IBM RAMAC 3 Array Storage

December 1996
Take Note!

Before using this information and the product it supports, be sure to read the general information in Appendix B, “Special Notices” on page 169.

First Edition (December 1996)

This edition applies to the IBM 3990-6 and RAMAC 3 Array Storage.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. 471 Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.
Contents

Preface .. ix
How This Redbook Is Organized ix
The Team That Wrote This Redbook x
Comments Welcome .. xi

Chapter 1. Introduction ... 1
Acknowledgments .. 2
Agenda ... 5

Chapter 2. RAMAC 3 Array Storage Overview 7
RAMAC 3 Array Storage Overview 7
RAMAC 3 Array Storage Overview 8
 45.4 GB to 726.4 GB .. 8
 256 MB to 8 GB of cache 8
 32 MB to 256 MB of NVS 9
 256 devices .. 9
 4 to 32 ESCON channels 9
 11.9 MB/s lower interface 9
 General availability October 25, 1996 9
RAMAC 3 Array Storage Capacity 10
RAMAC 3 Array Storage - Solving the Puzzle 11
IBM 3990-6 and RAMAC 3 Storage Frame 12
IBM 3990-6 and IBM RAMAC 3 Storage Frame 13
 RAMAC 3 Frame attaches to a 3990-6 13
 Requires LIC change 13
 Supports 128 devices 13
 Up to 363.2 GB ... 14
 3390 and 3380 track format 14
 Recommended minimum cache and NVS sizes 14
 High-speed device adapter 14
RAMAC Array Family ... 15

Chapter 3. IBM RAMAC 3 Array Drawer 17
IBM RAMAC 3 Drawer ... 17
IBM RAMAC 3 Drawer ... 18
 RAMAC 3 drawer design 18
 Enhanced drawer processing 18
 High-Capacity Enabling 19
 Performance ... 19
IBM RAMAC 3 Drawer ... 20
 Common technology with RAMAC, RAMAC 2, and RAMAC 3 20
 Proven high-availability RAID-5 design 20
 Nonvolatile cache .. 20
 22.7 GB per drawer .. 21
 High performance SCSI 3.5 in. Ultrastar disk drives 21
RAMAC 3 Drawer .. 22
 Eight logical volumes per drawer 22
 Four Ultrastar 2XP disks per drawer 22
 High-speed parallel device adapter-device (PDAD) 23
 Cache size of 64 MB 23
 Improved data integrity 23
Hardware assist for fast response to initial volume access request 23
Improved sequential processing 23
RAMAC 3 Drawer Capacity .. 24
RAMAC 3 Drawer Logical Volume Emulation 25
RAMAC Drawer Logical Volume Mapping 26
RAMAC 2 Drawer Logical Volume Mapping 28
RAMAC 3 Drawer Logical Volume Mapping 30
RAMAC 3 Array Drawer Technology 31
RAMAC 3 Array Drawer Technology 33
RAMAC Drawer - System Components 35
 Array management ... 35
 Physical interface management 36
 Lower interface data transfer management 36
 Interprocessor communications 36
 Cache management .. 36
 Logical interface management 36
 Background processing .. 37
 Resource management .. 37
RAMAC 3 Drawer Hardware Assists 38
RAMAC 3 Drawer Hardware Assists... 39
RAMAC 3 Drawer Hardware Assists... 40
RAMAC Data Integrity and Availability 41
 Disk scrubbing .. 41
RAMAC 3 Improved Data Integrity 42
 SCSI header checking on every block 42
RAMAC 3 Improved Data Integrity... 43
Improved Sequential Write Processing 44
RAMAC Drawer Sequential Prestaging 46
 Requested track and all tracks to end of cylinder... 46
 Additional six tracks staged to “keep ahead”... 47
 Drawer speed-matches overlapped data transfer 47
IBM RAMAC 3 Drawer - Summary 48
 Highly parallel RAID-5 operations 48
 Faster PDAD ... 48
 Faster h/w-assisted prefetch 49
 Sequential detect support 49
 Advanced destage management 49
 Logical volume mapping ... 49
 High-performance Ultrastar 2XP disk drive 49
 High-capacity Ultrastar 2XP disk drive 49
 Eight logical volume emulation support 50
 H/W-assisted SCSI block checking 50
 CRC across CU-drawer interface 50
 Third generation RAID-5 .. 50
 Fault-tolerant design .. 50

Chapter 4. IBM Ultrastar 2XP Disk Drive 51
IBM Ultrastar 2XP Disk Drive 52
 9.22 GB .. 52
 7200 rpm .. 52
 No-ID sector format ... 53
 Zoned bit recording ... 53
 MR heads ... 53
 Predictive Failure Analysis - S.M.A.R.T compliant 53
RAMAC 3 - Zoned Bit Recording 54
Dynamic Sparing preferred
- Page 103

Dynamic disk reconstruction
- Page 104

Chapter 7. Installation Planning
- Page 105
 - Installation and Migration
 - Software dependencies
 - IOCP definitions
 - Physical planning
 - VPD settings
 - ESCON connections
 - 3990-6 support for IBM RAMAC 3 Array Storage
 - Data migration
 - 9390-001 IOCP Definition Example
 - Two-CNTLUNIT macro definition
 - Single-CNTLUNIT macro definition
 - 9390-001/ESCD IOCP Definition Example
 - ESCON Director Definition
 - 9390/3990-6 Definition
 - 9390-002 IOCP Definition Example
 - 9390-002/ESCD IOCP Definition Example
 - Physical Specifications
 - Power and Floor Space Comparison
 - 9390-001 Power Boundaries
 - 9390-002 Power Boundaries
 - 9390 Host Support
 - ES/9000, S/390, and 3090 processors with ESCON channels
 - ESCON support
 - 9390-001 ESCON Channel Configuration
 - 9390-002 ESCON Channel Configuration
 - 9390 Cache and NVS Feature Codes
 - 3990-6 Support for NVS Feature Codes
 - Customer protection
 - Faster DDC interface
 - New LIC download and activation required for 128 device support

Chapter 8. RAMAC 3 Array Storage and Remote Copy
- Page 125
 - 9390 XRC Session Support
 - 9390-002 at XRC Recovery Site
 - RAMAC 3 Array Storage and PPRC
 - 9390-002 at PPRC Recovery Site

Chapter 9. Performance
- Page 131
 - Performance Tools
 - DCAT
 - CAA
 - DASD Magic/2
 - DSCAT
 - Performance with Sequential Detect
 - Sequential Performance Improvements
 - RAMAC 3 Recommended Configurations
 - Performance - Migration Consolidation

Chapter 10. Software
- Page 139
 - RAMAC 3 Array Storage Software Support
 - RAMAC 3 Software - APARs and PTFs
Preface

This book describes the new RAMAC 3 Array Storage subsystem announced in September 1996. It provides detailed information about the advanced technology and architecture of the RAMAC 3 Array drawer and the Ultrastar 2XP disk drives. It provides guidance on installation planning and operations monitoring enhancements that assist customers in implementing RAMAC 3 Array Storage subsystems.

The book is written for storage administrators, systems programmers, site operations staff, and other technical support staff and managers interested in storage subsystem configuration design, capacity planning, performance, and installation and migration.

How This Redbook Is Organized

This redbook contains 210 pages and the following chapters:

- IBM RAMAC 3 Array Storage Overview
 This chapter introduces the new RAMAC 3 Array Storage and provides an overview of its capacity, channel connectivity, and cache and NVS configurations.

- IBM RAMAC 3 Array Drawer
 This chapter revisits the technology and design of the RAMAC and RAMAC 2 drawers and highlights the changes implemented in the RAMAC 3 drawer.

- IBM Ultrastar 2XP Disk Drive
 This chapter describes the technology and architecture of the new IBM Ultrastar 2XP disk drive. The Ultrastar 2XP’s effect on capacity, performance, and reliability is discussed.

- IBM RAMAC Array Storage
 This chapter describes details of the RAMAC 3 Array Storage, including the new RAMAC 3 Storage Frame and its attachment to the new 9390-001 and 9390-002 storage controls and the 3990-6 storage control. Device addressability is also covered.

- 9390 and 3990-6 Storage Controls
 The details of how the 9390 and 3990-6 storage controls support the new RAMAC 3 Array drawer and RAMAC 3 Storage Frame are presented in this chapter.

- Installation Planning
 This chapter describes the key tasks involved in planning for installation of the new RAMAC 3 Array Storage. Tasks covered include software requirements, IOCP definitions, and physical and environmental specifications.

- RAMAC 3 Array Storage and Remote Copy
 The RAMAC 3 Array Storage can participate in both XRC and PPRC remote copy configurations. This chapter describes details of how the attributes of the RAMAC 3 Array Storage affect XRC and PPRC configuration design.
• Performance
This chapter contains details of performance comparisons between 3990-6 and RAMAC 2 and RAMAC 3 Array Storage for specified workloads. The performance of RAMAC 3 Array Storage using the new sequential detect algorithms and the effect of migration and consolidation of capacity and workload are also described.

• Software
This chapter highlights the software support that enables implementation and exploitation of the RAMAC 3 Array Storage.

• Operational Considerations
The details that must be communicated to customer operations staff when implementing and monitoring RAMAC 3 Array Storage subsystems are described in this chapter.

• Positioning
RAMAC 3 Array Storage is joined by three other new members of the RAMAC Array family—the RAMAC Virtual Array, the RAMAC Scalable Array, and the RAMAC Electronic Array. This chapter describes the functions of the new members, and explains how one might be favored over another depending on installation requirements.

• Appendix A, “RAMAC Advanced Destage Management”
This appendix contains a step-by-step description of how the RAMAC 3 Array drawer manages the parallel data transfers and utilization of drawer components as part of its data destage activities.

The Team That Wrote This Redbook
This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization San Jose Center.

David McAuley is the project leader for large systems disk storage products at the International Technical Support Organization, San Jose Center. He has written six ITSO redbooks and several international conference papers, among them a paper on image processing and pattern recognition in IBM’s Journal of Research and Development. Dave teaches IBM classes worldwide on all areas of high-end DASD products. Before joining the ITSO in 1994, he worked in the product support center in Scotland as a large systems storage specialist. Dave has worked at IBM for 18 years, with international career assignments in manufacturing, design and development, and marketing. His background in computer science spans a varied portfolio including supercomputing application development, process control and image analysis systems design and microcode development, automation and robotics systems project management, and large systems marketing and technical support.

Phil Norman is an Information Technology consultant in the Enterprise Systems technical support group in the UK. He has 10 years of experience in the storage hardware field. His areas of expertise include 3990, 3390, and RAMAC hardware, and remote copy. Phil specializes in supporting performance studies, field guide preparation, and workshops.

Hans Esch is an information technology marketing specialist in Duesseldorf, Germany. He has more than 20 years of experience in S/370 and S/390 systems.
and large systems storage technical support and marketing. His other areas of expertise include VM/ESA and VSE/ESA networking and connectivity. Hans joined IBM in 1969.

Thanks to the following people for their invaluable contributions to this project:

Dave Giese, Storage Systems Division, San Jose
Steve Hetzler, Almaden Research Center, San Jose
Joe Hyde, Storage Systems Division, Tucson
Scott Karstetter, Storage Systems Division, San Jose
Ted Lee, Storage Systems Division, San Jose
David Plomgren, Storage Systems Division, San Jose
Greg Sims, Storage Systems Division, San Jose
Jeff Steffan, Storage Systems Division, San Jose
Karl Stoeckli, Credit Suisse, Zurich, Switzerland
Chris Xydes, Storage Systems Division, San Jose

Thanks are also due to the many other collaborators and reviewers who contributed to the production of this document. In particular, we would like to thank the following people:

Maggie Cutler, ITSO Technical Editor
Jacques Glorieux, IBM Belgium
Dave Hollar, S/390 Division
Chuck Lanzi, Storage Systems Division, San Jose
John Power, Storage Systems Division, San Jose
Charlie Shapley, S/390 Division
Frank Vitro, Storage Systems Division, San Jose

Comments Welcome

We want our redbooks to be as helpful as possible. Should you have any comments about this or other redbooks, please send us a note at the following address:

redbook@vnet.ibm.com

Your comments are important to us!
Chapter 1. Introduction

IBM RAMAC 3 Array Storage

Dave McAuley
International Technical Support Organization
San Jose

October 1996

© IBM Corporation 1996
Acknowledgments

This book is the result of a residency project run at the International Technical Support Organization-San Jose Center in San Jose, California, during July and August 1996. The project was designed and managed by:

Dave McAuley, International Technical Support Organization-San Jose Center

The book was written by:
- Dave McAuley, IBM ITSO-San Jose Center
- Hans Esch, IBM Germany
- Phil Norman, IBM UK

We are grateful for the contributions of many people, but particularly acknowledge:

- Dave Giese, Storage Systems Division, San Jose
- Steve Hetzler, Almaden Research Center, San Jose
- Joe Hyde, Storage Systems Division, Tucson
- Scott Karstetter, Storage Systems Division, San Jose
- Ted Lee, Storage Systems Division, San Jose
• David Plomgren, Storage Systems Division, San Jose
• Greg Sims, Storage Systems Division, San Jose
• Jeff Steffan, Storage Systems Division, San Jose
• Karl Stoeckli, Credit Suisse, Zurich, Switzerland
• Chris Xydes, Storage Systems Division, San Jose
Audience

- This presentation is written for:
 - Customer personnel
 - IBM technical and marketing specialists
 - IBM client representatives

Trademark

The following products and features referenced in this presentation are trademarks of the IBM Corporation in the United States and/or other countries:

- ES/9000
- ESCON
- IBM
- RAMAC
- System/390
- Hardware Configuration Definition
- MVS/DFP
- DFSMS/MVS
- No-ID Sector Format
- MVS/ESA
- MVS/XA
- VM/ESA
- VM/XA SP
- VSE/ESA
- DB2
- IMS/ESA
- CICS/ESA
- NetView
- Predictive Failure Analysis

© IBM Corporation 1996
Agenda

- Overview of RAMAC 3 Array Storage
- IBM RAMAC 3 drawer
- IBM Ultrastar 2XP disk drive
- IBM RAMAC 3 Storage Control and RAMAC 3 Storage Frame
- IBM RAMAC 3 Storage Control and 3990 Model 6
- Operational Considerations
- Performance
- Installation and Migration
- Software Support and Tools
- Positioning
- Summary

This foil lists the topics covered in this presentation guide. We provide a brief overview of the new IBM RAMAC 3 Array Storage subsystem, the attachment of the RAMAC 3 Storage Frame to an existing 3990-6, and the functions that are supported. Then we describe each of the components of the RAMAC 3 Array Storage, from the drawer and new disk drive, to the enhanced device adapters and the new RAMAC 3 Storage Control. We review configuration options; operational, performance, installation, and migration considerations; and software support and tools. We position the new RAMAC 3 Array Storage in the enlarged RAMAC Array family, now consisting of RAMAC, RAMAC 2, RAMAC 3, the RAMAC Virtual Array, the RAMAC Scalable Array, and the RAMAC Electronic Array plus the new S/390 Internal Disk. We conclude with a summary of the new products and enhancements.
Chapter 2. RAMAC 3 Array Storage Overview

RAMAC 3 Array Storage Overview

This section gives a brief overview of the IBM RAMAC 3 Array Storage and its capacity and configuration options. The schematic shows the RAMAC 3 Storage Control and two RAMAC 3 Storage Frames. The storage control is the same height as a RAMAC frame and contains two storage controls in one cabinet. We also look at the attachment of the RAMAC 3 Storage Frame to an existing 3990-6 and position the new RAMAC 3 Array Storage in the RAMAC Array family of products.
Here we summarize the capacity, connections, performance, and availability of the RAMAC 3 Array Storage.

45.4 GB to 726.4 GB

The IBM RAMAC 3 Array Storage subsystem consists of an IBM RAMAC Storage Control and one or two IBM RAMAC 3 Storage Frames each containing up to 363.2 GB of storage. A fully configured IBM RAMAC 3 Storage Frame contains 16 RAMAC 3 drawers, each with 22.7 GB of storage capacity, giving a total of 363.2 GB. Therefore, two RAMAC 3 Storage Frames each containing 16 drawers provide 726.4 GB. The minimum configuration is a RAMAC 3 Storage Frame containing two RAMAC 3 drawers, providing a total capacity of 45.4 GB.

There are two models of the RAMAC Storage Control: the IBM RAMAC Storage Control Model 001 (9390-001), which contains one storage control, and the IBM RAMAC Storage Control Model 002 (9390-002), which contains two storage controls. Each storage control connects to one of the Storage Frames.

256 MB to 8 GB of cache

The minimum cache size for a storage control is 256 MB. This size ensures that the storage subsystem delivers good performance for lower-capacity configurations. Maximum cache is 8 GB (4 GB per storage control in a 9390-002).
32 MB to 256 MB of NVS
The nonvolatile storage sizes vary from a minimum of 32 MB (on a 9390-001 single storage control) to 256 MB (128 MB per storage control on the 9390-002).

256 devices
Each storage control on a 9390-002 supports up to 128 devices for a total of 256. Each of the two RAMAC 3 frames contains from 2 to 16 drawers, each emulating eight logical 3390-3 volumes.

4 to 32 ESCON channels
Channel attachment is ESCON only; parallel channel support is not provided. The minimum channel configuration is 4 ESCON channels on a 9390-001 and the maximum is 32 on a 9390-002 (16 on each storage control).

11.9 MB/s lower interface
The lower interface between the RAMAC 3 Storage Control and the RAMAC 3 Storage Frame has been enhanced to support a substantially higher data rate. The increase to 11.9 MB/s enables the storage control to support the larger number of logical volumes. In addition, the faster data rate benefits sequential operations and improves batch job throughput, particularly important when extended online hours squeeze the batch window.

General availability October 25, 1996
General availability is October 25, 1996.
The RAMAC 3 Array Storage provides a dramatic reduction in floor space per gigabyte when compared with previous DASD subsystems. For example, a fully configured RAMAC 3 Array Storage subsystem has the equivalent capacity of four 3990s, each with two strings of 3390-3.

If we look at the capacity in terms of the 3380 and 3880, we have a physical reduction from about 192 to 3 boxes.
RAMAC 3 Array Storage - Solving the Puzzle

The RAMAC 3 Array Storage subsystem provides all of the extended functions and I/O support capability that have made the 3990-6 an outstanding storage control. The extended functions of the RAMAC 3 Array Storage address the key requirements of today’s high-end DASD subsystem and are not simply a group of disparate features developed in isolation—instead, these functions “fit together” to deliver a solutions-oriented base for data storage and retrieval.
IBM 3990-6 and RAMAC 3 Storage Frame

The 3990-6 has been at the center of IBM's storage strategy for almost a decade, delivering high performance and high availability with an ongoing evolution of functions. With the announcement of 3990-6 support for the IBM RAMAC 3 Storage Frame, IBM is protecting your investment in installed controllers. All of the extended functions supported on the 3990-6 are enabled for RAMAC 3 Array DASD configurations including the unique support for both parallel and ESCON host channel attachments.
IBM 3990-6 and IBM RAMAC 3 Storage Frame

- RAMAC 3 Storage Frame attaches to 3990-6
- Requires LIC change
- Supports 128 devices
- Up to 363.2 GB
- 3390 and 3380 track format
- Recommended minimum cache and NVS sizes
- High-speed device adapter

IBM 3990-6 and IBM RAMAC 3 Storage Frame..

RAMAC 3 Frame attaches to a 3990-6

All 3990-6 Storage Controls can support the new RAMAC 3 Storage Frame, although new director-to-device connection (DDC) cables are required. Some early models of 3990-6 require a larger capacity storage control hard drive.

Requires LIC change

A new level of Licensed Internal Code is required to provide the support for the new interface speeds and additional addresses when the 3990-6 attaches to the RAMAC 3 Storage Frame.

See Chapter 10, “Software” on page 139 for details on software support for the RAMAC 3 Array Storage.

Supports 128 devices

The additional capacity is provided by increasing the number of addresses from 64 to 128 in the 3990-6.
Up to 363.2 GB
With the increase in the number of volumes, the 3990 Model 6 can now support up to 363.2 GB in 3390-3 format.

3390 and 3380 track format
The 3990-6 supports both 3390 and 3380 track format. If a full RAMAC 3 Storage Frame is formatted in 3380 track format, the capacity is reduced by 16%, from 363.2 GB per rack to 304 GB.

Recommended minimum cache and NVS sizes
There are recommended minimum cache and NVS sizes for RAMAC 3 Storage Frame configurations. The minimum sizes for the 9390 with RAMAC 3 is 256 MB of cache and 32 MB of NVS; a similar recommendation applies to the 3990-6 when attaching a RAMAC 3 Storage Frame. A more typical size for high performance would be 1 GB of cache and 64 MB of NVS. We recommend that you review the cache size of an existing 3990 Model 6 with your IBM storage specialist if you plan to attach the new RAMAC 3 Storage Frame.

High-speed device adapter
Until now the 3990-6 to RAMAC drawer lower interface has operated at the RAMAC and RAMAC 2 parallel device adapter (PDAD) speed. RAMAC 3 has a faster PDAD, triple the speed of the RAMAC and RAMAC 2 adapter at 11.9 MB/s. The faster interface also improves the sequential performance of the 3990-6 with RAMAC 3 drawers. This enhancement is available only with RAMAC 3 drawers and either a 9390 or a 3990-6.
The RAMAC Array Family has been significantly enhanced by the addition in 1996 of the RAMAC Virtual Array and the RAMAC Scalable Array (with the RAMAC Electronic Array as a specialized version of the Scalable Array) to the RAMAC 2 Array DASD and the RAMAC 2 Array Subsystem. Now, adding to the customer’s choice of S/390 DASD, IBM introduces the new RAMAC 3 Array Storage. Each of the storage products provides high availability together with product-unique functions and characteristics.
Chapter 3. IBM RAMAC 3 Array Drawer

Apart from the larger capacity disks, there are many enhancements to the RAMAC 3 Array drawer. This section revisits the RAMAC drawer technology and design, and describes the changes made to the RAMAC 3 drawer.
IBM RAMAC 3 Drawer...

The IBM RAMAC Array Family of products implements a hierarchical, distributed design that results in highly parallel storage subsystem processing. The 3990 and 9390 storage controls attach to the RAMAC 3 Storage Frame, which in turn houses the RAMAC 3 drawer. The RAMAC 3 drawer contains the Ultrastar 2XP disk drives. Each of these components performs vital storage subsystem tasks in harmony, but also in parallel. This section focuses on the changes to the RAMAC 3 drawer.

RAMAC 3 drawer design

The RAMAC 3 drawer transforms standard RAID-5 architecture into advanced RAID-5 operations by exploiting a sophisticated "web" of hardware and microcode components that have matured and stabilized through three generations of the RAMAC family. These components and how they interact are described in this section.

Enhanced drawer processing

The RAMAC 3 drawer neutralizes many of the adverse performance effects associated with RAID-5 processing. From a performance perspective, write penalty avoidance is the major goal of RAID-5 (and other RAID implementations) storage subsystems and must be achieved without compromising data integrity and data availability. The RAMAC Array Family uses a combination of hardware and microcode to provide unique techniques such as advanced destage management and hardware-assisted data prefetch functions. These techniques are described in this section.
High-Capacity Enabling

The RAMAC Array Family of products has consistently delivered higher-capacity subsystems year after year. This answers the relentless demand created by the global explosion of information systems and networks. Throughout this period of growth the RAMAC Array Family has adhered to a technique that enables cost-effective, risk-free increases in the amount of data that can be accessed by an application. Logical volume emulation provides a secure and easy way to capitalize on the advances made in disk drive technology and architecture. RAMAC 3 Array Storage continues this technique by providing eight logical volumes in each RAMAC 3 drawer.

Performance

A single RAMAC 3 Array Storage configuration quadruples the storage capacity of a single 3990-3 storage control while maintaining the highest levels of performance for advanced RAID-5 operations. Performance improvements implemented in the RAMAC 3 Storage Frame and RAMAC 3 drawer are complemented by enhancements in drawer microcode and disk drive technology and architecture. The relationship between the RAMAC 3 drawer and the 9390 and 3990-6 storage controls also results in more efficient data transfer setup and parity processing.
IBM RAMAC 3 Drawer

- Common technology with RAMAC, RAMAC 2, and RAMAC 3
- Proven high-availability RAID-5 design
- Nonvolatile cache
- 22.7 GB per drawer
- High-performance SCSI
 3.5 in. Ultrastar disk drives

IBM RAMAC 3 Drawer

The RAMAC 3 drawer enables more cost-effective capacity than the RAMAC 2 drawer through its use of the Ultrastar 2XP disk drive and improved drawer components.

Common technology with RAMAC, RAMAC 2, and RAMAC 3

The technology base and drawer design is common among RAMAC family members, thus enabling low-risk hardware and microcode enhancements on the RAMAC 3 drawer in addition to exploitation of the new Ultrastar 2XP disk drive.

Proven high-availability RAID-5 design

The enhanced RAID-5 design of the RAMAC 3 drawer builds on the proven high-availability RAID-5 design of the previous RAMAC drawers. RAMAC has been certified as compliant with the RAID Advisory Board standards for RAID-5 and is entitled to use the RAB logo.

