will all refer to the IMS distribution macro libraries
(GENLIB, GENLIBA, GENLIBB) at assembly time, and distribution load library
(LOAD) at link time.

The output of the IMS gen includes:

• Executable load modules in datasets RESLIB, MODBLKS.

• IMS Options definitions in dataset OPTIONS.

• Assembled object code for use in later gens in datasets OBJDSET.

• Optionally create the runtime MACLIB dataset. Refer to 23.3.2.1, “MACLIB
update” on page 250.

• Optionally create the runtime PROCLIB dataset. Refer to 23.3.2.2, “PROCLIB
update” on page 250.

• Optionally create the runtime IMS default MFS screens in datasets FORMAT,
TFORMAT, REFERAL. Refer to 23.3.2.3, “MFS gen” on page 251.

23.3.2.1 MACLIB update
A parameter in the IMS Stage1 macro IMSGEN (MACLIB=UTILITY/ALL)
determines to what level the MACLIB dataset will be populated if the gen type is
anything other than CTLBLKS or NUCLEUS. These two options provide:

UTILITY Populates MACLIB with only those macros necessary for IMS
developers or user generations, such as PSB generation, DBD
generation or dynamic allocation generation.

ALL Populates MACLIB with all IMS macros, except those necessary for an
IMS system generation, and hence, not required by IMS developers or
users.

23.3.2.2 PROCLIB update
A parameter in the IMS Stage1 macro IMSGEN (PROCLIB=YES/NO) determines
whether or not the PROCLIB dataset is to be populated by this gen, or not. The
PROCLIB contains all IMS started task and JCL procedures, as well as the IMS
PROCLIB members required by IMS and IMS utilities to provide startup options.
250 IMS Primer

23.3.2.3 MFS gen
A parameter in the IMS Stage1 macro IMSGEN (MFSDFMT=YES/NO)
determines whether or not the default message format screens are built as part of
the IMS Stage2. This would then use the REFERAL within the MFS gen, to build
the FORMAT dataset.

This option also applies to the test MFS library TFORMAT, if test MFS is required
in the system (as specified in the COMM macro).

23.3.3 JCLIN
JCL is a an SMP/E process, that tell SMP/E how to assemble and link any
module.

As the IMS Stage2 actually assembles and links all the IMS modules based on
the definitions for that particular system, and is s run outside of SMP/E control,
the enter IMS Stage1 output / Stage2 input must be used as input to the JCLIN
process, so that SMP/E will know how to manage any maintenance added to the
system following this IMS gen.

JCLIN should be run following any IMS gen, to ensure that SMP/E is always kept
informed on any parameter changes in the IMS generation.

23.3.4 Re-apply SMP/E maintenance not accepted
All IMS gens are run based on the IMS SMPE distribution libraries.

As a result, any SMP/E maintenance (SYSMODs - PTFs, APARs or USERMODs)
that were applied prior to an IMS gen, are likely to be regressed as a result of an
IMS gen, depending on the type of IMS gen, and the impact of the SYSMOD.

As a result, it should become routine, that any maintenance that has been
APPLIED but not ACCEPTED should be re-APPLIED following an IMS gen,
unless further investigations have shown specific cases where this is not
necessary.

23.3.5 IMS security maintenance utility generation
For security beyond that provided by default terminal security, you can use the
various security options specified with the Security Maintenance utility (SMU).
The utility is executed offline after completion of IMS Stage2 processing for
system definition. Its output is a set of secured-resource tables placed on the
MATRIX dataset. The tables are loaded at system initialization time, and, for
certain options, work with exit routines and/or RACF during online execution to
provide resource protection.

The IMS Security gen must ALWAYS be run after any IMSGEN (full or
MODBLK’s) as the members in the MATRIX library are generated depending on
the position of the resources being protected in the MODBLK’s members. If they
get out of step, IMS will not start.

For further details, refer to the IMS/ESA V6 Utilities Ref: System, SC26-8770, or
the redbook IMS Security Guide, SG24-5363.
IMS system generation process 251

23.4 Automating the IMS system generation process

IMS is shipped to customers with the Installation Verification Procedure (IVP),
which will help tailor the initial IMS system, with all provided JCL and sample
input, including the IMS system generation jobs. Once these jobs have been
generated, the execution of these jobs is manual.

To then tailor the IMS system to suit yourself, the IMS Stage1 macros need to be
altered/customized to contain all the necessary definitions required at your site,
and the process repeated.

Ever time a changed definitions is required, this process will need to be repeated,
although the type of IMS gen required may vary from time to time, depending on
what has changed, so depending on how often your site requires changes to the
IMS Stage1, will determine how often you need to run the IMS gen.

Many customers have put together elaborate or simple means of automating all
the steps necessary to run an IMS gen, and maintain their various IMS systems.
The more systems maintained within the site, the larger need to have a simple
method of maintaining them all.

Although IBM does not make any recommendations on the best method, they
could include anything from:

• The various jobs pre-defined in such a way, that each job will automatically
submit the next one upon successful completion. This could be done by JCL
itself, or the use of a job scheduler.

Notes:

1. Keep in mind that the Stage2 JCL is generated each time from the output of
the Stage1, and may vary each time.

2. ISPF driven dialogs to help select the choice of which system to generate, and
which type of gen is required, as well as automatically ensuring all required
jobs are submitted.
252 IMS Primer

Chapter 24. IMS security overview

This chapter covers some of the issues around IMS security. For further details,
please refer to the ITSO redbook IMS Security Guide, SG24-5363, as well as the
relevant IMS manuals.

24.1 Background to IMS security

When IMS was developed, security products like the Resource Access Control
Facility (RACF), had not been developed, or were not in use by most installations.
It was common during this period to have each subsystem implement its own
security. Therefore, the IMS product offered some basic levels of protection for
IMS resources. These internal IMS security facilities (for example, Security
Maintenance Utility or SMU) are still available for protecting many IMS resource
types and are used by some IMS installations today.

With the development and introduction of security products, like RACF, more and
more installations have implemented security for IMS resources using security
products. Two advantages of using a security product for securing access to
resources are:

• One product may be used to implement the security requirements for multiple
subsystems, such as IMS, CICS, and other subsystems.

• All of the security information may be kept and maintained in one place, like the RACF
database. One centralized database repository containing all the installations′
security specifications eliminated, or significantly minimized, the previous
requirements to have:

• security information distributed among several subsystems, and

• the security enforcement functions implemented in multiple products

RACF offered a wide range of security choices to the installation. For example,
RACF contained new security features, such as user identification (userid) and
verification based security which is not available through IMS internally provided
SMU security.

IMS provided a new SYSDEF macro that allowed the installation to code all of the
security specifications (available during this era) on one macro, the SECURITY
macro. This macro was used to specify security options for IMS internally
provided SMU security, RACF security, and/or an installation provided security
exit routine.

24.2 The security macro

The SECURITY macro was implemented in IMS mainly for the purpose of
specifying the installations′ security choices to an external security product, like
RACF. Again, IMS also provided keywords and parameters on the SECURITY
macro that allowed security specifications for SMU provided security as well as
for installation-provided security exits. That is, the same security options that
could be specified on the COMM and IMSGEN macros could now be specified on
the SECURITY macro. This maintained the compatibility between security
specifications on the SECURITY, COMM, and IMSGEN macros.
IMS security overview 253

As in the previous cases, if the SECURITY macro is present in the IMS SYSDEF
macros, the specifications and/or defaults of the SECURITY macro will take
precedence over security specifications on the COMM and IMSGEN macros.
Some of the SECURITY macro keywords and parameters apply to:

• RACF

• IMS SMU

• Installation provided security exit routines

• Combinations of the above (such as SMU and an installation provided security exit
routine; or RACF and an installation provided security exit routine)

IMS provides ample flexibility in allowing the installation to secure almost any
type of resource. Before deciding which resources to secure, make sure you
understand the type of protection that is provided with the specific resource type.