Nonvolatile cache

In the multilevel cache design of RAMAC, where the RAID-5 handling is devolved to the drawer, the nonvolatile cache is used to hold data while parity is calculated. It is also used to prestage data from the disks to the drawer cache ready to be transferred to the storage control.
22.7 GB per drawer

The capacity of a RAMAC 3 drawer has been increased to 22.7 GB. This is four times the capacity of RAMAC and twice that of RAMAC 2. The additional capacity is derived from the use of the IBM Ultrastar 2XP disk drive that provides 9.22 GB of storage capacity. The Ultrastar disk drives are arranged in a RAID-5 array formation in the RAMAC 3 Array drawer.

High performance SCSI 3.5 in. Ultrastar disk drives

The new disk drive in the RAMAC 3 Array drawer is an IBM Ultrastar 2XP. This disk drive, also used in the S/390 Internal Disk and in the enhanced RAMAC Virtual Array, demonstrates IBM’s position as a leader in the disk technology industry.
IBM RAMAC 3 Drawer...

- Eight logical volumes per drawer
- Four Ultrastar 2XP disks per drawer
- High-speed parallel device adapter-device (PDAD)
- Cache size of 64 MB
- Improved data integrity
- Hardware assist for fast response to initial volume access request
- Improved sequential processing

RAMAC 3 Drawer...
The RAMAC drawer consists of many components. Here we look in detail at the changes introduced in RAMAC 3 and in the enhancements that benefit RAMAC, RAMAC 2, and RAMAC 3.

Eight logical volumes per drawer
The double capacity of RAMAC 3 over RAMAC 2 is achieved by mapping eight 3390-3 volumes in each drawer. As in other RAMAC drawer designs, the tracks of each of the emulated disks are striped across three of the four disks, the fourth disk holding the parity track. As in any RAID-5 design, the parity rotates around the disks to spread the parity I/O activity across all disks.

Four Ultrastar 2XP disks per drawer
The new Ultrastar disks are located in the RAMAC 3 drawer in the same way as in the existing RAMAC drawers. A disk can be removed and replaced should it fail. The RAMAC drawer rebuilds the data and parity on the replaced disk automatically.
High-speed parallel device adapter-device (PDAD)

To support the larger capacity in each drawer and to enhance data transfer, staging, and destaging performance, the interface between the storage control and the RAMAC 3 Storage Frame and between the Storage Frame and the RAMAC 3 drawer has been redesigned. As part of the new design the PDAD in the RAMAC 3 drawer has been enhanced to handle a tripling of the data rate. Foil “High-Speed Device Adapter” on page 88 gives more details.

Cache size of 64 MB

The cache size of a RAMAC 3 drawer remains at 64 MB, the same as that of RAMAC and RAMAC 2. It may seem that a larger size would be necessary, particularly as we are still using the same size as RAMAC but with four times the disk capacity per drawer. Both the enhanced data rate on the upper drawer interface and the faster disk speed on the lower interface reduce the time data is held in the drawer cache and thereby the need for a larger cache. When the ratio between the 3990 cache and drawer cache was low, for example, when the 3990 had 64 MB of cache and the drawer 64 MB of cache, there were performance benefits from drawer cache hits. As the storage control caches have increased, drawer cache hit benefits have been reduced. With low hit rates in a drawer, the drawer cache is mainly used for RAID-5 parity handling and staging and destaging tracks. Analysis has shown that a larger storage control cache and NVS provide better overall performance than increasing the size of drawer cache and are more cost effective than increasing the cache size in every drawer. For recommendations on storage control cache and NVS sizes, see foil “RAMAC 3 Recommended Configurations” on page 137.

Improved data integrity

Since the introduction of RAMAC, IBM has consistently improved its data integrity and availability characteristics. Today RAMAC is the industry leading S/390 storage product in terms of reliability, availability, and data integrity. In each iteration of the RAMAC design, enhancements are made on the basis of practical experience with the products and their behavior in customer environments. In RAMAC 3 further enhancements have been made, as discussed in more detail on foil “RAMAC Data Integrity and Availability” on page 41.

Hardware assist for fast response to initial volume access request

In the RAMAC drawer, many functions are implemented in the microcode rather than the hardware for both ease of change and cost. In some cases, however, a hardware implementation of a function can be justified on the significant performance improvement that it delivers. A number of functions have been implemented in the hardware in the RAMAC 3 drawer that complement the higher data rate from the storage control.

Improved sequential processing

A large part of your data is sequential, and, with the reducing batch window that most of you are experiencing, any improvement in the handling of sequential data is welcome. The RAMAC 3 drawer as well as the RAMAC and RAMAC 2 drawer have enhancements in their design to improve processing for sequential update writes. This improvement is in addition to the faster data rate that the high-speed device adapter provides on the RAMAC 3 drawer.
A RAMAC 3 drawer holds 22.7 GB of data in 3390-3 format. If this capacity is compared with the capacity of a 3390-A38, a box that is still installed in many installations today, you can see the dramatic reduction in the physical space needed to store your data. A full frame of RAMAC 3 drawers containing 363.2 GB is equivalent to four full strings of 3390-3, or 12 boxes.
RAMAC 3 Drawer Logical Volume Emulation

The additional capacity in the RAMAC 3 Array Storage is delivered by an increase in the number of logical volumes that can be accessed in a RAMAC 3 drawer while retaining an optimal physical array size of four disk drives. The RAMAC 3 drawer emulates eight 3390-3 logical volumes that can be installed in either 3390-3 track format or 3380 track format. The RAMAC 3 drawer always emulates 3390-3 track geometry, with the storage control (3990-6 or 9390) providing the 3380 track format function in addition.
The four disk drives in the RAMAC drawer use fixed-block architecture (FBA) to enable RAID-5 distributed parity. However, system control programs (SCPs) such as MVS mandate count key data (CKD) channel architecture and disk format. Therefore an emulation process is needed that translates CKD format to FBA format and vice versa. This emulation process is performed in the RAMAC drawer. The fixed-block disks in the RAMAC drawer are formatted with a number of 688-byte SCSI sectors or blocks. Eighty-nine SCSI blocks are needed to emulate a CKD track. The CKD data can be striped across the four disks in the array in a number of ways, and careful consideration was given to this aspect of the drawer design.

The foil shows how the RAMAC drawer maps the CKD data to the four disk drives in the RAMAC drawer array. Remember that the RAMAC drawer emulates two 3390-3 logical volumes—call them logical volume 0 and logical volume 1. Notice that the striping increment is one CKD logical track. The foil shows V0C0T0 as the first data stripe written to disk 1—this refers to logical volume 0, logical cylinder 0, logical track 0 of a 3390-3 volume. This logical track is 57 KB long and occupies 89 SCSI sectors on disk 1 in the array. Similarly, V0C0T1 (volume 0, cylinder 0, track 1) is written to the first 89 SCSI blocks of disk 2 in the array, and V0C0T2 (volume 0, cylinder 0, track 2) is written to the first 89 SCSI sectors of disk 3 in the array. The first 89 SCSI sectors of disk 4 contain the parity information for these three CKD data tracks. The second 89 SCSI sectors of disk 1 contain the data for 3390-3 logical volume 0, cylinder 0, track 3 (V0C0T3).
RAID-5 architecture is characterized by what is referred to as distributed parity; that is, the parity information that is used to rebuild the contents of any failed disk drive is spread across all of the disk drives to avoid "single-drive contention" during parity processing. Notice how the RAMAC drawer implements distributed parity. Parity is not rotated among the disk drives in a RAMAC drawer array until an entire logical cylinder from each logical volume is written. The foil shows that the 15 logical tracks in the first logical cylinder are written for each logical volume to disks 1, 2, and 3 before parity rotates from disk 4 to disk 3. The fifteenth track in the first logical cylinder of volume 0 is V0C0T14 and is written to disk 3 in the array, and the fifteenth track in the first logical cylinder of volume 1 is V1C0T14 and is also written to disk 3 in the array.

The logical tracks that are emulated in a two-volume RAMAC drawer will always occupy these locations on the disk drives under normal circumstances. This locality of data offers a significant benefit especially for sequential workloads because the write penalty normally associated with RAID-5 architecture is avoided. The RAMAC drawer logical volume mapping is therefore instrumental in avoiding the performance drawback inherent in RAID-5 devices. Write penalty avoidance is described in more detail in Appendix A.
RAMAC 2 Drawer Logical Volume Mapping

With the arrival of RAMAC 2, the capacity of the drawer is doubled to 11.35 GB. However, the concept of logical volume emulation is preserved, and the increase in disk capacity is realized through a doubling of addressable volumes as opposed to higher-capacity volumes, for example. How does this affect the mapping scheme described in the previous foil? Can the same design objective of write-penalty avoidance be achieved for sequential workloads?

The answer is yes. The foil shows the mapping details of the RAMAC 2 drawer that is emulating four logical volumes as opposed to two logical volumes in the RAMAC drawer. Notice that the same concept of supporting RAID-5 distributed parity is retained by rotating the parity information across all of the disks in the array. The only change between RAMAC and RAMAC 2 is the amount of data written to the disks in the array before the parity is rotated. Recall from the RAMAC drawer mapping design that an entire cylinder of data (15 logical tracks) is written for each volume being emulated in the drawer before parity is rotated. The same technique is used in the RAMAC 2 drawer.

Notice that the parity information for the first cylinder of volumes 0, 1, 2, and 3 is stored on disk 4. The range of tracks for the first cylinder of each of the four volumes is:

- Volume 0 - V0C0T0---V0C0T14
- Volume 1 - V1C0T0---V1C0T14
- Volume 2 - V2C0T0---V2C0T14
- Volume 3 - V3C0T0---V3C0T14

RAMAC 2 Drawer Logical Volume Mapping Table

<table>
<thead>
<tr>
<th>Disk 1</th>
<th>Disk 2</th>
<th>Disk 3</th>
<th>Disk 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>V0C0T0</td>
<td>V0C0T1</td>
<td>V0C0T2</td>
<td>PARITY</td>
</tr>
<tr>
<td>V0C1T0</td>
<td>V0C1T1</td>
<td>V0C1T2</td>
<td>PARITY</td>
</tr>
<tr>
<td>V1C0T0</td>
<td>V1C0T1</td>
<td>V1C0T2</td>
<td>PARITY</td>
</tr>
<tr>
<td>V1C1T0</td>
<td>V1C1T1</td>
<td>V1C1T2</td>
<td>PARITY</td>
</tr>
<tr>
<td>V2C0T0</td>
<td>V2C0T1</td>
<td>V2C0T2</td>
<td>PARITY</td>
</tr>
<tr>
<td>V2C1T0</td>
<td>V2C1T1</td>
<td>V2C1T2</td>
<td>PARITY</td>
</tr>
<tr>
<td>V3C0T0</td>
<td>V3C0T1</td>
<td>V3C0T2</td>
<td>PARITY</td>
</tr>
<tr>
<td>V3C1T0</td>
<td>V3C1T1</td>
<td>V3C1T2</td>
<td>PARITY</td>
</tr>
<tr>
<td>V0C0T1</td>
<td>V0C1T0</td>
<td>PARITY</td>
<td>V0C1T2</td>
</tr>
<tr>
<td>V0C1T1</td>
<td>V0C0T0</td>
<td>PARITY</td>
<td>V0C0T14</td>
</tr>
<tr>
<td>V1C0T1</td>
<td>V1C1T0</td>
<td>PARITY</td>
<td>V1C1T2</td>
</tr>
<tr>
<td>V1C1T1</td>
<td>V1C0T0</td>
<td>PARITY</td>
<td>V1C0T14</td>
</tr>
</tbody>
</table>
Notice that all of these tracks are written to disks 1, 2, and 3 in the RAMAC 2 drawer array. The second cylinder of logical volumes 0, 1, 2, and 3 will be written to disks 1, 2, and 4 with corresponding parity written to disk 3. Therefore distributed parity is maintained in the RAMAC 2 array, and the adjacency of data is preserved to optimize sequential performance while increasing drawer capacity.
RAMAC 3 Drawer Logical Volume Mapping

It should come as no surprise to discover that the drawer mapping design for RAMAC 3 uses the same methods of the predecessor products while keeping the array size optimized at four drives and yet doubling capacity for the second time to 22.7 GB. The RAMAC 3 drawer emulates eight logical 3390-3 volumes, installed in either 3390-3 or 3380 track format. The distribution of parity in the RAMAC 3 array follows the same rules as before—write out one logical cylinder (15 logical tracks) of each logical volume being emulated, then rotate parity. Again, this technique increases capacity through increased device addressability and enables the enhanced RAID-5 design of the RAMAC drawer to take advantage of the locality of CKD track data to provide significant benefits for sequential workloads. Refer to Appendix A for details on how the RAMAC Array Family drawer technology and design avoid RAID-5 write penalty performance for sequential I/O.
RAMAC 3 Array Drawer Technology

The RAMAC 3 drawer incorporates the same technology and design as the RAMAC and RAMAC 2 drawers. Improvements have been made to the drawers as each generation of the RAMAC Array Family addresses the need for increased capacity, higher availability, better reliability, improved data integrity, and enhanced performance in more compact and cost-effective configurations.

The RAMAC, RAMAC 2, and RAMAC 3 drawers use a “multiengine” approach to deliver the function required of an enhanced RAID-5 device. Recognizing the processing requirements of CKD-to-FBA translation, CU-device protocol conversion, parity computation, destage management, data transfer, and maintenance and recovery, the RAMAC, RAMAC 2, and RAMAC 3 drawers exploit a highly parallel design that overlaps execution of many tasks in an advanced RAID architecture subsystem. Like the RAMAC and RAMAC 2 drawers, the RAMAC 3 drawer implements a fault-tolerant design based around the port SCSI manager (PSM) component.

There are two PSM cards in each drawer, and for the RAMAC 3 drawer the PSM is the third generation card. Each PSM card contains two path managers that are responsible for data transfer between the disk and the drawer cache and the channel. The PSM also performs other functions that are described on the next foil.

Each PSM card has two paths to drawer cache, providing a further level of fault tolerance at the pathing level and a connection to the cache manager used for distributed communications and recovery. The PSMs can perform a takeover...
function if the cache manager is not available—this is a different kind of fault tolerant design that avoids component replication but still delivers automatic recovery and application data access.

The PSMs connect to the PDAD driver and receiver components, which in turn connect to the high-speed device adapters (HSDAs) in the RAMAC 3 Storage Frame. The HSDAs in turn connect to the DDC adapters in the 3990-6 and the 9390. At the lower interface level, the PSMs also connect to the new fixed-block Ultrastar disk drives that operate at data rates of up to 15.4 MB/s. The SCSI interface between the PSM and the disk is a fast-and-wide single-ended interface supporting data rates of up to 20 MB/s.

The next foil takes an in-depth look at the RAMAC drawer and describes the changes to the drawer components incorporated into the RAMAC 3 Array Storage.
The PSM card in the RAMAC, RAMAC 2, and RAMAC 3 drawers contain the “multiengine” hub of RAMAC drawer operations. The nature of the work processed by the RAMAC drawer lends itself to highly parallel operations—for example, an upper interface data transfer, in process simultaneously with a lower interface staging operation, in process simultaneously with a RAID-5 parity computation. Overlapping these tasks by executing them simultaneously on multiple engines or microprocessors results in the fastest of RAID-5 implementations.

The PSM contains several key components that “join forces” to provide the highly parallel, fast execution, advanced RAID-5 RAMAC operation.

The path manager function of the PSM enables connectivity and data communications and transfer between the interfaces. The path manager is the “gateway” to drawer cache and uses fault-tolerant pathing. It “links” the upper drawer interface with the lower drawer interface through intelligent port-management.

The path manager component of PSM connects to the PCAP processor that provides the CKD-to-FBA emulation needed as data flows from the 9390 or 3990-6 to the Ultrastar 2XP disk drives. The PCAP processor connects to the PDAD that interfaces to the control unit and is used to transfer host data to and from drawer cache.
The path manager also connects to the SCSI controller and facilitates data transfer between the drawer cache and Ultrastar 2XP disk drives. The SCSI controller connects to the disk drives through disk cache and uses a 20 MB/s fast-and-wide single-ended interface.

The RAID-5 parity processing function is performed in the hardware by the path manager component and uses an exclusive-or (XOR) Boolean operation that computes a binary bit pattern from the three data tracks or from "old" and new versions of updated data and existing parity.

Drawer cache is used to hold application data and assist with RAID-5 operations, advanced destage management, and logical volume mapping. The drawer cache is fault tolerant; that is, it is contained on separate cards, and it is nonvolatile because a battery provides an alternative source of power that can sustain the contents of the cache if there is a room power outage. The new storage control NVS management changes use the drawer cache as a nonvolatile store instead of using the storage control NVS (see "Enhanced NVS Management" on page 95). In this case, the data resides in both controller cache and drawer cache. In the case of a power failure, the drawer ensures that any modified data in the drawer cache is destaged successfully to disk. The drawer stages tracks or partial tracks from the disk drives, so unproductive staging is avoided if a reference is made to a block that is not located at the beginning of a track. The drawer stages tracks or records from drawer cache to the storage control depending on the mode of access—track or record level caching.

The cache manager microprocessor manages drawer cache contents and schedules the processing of parity in support of the RAID-5 operation. Cache manager outage does not result in data loss or data access loss. If the cache manager malfunctions, Dynamic Sparing (if configured) will start copying the data to the spare drawer, and the PSMs will load the cache manager microcode and take over the function that allows drawer operation to continue.

Within the RAMAC 3 drawer, there are both hardware and microcode enhancements. The major drawer performance enhancement is the replacement of the device adapter of RAMAC and RAMAC 2 with a higher-performance PDAD to support the higher data rate to and from the storage control. The new adapter, a third generation chip, supports a data rate of up to 11.9 MB/s.
RAMAC Drawer - System Components

The multiengine hardware design of the RAMAC drawer enables multiple I/O and RAID-5 tasks to be performed in parallel. Overlapping RAMAC device tasks results in the highest levels of RAID-5 data redundancy while realizing high performance goals. To meet the aggressive goal of delivering the highest levels of data availability with the highest levels of subsystem performance, the hardware design of the RAMAC drawer is complemented by a multitasking microcode operating system—the highly parallel operation of the RAMAC drawer is a result of this operating system exploiting the multiengine hardware design. The execution of the RAMAC drawer tasks are transparent to application code.

The components of the RAMAC drawer’s operating system are distributed among the microprocessors in the drawer for maximum efficiency.

Array management

The RAMAC drawer’s array management tasks are coordinated by a supervisor component that commands and regulates the initiation of the many tasks that are processed in the drawer. Although these tasks are executed by other drawer components, the array manager supervises their scheduling. For example, the array manager initiates and supervises the scheduling of parity computations and the staging and destaging of data. The coordination of the many processes in an advanced RAID-5 data storage device is vital if the product is to evolve from a stable base. The RAMAC 3 Array drawer is an example of such an evolution.
Physical interface management
The RAMAC Array family of products (excluding the RAMAC Virtual Array, Scalable Array, and Electronic Array) implements a multilevel cache structure designed to provide high-performance RAID-5 capability. The RAMAC Array drawer recognizes the special needs of data transfer operations in a multilevel cache design and dedicates drawer hardware and microcode resources to ensure that data transfer is optimized. The RAMAC Array drawer’s physical interface management system controls the translation of data as it flows to and from the storage control over different interfaces and uses different protocols. The RAMAC Array drawer executes the physical interface processing required to send and receive data to and from the host.

Lower interface data transfer management
The RAMAC Array drawer’s lower interface data transfer management system is responsible for transferring data from the disk drives to the drawer cache. Having dedicated drawer elements performing data staging and destaging enables other drawer processes to execute in parallel and under the supervision of the array management system.

Interprocessor communications
The RAMAC Array drawer’s multiengine design enables the components of the operating system to execute in parallel in addition to multitasking. The signaling and command processing that enable control to be passed among the various drawer components are managed by the interprocessor communications system. The interprocessor communications component in the drawer ensures that important I/O and RAID-5 tasks are dispatched properly across multiple processor platforms.

Cache management
The storage control reads data from and writes it to drawer cache, and the drawer reads and writes data to and from the disk drives. The drawer cache is at the center of the upper and lower interface bidirectional data transfers, and it must provide data integrity, high availability, and high-performance RAID-5 operations support. The drawer’s cache management system ensures the validity of cache contents as data is staged, destaged, promoted, and demoted. The cache management system works with the specialized hardware engines in the drawer to maintain cache segment status for operations such as parity calculations, and padding (to end of track).

Logical interface management
The drawer executes the logical interface processing that makes data communications meaningful by interpreting channel and drawer commands. The host system control program (SCP) reads and writes data in count-key-data (CKD) format. The RAMAC Array drawer enables cost-effective RAID-5 operations by storing data on Ultrastar 2XP fixed block disk drives. The conversion between the two disk formats is performed by the PCAP processor in the drawer.
Background processing

All RAID-5 data storage subsystems must perform the tasks that enable them to qualify for RAID-5 designation. However, the RAMAC Array drawer changes the rulebook on how RAID-5 devices should behave. One of the many examples of how the RAMAC Array drawer expands the frontiers of RAID-5 operation is demonstrated by the activities performed by the drawer’s background management procedures. The background processing enables functions like disk scrubbing, data regeneration, and advanced destage management to execute on a nonintrusive basis with I/O and RAID-5 operations. The tasks that lend themselves to background execution deliver important availability, data integrity, and performance functions. Background disk scrubbing enables data sector errors to be detected and corrected before applications make requests for the data. Background data regeneration enables application data to be reconstructed on newly replaced disk drives, thus delivering the highest levels of availability by restoring RAID-5 capability. Advanced destage management support ensures that write penalty avoidance opportunities are detected and acted on to improve drawer resource utilization and improve performance.

Resource management

The effectiveness and efficiency of the RAMAC Array drawer’s RAID-5 operations are delivered through a combination of high-speed technology, highly parallel design, and advanced function. The RAMAC Array drawer ensures that drawer components are shared optimally, and that data integrity is not compromised when multiple accesses to a single drawer or data resources are requested. The drawer accomplishes these tasks through its resource management system. The resource management system allocates drawer resources such as drawer cache segments and control memory according to direction from the array management system. The resource management system also provides locking functions that enable access to and prevent corruption of application data when multiple requests are issued for that resource—for example, access to a track image residing in drawer cache is coordinated by the drawer’s resource management system.

RAMAC Array drawer - RAID-5 leadership

Highly parallel, multiengine, multitasking, distributed RAID-5 data storage
RAMAC 3 Drawer Hardware Assists

This and the next two foils describe the hardware-assisted function that improves RAMAC 3 data transfer operations. In the RAMAC and RAMAC 2 drawer designs, the data transfer setup operations described in the next three foils are executed by drawer microcode.

RAMAC, RAMAC 2, and RAMAC 3 implement efficient staging and destaging operations from and to the fixed block disk drives. The unit of staging from the disk drives to the drawer cache is the partial CKD track. The unit of destaging from the drawer cache to the disk drives is the SCSI sector (688 bytes). The drawer maintains the relationship between the CKD view of the data and the FBA view of the data. When a record is requested, the drawer and the disk drive cooperate to stage in the SCSI sectors containing the record and the SCSI sectors containing the data on the remainder of the track. In the example on the foil, a request for R2 is made. A part of R2 shares the same SCSI sector as a part of R1, so the drawer stages from SCSI block 6 to the end of the CKD track (SCSI block 89). R3 is also staged because it resides on the same track—this is called partial track staging. The next two foils show how the RAMAC 3 Array drawer uses a hardware-assisted function to improve partial track staging performance.
RAMAC 3 Drawer Hardware Assists...

The foil shows how the RAMAC, RAMAC 2, and RAMAC 3 drawers optimize the data transfer from disk drive to drawer cache to control unit cache. This “journey” through the subsystem hierarchy is enhanced by overlapping the staging of requested data from disk to drawer cache with the staging of data from drawer cache to control unit cache.

When the control unit requests a record that is not in drawer cache, the drawer initiates the staging of the record from the disk. The foil describes a request for record 2 on logical track 1 (this record is stored on disk drive 2). In anticipation of usage of adjacent records, the drawer stages from the record requested to the end of the logical track—that is, records R2, R3, and R4 from track one on disk 2. At this point, steps 1 and 2 have been executed. The next foil shows the subsequent steps that the drawer takes in the partial track staging operation.
RAMAC 3 Drawer Hardware Assists...

Step 3 involves staging R2, R3, and R4 from the disk to the drawer cache. The RAMAC, RAMAC 2, and RAMAC 3 drawers do not wait for the entire partial track to be staged, however. Instead, when the requested record is in the drawer cache and available for transfer to the control unit, the drawer signals readiness to the host. The drawer and the control unit then transfer the record while the remaining records in the track are simultaneously staged from this disk drive to the drawer cache. This process offers a fast record staging technique in the event of subsystem and drawer cache miss.

The setup for this staging overlap is managed in the microcode in the RAMAC and RAMAC 2 drawers but is implemented in the hardware in the RAMAC 3 drawer. This change results in faster data prefetch processing for RAMAC 3 Array Storage.
RAMAC Data Integrity and Availability

Several enhancements have been made to data integrity and availability.

Disk scrubbing

Disk scrubbing, available on RAMAC, RAMAC 2, and RAMAC 3, is designed to provide a continuous check of the disks and your data. The drawer logic reads all customer data on all four disks in the array on a 7-day cycle. This activity takes place as a background activity when the drawer is idle. If a bad block is encountered, the drawer uses its RAID-5 capability to recalculate the bad data and rewrite it to a spare block. This is a joint activity between the disk and the drawer.