24.3 Protecting IMS terminals

Two type of terminals may be protected in the IMS environment:

1. Physical terminals

2. Logical terminals or LTERMS.

The physical terminals may be static terminals (those which have been defined to
IMS using the TYPE and TERMINAL macros); or Extended Terminal Option
(ETO) terminals that are dynamically defined to IMS at sign-on.

Terminals can be protected for:

• Signon verification, which will determine whether signon is required

• Resource access security, which will determine whether the terminal has
access to issue specific IMS commands, or transactions.

24.4 Protecting IMS commands

IMS commands request the system to perform specific functions, such as
displaying information about IMS resources or altering the status of system
resources. IMS commands may be entered from several sources:

• A user terminal.

• The IMS master terminal.

• Multiple Console Support/Extended Multiple Console Support (MCS/EMCS)
MVS consoles.

• Automated operator programs that issue the DL/I CMD call or the DL/I ICMD
call.
254 IMS Primer

The types of protection offered for commands are:

Default terminal security This type of security is automatically implemented by
SMU for a large subset of IMS commands when
the SECURITY macro has been coded (or
defaulted) to settings that result in an IMS
environment where no resource has been
protected.

LTERM command security This is for static terminals. SMU is used to enforce
LTERM command security for static terminals. If
this type of command protection is used, the
installation decides from which LTERMs specific
IMS commands may be entered.

Password protected commands Command password security is implemented using
SMU. The statements provided tell IMS the
commands that are restricted to use by users
that provide the correct password upon entering
the command.

Program DL/I CMD call security Automated operator (AO) programs that issue the
DL/I CMD call may be secured by SMU. A parameter
on the SECURITY macro
(TRANCMD=NO/YES/FORCE) tells IMS whether or
not any AO program is permitted to issue IMS
commands.

Programs DL/I ICMD call security AO programs that issue the DL/I ICMD call may also
be secured by RACF. The SECURITY macro does not
contain a parameter that tells IMS whether or not
ICMD calls may be issued from AO application
programs. IMS is informed whether or not AO
programs may issue ICMD calls based on the
specification of the AOIS= parameter in the IMS
startup parameters.

Userid based command security RACF enforces security by checking the CIMS/DIMS
RACF classes for command If a security profile for a
command exists in one of the classes (CIMS or
DIMS) the command has been secured and
protected. RACF checks to see if the userid (or group
name) has been authorized to issue the command.

Extended command security If a greater level of command authorization is
required than SMU or RACF can provide (such
as verifying authorization to use keywords on
specific commands), the Command
Authorization Exit (DFSCCMD0) routine may be
used to achieve this.

As you may have noted, the security facility used to determined whether or not
the command will be processed depends on the origin of the command. For
example, the command may have been entered from a static or ETO terminal; or
from a program that issued either the DL/I CMD or ICMD call. Furthermore,
DFSCCMD0 may also be customized by the installation to provide a more
granular level of security. This exit can be used in conjunction with SMU or RACF;
or it may be used alone without SMU or RACF to provide command security.
IMS security overview 255

24.5 Protecting IMS transactions

There are six methods that may be used to secure IMS transactions. Five of the
security options will be covered here.

Resource access security (LTERM based) — As with IMS LTERM based
command security, SMU is used to determine which LTERMs may be used for
entering transactions codes. As previously mentioned, password and LTERM
based security may be combined. Since SMU is used to provide this type of
security the physical terminal (that is associated with the LTERM) must be
statically defined to IMS.

Resource access security (password based) — Transaction authorization that
is based on securing the transaction with a password is implemented using SMU.
Thus the terminals from which the password protected transactions are entered
are required to be static terminals.

Extended resource access security — If SMU provided LTERM based and
password security is insufficient to meet the installation requirements, the
Transaction Authorization Exit (DFSCTRN0) routine may be customized to meet
the requirements.

Resource access security (userid based) — RACF enforces transaction
authorization security by checking the TIMS/GIMS RACF classes for transaction
security profiles. If a security profile for a transaction exists in one of the classes
(TIMS or GIMS) the transaction has been secured and protected. RACF checks
to see if the userid (or group name) has been authorized to execute the
transaction.

Extended resource access security (userid based) — If RACF provided
transaction authorization security is insufficient to meet the installation
requirements, the DFSCTRN0 routine may be customized to meet the
requirements. RACF would be called first to determine if the userid/group name is
permitted to execute the transaction; and on successful authorization by RACF,
DFSCTRN0 would be called to perform installation specified transaction
authorization security checking.

User customizable (DFSCTRN0) — This exit is enabled within the IMS gen
SECURITY macro, and can be tailored to suit any other type of security required.
Refer to the appropriate IMS Customization Guide for further details.

24.6 Protecting IMS dependent region(s) and the IMS online system

IMS dependent regions can be protected with Application Group Name (AGN)
security. AGN security involved three steps:

1. Deciding which IMS resources will be included in the AGN group and naming
the group with the AGN input control card to SMU.

2. Creating a security profile in RACF called AIMS class for the AGN group name
and (PERMITting) authorized userids. Or, if RACF is not used to authorized
userids, the Resource Access Security Exit routine may be customized by the
installation to authorize userids to the AGN group.
256 IMS Primer

3. Determining wi t h IMS dependent region(s) will be allowed to schedule the
PSB included in the AGN group. The procedure that is used to start the
dependent region contains an AGN= parameter in the procedures′ JCL. The
procedure must specify the correct AGN name in order to schedule the PSB.

24.7 Protecting IMS PSBs and online application programs

PSBs exist for both online application programs and for Batch Message
Processing (BMP) programs. PSBs may be protected in several ways.

PSB access security — As you noticed in the AGN example, one method of
securing a PSB is by making the PSB part of an AGN group using SMU security
facilities. Then RACF or DFSISIS0 can be used to check the user¢ s
authorization to use the PSB.

Securing PSB Used by CPI-C Driven Transactions — For Common
Programming Interface for Communications (CPIC) driven transactions, security
profiles for PSBs may be created in the AIMS class (along with the AGN security
profiles). This allows RACF to verify that the CPIC end user’s userid is authorized
to schedule the PSB. The advantages for the CPIC user are: SMU AGN security
is bypassed; and userids (rather than PSB or program name userids) are
checked for authorization to schedule the PSB.

24.8 Protecting IMS control program and region application programs

Extended resource protections is used to secure access to the IMS online
system. Think of this as securing the IMS control program, the IMS control region,
and the VTAM application name for IMS.

The IMS VTAM APPLID may be secured in the RACF APPL class by creating a
security profile in the class and authorizing the VTAM APPLID.
IMS security overview 257

258 IMS Primer

Appendix A. Special notices

This publication is intended to help system programmers and application
developers who want to gain a general understanding of the IMS product. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by IMS/ESA. See the PUBLICATIONS
section of the IBM Programming Announcement for IMS/ESA for more
information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.