The benefits of these changes are increased data integrity and availability.
RAMAC 3 Improved Data Integrity

- SCSI header checking on every block
 - Implemented in hardware
 - Facilitated by CMOS packaging
 - Circumvents tradeoff between performance and data integrity
 - Previous implementations performed in microcode

Provides Maximum Data Integrity Protection
without Impacting Performance

RAMAC 3 Improved Data Integrity

The third generation of the RAMAC Array Family, RAMAC 3, further improves the data integrity of the product line by capitalizing on CMOS technology.

SCSI header checking on every block

RAMAC 3 implements an improvement to the SCSI block header checking technique by checking the SCSI header on every block read, ensuring that even the remotest possibility of reading the wrong block is eliminated.

Checking the SCSI block header on every block is possible because the RAMAC 3 drawer implements the process in the hardware. CMOS technology in the RAMAC 3 drawer has enabled the additional function to be incorporated into the existing circuitry without requiring additional space on the cards. RAMAC 3 CMOS packaging is thus the enabler of improved data integrity and availability.

By checking every header block, the likelihood of having to invoke other drawer recovery functions is avoided, and there is no impact on performance because the task is now performed in the RAMAC 3 Array drawer hardware.
A chain is only as strong as its weakest link. The RAMAC 3 drawer delivers additional levels of error detection and correction that apply to the most innocuous of storage subsystem components—cables, drivers, and receivers. With RAMAC and RAMAC 2, drawer recovery measures such as RAID-5 operations are used to protect the integrity of the data as it flows to and from the storage control.

In RAMAC 3 drawers a cyclic redundancy check (CRC) has been incorporated into the interface logic to provide a fast detection and correction technique for data transferred from the HSDA in the RAMAC 3 Storage Frame to the PDAD in the RAMAC 3 drawer. The CRC across the PDAD interface enables errors in cabling, drivers, and receivers to be detected and corrected as rapidly as possible without having to invoke other drawer recovery procedures at a later stage of the I/O process. Recovery avoidance without compromising data integrity and availability ensures faster, smoother data transfers.
Improved Sequential Write Processing

Algorithm changes have been introduced to the RAMAC 3 drawer to improve the drawer destage performance for some write scenarios.

The foil shows an update-write pattern to three CKD tracks that occupy corresponding positions on three separate disk drives in the RAMAC 3 RAID-5 array. T0, T1, and T2 are the three data tracks, and P is the parity track. Parity is calculated by XORing the three data tracks to generate the parity track. Because the data on these tracks is located in corresponding locations on different disks, the tracks are considered to be in the same “slice”. A slice can be considered as all of the data needed to calculate parity for that part of the array, so updates W1 through W14 are written to tracks that are in the same slice.

The RAMAC 3 disks use a fixed block architecture, therefore, the data on each track is written in fixed segments or blocks as shown on the foil (for example, W1 is contained in a fixed, 688-byte block). If corresponding blocks in the same slice are updated, the RAMAC, RAMAC 2, and RAMAC 3 drawers can calculate the parity for that “partial track slice,” and only the changed data is prepared for destage—not the whole track. Referring to the foil, we see that W1, W6, and W11 are corresponding blocks in the same partial track slice (let’s call it a SCSI block slice). The slice is indicated on the foil by the vertical bar shadowing the W1, W6, and W11 write updates. Similarly, W2 and W4 are in different SCSI block slices, but W9 and W14 are in the same SCSI block slice (however, this slice is incomplete).
The RAMAC, RAMAC 2, and RAMAC 3 drawers execute a function that scans the drawer cache contents to determine whether update writes have completed to SCSI blocks on different tracks that are in the same track slice. In addition, a further level of scanning takes place to determine whether update writes are targeted to all of the blocks in the same SCSI block slice (W1, W6, and W11). When the drawer detects such a reference pattern, it calculates the parity for the three SCSI data blocks without incurring the write penalty, and only the changed data (W1, W6, W11, and P1) has to be "scheduled" for writing to the disks.

The algorithm change applies to update writes. Typically an update write would have a RAID-5 write penalty because only part of the data on one track is updated. However, some update data is in fact sequential in nature—and updates records sequentially. A classic example is DB2 logging, where the log data set is preformatted, and all of the write commands are update writes.

The advanced drawer cache scanning logic enables RAMAC to recognize data that has been changed across all tracks of a slice and across all blocks within the slice and is performed as a background task independent of production I/O processing. This logic is similar to typical RAMAC sequential writing where the RAMAC Array operates like a RAID-3 array, but in this case only the changed blocks on each track have to be written. The enhanced drawer logic eliminates the RAID-5 write penalty for some update write activity.

Although DB2 logging is a good example of where the enhanced sequential algorithm can be used, the drawer logic will look for any combination of data in the drawer cache that can be written in this way.

Appendix A describes the RAMAC drawer's advanced destage management processes in more detail.
A large part of the data that most customers process is sequential. Any improvements in the design and algorithms that help sequential throughput help reduce batch elapsed times. The improvements to drawer sequential staging, also available on existing RAMAC and RAMAC 2 drawers, helps improve the drawer handling of sequential data requests from the storage control.

Requested track and all tracks to end of cylinder...

On a request from the RAMAC 3 or 3990-6 storage control that sequential data is required, the drawer starts staging up the requested track, and the remaining tracks in the cylinder. If data from track 0 is requested, the drawer will stage all of the records from the record referenced to the end of the track, followed by all of the records on tracks 1 through 14. Tracks are staged from disk to drawer cache in parallel.

The RAMAC 3 or 3990-6 storage control determines that sequential processing is required through either the sequential indicator in the Define Extent command or by detecting that the data being read is sequential. See foil "Sequential Detect" on page 93 for more details on the sequential detection algorithm.
Additional six tracks staged to "keep ahead"...

As the data is transferred from the drawer to the RAMAC 3 or 3990-6 storage control, the drawer continues to read from its disks, maintaining six tracks ahead of the storage control.

Drawer speed-matches overlapped data transfer

The RAMAC 3 Array Storage subsystem uses a data transfer hierarchy that involves disk drives, drawer cache, and subsystem cache. With the new HSDA, enhanced PDAD, and high-speed cables, data transfers are now faster than ever in a RAMAC environment. In addition, the RAMAC 3 drawer and the 9390 and 3990-6 storage use techniques to optimize I/O operations by overlapping data transfer. The RAMAC 3 drawer electronics provide speed-matching capability between the disk drives and the storage control to ensure that data flows smoothly over upper and lower interfaces that use components with different speed capabilities.
IBM RAMAC 3 Drawer - Summary

HIGH PERFORMANCE
- Highly parallel RAID-5 operations
 - Multiengine hardware
 - Multitasking microcode
- Faster PDAD
- Faster h/w-assisted data prefetch
- Sequential processing
 - Sequential detect support
 - Advanced destage management
- Logical volume mapping
- Ultrastar 2XP disk drive

HIGH CAPACITY
- Ultrastar 2XP disk drives
- Eight logical volume emulation support

DATA INTEGRITY
- H/W-assisted SCSI block checking
- CRC across CU-drawer interface

HIGH AVAILABILITY
- Third generation RAID-5
- Fault-tolerant design

The foil summarizes the improvements made to the RAMAC 3 drawer in the categories of high performance, high capacity, data integrity, and high availability.

Highly parallel RAID-5 operations

The RAMAC Array Family provides an enhanced RAID-5 storage device that eliminates many of the drawbacks associated with RAID-5 architecture. The highly parallel operations of the RAMAC 3 drawer are delivered through a multiengine hardware design and sophisticated drawer operating system. Together, the multiengine hardware and operating system overlap RAID-5 and I/O processing activities to such a degree that drawer component utilization and application service times are optimized across a wide range of subsystem activities.

Faster PDAD

The faster PDAD in the RAMAC 3 drawer supports the higher data rates now achievable on the storage subsystem lower interface. The high-speed PDAD located in the drawer complements the HSDA located in the Storage Frame and the high-speed DDC cables. This “high-speed trio” of components results in faster data transfers that reduce response times and increase throughput for sequential workloads.
Faster h/w-assisted prefetch
The RAMAC 3 drawer implements faster data prefetch from disk drive to drawer cache to subsystem cache. The faster data prefetch is achieved by using drawer hardware to assist in preparing for data exchanges between the drawer and the storage control.

Sequential detect support
The RAMAC 3 drawer prestages tracks in anticipation of use by sequential applications. Sequential prestaging is exploited further when the storage control signals sequential intent for workloads that traditionally do not set the sequential access indicator in the channel program—sequential detect. The prestaging of tracks to drawer cache before the application requests them enables fast transfer to the storage control using the high-speed PDAD, DDC cables, and HSDA. Thus, cache access rather than disk access satisfies the data transfer requirement.

Advanced destage management
The RAMAC 3 drawer uses advanced destage management techniques to optimize RAID-5 operations and reduce disk usage for asynchronous writes to the disk drives. These algorithms enable the upper interface to concentrate on providing optimum response times, and the lower interface to concentrate on supporting maximum throughput.

Logical volume mapping
The conversion of CKD to fixed block disk format must be accompanied by a method that enables efficient storage and retrieval of application data. In addition, application performance is sometimes dependent on locality of reference of successive data requests. RAMAC 3 Array Storage supports efficient storage and retrieval of data that has been converted from CKD format to FB format. This is accomplished with the logical volume mapping techniques used by RAMAC 3 drawers. The logical volume mapping techniques permit CKD-to-FB conversion at the same time as preserving the locality of reference that is important for sequential I/O performance.

High-performance Ultrastar 2XP disk drive
The RAMAC 3 drawer uses the Ultrastar 2XP disk drives for RAID-5 storage. The Ultrastar 2XP contributes to the RAMAC 3 drawer performance through faster rotational speed (7200 rpm), faster media data rate (10.3-15.4 MB/s), and enhancements to the disk architecture such as No-ID sector format. The Ultrastar 2XP disk drive is discussed in more detail in Chapter 4.

High-capacity Ultrastar 2XP disk drive
RAMAC 3 uses the Ultrastar 2XP 9.22 GB disk drive in its RAID-5 array. Use of the Ultrastar 2XP has doubled capacity when compared to the RAMAC 2 Array DASD.
Eight logical volume emulation support
The capacity improvements are achieved in a four-disk array through specialized logical mapping techniques that support increased device addressability.

H/W-assisted SCSI block checking
The RAMAC 3 drawer incorporates the highest levels of data integrity checking in the industry and takes advantage of CMOS packaging to broaden the scope of error detection and correction. The RAMAC 3 drawer now checks every SCSI block for bit-pattern errors that threaten data integrity.

CRC across CU-drawer interface
When data flows through a hierarchy of components in a highly parallel, distributed RAID-5 design, great care must be taken to protect the validity of application data. The RAMAC 3 Array drawer is “obsessive” about the integrity of customer’s data. Cyclic redundancy checks now determine the integrity of data when it is received at the driver-receiver drawer interface. CRC processing at the driver-receiver interface enables detection and correction of errors caused by driver-receiver hardware and cables.

Third generation RAID-5
The RAMAC 3 Array drawer is the third generation of IBM enhanced RAID-5 high-end DASD storage products. It builds on the knowledge and experience gained from the implementation of its predecessor products, RAMAC and RAMAC 2. The RAMAC 3 Array drawer capitalizes on the innovations and progress made in the field of disk drive technology and architecture.

Fault-tolerant design
High availability is delivered through a fault-tolerant hardware design that guards against any single component failure jeopardizing data integrity, availability, and access.
The driving force behind many recent IBM storage subsystem enhancements is the remarkable progress made in the field of disk drive technology and architecture. Improvements in disk drive technology and architecture inevitably lead to increased capacity and improved reliability that simply cannot be ignored in the quest to satisfy marketplace demand for cost-effectiveness, continuous availability, and growing functionality. The RAMAC Array Family has spanned a three-year period characterized by phenomenal changes in disk drive technology and architecture. The RAMAC Array Family has adapted to and exploited changes in technology and architecture such as 3.25 in. form factor disks, zoned bit recording, embedded servo, MR head, PRML channel, and No-ID sector format. This chapter describes the new Ultrastar 2XP disk drive functions and features that are exploited by RAMAC 3 Array Storage.
IBM Ultrastar 2XP Disk Drive

The Ultrastar 2XP disk drive is IBM’s newest high-capacity, high-performance disk drive. It uses the latest technology to achieve a high capacity in a small form factor. There are various models of the Ultrastar disk. The model used in RAMAC 3 has been optimized to operate in the high-availability environment of the System/390 customer.

9.22 GB

The Ultrastar 2XP disk drive has a capacity of 9.22 GB. This capacity is achieved by using 9 disk platters with 18 heads. A linear density of between 116,585 and 134,544 bits per inch and 6160 tracks per inch gives an areal density of up to 829 Mbit/sq in. This density is more than 50% greater than the areal density of the disk used in RAMAC 2, which has an areal density of 544 Mbit/sq in.

7200 rpm

A rotation speed of 7200 rpm enables fast access to data on a track, reducing overall response times.
No-ID sector format

No-ID sector format is a new innovation recently introduced on IBM disks. It enables higher capacities on disks and faster handling of spare blocks (see foil “Ultrastar 2XP No-ID Sector Format” on page 62 for more details).

Zoned bit recording

Zoned bit recording takes advantage of the fact that the track lengths of a disk differ significantly between the inner tracks and the outer tracks. Rather than use a constant number of bytes per track (as is used on the 3390, for example) where the linear density on the inner tracks is higher than on the outer tracks, zoned-bit recording keeps the density the same and varies the amount of data on each track. On an Ultrastar 2XP disk drive, the number of data sectors per track varies between 120 sectors on the inner tracks and 184 sectors on the outer tracks. The main benefit of using zoned-bit recording is increased capacity. An interesting side benefit is that the outer tracks have a higher data rate than the inner tracks. On the Ultrastar 2XP disk drive, the disk is divided into eight areas or zones. However, almost 60% of the data resides in the first two zones on the outer part of the disk that gives the highest data rate.

MR heads

The Ultrastar 2XP disk drive disks use IBM’s magneto-resistive (MR) head technology, which enables IBM to develop disks with high areal density. Thus IBM can produce high capacity disks with a minimum number of disk surfaces and heads, keeping costs down.

Predictive Failure Analysis - S.M.A.R.T compliant

IBM Predictive Failure Analysis (PFA) complies with the Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T) industry standards.

PFA routines, invoked when the disk is idle, measure the characteristics of each head, saving the data to a log in a reserved area of the disk. The log data can be retrieved and analyzed. Should any characteristics exceed a specified threshold, the RAMAC drawer is notified and a service information message (SIM) is issued. The RAID-5 function of RAMAC protects customer data, and a failing disk can be replaced and rebuilt in place using dynamic device reconstruction (DDR). PFA is detailed in “IBM Ultrastar 2XP Disk Drive Reliability” on page 70.
RAMAC 3 - Zoned Bit Recording

The Ultrastar 2XP disks used in the RAMAC 3 drawer are partitioned into recording bands or zones (also sometimes referred to as *notches*). There are eight zones on each disk; zone 1 is located nearest the outer diameter of the disk, and zone 8 is located nearest the inner diameter of the disk. With zoned bit recording, the inner and outer diameter regions of the disk have the same areal density (the same number of megabits per square inch).

The RAMAC 2 drawer was the first member of the RAMAC Array Family to use zoned bit recording disks. (Previously, the areal density was not the same in the inner and outer diameter regions of the disk because the disk drive channel technology could not support the faster radial speeds of the outer zones.) With zoned bit recording, more data can be stored in an outer zone than an inner zone. Thus the capacity of the disk is increased because there is no longer a need to "space out" the data in the outer zones because of radial speed. The new generation of partial response maximum likelihood (PRML) disk drive channels supports the higher radial speeds of zoned bit recording disks.

Because the radial speed of the outer zones is about twice as high as the inner zones, the transfer rate is higher in the outer zones. The variation in media transfer rate is shown on the foil for the innermost and outermost zones for RAMAC 2 and RAMAC 3.

The Ultrastar 2XP disk used in the RAMAC 3 drawer has a block format length of 688 bytes (this is sometimes referred to as the *SCSI sector* or *block length*).
There are 13,408,182 of these blocks on the drive, giving a capacity of 9,224,829,216.
The Ultrastar 2XP disk drive uses a disk architecture different from typical disk drives in the marketplace today. The Ultrastar 2XP disk used in the RAMAC 3 drawer implements the No-ID sector format architecture. The No-ID sector format increases the capacity of the disk by removing the ID field or header information from the disk surface. To better understand this disk architecture innovation, we will first look at the predecessor technique, ID sector format, that is used in RAMAC 2 storage subsystems.

ID field needed to identify data

- Logical sector number
- Sector status
 - good
 - bad - pointer to alternate sector
- CRC

Presence of ID field reduces track density with MR head
- MR head separates read and write elements
- ID field offset from data to enable read head alignment

Presence of ID field reduces track capacity

ID Sector Format

The Ultrastar 2XP disk drive uses a disk architecture different from typical disk drives in the marketplace today. The Ultrastar 2XP disk used in the RAMAC 3 drawer implements the No-ID sector format architecture. The No-ID sector format increases the capacity of the disk by removing the ID field or header information from the disk surface. To better understand this disk architecture innovation, we will first look at the predecessor technique, ID sector format, that is used in RAMAC 2 storage subsystems.

ID field needed to identify data

Disk drives implementing the ID sector format architecture require that an ID field be written to the disk ahead of the data sector. This ID field or header information identifies the data sector through its logical sector number. When the host or control unit reads or writes data, it sends a list of logical block numbers to the disk drive, and the disk drive converts these numbers into zone, cylinder, head, and sector values (ZCHS). After the drive seeks to the desired zone, cylinder, and head, the ID fields on the disk surface are read until a match is found with the ZCHS value. The data field that follows (this ID field) can then be read or written. In addition to identifying the data sector, the ID field also contains information about the status of the sector. If the sector is a bad sector, the data is reassigned to another part of the disk so that successful read and write processing can progress for future accesses to that data. The ID field is therefore an essential component for normal data access as well as for defect management such as defect sector reassignment.
Presence of ID field reduces track density with MR head

The foil shows the location of the ID field in relation to the data field, but it also highlights an important aspect of how the ID field is aligned on the track in relation to the data field. Notice that the ID field is offset from the data field. The apparent misalignment of the fields is deliberate, the result of separating the read and write elements on the MR head. (See next foil.)

Presence of ID field reduces track capacity

The ID field occupies space on the disk surface—every data field must be preceded by an ID field. The ID field uses approximately 5%-15% of the disk capacity, but this space is needed because of the important role that the ID field plays in data access and defect management. It is clear, however, that any advance in disk drive architecture that enables us to reclaim this capacity would be welcome and beneficial. The next foil describes the effect of MR head technology on the ID sector format.
A major development in the field of disk drive capacity is the MR head. The MR head enabled areal densities to grow to 268 Mbit/sq in. on the 3390-9; 259 Mbit/sq in. on the 3.5 inch form factor disk used in RAMAC; 544 Mbit/sq in. for RAMAC 2; and 829 Mbit/sq in. on RAMAC 3. These developments in areal density facilitated the explosive growth in device capacities from 2.89 GB (3390-3) to 9.22 GB (RAMAC 3) while reducing form factor and environmental factors. Innovations in thin-film disk technology, PRML channel technology, and disk drive architecture accompanied the MR head developments.

Optimal writing requires a head with only a few thick wire coils, a high current, and slow rotation of the disk. Optimal reading, however, requires a head with many thin wire coils and a high rotation speed to produce a high induction signal. Because reading and writing have contrary physical requirements, the conventional inductive read-write head is a compromise between these requirements. The MR head derived much of its advantages through separation of the read and write elements based on the above observations. The gains made by enabling dense packaging of the data meant that MR head technology and associated geometry should be supported by complementary technologies and architectures.

The foil shows the relationship between the MR head and the motion of the rotary actuator as it moves across the surface of the disk. The rotary actuator has a swing angle of approximately 20 degrees and results in the heads being skewed in relation to the data tracks. Because optimum performance is achieved by centering the appropriate head over the data track, this geometric
effect impacts capacity and read-write operations—both heads cannot be aligned with the center of the data track. To compensate for the offset of the read and write head, the ID field used in ID sector format is also offset to enable the data sector to be read and identified before a write operation. The next foil describes this effect in more detail.
The ID field must be read before the data field can be read or written. This mandates that the read head be positioned over the ID field before read and write operations. For a read operation, the read head should be positioned over the center of the data track. For a write operation, the write head should be positioned over the center of the data track. In both cases, the read head must first be able to read the ID field.

The problem and the solution are highlighted on the foil in the Data Write example. For a data write operation, the write head must be aligned with the center of the data track, but the alignment offsets the read head to a position “offtrack”—the position of the read head makes it impossible to read the data track. For a write operation, however, the read head only has to be able to read the ID field, so the ID field is offset to enable the read head to read the ID and the write head to write the data while the MR head is in the same position. Thus “read ID before write data” can take place and is in essence the ID sector format architecture accommodating the rotary actuator and MR head technologies to bring high-performance, high-capacity disk drives to the marketplace. The gains in areal density through MR head exploitation make the ID sector format an architecture worth adopting to ensure highly reliable data accesses. However, track density is limited because we need a wider write head.

The next challenge is to implement an architecture that removes the ID field and thus the need to “offset” it.
No-ID Sector and ID Sector Format

The foil compares the No-ID sector format and the ID sector format. By removing the ID fields from the disk surface, more data can be stored on each track. This increase in track capacity accounts for approximately 5%-15% of disk capacity. In addition the track density is improved because tracks can be written closer together because the “offset” ID field has been removed and the write head is 15% narrower. This reclamation of capacity through increased track density accounts for approximately another 15% of disk capacity.

The foil underscores the significant impact of No-ID sector format, which provides more data per track and more tracks per inch. But where did the ID information go? Having established the necessity of the ID field for data sector identification and defect management, can it simply be discarded so that disk space can be reclaimed? The answer is no. The next foil describes the key aspects of the No-ID architecture as implemented in the Ultrastar 2XP disks in the RAMAC 3 drawer.
Typical disk drives today have ID fields associated with each data sector. The ID fields are used to identify data sectors and for defect management. In the No-ID sector format, these functions are now performed electronically. The actual ID information is no longer stored on the disk.

ID information computed from disk drive solid state memory

Header information formerly stored in the ID field on the disk is now calculated from data stored in solid state memory on the disk drive. The disk drive memory contains a "defect map" that is used to locate the exact location of the requested data sector—even if the sector has been reassigned to a different physical location. Storing the ID information in a semiconductor storage medium provides fast access to the information in advance of positioning the read-write heads. The data sector identification information is stored in compressed format in the drive memory, thus enabling rapid lookup and efficient memory space utilization.

Servo and data control systems perform high-speed address translation

The disk drive must convert the logical block numbers (LBNs) supplied by the host through the 3990-6 or 9390 and RAMAC 3 drawer to physical block numbers (PBNs). The PBN takes account of any sector reassignments that have resulted from bad blocks on the disks. Because the defect map is already computed, the PBN can be converted to the exact zone, cylinder, head, and sector values that locate the requested data field. The LBN-to-PBN conversion is performed by the Ultrastar 2XP disk drive servo and data control system.
Eliminates read ID before read and write operations

By holding the ID in the disk drive memory, the read of the ID field that is normally required before a write operation is eliminated. Instead the disk drive electronics calculate the exact location of the requested data sector by using the ID information stored in the disk drive memory. Thus the location of the data is known in advance of rotary arm movement and the need to read and compare the ID field on the disk surface is avoided.

More information about No-ID formatting can be found on the IBM Almaden Research web site.

For more detailed information

Advantages of No-ID Sector Format

- Increased disk capacity
 - Increased track capacity
 - Up to 15%
 - Increased track density
 - Up to 15% of disk capacity reclaimed
- Improved performance
 - Improved access times
 - Avoid "read ID field" overhead
 - Increased throughput
 - More data on track
- Improved defect management
- Improved power management
 - Avoid powering read electronics during sector search
- Enhanced reliability
 - Header data stored in memory
 - Avoid CRC or ECC processing

Advantages of Ultrastar 2XP No-ID Sector Format

The advantages of the Ultrastar 2XP disk drive No-ID sector format architecture contribute to RAMAC 3 Array Storage’s cost-effective, high-capacity performance, availability, and reliability design objectives. The foil summarizes the benefits of IBM’s unique No-ID sector architecture.

Increased disk capacity

The removal of the ID field enables IBM to increase the number of sectors on a track. Removal of the ID field does not influence linear density (number of bits per inch along a track) or areal density (number of megabits per square inch on the disk), but it reclaims valuable disk capacity that previously was unusable because of architectural requirements in securing highly reliable data accesses.

With an MR head, the read and write elements are separate, and head skew occurs as the rotary actuator moves across the disk surface. A normal write must read the ID field immediately preceding the sector to be written, and a compromise must be reached between the position of the read element and the write element that allows a read immediately followed by the write. In a disk without No-ID recording format, the read and write heads are offset to compensate, thus limiting the track density that can be achieved. With No-ID recording, only an alignment for writing takes place as the ID is now in the disk drive memory. Thus the offset in read and write elements is less important and tracks can be closer together.
No-ID recording increases track capacity by up to 15% and allows tracks to be closer together by 15%, giving an overall 30% improvement in disk capacity.