Any performance data contained in this document was determined in a controlled
environment, and therefore, the results that may be obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data for their specific environment.
© Copyright IBM Corp. 2000 259

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of including
these reference numbers is to alert IBM customers to specific information relative
to the implementation of the PTF when it becomes available to each customer
according to the normal IBM PTF distribution process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

AS/400 AT
C/MVS CICS
CICS/ESA Common User Access
CT CUA
DB2 IBM
IMS IMS/ESA
MQ MQSeries
MVS/ESA Netfinity
OS/390 Parallel Sysplex
RACF RS/6000
S/370 S/390
SP System/36
System/360 System/390
VisualAge VSE/ESA
VTAM WebExplorer
WebSphere XT
400
260 IMS Primer

Appendix B. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

B.1 International Technical Support Organization publications

For information on ordering these ITSO publications see “How to get ITSO
redbooks” on page 263.

• IMS/ESA Version 6 Shared Queues, SG24-5088

• IMS/ESA Shared Queues: Planning Guide, SG24-5257

• IMS e-Business Connect, SG24-5427

• IMS Security Guide, SG24-5363

• IMS/ESA Data Sharing in a Parallel Sysplex, SG24-4303

• IMS/ESA Database Tools Volume I: Database Manager Tools, SG24-5166

• IMS/ESA Database Tools Volume II: System Extension Tools, SG24-5242

• Connecting IMS to the World Wide Web: A Practical Guide to IMS
Connectivity, SG24-2220

• IMS/ESA Sysplex Data Sharing: An Implementation Case Study, SG24-4831

• IMS Fast Path Solutions Guide,SG24-4301

• IMS Version 5 Performance Guide, SG24-4637

B.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 261

B.3 Other publications

These publications are also relevant as further information sources:

• IMS/ESA V6 Installation Volume 1, GC26-8736

• IMS/ESA V6 Installation Volume 2, GC26-8737

• IMS/ESA V6 Utilities Ref: System, SC26-8770

• IMS/ESA V6 Utilities Ref: Database, SC26-8034

• IMS/ESA V6 Utilities Ref: System, SC26-8770

• IMS/ESA V6 Customization Guide, SC26-8020

• IMS/ESA V6 Administration Guide: System, GC26-8103

• IMS/ESA V6 Adminstration Guide: Database Manager, GC26-8012

• IMS/ESA V6 Application Programming: Database Manager, SC26-8015

• IMS/ESA V6 Application Programming: Transaction Manager, SC26-8729

• DB2 for OS/390 V5 Installation Guide, GC26-8970
262 IMS Primer

How to get ITSO redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks
site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 263

IBM Redbook Fax Order Form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
264 IMS Primer

Glossary

A
advanced program-to-program communication
(APPC). (1) IBM’s architected solution for
program-to-program communication, distributed
transaction processing, and remote database access.
A transaction program (TP) using the APPC API can
communicate with other TPs on systems that support
APPC. (2) An implementation of the Systems Network
Architecture (SNA) logical unit (LU) 6.2 protocol that
enables interconnected systems to communicate and
share the processing of programs.

API. See application program interface.

applet. An applet is a piece of Java bytecode that is
executed on the workstation, under control of the Web
browser’s Java Virtual Machine. The applet is
downloaded when the browser accesses a page
containing an <APPLET> tag.

application. (1) The use to which an information
processing system is put; for example, a payroll
application or an order-entry application. (2) A
collection of defined and extended classes that
provides a reusable piece of functionality. An
application contains and organizes functionally related
classes. It also can contain subapplications and
specify prerequisites.

application program interface (API). An architected
functional interface supplied by an operating system or
other software system. The interface enables an
application program written in a high-level language to
use specific data or functions of the underlying system.

ASCII. (American Standard Code for Information
Interchange), this is the world-wide standard for the
code numbers used by computers to represent all the
upper and lower-case Latin letters, numbers,
punctuation, etc. There are 128 standard ASCII codes
each of which can be represented by a 7-digit binary
number, 0000000 through 1111111.

authority. The right to do something on the system or
to use an object, such as a file or document, in the
system.

authorization list. A list that gives a group of users
one or more types of access to objects (such as files or
programs) or data in the objects (such as records in a
file). It consists of a list of two or more user IDs and
their authorities for system resources.

B
bandwidth. How much stuff you can send through a
connection, usually measured in bits per second. A
full page of English text is about 16,000 bits.

Base Primitive Environment (BPE). A system
service component that underlies the HWS address
space.
© Copyright IBM Corp. 2000
baud. In common usage the baud rate of a modem is
how many bits it cansend or receive per second.
Technically, baud is the number of times per second
that the carrier signal shifts value; for example a 1200
bit/second modem actually runs at 300 baud, but it
moves 4 bits per baud. See also bit, modem.

bit. (binary digit) A single digit number in base 2, in
other words, either a 1 or a zero. The smallest unit of
computerized data. Bandwidth is usually measured in
bits per second. See also bandwidth, bps, byte,
kilobyte, megabyte.

Bps. (bits per second) A measurement of how fast
data is moved from one place to another. ie. A 28.8
modem can move 28,800 bits per second. See also
bandwidth, bit.

browser. Software that enables users to browse
through the cyberspace of the World Wide Web. See
also Client, URL, WWW.

byte. A set of bits that represent a single character.
Usually there are 8 bits in a byte, sometimes more,
depending on how the measurement is being made.

C

CGI Link. A stand-alone executable program that
receives incoming CGI requests and routes them to
the VisualAge application. CGI Link runs on the HTTP
server, which does not have to be the same as the
machine running the VisualAge application.

CGI query. A special kind of HTTP request from a
client browser requesting that a server-based program
be run&period. A CGI query specifies the name of the
program to run, along with any input parameters. See
also Common Gateway Interface.

client. A software program that is used to contact and
obtain data from a server software program on another
computer, often across a great distance. Each client
program is designed to work with one or more specific
kinds of server programs, and each server requires a
specific kind of client. A Web browser is a specific
kind of client. See also browser, server.

client/server. The model of interaction in distributed
data processing in which a program at one location
sends a request to a program at another location and
awaits a response. The requesting program is called a
client, and the answering program is called a server.

Common Gateway Interface. A standard protocol
through which a Web server can execute programs
running on the server machine. CGI programs are
executed in response to requests from Web client
browsers.

Common User Access (CUA). An IBM architecture
for designing graphical user interfaces that uses a set
of standard components and terminology.
265

configuration. A description of a group of
components that identifies, for each component, the
component edition or version that is part of the group.

D

database manager. other word for a database
management system.

datastore. An IMS TM system that provides
transaction and database processing.

domain name. The unique name that identifies an
Internet site. Domain names always have two or more
parts, separated by dots. The part on the left is the
most specific, and the part on the right is the most
general. A given machine may have more than one
domain name but a given domain name points to only
one machine. Usually, all of the machines on a given
network will have the same thing as the right-hand
portion of their domain names, for example,
gateway.mynetwork.com.br, mail.mynetwork.com.br,
www.mynetwork.com.br, and so on. It is also possible
for a domain name to exist but not be connected to an
actual machine. This is often done so that a group or
business can have an Internet e-mail address without
having to establish a real Internet site. In these cases,
some real Internet machine must handle the mail on
behalf of the listed domain name. See also IP Number.

dynamic link library (DLL). A file containing data and
code objects that can be used by programs or
applications during loading or at run time but are not
part of the program’s executable (.EXE) file.

E

e-mail. (Electronic mail) Messages transmitted over
the Internet from user to user. E-mail can contain text,
but also can carry with it files of any type as
attachments.

F

feature. A major component of a software product that
can be ordered separately.

field. A group of related bytes (such as name or
amount) that are treated as a unit in a record.

firewall. A combination of hardware and software that
protects a local area network (LAN) from Internet
hackers. It separates the network into two or more
parts and restricts outsiders to the area outside the
firewall. Private or sensitive information is kept inside
the firewall.

first-in first-out (FIFO). A queuing technique in which
the next request to be processed from a queue is the
request of the highest priority that has been on the
queue for the longest time.

form. An HTML element that can include entry fields,
push buttons, and other user-interface controls
through which users can enter information&period.
Sometimes called a fill-in form.

FTP. (File Transfer Protocol) The basic Internet
function that enables files to be transferred between
computers. You can use it to download files from a
remote, host computer, as well as to upload files from
your computer to a remote, host computer. (See
Anonymous FTP).

G

gateway. A host computer that connects networks that
communicate in different languages. For example, a
gateway connects a company’s LAN to the Internet.

GIF. (Graphics Interchange Format) A graphics file
format that is commonly used on the Internet to
provide graphics images in Web pages.

Gopher. Gopher is a facility that helps you find
resources on the Internet. Gopher presents you simple
based menus. Each menu item represents either
another Gopher menu, or can take you directly to
facilities or services such as viewing or down-loading
files, or starting a Telnet session. Because Gopher
menus could point to other Gopher servers, you can
search for resources across the whole Internet system.

graphical user interface (GUI). A type of interface
that enables users to communicate with a program by
manipulating graphical elements rather than by
entering commands. Typically, a graphical user
interface includes a combination of graphics, pointing
devices, menu bars, overlapping windows, and icons.

H

host. (1) A computer that "hosts" outside computer
users by providing files, services or sharing its
resources. (2) Any computer on a network that is a
repository for services available to other computers on
the network. It is quite common to have one host
machine provide several services, such as WWW and
USENET. See also Node, Network.

Host Web Service (HWS). An other short name for
ITOC. It is also the prefix of the module and
messages. This short name involves that only web
clients can use it, but it’s not exact: any TCP/IP client
can connect to IMS thru HWS.

HTML (hypertext markup language). The basic
language that is used to build hypertext documents on
the World Wide Web. It is used in basic, plain
ASCII-text documents, but when those documents are
interpreted (called rendering) by a Web browser such
as Netscape, the document can display formatted text,
color, a variety of fonts, graphic images, special
effects, hypertext jumps to other Internet locations and
information forms.

HTTP (hypertext transfer protocol). The protocol for
moving hypertext files across the Internet. Requires a
HTTP client program on one end, and an HTTP server
program on the other end. HTTP is the most important
protocol used in the World Wide Web (WWW). See
also Client, Server, WWW.
266 IMS Primer

HTTP request. A transaction initiated by a Web
browser and adhering to HTTP. The server usually
responds with HTML data, but can send other kinds of
objects as well.

hypertext. Text in a document that contains a hidden
link to other text. You can click a mouse on a
hypertext word and it will take you to the text
designated in the link. Hypertext is used in Windows
help programs and CD encyclopedias to jump to
related references elsewhere within the same
document. The wonderful thing about hypertext,
however, is its ability to link - using HTTP over the Web
- to any Web document in the world, yet still require
only a single mouse click to jump clear around the
world.

I

icon. A small pictorial representation of an object.

index. A set of pointers that are logically arranged by
the values of a key. Indexes provide quick access and
can enforce uniqueness on the rows in a table.

Internet. The vast collection of interconnected
networks that all use the TCP/IP protocols and that
evolved from the ARPANET of the late 1960’s and
early 1970’s.

intranet. A privatenetwork inside a company or
organization that uses the same kinds of software that
you would find on the public Internet, but that is only
for internal use. As the Internet has become more
popular, many of the tools used on the Internet are
being used in private networks, for example, many
companies have Web servers that are available only to
employees.

IP. (Internet Protocol) The rules that provide basic
Internet functions. See TCP/IP.

IP Number. An Internet address that is a unique
number consisting of four parts separated by dots,
sometimes called a dotted quad. (For example:
198.204.112.1). Every Internet computer has an IP
number and most computers also have one or more
domain names that are plain language substitutes for
the dotted quad.

ISDN (Integrated Services Digital Network). A set of
communications standards that enable a single phone
line or optical cable to carry voice, digital network
services and video. ISDN is intended to eventually
replace our standard telephone system.

ITOC (IMS TCP/IP OTMA Connection). The IBM
provided software that acts as an OTMA bridge
between IMS/OTMA and TCP/IP. Its main use is to
connect IMS with the internet.

J

Java. Java is a programming language invented by
Sun Microsystems that is specifically designed for
writing programs that can be safely downloaded to

your computer through the Internet and immediately
run without fear of viruses or other harm to your
computer or files. Using small Java programs (called
applets, Web pages can include functions such as
animations, calculators, and other fancy tricks. We can
expect to see a huge variety of features added to the
Web using Java, since you can write a Java program
to do almost anything a regular computer program can
do, and then include that Java program in a Web page.

Java Beans. Java Beans is a set of APIs that make it
easy to create Java applications from reusable
components. It is a platform-neutral, component-based
software architecture for the Java Platform and is
device and operating system independent.

Java Bytecode. The solution that the Java system
adopts to solve the binary distribution problem is a
"binary code format" that's independent of hardware
architectures, operating system interfaces, and
window systems. The format of this
system-independent binary code is architecture
neutral.

Java Classes. A class is a software construct that
defines the data (state) and methods (behavior) of the
specific concrete objects that are subsequently
constructed from that class. In Java terminology, a
class is built out of members, which are either fields or
methods.

Java Packages. Java packages are collections of
classes and interfaces that are related to each other in
some useful way. Such classes need to be able to
access each other's instance variables and methods
directly.

JavaScript. JavaScript is an easy-to-use object
scripting language designed for creating live online
applications that link together objects and resources
on both clients and servers.

JITOC. The IMS TCP/IP OTMA Connection Connector
for Java is a set of Java beans which provide a way to
create Java applications that can access IMS
transactions. The ITOC Connector for Java provides a
Common Connector Framework-compliant Java
interface to ITOC.

JPEG. (Joint Photographic Experts Group) The name
of the committee that designed the photographic
image-compression standard. JPEG is optimized for
compressing full-color or gray-scale hotographic-type,
digital images. It doesn’t work well on drawn images
such as line drawings, and it does not handle
black-and-white images or video images.

K

kbps. (kilobits per second) A speed rating for
computer modems that measures (in units of 1024
bits) the maximum number of bits the device can
transfer in one second under ideal conditions.
267

kilobyte. A thousand bytes. Actually, usually 1024
bytes. See also byte, bit.

L

LAN. Local area network. A computer network located
on a user’s establishment within a limited geographical
area. A LAN typically consists of one or more server
machines providing services to a number of client
workstations. See also Ethernet.

listserv. An Internet application that automatically
serves mailing lists by sending electronic newsletters
to a stored database of Internet user addresses.
Users can handle their own subscribe/unsubscribe
actions without requiring anyone at the server location
to personally handle the transaction.

Login. The account name used to gain access to a
computer system. Not kept secret (unlike password).

M

Mail. The Internet provides electronic mail using the
Simple Mail Transfer Protocol (SMTP) and Post Office
Protocol (POP). Most electronic mail services provide
a gateway to Internet mail so if you have access to
Internet mail you E-Mail access to millions of people. A
new standard called Multipurpose Internet Mail
Extension (MIME) allows you now to send mail that
includes binary and multimedia objects.

megabyte. A million bytes. A thousand kilobytes. See
also byte, bit, kilobyte.