Improved performance

The performance of the Ultrastar 2XP disk drive is improved through use of the No-ID sector format architecture because data fields can be read or written faster as a result of computing the correct sector location in advance of head positioning. Previously, with the ID sector format, access times included the time to read and compare the ID field for both read and write operations. Remember that the disk drive must validate the correct data sector before a read and write operation. Access times are therefore improved when the No-ID sector format architecture enables “data sector validation” electronically without the need to read preformatted fields on the disk surface.

The No-ID sector format also increases the throughput of the disk drive because more real data can be transferred per read and write operation. Read and write operations are concentrated on accessing real data as opposed to nondata header fields.

Improved defect management

Before the implementation of the Ultrastar 2XP No-ID sector architecture, the ID field stored on the disk surface contained the details of sector status and the location of any reassigned data blocks. For this information to be retrieved and used to read and write data, the ID field had to be read first. By storing sector defect maps in disk drive solid state memory, the defect management process is executed at electronic speeds without requiring physical disk access.

Improved power management

The Ultrastar 2XP disk drives in the RAMAC 3 drawer use a power management system that detects component-idle periods. During periods when certain components are not used, the Ultrastar 2XP disk drive intelligently avoids supplying power to those components. For example, during data reads, power is required to sustain the read operation, but when the data is not being read, the read mechanisms and electronics are not used (thus saving power).

Consider the No-ID sector format architecture and the synergy with the Ultrastar 2XP power management system. The No-ID sector format obviates the need to perform a read of the ID field before read and write operations. Thus the read electronics do not need power during the sector search that would normally have preceded these operations.

Enhanced Reliability

Random access memory (RAM) has a lower error rate than magnetic disk. Therefore storing the ID field in solid state memory on the disk drive reduces the vulnerability to errors in the ID field. Cyclic redundancy checks (CRCs) or error checking and correction (ECC) techniques are used effectively by traditional disk drives to protect the ID field contents stored on the disk surface. No-ID sector format avoids the recovery processes associated with CRC or ECC and further improves disk drive reliability.
RAMAC 3 Disk Drive Cache

- 1 MB disk drive cache
- Cache segment size doubled
 - Segments provide data integrity checking (CRC)
- Drawer battery provides nonvolatility
- Drawer and drive synergy
 - Drive cache utilization
 - DFW processing

1 MB disk drive cache

Each Ultrastar 2XP disk drive has a 1 MB cache that is used for read and write data transfer operations with the RAMAC 3 drawer. The disk drive cache is partitioned into sixteen 64 KB segments—the disk drives used by RAMAC and RAMAC 2, although different, both use a 512 KB disk drive cache that has sixteen 32 KB segments.

Cache segment size doubled

By doubling the disk drive cache segment size, more data can be written from the RAMAC 3 drawer during destage operations. The 64 KB segments include built-in data integrity checks by using CRC codes. Performing CRC processing on disk drive cache segments enables the disk drive controller to detect and correct certain types of bit pattern inconsistencies during data transfer to and from disk drive cache.

Drawer battery provides nonvolatility

The drawer battery protects the disk drive cache contents in the event of drawer power loss. Thus the disk drive cache can be considered nonvolatile storage. Each RAMAC 3 drawer therefore contains 68 MB of nonvolatile storage optimized for enhanced RAID-5 processing and intelligent destage management. The disk drive cache is also used for data prestaging.
Drawer and drive synergy

The RAMAC 3 drawer implements sophisticated RAID-5 processing operations, among which are the unique destage techniques described in Appendix A. The RAMAC 3 drawer writes data asynchronously to the disk drives and ensures that lower interface utilization is optimized by taking advantage of the disk drive cache for "grouped destage" events. Two significant functions enable drawer-to-drive data transfer efficiency. The first is the ability of the RAMAC 3 drawer to determine the utilization of the disk drive cache segments before grouping updates for destage. The RAMAC 3 drawer and the Ultrastar disk drive perform a "look-ahead" function that informs the drawer of disk drive cache segment occupancy and thus enables the RAMAC 3 drawer to schedule destage activity to the disks. The second function is the ability of the RAMAC 3 drawer to exploit the nonvolatile characteristics of the disk drive cache. The RAMAC 3 drawer can initiate destage operations to the drive cache at optimal SCSI data transfer speeds and free up the drawer-drive interface faster for other I/O destage activities. The disk drive controller performs the write from disk cache to physical disk asynchronously with RAMAC 3 drawer destage operations, providing further overlap with other drawer data transfer activity on the lower interface.
IBM Ultrastar 2XP Disk Drive - Performance

- 20 MB/s Fast-and-Wide SCSI
- Media data rate 10.3-15.4 MB/s
- Average seek (read) 8.5 ms
- Track to track seek 0.5 ms
- Latency 4.17 ms

IBM Ultrastar 2XP Disk Drive - Performance

This foil summarizes the performance characteristics of the Ultrastar 2XP disk drive.

20 MB/s Fast-and-Wide SCSI

The fast 20 MB/s interface provides for high-performance disk drive cache to drawer cache transfers. Many of the RAMAC 3 Array Storage processing tasks are asynchronous, resulting in a “decoupling” of data transfer throughout the subsystem hierarchy. The fast 20 MB/s SCSI enables optimized data transfer for lower interface activity.

Media data rate 10.3-15.4 MB/s

The Ultrastar 2XP has a fast transfer speed, which is important where direct disk access is required (compare this with 4.2 MB/s on the 3390). When data requests cannot be satisfied from either subsystem or drawer cache, physical disk access is required. The Ultrastar 2XP supports media data rate transfers of between 10.3 and 15.4 MB/s depending on which zone of the disk the data is located. The high-speed media data rate of the Ultrastar 2XP ensures the highest levels of disk drive performance when application accesses result in data transfer from the physical media.
Average seek (read) 8.5 ms
 Low seek times enable fast access to the large amount of data on the 9 GB drives when requests are not satisfied by subsystem or drawer cache.

Track to track seek 0.5 ms
 Most seek activity is to adjacent tracks—the Ultrastar 2XP has fast track to track seek times.

Latency 4.17 ms
 The rotation speed of 7200 rpm gives a latency of only 4.17 ms, which together with the fast seek times give the drive excellent service times when physical disk access is unavoidable because of subsystem and drawer cache miss.
IBM Ultrastar 2XP Disk Drive - Reliability

- PFA
 - Analyses drive parameters
 - Predicts imminent drive failures
 - Idle-time function
 - 7 measurements on each head
 - 4-hr cycle
 - Duration is 80 ms
- Channel calibration
 - Calibrates read/write circuits
 - Idle-time function
 - Executed if drive is idle for 5 s
 - 4-hr cycle
 - Duration is 20 ms

IBM Ultrastar 2XP Disk Drive Reliability

The Ultrastar 2XP performs many tests on disk drive components to ensure that they are not only functioning but functioning optimally. The tests are designed to measure disk drive parameters and predict whether component failures are imminent.

PFA

Predictive failure analysis (PFA) is an idle-time function that consists of seven measurements taken for each head on the disk. Idle-time functions are the least intrusive way of testing for potential component malfunctions because they activate during times when the disk drive components are idle—production I/O processing preempts idle-time function execution. The seven PFA measurements are taken for each head over a 4-hr period, and each takes approximately 80 ms. The disk drive spreads the PFA idle-time measurements evenly throughout the 4-hr period. For the Ultrastar 2XP used in the RAMAC 3 drawer, one PFA measurement is performed about every 2 min, thus ensuring the highest levels of disk drive head error detection and warning.

Channel Calibration

The Ultrastar 2XP periodically calibrates the channel (the disk drive channel) to ensure that the read and write circuits function optimally, thus reducing the likelihood of soft errors. Like the PFA function, channel calibration is performed every 4 hr and typically completes in 20 ms. The calibration exercise starts only if the disk drive has been idle for 5 s, again ensuring that there is no interference with production I/O processing.
Ultrastar 2XP Reliability...

Log recording
The Ultrastar 2XP disk drive periodically saves data in logs located on reserved areas of the disks. These reserved areas of the disk do not encroach on the usable capacity available for customers’ application data. Log recording is an idle-time function that is invoked only if the disk drive has been idle for 5 s or more between SCSI command executions. Log recording takes approximately 30 ms, and the logs are saved about every half-hour. The data recorded in the logs is used for failure analysis.

Disk sweep
If the Ultrastar 2XP disk drive has not processed a SCSI command for at least 40 s, the drive executes the disk sweep idle-time function. Disk sweep exercises the heads by moving them to another area of the disk, and it initiates a second move of the heads if they fly in the same spot for 9 min. The disk sweep idle-time function ensures that low-use drive components do not become vulnerable to errors through inactivity.
IBM Ultrastar 2XP Disk Drive - Summary

The foil summarizes the benefits of the Ultrastar 2XP disk drive in the categories of high performance, high capacity, high reliability, and operating cost.

High performance

RAMAC 3 Array Storage subsystems implement a multilevel cache hierarchy that exploits cache memory in the storage control and drawer. The Ultrastar 2XP disk drive expands the cache hierarchy by providing 1 MB of cache with each disk drive (4 MB of cache for each RAMAC 3 drawer) to improve I/O service times and asynchronous destaging. When data access cannot be satisfied by using storage control, drawer, or disk cache, the rotational speed, data rate, and high-speed SCSI interface of the Ultrastar 2XP disk drive ensure optimum physical media performance. The new No-ID sector format architecture used in the Ultrastar 2XP disk drive enables greater throughput and faster access to data by avoiding ID field management and processing that require extra physical media accesses.

High capacity

The 9.22 GB Ultrastar 2XP disk drive incorporates many functions that deliver high-capacity data storage in a 3.25 in. form-factor disk drive. The areal density of the Ultrastar 2XP disk drive is more than 50% greater than that of the disk drive used in the RAMAC 2 drawer. The areal density improvements are complemented by the latest generation of MR head and PRML technologies. Add to this the unique combination of zoned bit recording and embedded servo (first pioneered with RAMAC 2) and No-ID sector format, and it comes as no
surprise that the Ultrastar 2XP is the industry-leading physical media for storage subsystems.

High reliability

The likelihood of disk drive failure is minimized with the Ultrastar 2XP disk drive. The disk drive implements PFA functions that enable early detection of component malfunction in advance of application I/O. Idle-time functions ensure that low-usage drive mechanics and electronics are exercised and monitored. No-ID sector format enables faster and more reliable defect management procedures by avoiding disk drive access if sector reassignment is necessary.

Operating cost

The Ultrastar 2XP disk drive reduces the operating cost of RAID-5 data storage by using intelligent electronics that dynamically adjust power consumption based on component requirements. Advanced power management is even more significant when we realize that the number of Ultrastar 2XP disk drives in a fully configured RAMAC 3 Array Storage subsystem is 128.
IBM RAMAC 3 Array Storage

This section covers the new RAMAC 3 Array Storage subsystem, which consists of two components, the RAMAC 3 Storage Control and one or two RAMAC 3 Storage Frames. The RAMAC 3 Storage Control has a device type of 9390. There are two models, the 9390-1 and the 9390-2.
9390 Model 1 Storage Control

- Single storage control
- Supports 128 devices
- Cache
 - From 256 MB to 4 GB
- Nonvolatile storage
 - From 32 MB to 128 MB
- Channels
 - ESCON only
 - 4 to 16 ESCON
- Basic mode default

9390-001 Storage Control

The 9390-001 is a new IBM storage control that attaches to a single RAMAC 3 Storage Frame. It is the same height and color as the RAMAC 3 Storage Frame.

Single Storage Control

The 9390-001 contains a single storage control providing cache, nonvolatile storage, ESCON channels, and four storage paths. It implements a fault-tolerant design providing all of the extended functions of the 3990-6. The 9390-001 contains a maintenance processor in each cluster (similar to the support facility (SP) in the 3990), and shared control arrays (SCAs) used for storing and managing extended function status.

Supports 128 devices

One of the major enhancements over currently installed 3990-6s is the support for 128 RAMAC 3 devices. This support enables a storage control to address 128 logical 3390-3 volumes, doubling the current limit of 64 volumes.

Cache

Cache sizes for the 9390-001 start at 256 MB and go up to 4 GB. The sizes are:

- 256 MB
- 512 MB
- 768 MB
- 1024 MB
- 1536 MB
• 2048 MB
• 3072 MB
• 4096 MB

The workload characteristics, I/O rate, and required levels of performance determine the actual size. IBM has modeling tools to assist you in determining the most suitable size for your workload.

Nonvolatile storage

Three nonvolatile storage sizes are available on the 9390-001: 32 MB, 64 MB, and 128 MB. When choosing an NVS size, consider the read-to-write ratio of the workload.

Channels

The 9390-001 supports ESCON channels only. If you want to support RAMAC 3 Array drawers from a parallel channel host, you can attach a RAMAC 3 Storage Frame to a 3990-6, which supports parallel channels. There are several channel combinations, which are made up of either two-port ESCON cards or four-port ESCON cards. In both cases each ESCON card supports 32 logical paths.

Valid combinations are:
• 4 ESCON - (2x2-port cards) - 64 logical paths
• 8 ESCON - (4x2-port cards) - 128 logical paths
• 8 ESCON - (2x4-port cards) - 64 logical paths
• 12 ESCON - (2x2-port cards and 2x4-port cards) - 128 logical paths
• 16 ESCON - (4x4-port cards) - 128 logical paths

If you are using ESCON Directors, you probably need only four ESCON ports. If you are using PPRC or plan to need more than the minimum four ports, 4-port cards provide expansion up to the maximum 16 ports.

Basic mode default

The 9390 defaults to basic mode as opposed to enhanced mode. From an operational point of view there is little difference between the two modes. On the 3990-6, enhanced mode supports rotational position sensing (RPS) miss avoidance on parallel channels—this does not apply to a 9390, which is ESCON only. The second function that enhanced mode supports is control unit initiated reconfiguration (CUIR). The service representative uses CUIR to take host channels offline and online through the 3990 or 9390 panel as part of a service procedure. PTFs may be required to your MVS system to support CUIR. A 9390 in enhanced mode responds to a host request for device characteristics, saying that it is a 3990-6. In basic mode a storage control responds that it is a 3990-3.

When you use dual copy on a 9390 with 128 addresses, unless the 9390 is in enhanced mode, some of the dual copy messages are garbled. So, if you do not plan to use dual copy, you can install your 9390 in basic mode.
9390-002 Storage Control

The 9390-002, together with two Storage Frames of RAMAC 3, provides a dramatic improvement in gigabytes per square foot, when compared with the 3990 and RAMAC 2.

Dual storage control
The 9390-002 is a dual storage control. It can be considered as two 9390-001s in a single box. A 9390-001 can be upgraded to a 9390-002 by the addition of the second storage control. This upgrade can be performed concurrently with production use of the currently installed storage control.

Each storage control attaches to a RAMAC 3 Storage Frame through new director-to-device connection (DDC) cables. The RAMAC 3 Storage Frames can be located anywhere within a distance of 200 ft. from the 9390.

Supports all extended functions
All functions available on the 3990-6 are available on both storage controls in the 9390-002 box. Each storage control in a 9390-002 should be considered as completely independent. Therefore when configuring a 9390-002, configure it as if it were two 9390-001s. The only common area between the two is the power and the emergency power-off switch.
Supports 256 devices

Each storage control in the 9390-002 supports up to 128 devices. Together they provide support for up to 256 devices in total.

Field upgrade from 9390-001 to 9390-002

A 9390-001 storage control connected to a single RAMAC 3 Storage Frame that supports 128 device addresses can be upgraded to a 9390-002 storage control that provides support for two RAMAC 3 Storage Frames and 256 device addresses.

Cache

The cache sizes are the same as those listed under “Cache” on page 76. The first storage control in the 9390-002 is configured like a 9390-001 with the same feature codes. You choose from the same size options in the second storage control but a different set of feature codes. (See “9390 Cache and NVS Feature Codes” on page 122 for a full list of 9390 feature codes.)

Nonvolatile storage

NVS is configured in a similar way to cache. The minimum is 2 x 32 MB and the maximum 2 x 128 MB. Any combination from the list under “Nonvolatile storage” on page 77 is valid. Each storage control in the 9390-002 has a different set of NVS feature codes.

Channels

Channels are configured as two sets of channels selected from the list on “Channels” on page 77, with each storage control having its own set of channels with unique feature codes.

Common power supplies

The common power supplies power both storage controls. Foil “9390-001 Power Boundaries” on page 116 shows a schematic of the power connections and the power boundaries. There are two power cords for the 9390-002, each connecting to both storage controls of the 9390-002.
The RAMAC 3 Storage Frame contains the RAMAC 3 drawers and connects to the 9390 and 3990-6 storage controls through the DDC interface. The RAMAC 3 Storage Frame also contains the HSDA cards that connect to the PDAD cards in each RAMAC 3 drawer.

New frame - 9391-A30
- Supports 128 logical volumes
- Faster DDC interface
- HSDA cards

9392-B33 drawer only
- No drawer intermix

Minimum 2 drawers
- 45.4 GB
- Maximum 16 drawers
- 363.2 GB

Attaches to 9390 or 3990-6

RAMAC 3 Storage Frame

The RAMAC 3 Storage Frame contains the RAMAC 3 drawers and connects to the 9390 and 3990-6 storage controls through the DDC interface. The RAMAC 3 Storage Frame also contains the HSDA cards that connect to the PDAD cards in each RAMAC 3 drawer.

New frame-9391-A30

The frame is externally the same as the existing 9391-A10 frame used by RAMAC and RAMAC 2 but has new drawer interfaces, HSDA cards, and internal cabling. The HSDAs provide support for 128 logical volume addressing. A 9391-A10 cannot be upgraded to a 9391-A30.

9392-B33 drawer only

The RAMAC 3 frame supports RAMAC 3 drawers only. There is no intermix with other RAMAC or RAMAC 2 drawers.

Minimum 2 drawers

The minimum configuration is two drawers supporting 16 logical 3390-3 volumes, for a capacity of 45.4 GB.
Maximum 16 drawers
The maximum configuration is 16 drawers, each emulating 8 logical volumes. This is a full 128 volume frame with a total capacity of 363.2 GB.

Attaches to 9390 or 3990-6
The RAMAC 3 Storage Frame attaches to either the 9390-001, 9390-002, or 3990-6, protecting your investment in 3990-6 technology. A 3990-6 and 9390-001 can attach to one RAMAC 3 frame. The 9390-002 attaches to two RAMAC 3 frames—one to each of the two storage controls.
Minimum Configuration: 45.4 GB

This foil shows a minimum configuration of the RAMAC 3 Array Storage subsystem—using one 9390-001 and one RAMAC 3 Storage Frame. Note that even with the minimum number of two drawers, you still have a cache size of 256 MB and NVS size of 32 MB.

If the sixteen volumes in the minimum configuration are formatted in 3380 track format, the total capacity is reduced to 38 GB. In 3380 track format, each 3380 track is only 47476 bytes compared with 56664 bytes in 3390 format. The number of cylinders is the same (3339) in both formats.
Maximum Configuration: 726.4 GB

This foil shows a maximum configuration of the RAMAC 3 Array Storage subsystem—using two RAMAC 3 Storage Frames and a 9390-002 Storage Control. In this configuration you would have 256 volumes in either 3380 or 3390 mode or any combination of 3380 and 3390. If all volumes are in 3390-3 format, the total capacity is 726.4 GB. If all volumes are in 3380 track format, the total capacity is 608 GB.
RAMAC 3 Addressing

RAMAC addressing changes with RAMAC 3 because we now have up to 128 addresses in each subsystem.

9390 and 3990-6 can be set up to support:

- 64 addresses
 - *One half-full frame of RAMAC 3*
- 128 addresses
 - *One full frame of RAMAC 3*

Both the 9390 and 3990-6 support 128 addresses when attaching RAMAC 3 Storage Frames. However, if only 64 or fewer volumes are needed, both storage controls can be set up to address just 64—this saves having to define 128 UCBs when you plan to use only up to 64. (The ability to define fewer addresses than the storage control upper limit is similar to existing addressing options on a 3990-6, where you can define just 32 addresses on a 3990-6 that can support a maximum of 64).

If you limit the addressing to 64 volumes, you can install a RAMAC 3 Storage Frame with only a maximum of 8 drawers. If you define the full 128 addresses, you can install all 16 drawers.
RAMAC 3 Addressing: 64 Devices

This foil shows the addresses for a RAMAC 3 Storage Frame attached as string 0 with a maximum of eight drawers and the addressing limit set to 64. Note that the drawers are installed in the normal RAMAC sequence starting with drawer 9 and going down to drawer 16.

If you are installing this configuration and set the address limit to 64, only 64 devices have to be defined to the operating system and the input/output configuration program (IOCP).

With eight drawers, all physical device addresses are contiguous from x'000' to x'3F'. Note that the addresses themselves are not contiguous within a drawer, so, for example, drawer 9 contains addresses 00, 01, 10, 11, 20, 21, 30, and 31. Therefore if you do not have all eight drawers installed, you will see gaps in your addressing range.

The addressing scheme is developed from the current RAMAC and RAMAC 2 schemes. RAMAC 2 device addresses always occupy the same drawer location in RAMAC 3 configurations—the additional RAMAC 3 addresses are "overlaid" on the RAMAC 2 addresses.

Check with your IBM representative to discuss additional installation considerations before implementing the half-frame RAMAC 3 configuration.
RAMAC 3 Addressing: 128 Devices

This foil shows the addressing scheme of a full 128-device frame attached to a 9390 or 3990-6 as string 0. You must define all 128 devices to your host system even if you have fewer than 128 devices installed.

The addressing is logically split into two parts, the lower eight drawers and the upper eight drawers. The lower eight drawers follow the same addressing convention as the 64 device addressing on foil “RAMAC 3 Addressing: 64 Devices” on page 85. The upper eight drawers follow a similar pattern starting at x’40’ in drawer 8. This addressing scheme enables a concurrent transition from a half-frame of 64 addresses to a full-frame of 128 addresses.
In this chapter we describe enhancements to the storage control function provided by the 9390 and 3990-6 when attached to the RAMAC 3 Storage Frame.
High-Speed Device Adapter

- **HSDA cards**
 - Second-generation device adapter
 - Support for 128 devices
 - Data transfer rate of up to 11.9 MB/s
 - DDC-PDAD translation
 - Multipath "fan-out"
 - CE panel support
 - LIC load and activate
 - VPD

- **DDC cable**
 - New DDC cable for 9391-A30
 - Maximum length 200 ft

High-Speed Device Adapter

A device adapter (DA) is the interface between the storage control and the DASD (RAMAC or 3390). There are four DAs in a RAMAC rack or frame, arranged in pairs on two DA cards. The storage control is connected to the DAs by four DDC cables. These cables allow the storage control to be located up to 200 ft from the RAMAC rack or frame. Each DA provides one of the four paths to every drawer in a RAMAC rack or frame.

HSDA cards

RAMAC 3 introduces a second generation of device adapter, the high-speed device adapter (HSDA). The new adapter has a simplified design that supports data rates of up to 11.9 MB/s. In current adapters, the microprocessors in the adapter are involved in the setup and transfer of all data bytes. With the new simplified design, a microprocessor sets up the transfer and then passes control to a specialized hardware component that directly controls data flow through the adapter at high speed. The effective RAMAC 3 Array data transfer rate of the lower device interface is tripled compared with RAMAC or RAMAC 2.

There are two logic cards, each with two HSDA paths. The HSDA is responsible for data transfer, ECC, converting the DDC commands to PDAD commands, and directing data to each drawer. The HSDA provides the multiplexing, multipathing, and connection redundancy function from the 4 3990 or 9390 DDC channels to the 16 independent drawers in the RAMAC 3 drawer. The HSDA also provides protocol conversion from the DDC control unit protocol to the
PDAD drawer protocol and a level of drawer error correction also implemented on RAMAC and RAMAC 2 device adapters.

The HSDAs are configured through VPD settings and execute their own microcode. The HSDAs interface to the customer engineer (CE) panel and act as the “gateway” to the storage subsystem for all CE activity and diagnostics.

There are 128 logical devices supported in either 3390-3 or 3380 track format through the new DDC interface.

DDC cable

Four new DDC cables are required to connect the RAMAC Storage Frame to the 9390 or 3990-6 storage control. The new cables are needed to support the higher data rate and are of a higher specification than the standard DDC cables. The maximum length of the cable is 200 ft. Current DDC cables cannot be used with RAMAC 3.
Effects of High-Speed Device Adapter

- Faster destage from subsystem cache to drawer cache
- Faster stage from drawer cache to subsystem cache
- Faster PPRC initial volume synchronization
- Faster XRC initial volume synchronization
- Faster concurrent copy session management
- New and faster storage frame maintenance through FPGA technology
- No changes to storage control hardware

Faster destage from subsystem cache to drawer cache

Destaging operations are essential in any storage subsystem that implements write caching to nonvolatile storage. Nonvolatile storage is invariably a limited resource that benefits greatly from friendly and effective destage management techniques that use the “surrounding” hardware and interfaces. Writing data from the 3990-6 or 9390 cache to the RAMAC 3 drawer cache uses the lower interface components that largely govern the speed at which the destage operations take place. The HSDA cards in the RAMAC Storage Frame are the lower interface “bridge” between the storage control and the RAMAC 3 drawer. The HSDA cards enable destage operations to transfer data at triple the speed of RAMAC and RAMAC 2 storage subsystems. This is a major improvement for
RAMAC 3 Array Storage subsystems and paves the way for compact, high-performance, high-capacity configurations that exploit the 9.22 GB Ultrastar 2XP disk drive.

Faster stage from drawer cache to subsystem cache

The HSDA facilitates faster data transfer from subsystem cache to drawer cache and from drawer cache to subsystem cache. The cache bandwidth of the 3990-6 and 9390 and their storage path processor capabilities support the higher transfer speeds. The RAMAC 3 drawer also supports the HSDA higher data transfer capability through the faster PDAD interface. All of this results in faster data transfers for both staging and destaging operations.

Faster PPRC initial volume synchronization

In a PPRC environment, primary volume contents are first copied to the secondary volume, and subsequent updates are written to both volumes. The primary and secondary volumes are considered a PPRC pair when their contents are identical. The subsequent record updates to the primary volume and the corresponding shadowed record update to the secondary volume do not use the lower interface components—instead, data is written to cache and NVS in both primary and secondary volume storage controls. However, the initial volume copy, which entails reading data from the primary and writing it to the secondary volume, uses the lower interface components. Therefore the faster HSDA speeds up the PPRC volume synchronization process by supporting data transfer operations from the RAMAC 3 drawer to the storage control of up to 11.9 MB/s. Of course, the time taken to synchronize PPRC primary and secondary volumes depends on other storage control and RAMAC 3 drawer workloads.

Faster XRC initial volume synchronization

XRC requires the primary and secondary volume contents to be identical when they are included in an XRC session. Similar to PPRC, primary volume contents are first copied to the secondary volume, and subsequent updates are written to both volumes. The initial process of synchronizing the two volumes requires data transfer from the physical primary device to the physical secondary device. When the primary and secondary devices are RAMAC 3 drawers, the faster HSDA enables transfers of up to 11.9 MB/s.

Faster concurrent copy session management

The 3990-6 and 9390 concurrent copy function enables customers to take point-in-time copies of data by using a cache sidefile that is loaded with the time-zero version of the data. Time-zero refers to the state of the data when the concurrent copy session is started and before it gets updated. Before a record is updated, it is copied to the cache sidefile, thus creating a “before update” version or time-zero version of the record. After the cache sidefile data has been prepared, the record can be updated on the physical device—the physical device now contains the updated version while the cache sidefile contains the time-zero version of the data. Concurrent copy relies on effective and efficient sidefile management. The time taken to “load” the cache sidefile is improved by the faster HSDA used in RAMAC 3 drawer configurations because the staging operation can take place at 11.9 MB/s.
New and faster storage frame maintenance through FPGA technology

The faster HSDA cards are located in the RAMAC Storage Frame. They connect to the DDC interface in the control unit and the PDAD interface in the RAMAC 3 drawers. The HSDA uses a new technology called field programmable gate arrays (FPGAs) which enable hardware logic to be upgraded concurrently in the field. This is a more effective and efficient way of making functional enhancements, corrections, or changes to storage subsystem components than programming microcode workarounds. The use of FPGA technology offers a new and faster concurrent maintenance platform for the RAMAC 3 Storage Frame and addresses the continuing demand for planned outage avoidance techniques that satisfy continuous availability requirements.

No Changes to Storage Control hardware

The 3990-6 and 9390 storage controls do not have to be changed to take advantage of the new HSDA. The 3990-6 and 9390 hardware components already support the higher data transfer speeds now attainable through the faster HSDA for RAMAC 3 Array Storage configurations. (Some early models of the 3990-6 require their internal hard drive to be upgraded).
Sequential Detect

- Sequential detect is available on both the 3990 Model 6 and 9390
- Sequential detect is applicable to:
 - Read data
 - Data that is cachable
- Sequential detect is invoked if more than three cylinders are read sequentially
- Records are left in cache for normal LRU processing to allow reuse
- VPD option to turn off: default is ON

Sequential Detect

Sequential detect is a new 3990-6 and 9390 cache algorithm that complements the software sequential staging requests issued by the various host access methods.

Sequential detect is available on both the 3990-6 and 9390

Sequential detect is a function of the 9390 and 3990-6 that recognizes sequential access patterns even when the host software does not set the sequential attribute in the channel program. When the 9390 or 3990-6 determines the sequential nature of the workload, it initiates sequential prestaging of data from the RAMAC 3 drawer. The sequential prestaging enables multiple tracks to be staged to drawer and subsystem cache in anticipation of use by the application.

Access methods where the access pattern can be both random and sequential do not set the sequential attribute in the channel program, and the data is handled by the storage control using its nonsequential caching algorithms. The new algorithm attempts to detect a sequential reference pattern, and, if the application continues to access sequentially, the storage control invokes sequential staging. The storage control can stage up to 15 tracks at one time, substantially improving the effective throughput of the application.
Sequential detect is applicable to:

The new algorithm applies to read data that is cachable. Data that uses bypass cache or ICL indicators can take advantage of sequential detect when the bypass cache and ICL intent is ignored through changing default VPD settings. Applications using VSAM key-sequenced data sets (KSDSs) can take advantage of this change as VSAM does not set the sequential attribute when processing data sequentially. Non-IBM software that does not set the sequential intent indicator but accesses data sequentially will also benefit from sequential detect.

Sequential detect is invoked if more than three cylinders are read sequentially

The current sequential detect algorithm is not invoked unless the application reads more than three cylinders of data from the same data set sequentially. The algorithm does this to ensure that the application can take advantage of the cylinder staging that will be invoked when the sequential staging starts.

Records are left in cache for normal LRU processing to allow reuse

The main difference between access-method-initiated sequential staging and the sequential detect algorithm is the status of the staged tracks after they have been read by the application. The access-method-initiated sequential algorithm makes the old tracks except the last least recently used. This ensures that the cache segments the tracks occupy will be reused as soon as the storage control needs more cache space. The intention is to stop sequential activity from flooding the cache with sequential data to the detriment of other, often more critical, online data.

The sequential detect algorithm takes a different view: If the data was really processed only sequentially, the access method would have used the sequential attribute in the channel program. The assumption is that the data may be read sequentially and randomly—the data is left for the LRU algorithm to handle.

Sequential detect also complements the faster HSDA and drawer processing that facilitates up to three times the data rate when compared with RAMAC, and RAMAC 2 Array DASD.

VPD option to turn off: default is ON

As this option brings benefits to all types of workloads, the decision has been made to make ON the default for sequential detect. Sequential detect can be set to OFF at the service panel.
Enhanced NVS Management for RAMAC 3

Current 3990-6 NVS management
- Data written to cache and NVS
- DE issued when data in cache and NVS
- Asynchronous destage to drawer cache

Enhanced NVS management
- Data written to subsystem cache and drawer cache
- DE issued when data written to subsystem cache and drawer cache

Enhanced NVS Management

The 9390 and 3990-6 implement a caching algorithm change that improves sequential write performance.

Current 3990-6 NVS management

The traditional NVS management algorithm uses the 3990 NVS to hold a second copy of all modified data. As cache is volatile and its copy of data is lost if you have a power failure, the NVS copy, protected by a battery, is used to write to disk once power is restored. The I/O is considered complete when a copy of the data is written to both cache and NVS and channel end (CE) and device end (DE) are issued to the host system. When space is needed in cache or NVS, the data is destaged to the physical disk—the writing to disk thus takes place asynchronously with the posting of I/O completion status.

The traditional algorithm works well for most types of workloads. However there are occasions where a heavy sequential workload mixed with an online workload can give less than optimum performance. The sequential workload rapidly fills NVS and causes the storage control into a forced destage operation to free up space in NVS. This can have unpredictable results on your online response time. Optional changes announced in March 1996 are designed to help alleviate this effect, particularly for DB2 workloads, by changing the freespace thresholds in NVS.
Enhanced NVS management

This new NVS management change takes advantage of the higher-speed interface between the storage control and the RAMAC 3 Storage Frame. It uses the nonvolatile storage in every RAMAC 3 drawer rather than the storage control to hold sequential modified data. For write operations, the first copy of the data is still written to subsystem cache, but the second copy is now written to drawer cache instead of subsystem NVS. The I/O is signaled complete (DE issued to the host system) when the second copy of data is in drawer cache—drawer cache is nonvolatile because its contents are protected by the drawer battery.

The advantages of this technique are to remove large blocks of sequential data from NVS and allow NVS to be used primarily for online DASD fast write (DFW) and record cache hits. Mixing a batch workload with an online workload also becomes more practical. (In the past, with small amounts of storage behind a control unit, it was possible to separate online and batch onto different controllers. Now with up to 363.2 GB behind a single storage control, this separation becomes less practical, and the need to be able to handle both online and batch on the same storage control is more important.)

The new algorithm selects data to send straight to the drawer cache according to the expected transfer size (taken from information in the channel program). If the number of records, or the transfer size is large enough, the algorithm directs output to the drawer cache and at the same time keeps a copy in the cache. The algorithm can also be triggered if NVS is filling up. As the high threshold is reached, all sequential writes are directed to the drawer cache.

The effect of this new algorithm is to reduce the probability of the storage control NVS becoming full and thus avoid the unpredictable impact that NVS-full has on performance. The new NVS management algorithm retains the highest levels of data availability by always ensuring that there are two copies of data at all times.
Enhanced NVS Management...

- Takes advantage of faster lower interface
- Exploited by Sequential Detect
- Uses nonvolatile drawer cache for second copy
- Designed for long chain or large block size sequential data streams
- Reduces NVS-full probability
- Avoids asynchronous destage to drawer
- Improved performance for mixed batch and online
- Used for other writes if NVS becomes full

PROVIDES 64 MB OF NONVOLATILE STORAGE FOR QUALIFYING I/O TO RAMAC 3 LOGICAL VOLUMES

Enhanced NVS Management...

Takes advantage of faster lower interface
The new NVS management algorithm takes advantage of the higher-speed lower interface in the RAMAC 3 Array Storage or a 3990-6 with RAMAC 3. The lower interface speed of the RAMAC 3 Array Storage has tripled to 11.9 MB/s, enabling fast data transfer between the storage control and the RAMAC 3 drawer in both directions. The increase in lower interface speed makes it possible to “bypass” subsystem NVS and write straight to the drawer cache.

Exploited by sequential detect
The new NVS management algorithm exploits the faster lower interface capability of RAMAC 3 Array Storage by writing updated data straight to nonvolatile drawer cache without writing a copy to NVS. The bypassing of NVS is of particular significance for sequential workloads where a large amount of update activity could result in filling NVS and invoking threshold management tasks that could impact application performance. The 9390 and 3990-6 storage controls enable the new NVS management algorithm when the host software signals sequential intent through the define extent (DX) channel command. The scope of the new NVS management technique is broadened substantially when the storage control determines that an application is using sequential access even though that is not indicated in the DX command. Sequential detect capability in the 9390 and 3990-6 ensures that the lower-interface enhancements combine with the new NVS management algorithms to improve throughput and response times.
Uses nonvolatile drawer cache for second copy
Drawer cache is also nonvolatile and provides a dedicated NVS for exclusive use by the eight logical volumes. The data written to drawer cache becomes subject to the RAMAC 3 drawer’s advanced destage management techniques, which take account of drawer cache occupancy, disk drive utilization, and RAID-5 parity processing.

Designed for long chain or large block size sequential data streams
The new algorithm is activated when a large write transfer size is detected or a large number of chained records is detected. When a write transfer of this nature is detected, data is transferred to cache and RAMAC 3 drawer cache in a branching write fashion similar to the operation used when data is transferred to both cache and channel in traditional 3990 configurations.

Reduces NVS-full probability
Because large sequential write operations now bypass the storage control NVS, more space is available for online data, and there is less probability that NVS will become full because of a burst of write activity. The sequential data is now stored in “local” drawer cache where drawer destage management ensures effective resource utilization while controlling RAID-5 requirements.

Avoids asynchronous destage to drawer
The current storage control algorithms maintain two copies of the data—one copy in cache and the other in NVS. The new NVS management algorithm also maintains two copies of the data—one in cache and the other in nonvolatile drawer cache. With the current implementation, an asynchronous destage of the data from subsystem cache to drawer cache is performed as data ages and has to be secured on the “device”—in this case, the RAMAC 3 drawer. The new NVS management algorithm writes qualifying data directly to the RAMAC 3 drawer thus avoiding the asynchronous destage at a later time.

Improved performance for mixed batch and online
With larger configurations you are less able to split the batch workload from the online workload and less able to manage the interaction between the two. This NVS management change directs large sequential writes away from the online I/O.

Used for other writes if NVS becomes full
The algorithm cuts in at various levels to direct other writes to drawer cache as NVS becomes full.
RAMAC 3 LIC Download and Activation

The 3990 has increased its functional capability many times over many years. The functional additions and enhancements are predominantly delivered through LIC. Thus the loading and activation of LIC must always be considered when DASD subsystems graduate to the latest levels of storage control functionality.

3990-6 LIC upgrade is disruptive

- Provides support for 128 addresses
- Optimized for faster device adapter

9390-001 and 9390-002

- Full RAMAC 3 support shipped with box

9390-002

- Each storage control can be updated independently

RAMAC 3 LIC Download and Activation

The 3990 has increased its functional capability many times over many years. The functional additions and enhancements are predominantly delivered through LIC. Thus the loading and activation of LIC must always be considered when DASD subsystems graduate to the latest levels of storage control functionality.

3990-6 LIC upgrade is disruptive

The 3990-6 microcode upgrade to support RAMAC 3 is disruptive. However, as RAMAC 3 cannot be attached with any other DASD, this should not be a problem. Data must be migrated from an existing 3990 configuration before RAMAC 3 is attached. The new LIC level provides support for 128 addresses.

9390-001 and 9390-002

A 9390 will be delivered with the RAMAC 3 LIC already installed as RAMAC 3 is the only device supported by the 9390.

9390-2

Each storage control in the 9390-2 is independent. Should LIC upgrades be required in the future, each storage control can be updated when convenient for the customer.
RAMAC 3 Drawer Maintenance

A key requirement of storage subsystems today is continuous operations. To address this requirement the RAMAC Array DASD subsystem introduced the concept of concurrent drawer maintenance with the sparing function. RAMAC 2 Array DASD enhanced the concurrent drawer maintenance philosophy further and broadened the maintenance options by introducing dynamic disk reconstruction. RAMAC 3 Array Storage and the 3990-6 attaching to the RAMAC 3 drawer retain the strong focus on concurrent drawer maintenance by supporting both Sparing and dynamic disk reconstruction.

With a larger amount of data now stored on the disk drives in the RAMAC 3 drawer, it is imperative to offer as flexible and broad a concurrent maintenance package as possible to avoid planned outages.
RAMAC 3 Sparing

There are two sparing options—Dynamic Sparing and manual sparing.

Dynamic Sparing has the advantage of initiating automatically on fault detection, thus providing maximum data loss protection by copying the data to the spare drawer and restoring RAID-5 redundancy as soon as possible. Manual sparing offers customers the flexibility of invoking sparing for specific drawers, and provides the choice of not reserving a spare drawer, but instead, of quiescing a drawer when appropriate and initiating the sparing process with the help of a service representative.

Sparing with a RAMAC 3 configuration is similar to the process we are familiar with on RAMAC and RAMAC 2 subsystems. The default for RAMAC, RAMAC 2, and RAMAC 3 is to automatically start the sparing process, assuming that a spare has been defined to the subsystem. Dynamic disk reconstruction is used if a spare drawer is not assigned and the component malfunction is a drive failure.

The expected time for a sparing operation will be the same as for RAMAC 2 even though the RAMAC 3 drawer must now protect eight logical volumes as opposed to four and restore full RAID-5 capability to the target drawer. Sparing using RAMAC 3 drawers takes advantage of the faster device interfaces to the storage control and enhances the staging and destaging process during drawer copy.

During the sparing process, application performance is given priority by interleaving the copying with "favored" host access—the host is allowed to
interrupt the copying process so that application performance is not affected too much. SIMs are generated and sent to the host during the Dynamic Sparing process so that operations staff are aware of ongoing status. Up to two drawers can be defined as spare drawers, but only one can be the target of the sparing operation at any time. We recommend one spare drawer per RAMAC 3 Storage Frame.

Sparing is the only drawer maintenance function that protects against all drawer failures—dynamic disk reconstruction should be used only for disk drive module (DDM) failures.

When the failed drawer has been repaired, the data can be copied back immediately, copied back after a specified delay, or remain on the copied-to drawer. These three options are called *immediate copyback*, *delayed copyback*, and *floating spare environment*, respectively.
RAMAC 3 Drawer Maintenance - Summary

Not every storage subsystem function or solution is globally adopted by all customers. The RAMAC 3 Array Storage (and RAMAC 2 Array DASD) recognizes that device maintenance is an element of storage subsystem management where repair alternatives differ among customers according to data availability and continuous operations requirements. Thus RAMAC 3 Array Storage offers a choice of drawer maintenance procedures.

Dynamic Sparing preferred

Dynamic sparing copies all of the data from the suspect drawer to a spare drawer. When all of the data is copied to the spare drawer, it becomes the active drawer by servicing all I/O to the data and thus “redirecting” I/O away from the suspect drawer. Thus any repair action can take place on the suspect drawer because it is now an inactive drawer. Copying all of the data to another drawer therefore enables concurrent repair for any drawer component with no impact on performance.

The spare drawer that the data is copied to is a fully functional enhanced RAID-5 RAMAC device that assumes active drawer status. Therefore when the data is copied to the spare drawer, it is immediately and automatically protected from data loss in the event of drawer component malfunction.

Dynamic Sparing is automatically invoked by the RAMAC 3 drawer and the storage control on detection of the first error that affects the level of redundancy.
in the drawer. The customer does not have to be present or decide on which course of action to follow.

The RAMAC 3 drawer contains 22.7 GB of user capacity stored on eight logical volumes. Dynamic Sparing ensures that application access to the data receives priority during the copying, thus minimizing the impact on application performance. When the failing drawer has been repaired, the data can either be copied back immediately, copied back at a more convenient time, or retained on the new active drawer leaving the repaired drawer as the new spare. If the data is to be copied back to the repaired drawer, you therefore have the flexibility to plan for the most suitable timeframe.

Dynamic disk reconstruction

Dynamic disk reconstruction offers an alternative method of concurrent DDM maintenance. It applies to the DDM component of the drawer only and enables disks to be replaced concurrently with drawer I/O activity. While the DDM is being replaced, the enhanced RAID-5 function regenerates the data for the failed disk. After the DDM has been replaced, the data is reconstructed and written to the new disk.

Dynamic disk reconstruction does not offer the global “all-component” repair philosophy of Dynamic Sparing because the technique applies only to DDM components, but it does enable installations to consider a “no-spare” policy for DDM repair scenarios. Dynamic disk reconstruction also avoids the time taken to copy data to the spare drawer, but we must remember that Dynamic Sparing “paces” the copy to minimize the impact on application performance.

RAMAC 3 Array configurations offer a unique combination of drawer maintenance strategies. Dynamic disk reconstruction can be used for DDM repairs while spare drawers are assigned in the RAMAC 3 Storage Frame. The option of enabling dynamic disk reconstruction for DDM repairs while simultaneously enabling sparing, is selected at installation time—this option can be changed after installation to suit customer requirements.
Successful implementation of RAMAC 3 Array Storage entails the execution of several planning tasks. These planning tasks include physical setup, applying software updates, loading and activating new levels of storage control LIC, and defining new device types to installation hardware and software systems. This chapter describes some of the major tasks to consider when planning for RAMAC 3 Array Storage implementation.
Installation and Migration

For the IBM RAMAC 3 Array Storage a system assurance product review should be conducted. The Systems Assurance Process Review (SAPR) Guide, SA95017-03 can be used to assist in the review. The guide is available through HONE SA ADVISOR. To view the guide on the SAPRDOC LEXVMIC1 tools disk, issue the following command:

TOOLS SENDTO LEXVMIC1 TOOLS SAPRDOC GET SA95017 LIST3820 *

Storage product specialists and customer engineers should review this document when ordering and planning the installation of the IBM RAMAC 3 Array Storage.

Several key aspects of installation planning are described on the foil.

Software dependencies

Check that the system control program (SCP) level supports the IBM RAMAC 3 Array Storage and install all necessary program temporary fixes (PTFs). The preventive service planning (PSP) records provide all of the information you need for installation planning. Call your software service center to get the PSP record entries you want.

See Chapter 10, “Software” on page 139 for details on software support for the RAMAC 3 Array Storage.
IOCP definitions

RAMAC 3 Array Storage supports up to 256 devices, which must be defined to the SCP and the channel subsystem. Similarly, the 3990-6, connected to the RAMAC 3 Storage Frame, supports up to 128 devices. The hardware configuration definition (HCD) and IOCP programs define devices to the channel subsystem. The devices, and the paths that they use, must be defined correctly to enable efficient application I/O processing. See “9390-001 IOCP Definition Example” on page 108 for a detailed description of sample IOCP definitions for the RAMAC Array Storage.

Physical planning

The 9391/9392 RAMAC Array Storage Reference Summary, SX26-1682, gives detailed information about physical planning. Environmental data such as floor space and power requirements can be found in “Physical Specifications” on page 114.

VPD settings

RAMAC 3 Array Storage configurations allow dynamic disk reconstruction to take priority over Dynamic Sparing for DDM failures through a VPD setting. The VPD setting enables a new service panel option that performs this function.

ESCON connections

The maximum throughput capability of the IBM RAMAC 3 Array Storage is obtained when the 9390-001, 9390-002, or the 3990-6 connection uses 18 MB/s ESCON channels.

3990-6 support for IBM RAMAC 3 Array Storage

After the 3990-6 storage controls have been updated with the correct microcode level, they support the IBM RAMAC 3 Storage Frame.

Data migration

Plan data migration before installing the IBM RAMAC 3 Array Storage. Use peer-to-peer remote copy (PPRC), PPRC dynamic address switching (P/DAS), and extended remote copy (XRC) to copy the data from the old device to the IBM RAMAC 3 Array Storage. You must use DFSMS or DFDSS when you migrate data from different device types. The RAMAC Data Migrator can also be used to migrate to the RAMAC 3 Array Storage.
The foil shows the correct IOCP definitions for the RAMAC 3 Array Storage (9390-001). The only change is the 128 address capability. In the CNTLUNIT macro, set the UNITADD device count to 128, and in the IODEVICE macro, set the ADDRESS device count to 128.

In the diagram, CUNUMBR 010 is equivalent to 9390-001 cluster 0, and CUNUMBR 011 is equivalent to 9390-001 cluster 1. Cluster 0 is connected to processor channel paths 01 and 02, and cluster 1 is connected to processor channel paths 03 and 04. Notice that the number of CNTLUNIT macros used in the IOCP definition has an effect on the channel subsystem’s path selection technique.

Two-CNTLUNIT macro definition

When two CNTLUNIT macros are used to define the paths to the 9390-001, the channel subsystem selects the first CHPID defined by the first PATH statement in the first CNTLUNIT macro—namely, CHPID 01 that attaches to CUNUMBR 010. Using this channel path, the channel subsystem attempts to acquire a path to the requested device. If the channel subsystem cannot obtain a path to the device it tries another path—but which one?

The channel subsystem’s second choice is the first CHPID defined by the first PATH statement in the second CNTLUNIT macro—namely, CHPID 03 that attaches to CUNUMBR 011. This is the most efficient second choice because the path busy or unattainable status from the first attempt might have been due to both
storage paths in cluster 0 being busy or unavailable for some other reason. It therefore makes sense to attempt to establish a connection to the device by using a channel path connected to the other cluster—cluster 1.

The third choice path is the second CHPID defined by the first PATH statement in the first CNTLUNIT macro (CHPID 02 connected to CUNUMBR 010). The fourth choice of channel path is the second CHPID defined by the second PATH statement in the second CNTLUNIT macro (CHPID 04 connected to CUNUMBR 011).

The channel subsystem uses a rotational path selection mechanism based on the IOCP definition. The IOCP definition should be coded to enable the channel subsystem to “ping-pong” between storage control clusters on successive path selection attempts. Successive attempts to establish a connection to the device by using interfaces on the same cluster might delay I/O processing and data transfer.

Single-CNTLUNIT macro definition

When a single CNTLUNIT macro is used to define the paths to the 9390-001, the same logic applies. The foil shows the definition for a single CNTLUNIT macro definition for the same four-path configuration as before. Notice that the single PATH statement defines the sequence of CHPID selection as 1, 3, 2, 4. This has the same effect as the two-CNTLUNIT macro definition because, in the absence of the second CNTLUNIT macro, the channel subsystem cannot “ping-pong” between PATH statement CHPIDs. Instead, the channel subsystem attempts connection to the device by trying each of the CHPIDs in the order in which they appear in the single PATH statement in the CNTLUNIT macro.

In both cases, channel path connections to the 9390 and 3990-6 cluster interfaces must be well understood before coding the IOCP definitions.

When only eight RAMAC 3 drawers are installed in the IBM RAMAC 3 Storage Frame, the number of devices can be set to 64 in the 9390 or 3990 VPD setting and in the IOCP definition statement.
The foil shows the IOCP definitions for a 9390-001 connected to a host system through an ESCON Director (ESCD). We use the two-CNTLUNIT macro definition in our example. The channel path selection method described in the previous foil is used, and the only difference is the definition of the ESCD and how logical paths are defined through IOCP coding.