MIME. (Multipurpose Internet Mail Extensions) A set of
Internet functions that extend normal e-mail
capabilities and enable nontext computer files to be
attached to e-mail. Nontext files include graphics,
spreadsheets, formatted word-processor documents,
sound files, and so on. Files sent by MIME arrive at
their destination as exact copies of the original so that
you can send fully formatted word processing files,
spreadsheets, graphics images and software
applications to other users via simple e-mail. Besides
email software, the MIME standard is also universally
used by Web servers to identify the files they are
sending to Web clients, in this way new file formats
can be accommodated simply by updating the
browsers’ list of pairs of MIME types and appropriate
software for handling each type. See also browser,
client, server.

N

News. Internet News (also called Usenet) is a
discussion or conferencing facility. Thousands of
different news groups cover almost any subject you
can imagine.

notebook. A view that resembles a bound notebook,
containing pages separated into sections by tabbed
divider pages. A user can turn the pages of a
notebook or select the tabs to move from one section
to another.

O

object-oriented programming. A programming
methodology built around objects and based on
sending messages back and forth between those
objects. The basic concepts of object-oriented
programming are encapsulation, inheritance, and
polymorphism.

Open Transaction Manager Access (OTMA). A
transaction-based connectionless client/server
protocol using XCF as communication vehicle.

P

parameter. A data element included as part of a
message to provide information that the object might
need. In Smalltalk, generally referred to as an
argument.

password. A code used to gain access to a locked
system. Good passwords contain letters and
nonletters and are not simple combinations.

PATH_INFO. A CGI variable, usually transmitted to the
CGI program in the form of an environment variable.
The PATH_INFO variable contains all path information
from the URL following the name of the CGI
executable. For a Web Connection application, this
information is the same as the VisualAge part name.

Port. (1) A place where information goes into or out of
a computer, or both. For example, the serial port on a
personal computer is where a modem would be
connected. (2) On the Internet port often refers to a
number that is part of a URL, appearing after a colon
(:) right after the domain name. Every service on an
Internet server listens on a particular port number on
that server. Most services have standard port
numbers; Web servers normally listen on port 80.
Services can also listen on nonstandard ports, in
which case the port number must be specified in a
URL when accessing the server. (3) Refers to
translating a piece of software to bring it from one type
of computer system to another. See also domain
name, server, URL. (4) In the case of ITOC, HWS
address space represents several port numbers; each
port will provide access to one of a number of sockets
associated with the IMS Transaction Manager systems
HWS is connected to.

POST. One of the methods used in HTTP requests. A
POST request is used to send data to an HTTP server.
See also GET.

protocol. (1) The set of all messages to which an
object will respond. (2) Specification of the structure
and meaning (the semantics) of messages that are
exchanged between a client and a server. (3)
Computer rules that provide uniform specifications so
that computer hardware and operating systems can
communicate. It’s similar to the way that mail, in
countries around the world, is addressed in the same
basic format so that postal workers know where to find
268 IMS Primer

the recipient’s address, the sender’s return address
and the postage stamp. Regardless of the underlying
language, the basic protocols remain the same.

proxy. An application gateway from one network to
another for a specific network application like Telnet of
FTP, for example, a firewall’s proxy Telnet server
performs authentication of the user and then lets the
traffic flow through the proxy as if it were not there.
Function is performed in the firewall and not in the
client workstation, causing more load in the firewall.
Compare with socks.

R

receiver. The object that receives a message.
Contrast with sender.

record. A group of related data, fields, or words,
treated as a unit, such as name, address, and
telephone number.

repository. (1) An organized, shared body of
information that can support business and
data-processing activities.

reset button. A type of push button that can appear on
a form. A reset button restores all input fields to their
default states.

return value. An object or data type that a receiver
object passes to a sender object in response to a
message.

router. A network device that enables the network to
reroute messages it receives that are intended for
other networks. The network with the router receives
the message and sends it on its way exactly as
received. In normal operations, they do not store any
of the messages that they pass through.

S

script. A series of commands that define the
sequence in which they will have to be processed.

sender. An object that sends a message to another
object. On the level of code implementation, the
sender is considered to be the sending method within
the class or instance that issues the message.
Contrast with receiver.

server. (1) A computer that provides services to
multiple users or workstations in a network; for
example, a file server, print server, or mail server. (2)
An object that performs one or more tasks on behalf of
a client. The server can be a computer (a file server),
a specific process on a server, or a distributed object.
A single server machine could have several different
server software packages running on it, thus providing
many different servers to clients on the network. See
also client, network.

service. A specific behavior that an object is
responsible for exhibiting.

servlett. A servlet is a piece of Java code that runs
inside a Java-enabled Webserver, such as the Lotus
Domino Go Webserver Release 4.6.1or IBM HTTP
Server 1.3.3 with IBM WebSphere Application Server
V2.0, and extends the functions of the server. The
server hands requests to the servlet, which replies to
them. Servlets are a good substitute for CGI programs
because they are faster and more easily manageable.

session. A series of commands that come from the
same client and belong to the same logical sequence
and period. A session is identified by a unique session
key, which is generated by VisualAge. A session
begins when a client initially connects (without a
session key) and ends when a specified timeout period
has elapsed since the last connection.

socket. An end-point to which clients can connect.
This address is unique on the entire network. The
connection between two sockets provides a full duplex
communication path between the two end processes.

socks. Software to intercept and redirect all TCP/IP
requests at the firewall. It handles data to and from
applications such as Telnet, FTP, Mosaic, and Gopher.
Provides users in a secured network access to
resources outside the network by directing data
through the firewall. Firewall users must use client
programs specifically designed to work with the sock
server.

structured query language (SQL). A language used
to access relational databases.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks.

T

TCP/IP. (Transmission Control Protocol/Internet
Protocol) The basic programming foundation that
carries computer messages around the globe via the
Internet. The suite of protocols that defines the
Internet. Originally designed for the UNIX operating
system, TCP/IP software is now available for every
major kind of computer operating system. To be truly
on the Internet, your computer must have TCP/IP
software.

Telnet. An Internet protocol that lets you connect your
PC as a remote workstation to a host computer
anywhere in the world and to use that computer as if
you were logged on locally. You often have the ability
to use all of the software and capability on the host
computer, even if it’s a huge mainframe.

U

uniform resource locator (URL). A standard identifier
for a resource on the World Wide Web, used by a Web
browser to initiate a connection. The URL includes the
communications protocol to use, the name of the
269

server, and path information identifying the object to be
retrieved on the server. A URL looks like :
http://www.ibm.com, or telnet://well.sf.ca.us.br, or
news:new.newusers.questions.br

user profile. A file that contains the user’s password,
the list of special authorities assigned to a user, and
the objects the user owns. It is used by the system to
verify the user’s authorization to read or use objects,
such as files or devices, or to run the jobs on the
system. Each user profile must have a unique name.

V

variable. A storage place within an object for a data
element. The data element is an object, such as a
number or date, stored as an attribute of the
containing object.

W

WAN. (Wide Area Network). Any internet or network
that covers an area larger than a single building or
campus. See also Internet, LAN, network.

Web Browser. As many other Internet facilities, the
Web uses a client-server processing model. The Web
browser is the client component. Examples of Web
browsers include Mosaic, Netscape and the IBM
WebExplorer. The Web browser is responsible for
formatting and displaying information, interacting with
the user and invoking external viewers for data types
that it doesn’t support directly.

Web Server. Web servers are responsible for
servicing requests for information from Web browsers.
The information can be a file retrieved from the servers
local disk or generated by a program called by the
server to perform a specific application function.

window. A rectangular area of the screen with visible
boundaries in which information is displayed. Windows
can overlap on the screen, giving the appearance of
one window being on top of another.