ESCON Director Definition

The ESCD must be defined to the channel subsystem by using the CHPID, CNTLUNIT, and IODEVICE macros as before and defining the ESCD as a switch through the SWCH value for the UNIT keyword on the CNTLUNIT and IODEVICE macro. An ESCD is identified by a switch number coded in the CHPID macro—the ESCD used in our example is coded SWITCH=01. The ESCD is accessed through CHPIDs 1 and 4 as specified by the PATH parameter of the SWCH control unit, and the channels used are native ESCON channels as specified by TYPE=CNC. The ESCD has a CUNUMBR of A00 and an ADDRESS of A00. The PATH parameter defines the CHPIDs that the host uses to communicate with the ESCD control ports—CHPIDS 01 and 04 both switch to ESCD port FE, enabling host software such as the ESCON Manager (ESCM) to monitor and alter ESCD port states.
9390/3990-6 Definition

The PATH parameter in the CNTLUNIT macro defines the CHPIDs used to access the devices through the appropriate cluster (CNUMBR 010 and CNUMBR 011). Below the PATH parameter is a LINK parameter that describes the ESCD port addresses used by the CHPIDs in the PATH statement. The PATH and LINK parameter values are positional—that is, CHPID 01 uses ESCD port address D0 and CHPID 02 uses ESCD port address D4 to access the devices behind the 9390 or 3990-6. Notice that the ESCD ports described by the LINK parameter are the “outbound” ports that connect the ESCD to the 9390 or 3990-6.
9390-002 IOCP Definition Example

The 9390-002 comprises two storage controls in a single frame, and the IOCP definitions can be considered similar to those required for two 9390-001 storage subsystems.
The 9390-002 IOCP definitions for ESCD configurations are similar to the definitions for two 9390-001 configurations.
Physical Specifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Width</th>
<th>Depth</th>
<th>Height</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>mm</td>
<td>mm</td>
<td>kg</td>
</tr>
<tr>
<td></td>
<td>in.</td>
<td>in.</td>
<td>in.</td>
<td>lb</td>
</tr>
<tr>
<td>9391-A30 empty rack</td>
<td>750</td>
<td>978</td>
<td>1580</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td>29.5</td>
<td>38.5</td>
<td>62.2</td>
<td>752</td>
</tr>
<tr>
<td>9391-A30 full rack</td>
<td>750</td>
<td>978</td>
<td>1580</td>
<td>733</td>
</tr>
<tr>
<td></td>
<td>29.5</td>
<td>38.5</td>
<td>62.2</td>
<td>1616</td>
</tr>
<tr>
<td>9392-B33</td>
<td>212</td>
<td>780</td>
<td>175</td>
<td>24.5</td>
</tr>
<tr>
<td></td>
<td>8.3</td>
<td>30.7</td>
<td>6.9</td>
<td>54</td>
</tr>
<tr>
<td>9390</td>
<td>1155</td>
<td>815</td>
<td>1580</td>
<td>546</td>
</tr>
<tr>
<td></td>
<td>45.5</td>
<td>32</td>
<td>62.2</td>
<td>1204</td>
</tr>
</tbody>
</table>

The foil shows the physical dimensions of the RAMAC 3 storage control, RAMAC 3 Storage Frame, and RAMAC 3 drawer.
The IBM RAMAC 3 Array Storage can significantly alleviate existing floor space constraints. The increased megabytes per square foot are made possible by the IBM Ultrastar 2XP 3.5 inch disk. Compared with the IBM RAMAC 2 Array DASD, the floor space is reduced by 50% for 726.4 GB of data. Also, the power and cooling requirements for the IBM RAMAC 3 Array Storage are reduced by 50%.
9390-001 Power Boundaries

The 9390-001 is a single control unit. The new redundant power subsystem is designed to enable nondisruptive upgrading to the 9390-002. The direct current (DC) power supply is repacked into new logic cards, which are installed in cage 0 and cage 1. Cage 0 holds the cache and cluster 0 DC power supply cards. Cage 1 holds the NVS and cluster 1 DC power supply cards.

The cooling system is repacked to fit in the new 9390. Power error handling is detected, recovered, and reported by the support facility (SF) microcode.
9390-002 Power Boundaries

The 9390-002 has a common emergency power-off switch for both control units. Each control unit has one subsystem power switch. To supply the second control unit with power, the alternating current (AC) power system has been expanded to six AC control boxes.

In case of failure of one of the redundant power systems, both control units are fully operable, but in some cases with reduced performance.
9390 Host Support

- ES/9000, S/390, or 3090 processors with ESCON channels
- ESCON support
 - Data transfer rate of up to 18 MB/s
 - 64 logical paths with 4 ports
 - 64 or 128 logical paths with 8 ports
 - 128 logical paths with 16 ports

9390 Host Support

The 9390-002 offers a total of 256 logical devices supported with 32 physical and 256 logical ESCON ports.

ES/9000, S/390, and 3090 processors with ESCON channels

The 9390 is supported by the 9672, 9021, 9121, 9291, and 3090 processors on ESCON channels only. The 9390 directly attaches to ESCON channels but does not directly attach to ESCON Extended Distance Feature (XDF) channels. To attach the 9390 to ESCON XDF channels, an ESCD or a 9036 must be positioned between the host processor and the 9390.

ESCON support

The maximum data transfer rate of the 9390 on an ESCON channel is 18 MB/s. The actual data transfer rate depends on the CPU ESCON channel data transfer rate.

When 64 logical paths are supported through two two-port ESCON cards, you have four ESCON channel ports.
To order use Feature code number 1400 or 2400.

When 128 logical paths are supported through four two-port ESCON cards, you have eight ESCON channel ports.
To order use Feature code number 1405 or 2405.
When 64 logical paths are supported through two four-port ESCON cards, you have eight ESCON channel ports. To order use Feature code number 1410 or 2410.

When 128 logical paths are supported through two two-port and two four-port ESCON cards, you have 12 ESCON channel ports. To order use Feature code number 1415 or 2415.

When 128 logical paths are supported through four four-port ESCON cards, you have 16 ESCON channel ports. To order use Feature code number 1420 or 2420.

Only one feature code per 9390-001 and two per 9390-002 are installable. No combinations with other channel feature codes on a 9390-001 or 9390-002 are allowed.
9390-001 ESCON Channel Configuration

The 9390-001 connects to the processor complex through ESCON channels, optical fiber cables, and optionally, ESCDs or 9036 extenders. The optical fiber cables connect to adapter cards located in each of the two clusters (four clusters for the 9390-002). The adapter cards have two or four ports; each port can connect a single optical fiber cable. Each ESCON adapter card supports up to 32 logical paths regardless of the number of physical ports on the card. Therefore when four cards are installed (two in each cluster), 128 logical paths are available for use. The distribution of logical paths across physical ports is determined by the IOCP definitions. Each cluster of the 9390-001 must have identical ESCON adapter card configurations—the foil shows the valid combinations.
The 9390-002 comprises two storage controls in a single frame. Each storage control has two clusters that abide by the same rules established for the 9390-001 in terms of ESCON adapter card configuration. Each cluster within a single storage control must have identical ESCON adapter card configurations, but ESCON adapter card configurations can be different for each storage control. The foil shows how asymmetrical configurations are supported and illustrates the valid combinations of ESCON adapter cards. With a maximum of eight ESCON adapter cards installed, the 9390-002 supports up to 256 logical paths, distributed as two sets of 128 for each storage control. Logical path distribution is defined through IOCP parameter coding.
9390 Cache and NVS Feature Codes

This table gives an overview of the available feature codes for the cache and NVS of the 9390.

<table>
<thead>
<tr>
<th>Cache</th>
<th>NVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MB)</td>
<td>9390-001</td>
</tr>
<tr>
<td>256</td>
<td>1115</td>
</tr>
<tr>
<td>512</td>
<td>1120</td>
</tr>
<tr>
<td>768</td>
<td>1125</td>
</tr>
<tr>
<td>1024</td>
<td>1130</td>
</tr>
<tr>
<td>1536</td>
<td>1135</td>
</tr>
<tr>
<td>2048</td>
<td>1140</td>
</tr>
<tr>
<td>3072</td>
<td>1145</td>
</tr>
<tr>
<td>4096</td>
<td>1150</td>
</tr>
</tbody>
</table>
3990-6 Support for RAMAC 3 Array

- Customer investment protection

- Faster DDC interface

- New LIC download and activation required for 128 device support

Customer investment protection

To meet customer demand for investment protection, the 3990 Model 6 Storage Control has been enhanced to support 363.2 GB of RAMAC 3 Array capacity. The 3990 Model 6 Storage Control supports both parallel and ESCON channel attachment.

Faster DDC interface

When connected to the IBM RAMAC 3 Storage Frame, four new DDC cables are required for 3990-6 attachment. These cables must be ordered with the 9391-A30.

New LIC download and activation required for 128 device support

For RAMAC 3 drawer support, new Licensed Internal Code (LIC) must be ordered by the IBM customer engineer and loaded into the 3990 Model 6 Storage Control. This LIC supports 128-device addressing.
The 3990-6 supports two storage-based solutions that address workload movement, device migration, and disaster recovery—PPRC and XRC. This chapter describes the additional advantages that RAMAC 3 Array Storage offers for PPRC and XRC configurations.
9390 XRC Session Support

XRC provides a method of simplifying the management of real-time data shadowing for volumes that contain related data or where categories of data benefit from being grouped together. XRC does this by creating, managing, and monitoring sessions of data-shadowing activity. XRC primary and secondary volume pairs are added and deleted to XRC sessions, thus enabling XRC to simplify tasks such as monitoring, reporting, and recovery by reference to a single session identifier. Each XRC session requires a dedicated system data mover (SDM) to manage the remote copy logistics associated with the session. The logistics include real-time data shadowing, update sequence consistency processing, journaling, monitoring, and recovery. The XRC session concept enables SDM to manage the complexity of disaster recovery and data management by reference to a single name that relates many volumes with data dependencies. Support of the XRC session concept is vital and is delivered in the host software and the storage control.

The 3990-6 and the 9390-001 support up to four XRC sessions, and the 9390-002 supports up to eight XRC sessions. This support enables the most flexible and compact disaster recovery, workload movement, and data migration solution in the industry because large configurations can segregate corporate data into easily manageable XRC session “modules” for independent remote copy operations.
XRC application site storage controls must be either 3990-6, 9390-001, or 9390-002. XRC recovery site storage controls do not have to be 3990-6, 9390-001, or 9390-002—for example, the XRC recovery site storage control can be 3990-3, RAMAC Array Subsystem, or RAMAC Virtual Array. IBM recommends that the XRC recovery site storage control be a 3990-6, 9390-001, or 9390-002 because of their functional and performance attributes. However, the 9390-002 offers a unique capability that improves XRC performance and makes it a candidate for recovery site storage control.

XRC writes “batches” of updated records to a journal data set to enable subsequent secondary volume update in the event of disaster recovery and to rapidly secure a remote copy of the primary volume data. The batches of updated records are called consistency groups. The writing of consistency groups to the journal data set is a vital element of XRC processing and is on the “performance critical path.” SDM will not release main storage space used to store record updates until the data is written to the secondary volumes. Therefore the performance of XRC journaling is important to the entire remote copy process. Because of the importance of journaling performance, we strongly recommend that the journal data set be “isolated” from the secondary volume update activity so that contention for storage control resources is minimized. This isolation effectively translates to a recommendation that the journal data sets associated with the XRC session be located on a different storage control from the secondary volumes. The 9390-002 is two storage controls in a single frame and therefore facilitates locating the
journal data sets in the same frame as the secondary volumes but behind a different storage control. The foil shows how the 9390-002 offers an economical, compact, and efficient XRC configuration by optimizing SDM journaling through a separation of journal data sets and secondary volumes.
RAMAC 3 Array Storage and PPRC

RAMAC 3 Array Storage supports up to 726.4 GB of data in a single frame and offers a level of high capacity compactness never before achievable in storage subsystem design. The compactness of a RAMAC 3 Array Storage subsystem delivers benefit to PPRC configurations that require real-time, synchronous, remote copy operations for disaster recovery, workload movement, and data migration. Before the RAMAC 3 Array drawer became available, a single 3990-6 could remotely copy a maximum of 180 GB of data stored on 64 volumes. Installations wanting to shadow more data than that by using PPRC had to use more 3990-6s. The 9390-002 enables a single frame footprint comprising 726.4 GB of data stored on 256 RAMAC 3 volumes to be remotely copied by using PPRC. Similarly, the 3990-6 attaching RAMAC 3 drawers enables a single-frame footprint comprising 363.2 GB of data stored on 128 RAMAC 3 volumes to be remotely copied by using PPRC. In addition, RAMAC 3 Array Storage and 3990-6 attaching RAMAC 3 drawers can exploit the advanced data management functions of P/DAS. The RAMAC 3 drawer is therefore the enabler for high-capacity, cost-effective, compact, remote copy configurations.
9390-002 at PPRC Recovery Site

Previously, PPRC configurations mandated the use of 3990-6 for both application and recovery site storage controls. With the arrival of the 9390 storage control, the options for PPRC configurations have been enhanced. PPRC performance is dependent on the write content of the application site storage control and the ability of the recovery site storage control to satisfy the shadowed write content. PPRC implements a synchronous remote copy operation so the write to the secondary volumes must execute as fast as possible to enable I/O completion status (device end—DE) to be returned to the application. Contention for recovery site storage control resources must therefore be removed or minimized so that acceptable PPRC performance can be sustained.

By using the 9390-002 as the recovery site storage control, secondary volumes can be “split” across control units. The split results in a reduction of the write content with which the control units have to deal. For high-write-content, application-site storage controls, the 9390-002 provides a way of balancing the shadowed workload across two storage control facilities at the recovery site, thus delivering optimal performance for the synchronous remote copy operations.
Chapter 9. Performance

RAMAC 3 Array Storage configurations support up to 726.4 GB of data in a single subsystem. Additionally, RAMAC 3 Array Storage subsystems support all of the functions currently available on the 3990-6 storage control. To enable all of the functionality and simultaneously support the massive-capacity footprint of a 726.4 GB subsystem, the RAMAC 3 Array Storage implements improvements in I/O processing and data transfer performance described previously. This chapter details some of the performance measurements undertaken with the RAMAC 3 Array Storage and highlights other performance aspects such as recommended cache and NVS configurations and use of IBM performance modeling tools.
Performance Tools

The effect of IBM RAMAC 3 Array Storage can be predicted through the use of IBM modeling tools. I/O response times, throughput, the effect of device migration, volume consolidation, and the effect of cache and NVS size increases can be modeled with the suite of IBM modeling tools.

DCAT

The Disk Cache Analysis Tool (DCAT) has been updated to support IBM RAMAC 3 Array Storage. DCAT enables IBM technical support personnel to model the impact that migrating to RAMAC 3 Array Storage has on response time and throughput. Workloads can be “stressed” by projecting a growth in I/O rates and modeling the resultant effect on subsystem performance.

CAA

An updated release of the Cache Analysis Aid (CAA) is available on MKTTOOLS. CAA uses generalized trace facility (GTF) input to simulate the cache hit ratios resulting from various cache sizes. The cache hit ratios are input to DCAT, which models the performance impact of changing cache size.
DASD Magic/2

DASD Magic/2 is a PC-based modeling tool that is used to predict the effect of device migration and cache size change. DASD Magic/2 can be used to model migration to RAMAC 3 Array Storage.

DSCAT

For data set and volume-specified performance analyses, use the Data Set Cache Analysis Tool (DSCAT), which you can find on MKTTOOLS.
Performance with Sequential Detect

A critical area in many environments is sequential performance because it can be a significant portion of workload execution during batch processing. Demand for high throughput during these workloads continues to increase. The IBM RAMAC 3 Array Storage can provide significant improvements in this area over the IBM RAMAC Array DASD and IBM RAMAC 2 Array DASD.

With eight logical volumes of 3390-003 in a single drawer, maintaining and improving sequential throughput capability were key in the design of the IBM RAMAC 3 Array Storage. With the increased data rate to the IBM RAMAC 3 drawer, the minimum usable sequential throughput with all eight volumes in the disk array active is equal to or greater than that of the IBM RAMAC and RAMAC 2 Array DASD. When additional IBM RAMAC 3 Array Storage volumes are active, however, the overall throughput can be substantially higher than previously available. For a single 9390-001 or 3990-6 storage control, the maximum usable sequential throughput is in excess of 30 MB/s for read operations and 20 MB/s for write operations. This throughput is two to three times greater than previously available with IBM RAMAC Array DASD and RAMAC 2 Array DASD. For configurations involving the 9390-002, total subsystem throughput of 60 MB/s for reads and 40 MB/s for writes may be obtained. To achieve these results, improvements were made to the IBM RAMAC 3 Array Storage, and the 3990 Model 6 Storage Control LIC.

With sequential detect, workloads that previously had been unable to take advantage of the optimization for read sequential workloads can now do so. Applications that process data sequentially without setting the appropriate
software option for sequential access, such as VSAM key-sequenced data set (KSDS) processing and some OEM database applications, can now take advantage of sequential prestaging. In addition to improvements in elapsed time, the increased storage control to the RAMAC 3 drawer data rate also results in significantly lower utilization of the lower interface. This is significant on heavily loaded subsystems or on subsystems supporting greater than 181.6 GB of attached storage.

The foil indicates the improvements that may be possible with the RAMAC 3 Array Storage in sequential read processing environments.
Sequential Performance Improvements

The foil shows the improvements in sequential write performance that may be achieved with RAMAC 3 Array Storage for a QSAM workload.

RAMAC 3 Array Storage Sequential Write Performance

<table>
<thead>
<tr>
<th>WORKLOAD</th>
<th>ELAPSED TIME RAMAC 2 ARRAY DASD</th>
<th>ELAPSED TIME RAMAC 3 ARRAY STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>QSAM SEQ WRITE</td>
<td>16 MINUTES</td>
<td>9 MINUTES</td>
</tr>
</tbody>
</table>

- 8 volumes active simultaneously across 2 drawers
- Each volume reads or writes 1500 cylinders
- 16 MB/s ESCON channel attachment
- 27 K block size

© IBM Corporation 1990
RAMAC 3 Recommended Configurations

<table>
<thead>
<tr>
<th>Count of Volumes</th>
<th>Total GB</th>
<th>Total Cache Size (MB)</th>
<th>Total NVS Size (MB)</th>
<th>Total Cache Size (MB)</th>
<th>Total NVS Size (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td><=32</td>
<td><= 90</td>
<td>256</td>
<td>32</td>
<td>512</td>
<td>32</td>
</tr>
<tr>
<td>32 - 64</td>
<td>90 - 180</td>
<td>512</td>
<td>32</td>
<td>1024 - 2048</td>
<td>64</td>
</tr>
<tr>
<td>64 - 128</td>
<td>180 - 360</td>
<td>1024</td>
<td>64</td>
<td>1024 - 4096</td>
<td>64</td>
</tr>
<tr>
<td>* 128 - 256</td>
<td>360 - 720</td>
<td>2048</td>
<td>128</td>
<td>2048 - 8192</td>
<td>256</td>
</tr>
</tbody>
</table>

Configurations for RAMAC 3 Array Storage attached to either 9390 or 3990-6 Storage Control
* denotes 9390-002 configuration

RAMAC 3 Recommended Configurations

This foil provides recommended standard and performance configurations for the IBM RAMAC 3 Array Storage when attached to either the 9390 or the 3990-6. The performance configurations may be applicable for workloads with high write content or where larger cache is necessary to improve cache hit ratios, such as may be found in some database applications.

When you evaluate any storage control configuration, we recommend that you analyze your workload to select the proper configuration for each environment.
Performance - Migration Consolidation

RAMAC 3 Array Storage Migration

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>THROUGHPUT</th>
<th>RESPONSE TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 X 3990-6</td>
<td>275 I/Os/s EACH at 15 ms RT TOTAL 550 I/Os/s</td>
<td>14 ms RT EACH at 250 I/Os/s TOTAL 500 I/Os/s</td>
</tr>
<tr>
<td>512 MB CACHE EACH 32 MB NVS EACH 180 GB RAMAC 2 EACH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 X 9390-001</td>
<td>580 I/Os/s at 15 ms RT</td>
<td>13 ms RT at 500 I/Os/s</td>
</tr>
<tr>
<td>1 GB CACHE</td>
<td>64 MB NVS</td>
<td>360 GB RAMAC 3</td>
</tr>
<tr>
<td>1 X 9390-001</td>
<td>770 I/Os/s at 10 ms RT</td>
<td>7 ms RT at 500 I/Os/s</td>
</tr>
<tr>
<td>4 GB CACHE</td>
<td>128 MB NVS</td>
<td>360 GB RAMAC 3</td>
</tr>
</tbody>
</table>

- 3:1 R/W ratio
- 17 KB avg transfer
- 29% sequential stage
- 83% cache hit ratio at 1GB total cache
- 83% cache hit ratio at 4 GB total cache

DB2 Workload

Performance - Migration Consolidation

RAMAC 3 Array Storage configurations can support twice the capacity of previous 3990-6 configurations. Therefore, customers can migrate from multiple 3990-6 DASD subsystems to single RAMAC 3 Array Storage subsystems if appropriate capacity planning is done.

The foil shows the performance characteristics resulting from the consolidation of 360 GB attached to two 3990-6s to a single 9390-001. Each 3990-6 attaches 180 GB of RAMAC 2 capacity and sustains 275 I/Os/s with an average response time of 15 ms. After migrating all of the RAMAC 2 drawer capacity attached to the two 3990-6s to RAMAC 3 drawers attached to the 9390-001, the average response time is maintained with an increase in throughput. The faster lower-interface data transfer capability of RAMAC 3 Array Storage, and the subsequent effect on larger cache and NVS effectiveness, has eliminated the constraint of high DB2 sequential prestaging and low cache hit ratios that would normally have prevailed for this workload.
Chapter 10. Software

This chapter describes the software support required to implement RAMAC 3 Array Storage configurations. The software changes focus on the support for 128 and 256 device addresses that is now provided by 3990-6, 9390-001, and 9390-002 storage controls. Enhancements to software utilities and storage subsystem monitoring functions are also covered. Check the preventative service planning (PSP) records for up-to-date APARs and PTFs.
RAMAC 3 Array Storage Software Support

<table>
<thead>
<tr>
<th>MVS</th>
<th>DFSMS/DFP</th>
<th>VM/ESA</th>
<th>VSE/ESA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVS/ESA SP V5 R2.2</td>
<td>DFSMS/DFSMS V1 R3.0</td>
<td>VM/ESA V2 R1.0</td>
<td>VSE/ESA V2 R1</td>
</tr>
<tr>
<td>MVS/ESA SP V5 R2.0</td>
<td>DFSMS/DFSMS V1 R2.0</td>
<td>VM/ESA V1 R1.2</td>
<td>VSE/ESA V1 R4</td>
</tr>
<tr>
<td>MVS/ESA SP V6 R1.0</td>
<td>DFSMS/DFSMS V1 R1.0</td>
<td>VM/ESA V1 R2.2</td>
<td>VSE/ESA V1 R3</td>
</tr>
<tr>
<td>MVS/ESA SP V4 R3.0</td>
<td>DFSMS/DFSMS V1 R3.0</td>
<td>VM/ESA V1 R2.2</td>
<td></td>
</tr>
<tr>
<td>MVS/ESA SP V4 R2.2</td>
<td>DFSMS/DFSMS V3 R3.0</td>
<td>VM/ESA V1 R2.2</td>
<td></td>
</tr>
<tr>
<td>MVS/ESA SP V4 R2.0</td>
<td>DFSMS/DFSMS V3 R1.0</td>
<td>VM/ESA V1 R2.2</td>
<td></td>
</tr>
<tr>
<td>MVS/SP V3 R1.3</td>
<td>DFSMS/DFSMS V3 R1.1</td>
<td>VM/ESA V1 R2.2</td>
<td></td>
</tr>
</tbody>
</table>

(1) Support provided only for the 9390 and 3990-6 in basic mode

© IBM Corporation 1996

RAMAC 3 Array Storage Software Support

This foil shows the supported SCPs and DFSMS and DFP versions.
The foil shows the APARs and PTFs needed to provide HCD and asynchronous operations manager (AOM) support for 256 addresses. The APARs and PTFs for HCD and AOM are required for RAMAC 3 Array Storage configurations that have two fully configured RAMAC 3 Storage Frames, each containing 16 RAMAC 3 drawers.

APARs

<table>
<thead>
<tr>
<th>HCD SUPPORT FOR 256 ADDRESSES</th>
<th>OW18288</th>
<th>OW19538</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSMS 1.1.0</td>
<td>UW26320</td>
<td></td>
</tr>
<tr>
<td>DFSMS 1.2.0</td>
<td>UW26318</td>
<td></td>
</tr>
<tr>
<td>DFSMS 1.3.0</td>
<td>UW26319</td>
<td></td>
</tr>
<tr>
<td>DFP 3.3.0</td>
<td>UW30486</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AOM SUPPORT FOR 256 ADDRESSES</th>
<th>OW22821</th>
<th>OW22823</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFSMS 1.1.0</td>
<td>UW32444</td>
<td></td>
</tr>
<tr>
<td>DFSMS 1.2.0</td>
<td>UW32442</td>
<td></td>
</tr>
<tr>
<td>DFSMS 1.3.0</td>
<td>UW32443</td>
<td></td>
</tr>
<tr>
<td>DFP 3.3.0</td>
<td>UW32445</td>
<td></td>
</tr>
</tbody>
</table>

© IBM Corporation 1996
RAMAC 3 Software - APARs and PTFs...

The IDCAMS LISTDATA command is used to monitor storage subsystem and volume status. The APARs and PTFs listed on the foil enable the LISTDATA command to accurately report the status of up to 128 device addresses.