World Wide Web. (WWW) (W3) (the Web) An Internet
client-server distributed information and retrieval
system based upon HTTP that transfers hypertext
documents across a varied array of computer systems.
The Web was created by the CERN High-Energy
Physics Laboratories in Geneva, Switzerland in 1991.
CERN boosted the Web into international prominence
on the Internet.
270 IMS Primer

List of abbreviations

ACB Access Control Block

AIB Application Interface Block

APA all points addressable

API Application Program Interface

APPC Advanced
Program-to-Program
Communication

APPC/MVS Advanced
Program-to-Program
Communication/Multiple
Virtual Storage

BIN BINary

BMP Batch Message Processing
Region

CA Control Area (VSAM)

CD-ROM (optically read) Compact Disk
- Read Only Memory

CI Control Interval (VSAM)

CICS Customer Information Control
System (IBM)

COBOL Common Orientied Business
Language

CQS Common Queue Server

CPU Central Processing Unit

CRC Command Recognition
Character

CSA Common System Area

DASD Direct Access Storage Device

DBCTL DataBase ControL Subsystem

DB DataBase

DB/DC DataBase manager/Data
Communication manager
system

DBD Database Descriptor Block

DBMS DataBase Management
System

DBRC DataBase Recovery Control

DBT DBCTL Thread

DB2 DataBase 2

DCCTL Data Communication ControL
Subsystem

DD Data Definition JCL statement

DEDB Data Entry Data Base

DIF Device Input Format
© Copyright IBM Corp. 2000
DLISAS Data Language I Seperate
Address Space

DLI See DL/1

DL/I Data Language 1

DOF Device Output Format

DPAGE Device Page

ECSA Extended Common System
Area

EBCDIC Extended Binary Coded
Decimal Interchange Code

EMH Expedited Message Handling

EOD End Of Data

EOM End Of Message

EOS End Of Segment

ESDS Entry Sequence Data Set

ETO Extended Terminal 0ption

FF Full Function Database

FP Fast Path Database

FPU Fast Path Utility

FSE Free Space Element

FSEAP Free Space Element Anchor
Point

GSAM Generalize Sequential Access
Method

HDAM Heirarchical Direct Access
Method

HIDAM Heirarchical Index Direct
Access Method

HISAM Heirarchical Index Sequencial
Access Method

HSSP High Speed Sequencial
Processing

IBM International Business
Machines Corporation

IFP Fast Path Region

IMS Information Management
System

IMS/ESA Information Management
System/Enterprise Systems
Architecture

INTERNET a worldwide network of
TCP/IP-based networks

IRLM Inter Region Lock Manager

ISC Inter-System Communications
271

ITSO International Technical
Support Organization

ISO International Organization for
Standardization

ITSO International Technical
Support Organization

JCL Job Control Language (MVS
and VSE)

KSDS Key Sequence Data Set

LBG Load Balancing Group

LPAGE Logical Page

LPAR Logical PARtitioning

LTERM Logical TERMinal

LU Logical Unit

MID Message Input Descriptor

MFS Message Format Services

MOD Message Output Descriptor

MPP Message Processing Program

MPR Message Processing Region

MQ Message and Queueing (IBM
software)

MSC Multiple Systems Coupling

MVS Multiple Virtual Storage (IBM
System 370 & 390)

MVS/ESA Multiple Virtual
Storage/Enterprise Systems
Architecture (IBM)

NCP Network Control Program

NT Microsoft Windows NT

OLDS Online Log Data Set

OSAM Overflow Sequential Access
Method

OS/390 Operating System 390

OTMA Open Transaction Manager
Access

PCB Program Communicatoin
Block

PROC PROCedure

PROCLIB PROCedure LIBrary (IBM
System/360)

PSB Program Specification Block

PTF Program Temporary Fix

QSAM SeQuential Access Method

RAA Root Addressable Area

RACF Resource Access Control
Facility

RAP Root Anchor Point

RBA Relative Byte Address

REXX Restructured Extended
eXecutor Language

RLDS Recovery Log Data Set

RSR Remote Site Recovery

SB Sequential Buffering

SLDS System Log Data Set

SPA Scratch Pad Area

SNA Systems Network Architecture

SSA Segment Search Argument

SVC SuperVisor Call routine

SYSPLEX SYStems comPLEX

TCB Task Control Block (MVS
control block)

TCP Transmission Control Protocol
(USA, DoD)

TCPIP Transmission Control
Protocol / Internet Protocol

TM Transaction Manager

TP Transaction Program/process
(OSI)

TSO Time Sharing Option

UOW Unit of Work

USERID USER IDentification

VNET Virtual NETwork

VSAM Virtural Sequential Access
Method

VSO Virtual Storage Option

VT Virtual Terminal (OSI)

VTAM Virtual Telecommunications
Access Method (IBM) (runs

WADS Write Ahead Data Set

XCF Cross-system Coupling
Facility (MVS)

XRF eXtended Recovery Facility
272 IMS Primer

Index

Numerics
3270 35, 159, 168

A
abbreviations 271
abnormal termination 148
ACB 79
ACBGEN 140, 141, 145
access intent 209
access paths 64, 71, 88
acronyms 271
AIB 142
AMS 212, 214
API 142
APPC 24, 49
APPLCTN 40, 41
application dependent regions 22
application interface block 142
application program 133, 135, 140, 142, 147, 150, 173
application programming 142
APPLTN 133

B
backup 215
batch message processing 141, 150
batch message processing regions 22
BMH 16, 18
BMP 14, 16, 22, 27, 32, 45, 57, 99, 141, 148, 149, 150,
208

C
CATDS 98
change destination 148
checkpoint 34, 59, 143, 149, 200, 201, 203
CHKP 93, 99, 100, 143, 201, 203
CHNG 148
CICS 6, 14, 18, 25, 49, 142
COMM 54
command codes 177, 185
COMPAT 141, 144
concatenated keys 139
control region 13, 133
conversational processing 58, 149
conversational transaction 143, 149
conversational transactions 151, 154
CQS 15
CSA 23, 33

D
database authorization 209
database calls 142, 173, 174
database descriptor block 140
database manager 3, 5, 14, 23
DB/DC 11, 14, 28
© Copyright IBM Corp. 2000
DB2 3, 7, 9, 11, 14, 20, 145
DBA 67, 208
DBCTL 7, 11, 14, 20, 25, 28
DBD 79, 83, 84, 95, 140, 145, 194, 198
DBMS 67, 69
DBRC 15, 20, 207
DBT 16, 17
DCCTL 11, 14, 15, 28
DEDB 7, 15, 79, 81, 82, 86, 89
delete 143, 174
DELETE.LOG INACTIVE 214
deleting segments 143, 183, 196
DLET 143, 174, 183
DLISAS 16, 31
dynamic allocation 213

E
ETO 28, 36

F
Fast Path 20, 22, 39, 47, 82, 89
FORCER 207, 208
FPU 16, 18

G
GENJCL 216
get hold next 142, 174
get hold unique 142, 174
get next 142, 148, 174
get unique 142, 148, 174
GHN 142
GHU 142, 174
GN 142, 148, 174, 179, 180
GSAM 17, 81, 92, 189, 200, 201
GU 142, 148, 174, 179

H
HDAM 79, 81, 83, 84, 89, 94, 179, 197
HIDAM 79, 81, 86, 88, 93, 95, 197
hierachical model 69
HISAM 81, 93
HSSP 16, 18