Control unit initiated reconfiguration (CUIR) enables a service representative to automatically vary logical paths offline and online to a 3990-6 or 9390 storage control during subsystem maintenance activities. The use of the CUIR function requires that the 3990-6 or 9390 be installed in enhanced mode (as opposed to basic mode). The APARs and PTFs referenced on the foil should be applied if the 3590 tape support maintenance has been applied through APARs OW22209, OW22213, OW22214, OW22215, and OW22216.
RAMAC 3 Software - APARs and PTFs...

The APARs and PTFs listed enable DFDSS, DFSMSdss, EREP, and ICKDSF to recognize the physical characteristics of the new RAMAC 3 device even though it emulates a 3390-3 volume.
RAMAC 3 Software - APARs and PTFs...

The MVS DEVSEVR command reports the physical device type for RAMAC 3 Array drawer configurations (the DEVSEVR report is detailed in Chapter 11). Support for DEVSEVR reporting of RAMAC 3 drawer physical device type is included in the APARs and PTFs listed.

RAMAC 3 Array Storage and RAMAC 3 Array DASD configurations communicate their device characteristics to the host to enable DFSMS to allocate data sets according to availability and performance specifications. The APARs and PTFs that allow DFSMS to recognize the new RAMAC 3 Array drawer as a high-performance RAID-5 device are listed.
Chapter 11. Operational Considerations

Operations staff must have adequate reporting and monitoring assistance when installations implement new technologies. For RAMAC 3 Array Storage, a simple change to the DEVSERV command output helps operators identify the new RAMAC 3 Array drawer. The details are covered in this chapter.
RAMAC 3 DEVSERV Format

The DEVSERV MVS console command has been enhanced to display the real device type for RAMAC 3 drawers. RAMAC, RAMAC 2, and RAMAC 3 drawers emulate 3390-3 device geometry—this appears in the DEVSERV report under the DTYPE column. The real device type for RAMAC 3 drawers is reported as 9392-3 under the RTYPE column. The APARs and PTFs that should be applied to deliver this reporting enhancement are listed on the foil.
Chapter 12. Positioning

The RAMAC Array Family has been expanded by no fewer than four new products: RAMAC 3 Array Storage, the RAMAC Virtual Array, the RAMAC Scalable Array, and the RAMAC Electronic Array. Each of these products provides a level of cost-effectiveness balanced with functionality that can be mapped against all of the storage subsystem requirements in most installations today. In this chapter we describe some of the RAMAC Array Family product characteristics that you can use to evaluate the "fit of the products" to your various information technology strategies and requirements.
RAMAC 3 Array Storage Positioning

IBM

- RAMAC 3 Array Storage is designed for:
 - Highest data availability in the industry, 7 days 24 hours
 - Fault-tolerant RAID-5 implementation using third-generation RAMAC drawer technology
 - Best disaster recovery with PPRC or XRC
 - High performance in sequential and random data access
 - Up to 726.4 GB fault tolerant data storage

IBM Corporation 1996

RAMAC 3 Array Storage Positioning

The IBM RAMAC Array Family is the industry leader in RAID-5 technologies with more than 11,000 RAMAC Array Family subsystems installed worldwide. IBM continues its leadership in the industry by introducing new storage products developed through the exploitation of the richest technology base available.

RAMAC 3 Array Storage is designed for:

The third-generation RAID-5 implementation with redundant parts and drawer sparing capability is the high-end storage product for the System/390 environment. PPRC and XRC provide ideal data protection for disaster recovery. P/DAS provides additional operational flexibility for data migration. Sequential data access has been improved compared with the IBM RAMAC 2 Array DASD. This improvement will optimize all VSAM sequential processing. The IBM RAMAC 3 Array Storage can be incrementally upgraded from 45.4 GB to 726.4 GB in steps of 22.7 GB.
Positioning of New RAMAC Array Products

- **RAMAC 3 Array Storage**
 - Highest availability
 - Remote copy
 - High performance

- **RAMAC Virtual Array**
 - Excellent storage management
 - SnapShot
 - Low cost per GB

- **RAMAC Scalable Array**
 - High throughput
 - High availability
 - Up to 16 host data paths

Positioning of New RAMAC Array Products

The RAMAC Array Family offers a variety of storage features.

RAMAC 3 Array Storage

The RAMAC 3 Array Storage provides the highest levels of storage subsystem performance at the highest levels of data availability. The RAMAC 3 Array Storage offers industry-leading reliability and the most complete portfolio of solutions that range from flexible configuration design and maintenance, through workload movement, device migration, and disaster recovery.

RAMAC Virtual Array

The RAMAC Virtual Array, with flexibility provided through its log structure file architecture and self-tuning performance, is the right solution for a broad range of your tasks. SnapShot with software support offers fast data replication with no need for more data space until the data is written. The RAMAC Virtual Array takes the smallest amount of floor space per gigabyte and has broad flexibility in virtual device support, with up to 256 addresses. It supports 3380 and 3390 device types with flexible volume sizes. Its RAID-6 architecture with dual-disk-drive redundancy helps to maintain high availability. The unique operational flexibility and low cost of ownership are the key advantages of this data storage subsystem.
RAMAC Scalable Array

The fault-tolerant RAID-5 RAMAC Scalable Array is designed for high throughput and excellent performance at high I/O rates. With 16 data transfer paths and up to 4 GB of mirrored cache, you can have up to 1.4 TB of data storage. Disaster recovery is supported through XRC.
Positioning of New RAMAC Array Products...

- **RAMAC 2 Subsystem**
 - Highest-availability RAID-5
 - Entry storage
 - High performance

- **RAMAC Electronic Array**
 - Highest performance
 - Up to 16 host data paths
 - Mirrored nonvolatile storage

- **S/390 Internal Disk**
 - High performance
 - High-availability RAID-1
 - Integrated disk server with lowest cost per GB

Positioning of RAMAC Family...

RAMAC 2 Array Subsystem

The RAMAC 2 Array Subsystem is available as a Model 1, 2, or 3. It is the RAMAC entry system for high-performance RAID-5 data storage. It delivers investment protection for RAMAC Storage with mixed RAMAC and RAMAC 2 drawers for users with low data rate growth.

RAMAC Electronic Array

The RAMAC Electronic Array delivers superior performance by providing data response times at cache speed. It has up to 4 GB of memory, up to 16 data paths and two 100 MB data buses. The RAMAC Electronic Array can be upgraded to the RAMAC Scalable Array.

S/390 Internal Disk

The S/390 Internal Disk is the most cost-efficient and floor-space-efficient solution for storage. It has exceptionally low environmental requirements. The RAID-1 S/390 Internal Disk provides unique storage packaging for the General Business Server (GBS) and is the newest member of IBM’s storage solutions family. The drawer capacity can be incremented from 18 GB to 288 GB in steps of 18 GB. Cache support is provided through processor memory and varies from 32 MB to 1 GB. The S/390 Internal Disk offers virtual disks in 3380 track format and 3390 track format. As a solution offering option, an OS/390, VM, or VSE SCP can be preloaded onto the S/390 Internal Disk.
IBM provides the broadest range of S/390 storage solutions in the industry. IBM’s solutions can meet any of your requirements—and all deliver high-availability and high performance.
Appendix A. RAMAC Advanced Destage Management

The RAMAC, RAMAC 2, and RAMAC 3 drawers implement an advanced destage management function that optimizes RAID-5 operations by avoiding the write penalty associated with parity computations for sequential workloads. The foil shows the first track of a sequential operation being updated in drawer cache—the track is on logical volume 0, cylinder 0, track 9 (V0C0T9). As the track is written to drawer cache, the expectation is that the old version of the track is staged to drawer cache along with the old version of parity associated with that track, and the exclusive OR (XOR) operation is executed against the old and new data and the old parity to generate the new parity. After the new parity is calculated, the new version of the track and the new version of parity are written to their appropriate disk drives in the array. The traditional RAID-5 operation described above involves two reads and two writes (read the old data and the old parity, then write the new data and the new parity)—to preserve redundancy in the array.

RAMAC drawers are not dictated to by conventional RAID-5 techniques. When sequential intent is indicated in the channel program, the RAMAC drawer “delays” the parity processing activity, thus seemingly delaying the staging of old data and old parity. When the RAMAC drawer receives the first track into drawer cache, it waits for the adjacent tracks to arrive “soon after.” This is a
reasonable approach, considering that sequential intent has been signaled and the next track in sequence must be written to drawer cache. The foil highlights track V0C0T9 in drawer cache and its intended location on disk 1 when it is eventually destaged—but not yet! The next foil describes how the drawer reacts to the next track of the sequential data stream.
RAMAC Advanced Destage Management...

When the second track is written to the RAMAC drawer, the first track is already there but not yet written to disk. The second track is logical volume 0, cylinder 0, track 10 (V0C0T10). The foil shows both tracks now located in drawer cache with their eventual disk drive locations highlighted—V0C0T9 destined for disk 1 and V0C0T10 destined for disk 2. Refer now to the next foil for an explanation of why the parity processing and associated overhead of conventional RAID-5 can be avoided.
The foil shows the third track written to the RAMAC drawer in sequence—V0C0T11. When this track has been written to the drawer cache, the drawer has all of the information necessary to calculate the parity associated with the three data tracks. This is because a single XOR of three data tracks in the same slice produces the parity information for that slice. A slice is comprised of three adjacent data tracks—tracks 0, 1, and 2; tracks 3, 4, and 5; tracks 6, 7, and 8; tracks 9, 10, and 11; and tracks 12, 13, and 14—for the same logical cylinder will always occupy the same locations on the disk drives and will always comprise a slice. The RAMAC drawer knows in advance that sequential intent means that adjacent tracks will be written and will “suppress” the conventional parity processing actions needed for data written to the drawer. The next foil illustrates how parity computations produce no write penalty for RAMAC drawer sequential processing.
The RAMAC drawer has all three adjacent tracks in the same slice and now initiates the XOR operation. The RAMAC drawer XOR function is delivered by fast hardware engines that accept three binary data streams as input (three adjacent data tracks) and produces a single binary data stream as output (the new parity track associated with the three data tracks). At this point, the RAMAC drawer has computed the parity information that will protect against data loss should one of the disk drives fail—this was accomplished without incurring the read of old data and old parity into the drawer cache. Thus parity has been calculated “free of charge” in the RAMAC drawer.

The foil highlights the RAMAC drawer’s generation of the parity information using its XOR hardware engine and shows that the RAMAC drawer contains the three data tracks and the parity track in drawer cache. Also highlighted are the four locations on the disk drives of where these tracks will be written—notice that the parity track is written on disk 4. The four tracks have not yet been written to their disk drive locations, but the drawer cache is nonvolatile, so the contents are protected in the event of power loss. The next phase of the drawer’s advanced destage management technique is to optimize the writing to disk of the data and parity information and thus close the loop on enhanced RAID-5 execution.
The previous foils demonstrate that the RAMAC, RAMAC 2, and RAMAC 3 drawers provide RAID-5 function without RAID-5 penalty—thus we describe the RAMAC drawer as an enhanced RAID-5 device. Data updated in nonvolatile semiconductor storage must ultimately be written to disk—in a RAID-5 implementation, this entails writing to multiple disks. The RAMAC Array Family drawer design provides yet another technique designed to optimize performance when destaging data.

RAMAC 2 and RAMAC 3 drawer advanced destaging techniques overcome the problem of inefficient disk use caused by random destaging. Rather than initiate a destage from drawer cache to the disk drives on the basis of frequency of use of the data, the RAMAC 2 and RAMAC 3 drawers set a track threshold for each disk. When the threshold is reached, it groups the data by disk drive location and writes the data out in such a way as to avoid repeated arm positioning.

The foil depicts the destage operation. Notice that the tracks are “sorted” into ascending SCSI block numbers for each disk to avoid disk arm “thrashing” effects.
The RAMAC drawers take advantage of a highly parallel design that provides hardware-assisted enhanced RAID-5 function while exploiting control unit notification of sequential intent. The result is an enhanced RAID-5 design that does not suffer the write penalty and goes even further by optimizing array disk utilization for sequential workloads.

The RAMAC 2 and RAMAC 3 Array drawers use specialized microcode components to exploit these methods for update write accesses. Sometimes update write I/O is written out sequentially to the device (for example, DB2 logging). When that happens, groups of updated records are written out in sequence, and the control unit signals the sequential intent even for update write I/O. The RAMAC 2 and RAMAC 3 drawers can detect this variation of sequential access and execute a series of “SCSI block” destage maneuvers that optimize drawer operations even further.

The foil shows three records being updated sequentially in the RAMAC drawer cache—the records are logical volume 0, cylinder 0, track 0, record 3 on disk 1; logical volume 0, cylinder 0, track 1, record 3 on disk 2; and logical volume 0, cylinder 0, track 2, record 3 on disk 3. All three records are in the same slice and their ultimate locations on the three disks are highlighted. This “record arrival” pattern is similar to the previous foils on sequential I/O.

When the updated records are written to drawer cache, the traditional RAID-5 architecture would result in the staging of the old data and the old parity for each record. When the new parity was produced it would then be written out in...
addition to the update record—again, this involves the write penalty of two reads followed by two writes. The next foil highlights how the RAMAC drawers react to this update write, sequential pattern to avoid the write penalty for update write I/O.
The RAMAC, RAMAC 2, and RAMAC 3 drawers have a sophisticated "operating system" that enables highly parallel, enhanced RAID-5 operations. One such component of this operating system is the background manager (BMG). The BMG scans the drawer cache contents looking for data that is in the same slice. When it detects such a pattern of updates, it initiates a destage operation based on SCSI block slices rather than track slices.

The foil illustrates three records in the same SCSI block slice being updated in drawer cache. The sequential intent mechanism informs the drawer to "suppress" the traditional RAID-5 operation and wait for the sequential update writes to arrive in the drawer. The BMG scans the drawer contents as a background task independent of upper interface activity. In this case, the BMG detects a pattern of update writes to the same SCSI block slice and instigates the hardware-implemented XOR function to compute the new parity value for these three records. The foil shows the record locations to which the updated data and updated parity are to be written—but not yet!

The RAMAC drawers have once again avoided the write penalty associated with RAID-5 architecture and this time for update writes as opposed to sequential writes.
The next step is to optimize the writing of the data to the disk drives in the RAMAC drawer similar to the previous foils on sequential I/O. As before, the RAMAC drawer collects the updates in the drawer cache according to threshold management. When the threshold is reached, the drawer sorts the records into SCSI block order to minimize arm positioning and destages the data to each disk drive in a group.

The foil describes nine record updates and their order of arrival in the drawer cache. Record 3 on track 6 in cylinder 0 on volume 0 (V0C0T0-R3) is written to the drawer first. V0C0T0-R3 is written to disk 1 in the RAMAC 3 Array drawer because it resides on the third CKD track stored on this disk. If the records were destaged according to “age,” record 3 on tracks 6, 7, and 8 (V0C0T0-R3, V0C0T7-R3, and V0C0T8-R3) would be destaged first followed by record 1 on tracks 0, 1, and 2 (V0C0T0-R1, V0C0T1-R1, and V0C0T2-R1), followed by record 1 on tracks 12, 13, and 14 (V0C0T12-R1, V0C0T13-R1, and V0C0T14-R1). The disk locations of these records are shaded on the foil.

The destage sequence described above would result in disk drive “arm thrashing” as the writing of the data to disk is governed by record update arrival patterns. Arm thrashing results in poor disk drive utilization and consequently less efficient destage performance.

The RAMAC 3 Array drawer avoids the performance penalty associated with disk drive arm thrashing by destaging groups of updates in “sweeps” according to SCSI block addresses. The foil shows the order in which the updated records
are written to their respective locations on the disk drives. Three records are written to each of the four disk drives (including three parity updates). V0C0T0-R1 is written to disk 1, followed by V0C0T6-R3, followed by V0C0T12-R1. This sequence enables disk 1 to satisfy the three destage operations in a single sweep in one direction. The other disks in the array execute their multiple-record destages in the same manner.

Thus, the RAMAC 3 Array drawer has optimized all aspects of high-performance RAID-5 operations—from upper interface data transfer, through hardware-assisted parity processing and logical volume mapping, to advanced destage management and intelligent disk drive utilization.
Advanced Destage Management - Summary

- Write penalty avoidance
 - Sequential processing
 - Update writes
- Disk drive optimization
 - Group destages
 - Destage on SCSI block boundaries
- Storage control-RAMAC drawer synergy
 - Exploit sequential intent indication
 - Host software initiated
 - CU initiated - sequential detect
- Exploit drawer operating system

HIGH PERFORMANCE RAID-5 OPERATIONS

Advanced Destage Management - Summary

The foil summarizes the key advantages of the RAMAC 3 drawer’s advanced destage management techniques.

Write penalty avoidance

RAID-5 architecture delivers high availability through cost-effective redundancy. Multiple disks in an array formation contain data and parity information that enables data regeneration techniques to protect against data loss. However, writing data to a traditional RAID-5 disk array involves multiple I/Os (two reads and two writes) to compute the parity information that must be written with the data—therefore, the performance of traditional RAID-5 storage subsystems is significantly impacted.

The RAMAC Array family of products addresses the challenge of traditional RAID-5 performance by using a multilevel cache concept, a multiengine hardware design, a highly parallel operating system design, innovative disk drive technology and architecture, high-speed interface electronics, specialized hardware for offloading RAID-5 operations, intelligent device communications between storage control and drawer, and advanced destage management techniques. The result is an enhanced RAID-5 implementation that obliterates the write penalty for sequential workloads and certain update write I/Os. The RAMAC Array drawer’s destage management implementation plays a major role in “RAID-5 write penalty avoidance.”
Disk drive optimization

The improvements to the RAID-5 operations of a disk array involve avoiding reading and writing the "old data and old parity." As mentioned above, the RAMAC 3 Array drawer implements many specialized functions that optimize RAID-5 execution. The advanced destage management functions of the RAMAC 3 Array drawer result in the most efficient use of the Ultrastar 2XP disk drives. The drawer scans for updated records in the same parity domain and schedules their destage on the basis of drawer cache thresholds and target disk locations. Updated tracks are grouped together, sorted, and destaged "back-to-back." Whole track destages are avoided when parity can be calculated on SCSI block boundaries and the unit of destage confined to individual data sectors. The destage intelligence of the RAMAC 3 drawer results in effective and efficient drawer cache and disk drive utilization.

Storage control-RAMAC drawer synergy

The RAMAC 3 Array drawer’s destage management techniques depend on the 3990-6 and 9390 storage controls communicating the sequential nature of the workload. When the indication of sequential access is received by the drawer, it manages cache occupancy, track thresholds, and background monitoring of record updates in the same track and SCSI block slice. The drawer management tasks can be initiated by host-specified sequential intent or storage control sequential detect logic.

Exploit drawer operating system

The scheduling and initiation of destage activity from drawer cache to the Ultrastar 2XP disk drives occur at the same time as other drawer processing tasks such as data prefetch and transfer from drawer cache to storage control cache. The RAMAC 3 drawer operating system executes on multiple microprocessors that overlap many data management and movement operations. This degree of parallelism is made possible through exploitation of the multiengine hardware and highly parallel RAMAC 3 Array drawer operating system—resulting in high-performance RAID-5 operations.
Appendix B. Special Notices

This publication is intended to help customer management and technical support staff evaluate and plan for the implementation of RAMAC 3 Array Storage. The information in this publication is not intended as the specification of any programming interfaces that are provided by the 3990-6 or RAMAC Array Family of products. See the PUBLICATIONS section of the IBM Programming Announcement for 3990-6 and RAMAC 3 Array Storage for more information about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that only IBM’s product, program, or service may be used. Any functionally equivalent program that does not infringe any of IBM’s intellectual property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment specified, and is limited in application to those specific hardware and software products and levels.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594 USA.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact IBM Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal IBM test and is distributed AS IS. The use of this information or the implementation of any of these techniques is a customer responsibility and depends on the customer’s ability to evaluate and integrate them into the customer’s operational environment. While each item may have been reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or similar results will be obtained elsewhere. Customers attempting to adapt these techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a controlled environment, and therefore, the results that may be obtained in other operating environments may vary significantly. Users of this document should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal distribution process does not imply general availability. The purpose of including these reference numbers is to alert IBM customers to specific information relative to the implementation of the PTF when it becomes available to each customer according to the normal IBM PTF distribution process.
The following terms are trademarks of the International Business Machines Corporation in the United States and/or other countries:

- DB2
- DFSMS/MVS
- DFSMSdfp
- DFSMS/Hsm
- DFSORT
- ES/3090
- ES/9000
- ESCON XDF
- Hardware Configuration Definition
- IMS
- MVS (logo)
- MVS/ESA
- MVS/XA
- No-ID Sector Format
- RAMAC
- S/390 Parallel Enterprise Server
- Sysplex Timer
- S/390 Parallel Enterprise Server
- VM/XA
- 3090
- DFSMS
- DFSMS/VM
- DFSMSdfp
- DFSMS/Hsm
- DFSORT
- ES/4381
- ESA/390
- ESCON
- IBM
- IMS/ESA
- MVS/DFP
- MVS/SP
- NetView
- Predictive Failure Analysis
- S/390
- Service Director
- System/390
- VM/ESA
- VSE/ESA

The following terms are trademarks of other companies:

- C-bus is a trademark of Corollary, Inc.

- PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

- UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

- Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.

- Other trademarks are trademarks of their respective companies.
Appendix C. Related Publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

International Technical Support Organization Publications

For information on ordering these ITSO publications see “How To Get ITSO Redbooks” on page 173.

- IBM RAMAC Array Family, GG24-2509
- IBM RAMAC Array Family Additions (RAMAC 2), SG24-4563
- Planning for IBM Remote Copy, SG24-2595
- P/DAS and Enhancements to the IBM 3990-6 and RAMAC Array Family, SG24-4724
- IBM 3990 Storage Control ESCON Features Presentation Guide, GG24-3803

Redbooks on CD-ROMs

Redbooks are also available on CD-ROMs. Order a subscription and receive updates 2-4 times a year at significant savings.

<table>
<thead>
<tr>
<th>CD-ROM Title</th>
<th>Subscription Number</th>
<th>Collection Kit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>System/390 Redbooks Collection</td>
<td>SBOF-7201</td>
<td>SK2T-2177</td>
</tr>
<tr>
<td>Networking and Systems Management Redbooks Collection</td>
<td>SBOF-7370</td>
<td>SK2T-6022</td>
</tr>
<tr>
<td>Transaction Processing and Data Management Redbook</td>
<td>SBOF-7240</td>
<td>SK2T-8038</td>
</tr>
<tr>
<td>AS/400 Redbooks Collection</td>
<td>SBOF-7270</td>
<td>SK2T-2849</td>
</tr>
<tr>
<td>RISC System/6000 Redbooks Collection (HTML, BkMgr)</td>
<td>SBOF-7230</td>
<td>SK2T-8040</td>
</tr>
<tr>
<td>RISC System/6000 Redbooks Collection (PostScript)</td>
<td>SBOF-7205</td>
<td>SK2T-8041</td>
</tr>
<tr>
<td>Application Development Redbooks Collection</td>
<td>SBOF-7290</td>
<td>SK2T-8037</td>
</tr>
<tr>
<td>Personal Systems Redbooks Collection</td>
<td>SBOF-7250</td>
<td>SK2T-8042</td>
</tr>
</tbody>
</table>

Other Publications

These publications are also relevant as further information sources:

- Remote Copy Administrator’s Guide and Reference, SC35-0169
- ICKDSF R16 User’s Guide and Reference, GC35-0033
- IBM 3990 Storage Control Introduction, GA32-0098
- IBM 3990 Operations and Recovery Guide, GA32-0253
- IBM RAMAC Array Subsystem Introduction, GC26-7004
- IBM RAMAC Array Subsystem Reference, GC26-7006
- Using the IBM RAMAC Array Subsystem in an MVS, VM, or VSE Environment, GC26-7005
- IBM RAMAC Array DASD Introduction, GC26-7012
• Using the IBM RAMAC Array DASD in an MVS, VM, or VSE Environment, GC26-7013
How To Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, CD-ROMs, workshops, and residencies. A form for ordering books and CD-ROMs is also provided.

This information was current at the time of publication, but is continually subject to change. The latest information may be found at URL http://www.redbooks.ibm.com.

How IBM Employees Can Get ITSO Redbooks

Employees may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about redbooks, workshops, and residencies in the following ways:

- **PUBORDER** — to order hardcopies in United States
- **GOPHER link to the Internet** - type GOPHER.WTSCPOK.ITSO.IBM.COM
- **Tools disks**

 To get LIST3820s of redbooks, type one of the following commands:

  ```
  TOOLS SENDTO EHONE4 TOOLS2 REDPRINT GET SG24xxxx PACKAGE
  TOOLS SENDTO CANVM2 TOOLS REDPRINT GET SG24xxxx PACKAGE (Canadian users only)
  ```

 To get lists of redbooks:

  ```
  TOOLS SENDTO WTSCPOK TOOLS REDBOOKS GET REDBOOKS CATALOG
  TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET ITSOCAT TXT
  TOOLS SENDTO USDIST MKTTOOLS MKTTOOLS GET LISTSERV PACKAGE
  ```

 To register for information on workshops, residencies, and redbooks:

  ```
  TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ITSOREGI 1996
  ```

 For a list of product area specialists in the ITSO:

  ```
  TOOLS SENDTO WTSCPOK TOOLS ZDISK GET ORGCARD PACKAGE
  ```

- **Redbooks Home Page on the World Wide Web**

 http://w3.itso.ibm.com/redbooks

- **IBM Direct Publications Catalog on the World Wide Web**

 IBM employees may obtain LIST3820s of redbooks from this page.