I
IBM Data Propagator 9
IDCAMS 89
IFP 14, 16, 17
image copy 216
IMS commands 133
IMSGEN 15, 209
IMSID 21
insert 142, 148, 174
inserting segments 142, 184, 196
IRLM 19, 20, 21, 58, 102
ISC 6, 25, 49
273

ISRT 142, 148, 174, 184
ITOC 51

L
LIST.RECON STATUS 215
log archive 218
log control 217
logging 56, 59, 149
logical relationships 72, 76, 197
LTERM 33, 38, 143, 148, 149

M
message 31, 32, 35, 135
message format service 157
message processing program 133, 141
Message Processing Region 20
message processing region 133
message processing regions 22
message queue 37, 38
messages 166
MFS 33, 36, 154, 157
MPP 14, 16, 32, 33, 38, 55, 57, 133, 141, 143, 147,
148, 149, 150, 153, 154, 157
MPR 20, 22, 32, 42, 43, 133
MQSeries 51
MSC 6, 49
MSDB 89
MSGTYPE 40

N
non-conversational transaction 143
non-response transactions 151

O
ODBA 14
OLDS 98, 149
online transaction 133
OSAM 83, 96
OTMA 6, 23, 40, 49

P
PCB 135, 141, 143, 184, 194
PCB mask 134
PI 56, 102
PRILOG 214, 217
processing intent 144
PROCLIB 20
program control block 135
Program Isolation 34, 102
program specification block 135, 140
PSB 56, 79, 133, 135, 140, 141, 143, 148, 194, 209
PSBGEN 140, 144

R
RACF 24, 28, 54
RBA 86

RECON 9, 15, 210, 212, 214, 215, 216
RECON backup 214, 216, 217
RECON Reorganization 215
RECOVCTL 208
recovery 211
recovery control 212, 217
REPL 143, 174, 182
replace 143, 174
replacing segments 143, 182, 195
Resource Translate Table 145
response transactions 151
Restart 27
retrieving segments 142, 179, 194
REXX 142
RLDS 98
root segment 142
RRA 83
RSR 10, 11, 28
RTT 145

S
Scheduling 41
scheduling 33, 40
search field 194
secondary index 72, 76, 156, 194, 196, 198
segment search arguments 135, 175, 177
share control 212, 217
SHARECTL 208, 212
shared queue 39
shared queues 45
SHISAM 81
Shutdown 28
SLDS 98
SMS 98
SNA 13, 25
SPA 147, 149
spool 54
SSA 135, 174, 175, 176, 184
status code 140, 177, 197
subsystem 211
subsystems 21
Sysplex 39

T
TCP/IP 51
TRAN 33
TRANSACT 40, 41, 42
Transaction 32
transaction 133
transaction manager 3, 5, 14, 23

U
updating segments 143, 182

V
VSAM 83, 86, 88, 89, 93, 96
VSO 91
VTAM 6, 11, 24, 49
274 IMS Primer

W
WADS 98

X
XDFLD 194
XRF 10, 28
XRST 93, 100, 201
275

276 IMS Primer

© Copyright IBM Corp. 2000 277

ITSO redbook evaluation

IMS Primer
SG24-5352-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

SG24-5352-00

Printed in the U.S.A.

IM
S

P
rim

er
SG

24-5352-00

	IMS Primer
	Contents
	Figures
	Tabl es
	Preface
	The team that wrote this redbook
	Comments welcome

	Part 1. Overview of IMS
	Chapter 1. Introduction
	IMS product
	Overview of the IMS product
	1 IMS Transaction Manager
	2 IMS Database Manager
	3 IMS system services
	4 IMS and OS/ 390 operating systems

	IMS Transaction Manager
	1 Network access to IMS/ TM
	2 IMS Transaction Manager messages
	3 Connecting to other IMS and CICS systems

	IMS Database Manager
	1 Functions of IMS Database Manager
	2 Implementation of IMS databases
	4. 3 Full Function IMS DB (DL/ 1 DB)
	4.4 Fast Path Data Entry Database (DEDB)
	5 IMS and DB2

	Additional availability and recovery features
	1 Database Recovery Control (DBRC)
	5. 2 Additional features for increased availability (XRF and RSR)

	Description of XRF and RSR
	6. 1 Extended Recovery Facility (XRF)
	2 Remote Site Recovery (RSR)

	Chapter 2. IMS and OS/ 390
	Structure of IMS subsystems
	1 IMS control region
	2 IMS system dependent regions
	1. 3 Application dependent regions
	1.4 Batch application address space
	5 Internal Resource Lock Manager (IRLM)

	Running of IMS subsystems
	Running multiple IMS systems on one OS/ 390 system
	1 IMS subsystems
	2 Address Spaces
	3 Starting application dependent regions

	Use of OS/ 390 services
	1 MVS TCP/ IP
	2 APPC/ MVS
	3 Security server for OS/ 390 (RACF)
	4 Transaction server for OS/ 390 (CICS)

	Other hardware/ operating system platforms

	Chapter 3. IMS TM and DB general information
	1 IMS startup
	IMS shutdown
	Logging
	Security
	IMS generation
	IMS recovery

	Part 2. IMS Transaction Manager
	Chapter 4. The IMS control region
	The IMS message
	An IMS transaction flow

	Chapter 5. Processing input from a terminal
	Input message types
	Terminal types
	Input message origin
	Terminal input destination
	Message queueing
	1 Queue size and performance considerations
	2 Multiple message queues
	5. 3 Shared Queues
	4 Fast Path transactions
	5 APPC triggered transactions
	5. 6 OTMA triggered transactions
	7 Message scheduling
	5. 8 Transaction scheduling and priority
	5. 9 Scheduling conditions
	5. 10 Scheduling in a dependent region

	Database processing intent
	1 Scheduling a BMP
	6. 2 Shared Queues

	Chapter 6. Fast- Path transactions
	IMS Fast Path exclusive transactions
	IMS Fast Path potential transactions

	Chapter 7. Non- terminal related input
	Inter- System Communications (ISC)
	Multiple Systems Coupling (MSC)
	Advanced Program- to- Program Communication (APPC)
	Open Transaction Manager Access (OTMA)

	Chapter 8. The master terminal
	The primary master
	The secondary master
	Using the MVS console as master terminal
	Extended MCS/ EMCS Console Support

	Chapter 9. Application program processing overview
	MPP processing
	Role of the PSB
	DL/ I message calls
	Program isolation and dynamic logging
	Internal resource lock manager (IRLM)
	Application program abnormal termination
	Conversational processing
	Output Message Processing
	Logging and checkpoint / restart
	9. 1 Logging
	2 Checkpointing

	Message Switching

	Part 3. IMS Database Manager
	Chapter 10. Database basics
	The database design process
	1. 1 Entities
	1. 2 Data attributes
	1. 3 Entity relationships
	1. 4 Application functions
	1. 5 Access paths
	1. 6 Normalization

	What is a database ?
	Why use a database ?
	The database administrator role

	Chapter 11. The IMS hierarchical database model
	1 Basic segment types in a hierarchical data structure
	2 Sequence fields and access paths
	3 Additional access paths to segments
	4 Logical relationships
	5 Secondary indexing

	Chapter 12. Implementation of the IMS database model
	Segments, records, and pointers
	Physical storage of the data
	2. 1 HDAM
	2. 2 HIDAM
	2. 3 Index databases
	2. 4 DEDB
	2. 5 GSAM
	2. 6 Sequential

	Selecting database organization
	3. 1 When to choose HISAM
	3. 2 When to choose HDAM
	3. 3 When to choose HIDAM

	Physical segment design
	Operating system access methods
	5. 1 VSAM or OSAM
	5. 2 IMS and system managed storage (SMS)

	IMS checkpoints: preserving application data integrity
	Locking: sharing IMS data between multiple tasks

	Chapter 13. Choosing the correct type of database
	Applications suitable for Full Function (DL/ I)
	Applications suitable for Fast Path (DEDB)
	2. 1 Very large databases
	2. 2 High availability requirements
	2. 3 Highly active databases
	2. 4 Limited data lifetime
	2. 5 Extreme performance levels
	2. 6 DEDB: reduced I/ O usage
	2. 7 DEDB: CPU utilization

	Applications suitable for Fast Path

	Chapter 14. Database reorganization processing
	Why is reorganization necessary ?
	When to reorganize
	Monitoring the databases
	Reorganization processing overview
	The reorganization process description
	5. 1 Database unload processing
	5. 2 Defining databases
	5. 3 Database reload processing

	Fast Path reorganization

	Chapter 15. Database recovery processing
	About this chapter
	Overview of database recovery
	2. 1 When is recovery needed ?
	2. 2 Online programs
	2. 3 DLI batch update programs

	The database utilities
	Overview of backup/ recovery utilities
	4. 1 Database image copy utility (DFSUDMP0)
	4. 2 Database change accumulation utility (DFSUCUM0)
	4. 3 Database recovery utility (DFSURDB0)
	4. 4 Database batch backout utility (DFSBBO00)

	Part 4. IMS application development
	Chapter 16. Application programming overview
	Overview
	Program structure
	2. 1 Entry to application program
	2. 2 Termination
	2. 3 Calls to IMS
	2. 4 PCB mask
	2. 5 Status code handling
	2. 6 IMS control blocks
	2. 7 Generation of IMS control blocks

	The IMS database application programming interface (API)
	3. 1 Get unique (GU)
	3. 2 Get next (GN)
	3. 3 Hold form of get calls
	3. 4 Insert
	3. 5 Delete
	3. 6 Replace
	3. 7 System service calls

	The data communication PCB
	4. 1 The database PCB
	4. 2 Additional processing intent options
	4. 3 Application control block generation (ACBGEN)
	4. 4 IMS/ DB2 resource translate table (RTT) assembly

	Chapter 17. Application coding for IMS Transaction Manager
	Application Program Processing
	1. 1 Role of the PSB
	1. 2 DL/ I message calls
	1. 3 Application program abnormal termination
	1. 4 Conversational processing
	1. 5 Output message processing
	1. 6 Logging and checkpoint/ restart

	The data communication design process
	2. 1 Concepts of online transaction processing
	2. 2 Application characteristics
	2. 3 Terminal user characteristics
	2. 4 IMS characteristics
	2. 5 Transaction response time considerations
	2. 6 Choosing the right characteristics
	2. 7 Online program design
	2. 8 Basic screen design

	Chapter 18. IMS message format service
	Message format service overview
	MFS and the 3270
	Relationship between MFS control blocks
	3. 1 MFS control block chaining
	3. 2 Linkage between DFLD and MFLD
	3. 3 Linkage between LPAGE and DPAGE
	3. 4 Optional message description linkage
	3. 5 3270 Device considerations relative to control blocking linkage

	MFS Functions
	4. 1 Input message formatting
	4. 2 Output message formatting
	4. 3 MFS formats supplied by IMS

	MFS control statements
	5. 1 Relations between source statements and control blocks
	5. 2 MFS control block generation
	5. 3 MFS library maintenance

	Chapter 19. Application coding for IMS Database Manager
	Introduction to database processing
	1. 1 Interface to IMS
	1. 2 Status code handling
	1. 3 Sample presentation of a call

	Processing against a single database structure
	2. 1 DL/ I positioning concept
	2. 2 Retrieving segments
	2. 3 Updating segments
	2. 4 Calls with command codes
	2. 5 Database positioning after DL/ I call
	2. 6 Using multiple PCBs for one database
	2. 7 Processing GSAM databases

	COBOL programming considerations
	PL/ I programming considerations
	Processing with logical relationships
	5. 1 Accessing a logical child in a physical database
	5. 2 Accessing segments in a logical database

	Processing with secondary indices
	6. 1 Accessing segments via a secondary index
	6. 2 Secondary index creation

	Loading databases
	7. 1 Loading a database
	7. 2 Loading databases with logical relationships
	7. 3 Loading a database with secondary indices

	Batch checkpoint/ restart
	8. 1 Using the XRST and CHKP calls

	Part 5. IMS system adminstration
	Chapter 20. Database recovery control (DBRC)
	DBRC usage
	1. 1 DBRC options
	1. 2 DBRC configurations
	1. 3 Database authorization
	1. 4 Access intent

	RECON data sets
	2. 1 Database related information
	2. 2 Subsystem
	2. 3 Database name
	2. 4 RECON definition and creation

	Initializing RECON data sets
	Allocation of RECON data sets to subsystems
	Placement of RECON data sets
	RECON data set maintenance
	6. 1 RECON backup
	6. 2 DELETE. LOG INACTIVE command
	6. 3 LIST. RECON STATUS command

	RECON reorganization
	Reorganizing RECON data sets
	Recreating RECON data sets
	PRILOG record size
	Summary of recommendations for RECON data sets

	Chapter 21. RECON record types
	1 RECON records
	1. 1 Control records
	1. 2 Log records
	1. 3 Change accumulation records
	1. 4 DBDS group records
	1. 5 Database records

	RECON header record
	RECON header extension record
	DB record
	5 DBDS record
	SUBSYS record
	7 DBDSGRP record
	8 CAGRP record
	CA record
	PRILOG/ SECLOG record
	PRISLDS/ SECSLDS record
	PRIOLD/ SECOLD record
	LOGALL record
	ALLOC record
	IC record
	REORG record
	DBDS

	RECOV record
	AAUTH record
	Interim log records

	Chapter 22. IMS logging
	Checkpointing
	IMS log buffers
	Online log data sets (OLDS)
	3. 1 OLDS dual logging
	3. 2 Dynamic backout
	3. 3 Archiving
	3. 4 OLDS I/ O errors
	3. 5 DBRC
	3. 6 Lack of OLDS

	Write ahead data sets (WADS)
	4. 1 Dual WADS
	4. 2 WADS redundancy

	System log data sets (SLDS)
	Recovery log data sets (RLDS)

	Chapter 23. IMS system generation process
	Types of IMS generation
	IMS generation macros
	The IMS generation process
	3. 1 Stage1
	3. 2 Stage2
	3. 3 JCLIN
	3. 4 Re- apply SMP/ E maintenance not accepted
	3. 5 IMS security maintenance utility generation

	Automating the IMS system generation process

	Chapter 24. IMS security overview
	Background to IMS security
	The security macro
	Protecting IMS terminals
	Protecting IMS commands
	Protecting IMS transactions
	Protecting IMS dependent region(s) and the IMS online system
	Protecting IMS PSBs and online application programs
	Protecting IMS control program and region application programs

	Appendix A. Special notices
	Appendix B. Related publications
	B.1 International Technical Support Organization publications
	B.2 Redbooks on CD-ROMs
	B.3 Other publications

	How to get ITSO redbooks
	IBM Redbook Fax Order Form

	Glossary
	A
	C
	B
	D
	G
	H
	E
	F
	I
	K
	J
	O
	L
	P
	M
	N
	R
	T
	S
	U
	V
	W

	List of abbreviations
	Index
	ITSO redbook evaluation