- **REDBOOKS category on INEWS**

- **Online** — send orders to: USIB6FPL at IBMMAIL or DKIBMBSH at IBMMAIL

- **Internet Listserv**

 With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserv. To initiate the service, send an E-mail note to announce@webster.ibmlink.ibm.com with the keyword subscribe in the body of the note (leave the subject line blank). A category form and detailed instructions will be sent to you.
How Customers Can Get ITSO Redbooks

Customers may request ITSO deliverables (redbooks, BookManager BOOKs, and CD-ROMs) and information about redbooks, workshops, and residencies in the following ways:

- **Online Orders** (Do not send credit card information over the Internet) — send orders to:

<table>
<thead>
<tr>
<th>In United States:</th>
<th>IBMMAIL</th>
<th>Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Canada:</td>
<td>calibmbkz at ibmmail</td>
<td>lmannix@vnet.ibm.com</td>
</tr>
<tr>
<td>Outside North America:</td>
<td>dkibmbsh at ibmmail</td>
<td>bookshop@dk.ibm.com</td>
</tr>
</tbody>
</table>

- **Telephone orders**

 - United States (toll free) 1-800-879-2755
 - Canada (toll free) 1-800-IBM-4YOU
 - Outside North America (long distance charges apply)
 - (+45) 4810-1320 - Danish
 - (+45) 4810-1420 - Dutch
 - (+45) 4810-1540 - English
 - (+45) 4810-1670 - Finnish
 - (+45) 4810-1220 - French
 - (+45) 4810-1200 - Italian
 - (+45) 4810-1020 - German
 - (+45) 4810-1620 - Norwegian
 - (+45) 4810-1120 - Spanish
 - (+45) 4810-1170 - Swedish

- **Mail Orders** — send orders to:

 - IBM Publications
 - Publications Customer Support
 - P.O. Box 29570
 - Raleigh, NC 27626-0570
 - USA
 - IBM Direct Services
 - 144-4th Avenue, S.W.
 - Calgary, Alberta T2P 3N5
 - DK-3450 Allerød
 - Denmark

- **Fax** — send orders to:

 - United States (toll free) 1-800-445-9269
 - Canada 1-403-267-4455
 - Outside North America (+45) 48 14 2207 (long distance charge)

- **1-800-IBM-4FAX (United States)** or **(+1) 415 855 43 29 (Outside USA)** — ask for:

 - Index # 4421 Abstracts of new redbooks
 - Index # 4422 IBM redbooks
 - Index # 4420 Redbooks for last six months

- **Direct Services** - send note to softwareshop@vnet.ibm.com

- **On the World Wide Web**

 - Redbooks Home Page http://www.redbooks.ibm.com

- **Internet Listserver**

 With an Internet E-mail address, anyone can subscribe to an IBM Announcement Listserver. To initiate the service, send an E-mail note to announce@webster.ibm.com with the keyword subscribe in the body of the note (leave the subject line blank).
IBM Redbook Order Form

Please send me the following:

<table>
<thead>
<tr>
<th>Title</th>
<th>Order Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Please put me on the mailing list for updated versions of the IBM Redbook Catalog.

First name Last name

Company

Address

City Postal code Country

Telephone number Telefax number VAT number

• Invoice to customer number

• Credit card number

Credit card expiration date Card issued to Signature

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not available in all countries. Signature mandatory for credit card payment.

DO NOT SEND CREDIT CARD INFORMATION OVER THE INTERNET.
Index

Numerics

<table>
<thead>
<tr>
<th>Page Numbers</th>
<th>Keywords</th>
</tr>
</thead>
<tbody>
<tr>
<td>3090</td>
<td>9390, 118</td>
</tr>
<tr>
<td></td>
<td>channel, 118</td>
</tr>
<tr>
<td></td>
<td>data transfer rate, 118</td>
</tr>
<tr>
<td></td>
<td>ES/9000, 118</td>
</tr>
<tr>
<td></td>
<td>ESCON, 118</td>
</tr>
<tr>
<td></td>
<td>host support, 118</td>
</tr>
<tr>
<td></td>
<td>logical paths, 118</td>
</tr>
<tr>
<td></td>
<td>S/390, 118</td>
</tr>
<tr>
<td>3380 track format</td>
<td>3390 track format, 82, 83</td>
</tr>
<tr>
<td></td>
<td>9390-001, 82</td>
</tr>
<tr>
<td></td>
<td>9390-002, 83</td>
</tr>
<tr>
<td></td>
<td>9392-B33, 82, 83</td>
</tr>
<tr>
<td></td>
<td>cache, 82, 83</td>
</tr>
<tr>
<td></td>
<td>channel, 82, 83</td>
</tr>
<tr>
<td></td>
<td>ESCON, 82, 83</td>
</tr>
<tr>
<td></td>
<td>NVS, 82, 83</td>
</tr>
<tr>
<td>3390 track format</td>
<td>3390 track format, 82, 83</td>
</tr>
<tr>
<td></td>
<td>9390-001, 82</td>
</tr>
<tr>
<td></td>
<td>9390-002, 83</td>
</tr>
<tr>
<td></td>
<td>9392-B33, 82, 83</td>
</tr>
<tr>
<td></td>
<td>cache, 82, 83</td>
</tr>
<tr>
<td></td>
<td>channel, 82, 83</td>
</tr>
<tr>
<td></td>
<td>ESCON, 82, 83</td>
</tr>
<tr>
<td></td>
<td>NVS, 82, 83</td>
</tr>
<tr>
<td>3390-3</td>
<td>9392-B33, 24, 25</td>
</tr>
<tr>
<td></td>
<td>capacity, 24, 25</td>
</tr>
<tr>
<td></td>
<td>disk drive, 25</td>
</tr>
<tr>
<td></td>
<td>logical volume, 24, 25</td>
</tr>
<tr>
<td></td>
<td>RAMAC 3 drawer, 24, 25</td>
</tr>
<tr>
<td>3390-6</td>
<td>9390, 88</td>
</tr>
<tr>
<td></td>
<td>9391-A30, 88</td>
</tr>
<tr>
<td></td>
<td>CE panel, 88</td>
</tr>
<tr>
<td></td>
<td>data transfer rate, 88</td>
</tr>
<tr>
<td></td>
<td>DDC cable, 88</td>
</tr>
<tr>
<td></td>
<td>device adapter, 88</td>
</tr>
<tr>
<td></td>
<td>HSDA, 88</td>
</tr>
<tr>
<td></td>
<td>LIC, 88</td>
</tr>
<tr>
<td></td>
<td>multipath, 88</td>
</tr>
<tr>
<td></td>
<td>PDAD, 88</td>
</tr>
<tr>
<td></td>
<td>RAMAC 3 drawer, 88</td>
</tr>
<tr>
<td></td>
<td>RAMAC 3 Storage Frame, 88</td>
</tr>
<tr>
<td></td>
<td>VPD, 88</td>
</tr>
<tr>
<td>3990-6</td>
<td>9390, 39, 40, 46, 80, 85, 86, 93, 101, 137, 140</td>
</tr>
<tr>
<td></td>
<td>9390-001, 84, 99, 138</td>
</tr>
<tr>
<td></td>
<td>9390-002, 99, 127</td>
</tr>
<tr>
<td></td>
<td>9391-A30, 80, 101</td>
</tr>
<tr>
<td></td>
<td>9392-B33, 80</td>
</tr>
</tbody>
</table>

3990-6 (continued)

- activation, 99, 123
- addressing, 84—86
- asynchronous destage, 95
- cache, 93, 95, 137, 138
- concurrent repair, 101
- configuration, 137, 138
- control data set, 127
- data redundancy, 101
- data transfer, 39, 40, 46
- DB2, 138
- DDC, 80, 123
- delayed copyback, 101
- device adapter, 99
- DFSM, 140
- DFSMS, 140
- download, 99, 123
- drawer cache, 46, 95
- Dynamic Sparing, 101
- ESCON, 106
- ESCON adapter card, 127
- floating spare, 101
- full frame, 84, 86
- half-full frame, 84, 85
- hardware assist, 39, 40
- HSDA, 80
- immediate copyback, 101
- installation, 106
- investment protection, 123
- IOCP, 106
- journal data set, 127
- LIC, 99, 123
- logical volume, 80
- LRU processing, 93
- migration, 106
- migration consolidation, 138
- MVS, 140
- NVS, 95, 137, 138
- NVS management, 95
- parity, 39, 40, 46
- partial track stage, 39, 40
- performance, 101, 127, 137, 138
- physical planning, 106
- RAMAC 3, 84—86, 95, 99, 101, 123
- RAMAC 3 Array Storage, 140
- RAMAC 3 drawer, 39, 40, 46, 80, 127
- RAMAC 3 Storage Frame, 80, 106
- recovery site, 127
- response time, 138
- SDM, 127
- sequential detect, 46, 93
- sequential prestaging, 46
- SIM, 101
- software, 106, 140
9390-6 (continued)
spare drawer 101
stage 39, 40
state data set 127
string 0 85, 86
subsystem cache 95
throughput 138
VM 140
VPD 93, 106
VSE 140
XRC 127

9390
3090 118
3390-6 88
3390-6 39, 40, 46, 80, 85, 86, 93, 101, 137, 140
9391-A30 80, 88, 101, 114
9392-B33 80, 114
addressing 85, 86
cache 93, 137
CE panel 88
channel 118
concurrent repair 101
configuration 137
data redundancy 101
data transfer 39, 40, 46
data transfer rate 88, 118
DDC 80
DDC cable 88
delayed copyback 101
depth 114
device adapter 88
DFP 140
DFSMS 140
drawer cache 46
Dynamic Sparing 101
ES/9000 118
ESCON 118
floating spare 101
full frame 86
half-full frame 85
hardware assist 39, 40
height 114
host support 118
HSDA 80, 88
immediate copyback 101
LIC 88
logical paths 118
logical volume 80
LRU processing 93
multipath 88
MVS 140
NVS 137
parity 39, 40, 46
partial track stage 39, 40
PDAD 88
performance 101, 137
physical specifications 114
RAMAC 3 85, 86, 101

9390 (continued)
RAMAC 3 Array Storage 140
RAMAC 3 drawer 39, 40, 46, 80, 88
RAMAC 3 Storage Frame 80, 88
S/390 118
sequential detect 46, 93
sequential prestaging 46
SIM 101
software 140
spare drawer 101
stage 39, 40
string 0 85, 86
VM 140
VPD 88, 93
VSE 140
weight 114
width 114

9390-001
3380 track format 82
3390 track format 82
3990-6 84, 99, 138
9390-002 78, 99, 122, 126
9391-A30 126
9392-B33 82
activation 99
addressing 84
basic mode 76
cache 76, 78, 82, 122, 138
channel 76, 78, 82, 120
cluster symmetry 120
configuration 138
DB2 138
device adapter 99
download 99
ESCD 110
ESCON 76, 78, 82, 120
ESCON adapter card 120
extended functions 78
feature codes 122
field upgrade 78
full frame 84
half-full frame 84
IOCP 108, 110
LIC 99
logical paths 120
migration consolidation 138
NVS 76, 78, 82, 122, 138
performance 138
physical ports 120
power boundaries 116
power supplies 78
RAMAC 3 84, 99
response time 138
SDM 126
throughput 138
XRC 126
XRC session 126
9390-002
3380 track format 83
3390 track format 83
3990-6 99, 127
9390-001 78, 99, 122, 126
9391-A30 126
9392-B33 83
activation 99
application system 129, 130
asymmetric configurations 121
cache 78, 83, 122
channel 78, 83, 121
cluster symmetry 121
control data set 127
device adapter 99
download 99
ESCD 113
ESCON 78, 83, 121
ESCON adapter card 121, 127, 129, 130
extended functions 78
feature codes 122
field upgrade 78
IOC P 112, 113
journal data set 127
LIC 99
logical paths 121
NVS 78, 83, 122
performance 127
physical ports 121
power boundaries 117
power supplies 78
PPRC 129, 130
RAMAC 3 99
RAMAC 3 drawer 127, 129, 130
recovery site 127
recovery system 129, 130
SDM 126, 127
state data set 127
XRC 126, 127
XRC session 126
9391-A30 (continued)
dynamic disk reconstruction 100
Dynamic Sparing 100, 101
floating spare 101
height 114
HSDA 80, 88
immediate copyback 101
LIC 88
logical volume 80
multipath 88
PDAD 88
performance 101
physical specifications 114
RAMAC 3 101
RAMAC 3 drawer 80, 88
RAMAC 3 Storage Frame 80, 88
SDM 126
SIM 101
spare drawer 100, 101
VPD 88
weight 114
width 114
XRC 126
XRC session 126
9392-B33
3380 track format 82, 83
3390 track format 82, 83
3390-3 25
3990-6 80
9390 80, 114
9390-001 82
9390-002 83
9391-A30 80, 114
cache 82, 83
capacity 25
channel 82, 83
DDC 80
depth 114
disk drive 25
ESCON 82, 83
height 114
HSDA 80
logical volume 25, 80
NVS 82, 83
physical specifications 114
RAMAC 3 drawer 25, 80
RAMAC 3 Storage Frame 80
weight 114
width 114
9393-B33
3390-3 24
capacity 24
logical volume 24
RAMAC 3 drawer 24
activation
3990-6 99, 123
9390-001 99
9390-002 99
DDC 123
device adapter 99
download 99, 123
investment protection 123
LIC 99, 123
RAMAC 3 99, 123

addressing
3990-6 84—86
9390 85, 86
9390-001 84
full frame 84, 86
half-full frame 84, 85
RAMAC 3 84—86
string 0 85, 86

alternate sector
CRC 56
ID field 56
ID sector format 56
logical sector number 56
MR head 56
sector status 56
track capacity 56
track density 56

APAR
AOM 141
CUIR 142
DEVSERV 144
DFDSS 143
DFSMS 144
DFSMSdss 143
EREP 143
HCD 141
ICKDSF 143
LISTDATA 142

application system
9390-002 129, 130
ESCON adapter card 129, 130
PPRC 129, 130
RAMAC 3 drawer 129, 130
recovery system 129, 130

areal density
capacity 72
data speed 72
defect management 72
disk drive cache 72
embedded sector servo 72
MR head 72
No-ID sector servo 72
operating costs 72
power management 72
predictive failure analysis 72
PRML channel 72
reliability 72

areal density (continued)
rotational speed 72
track capacity 72
track density 72
zoned bit recording 72

array management
background processing 35
cache management 35
interprocessor communications 35
logical interface 35
lower interface 35
physical interface 35
RAMAC 3 drawer 35
resource management 35

asymmetric configurations
9390-002 121
channel 121
cluster symmetry 121
ESCON 121
ESCON adapter card 121
logical paths 121
physical ports 121

asynchronous destage
3990-6 95
batch 97
cache 95
drawer cache 95
large block 97
logical volume 97
long chain 97
lower interface 97
NVS 95, 97
NVS management 95, 97
NVS-full 97
online 97
performance 97
RAMAC 3 95, 97
RAMAC 3 drawer 97
sequential data streams 97
sequential detect 97
subsystem cache 95

availability
background task 41
bad block 41
capacity 48
CRC 48
cycle 41
data integrity 41, 48
destage management 48
disk drive 48
disk scrubbing 41
hardware assist 48
highly parallel 48
logical volume 48
mapping 48
multiengine 48
multitasking 48
parity 41
availability (continued)
 PDAD 48
 performance 48
 RAMAC 41
 RAMAC 2 41
 RAMAC 3 41
 SCSI block 48
 sequential detect 48
 spare block 41

average seek
 data rate 68
 disk drive 68
 latency 68
 performance 68
 rpm 68
 track to track seek 68

B
background processing
 array management 35
 cache management 35
 interprocessor communications 35
 logical interface 35
 lower interface 35
 physical interface 35
 RAMAC 3 drawer 35
 resource management 35

background task
 availability 41
 bad block 41
 cycle 41
 data integrity 41
 disk scrubbing 41
 parity 41
 RAMAC 41
 RAMAC 2 41
 RAMAC 3 41
 spare block 41

bad block
 availability 41
 background task 41
 cycle 41
 data integrity 41
 disk scrubbing 41
 parity 41
 RAMAC 41
 RAMAC 2 41
 RAMAC 3 41
 spare block 41

basic mode
 9390-001 76
 cache 76
 channel 76
 ESCON 76
 NVS 76

batch
 asynchronous destage 97
 large block 97

batch (continued)
 logical volume 97
 long chain 97
 lower interface 97
 NVS 97
 NVS management 97
 NVS-full 97
 online 97
 performance 97
 RAMAC 3 97
 RAMAC 3 drawer 97
 sequential data streams 97
 sequential detect 97

battery
 cache segment 66
 CRC 66
 data integrity 66
 data rate 66
 DFW 66
 disk drive 66
 disk drive cache 66
 RAMAC 3 66
 SCSI controller 66
 SCSI interface 66

C
CAA
 DASD Magic/2 132
 DCAT 132
 DSCAT 132
 modeling tools 132
 performance 132

cables
 CRC 43
 data integrity 43
 device adapter 43
 drawer 43
 frame 43
 high-speed device adapter 43
 PDAD 43
 PSM 43
 rack 43
 RAMAC 43
 RAMAC 2 43
 RAMAC 3 43

cache
 3380 track format 82, 83
 3390 track format 82, 83
 3990-6 93, 95, 137, 138
 9390 93, 137
 9390-001 76, 78, 82, 122, 138
 9390-002 78, 83, 122
 9392-B33 82, 83
 asynchronous destage 95
 basic mode 76
 channel 76, 78, 82, 83
 configuration 137, 138
 DB2 138
cache (continued)
drawer cache 95
ESCON 76, 78, 82, 83
extended functions 78
feature codes 122
field upgrade 78
LRU processing 93
migration consolidation 138
NVS 76, 78, 82, 83, 95, 122, 137, 138
NVS management 95
performance 137, 138
power supplies 78
RAMAC 3 95
RAMAC 3 drawer 22
response time 138
sequential detect 93
size 8, 13, 22
subsystem cache 95
throughput 138
VPD 93
cache management
array management 35
background processing 35
interprocessor communications 35
logical interface 35
lower interface 35
physical interface 35
RAMAC 3 drawer 35
resource management 35
cache manager
drawer cache 31, 33
driver-receiver hardware 31, 33
HSDA 31, 33
path manager 33
PCAP 33
PDAD 31, 33
PSM 31, 33
RAMAC 3 drawer 31, 33
SCSI controller 31, 33
XOR 33
cache segment
battery 66
CRC 66
data integrity 66
data rate 66
DFW 66
disk drive 66
disk drive cache 66
RAMAC 3 66
SCSI controller 66
SCSI interface 66
capacity
3390-3 24, 25
9392-B33 24, 25
areal density 72
availability 48
CRC 48, 64
data integrity 48
capacity (continued)
data speed 72
defect management 64, 72
destage management 48
disk drive 25, 48
disk drive cache 72
ECC 64
embedded sector servo 72
hardware assist 48
header data 64
highly parallel 48
ID field 64
ID sector format 58
logical volume 24, 25, 48
mapping 48
MR head 58, 72
multiengine 48
multitasking 48
No-ID sector format 64
No-ID sector servo 72
operating costs 72
PDAD 48
performance 48, 64
power management 64, 72
predictive failure analysis 72
PRML channel 72
RAMAC 15
RAMAC 2 15
RAMAC 3 15
RAMAC 3 drawer 24, 25
RAMAC Electronic Array 15
RAMAC Scalable Array 15
RAMAC Virtual Array 15
read head 58
reliability 64, 72
rotary actuator 58
rotational speed 72
SCSI block 48
sector search 64
sequential detect 48
track alignment 58
track capacity 72
track density 72
write head 58
zoned bit recording 72
CE panel
3390-6 88
9390 88
9931-A30 88
data transfer rate 88
DDC cable 88
device adapter 88
HSDA 88
LIC 88
multipath 88
PDAD 88
RAMAC 3 drawer 88
RAMAC 3 Storage Frame 88
CE panel (continued)

VPD 88

channel
3090 118
3380 track format 82, 83
3390 track format 82, 83
9390 118
9390-001 76, 78, 82, 120
9390-002 78, 83, 121
9392-B33 82, 83
asymmetric configurations 121
basic mode 76
cluster symmetry 120, 121
data transfer rate 118
ES/9000 118
ESCON 8, 76, 78, 82, 83, 118, 120, 121
ESCON adapter card 120, 121
extended functions 78
field upgrade 78
host support 118
logical paths 118, 120, 121
NVS 76, 78, 82, 83
physical ports 120, 121
power supplies 78
S/390 118
channel calibration
drive failures 70
drive parameters 70
idle-time 70
predictive failure analysis 70
read/write circuits 70
CKD record
destage 44
partial track 44
SCSI block 44
SCSI slice 44
sequential processing 44
update write 44
write penalty 44
CKD track
hardware assist 38
mapping 38
RAMAC 3 drawer 38
SCSI block 38
stage 38
cluster symmetry
9390-001 120
9390-002 121
asymmetric configurations 121
channel 120, 121
ESCON 120, 121
ESCON adapter card 120, 121
logical paths 120, 121
physical ports 120, 121
CMOS
data integrity 42
microcode 42

CMOS (continued)
performance 42
RAMAC 3 42
SCSI header 42
concurrent copy
destage 90
drawer cache 90
FPGA 90
PPRC 90
stage 90
storage frame maintenance 90
subsystem cache 90
XRC 90
concurrent repair
3990-6 101
9390 101
9391-A30 101
data redundancy 101
delayed copyback 101
drawer maintenance 103
dynamic disk reconstruction 103
Dynamic Sparing 101, 103
floating spare 101
immediate copyback 101
performance 101
RAID-5 103
RAMAC 3 101, 103
SIM 101
spare drawer 101, 103
configuration
3990-6 137, 138
9390 137
9390-001 138
cache 137, 138
DB2 138
migration consolidation 138
NVS 137, 138
performance 137, 138
response time 138
throughput 138
control data set
3990-6 127
9390-002 127
ESCON adapter card 127
journal data set 127
performance 127
RAMAC 3 drawer 127
recovery site 127
SDM 127
state data set 127
XRC 127
copyback
9390-A30 100
drawer maintenance 100
dynamic disk reconstruction 100
Dynamic Sparing 100
spare drawer 100
CRC
 alternate sector 56
 availability 48
 battery 66
 cables 43
 cache segment 66
 capacity 48, 64
 data integrity 43, 48, 66
 data rate 66
 defect management 64
 destage management 48
 device adapter 43
 DFW 66
 disk drive 48, 66
 disk drive cache 66
 drawer 43
 ECC 64
 frame 43
 hardware assist 48
 header data 64
 high-speed device adapter 43
 highly parallel 48
 ID field 56, 64
 ID sector format 56
 logical sector number 56
 logical volume 48
 mapping 48
 MR head 56
 multiengine 48
 multitasking 48
 No-ID sector format 64
 PDAD 43, 48
 performance 48, 64
 power management 64
 PSM 43
 rack 43
 RAMAC 43
 RAMAC 2 43
 RAMAC 3 43, 66
 reliability 64
 SCSI block 48
 SCSI controller 66
 SCSI interface 66
 sector search 64
 sector status 56
 sequential detect 48
 track capacity 56
 track density 56
 cycle
 availability 41
 background task 41
 bad block 41
 data integrity 41
 disk scrubbing 41
 parity 41
 RAMAC 41
 RAMAC 2 41
 RAMAC 3 41

D
DASD Magic/2
 CAA 132
 DCAT 132
 DSCAT 132
 modeling tools 132
 performance 132
 data control system
 defect management 62
 disk drive 62
 LBN 62
 No-ID sector format 62
 PBN 62
 read head 62
 rotary actuator 62
 servo control system 62
 solid state memory 62
 spare block 62
 write head 62
 data integrity
 availability 41, 48
 background task 41
 bad block 41
 battery 66
 cables 43
 cache segment 66
 capacity 48
 CMOS 42
 CRC 43, 48, 66
 cycle 41
 data rate 66
 destage management 48
 device adapter 43
 DFW 66
 disk drive 48, 66
 disk drive cache 66
 disk scrubbing 41
 drawer 43
 frame 43
 hardware assist 48
 high-speed device adapter 43
 highly parallel 48
 logical volume 48
 mapping 48
 microcode 42
 multiengine 48
 multitasking 48
 parity 41
 PDAD 43, 48
 performance 42, 48
 PSM 43
 rack 43
 RAMAC 41, 43
 RAMAC 2 41, 43
 RAMAC 3 41—43, 66
data integrity (continued)
 RAMAC 3 drawer 22
 SCSI block 48
 SCSI controller 66
 SCSI header 42
 SCSI interface 66
 sequential detect 48
 spare block 41

data per track
 ID sector format 61
 No-ID sector format 61
 track density 61
 tracks per inch 61

data rate
 average seek 68
 battery 66
 cache segment 66
 CRC 66
 data integrity 66
 DFW 66
 disk drive 66, 68
 disk drive cache 66
 inner zones 54
 latency 68
 outer zones 54
 performance 68
 RAMAC 54
 RAMAC 2 54
 RAMAC 3 54, 66
 rpm 68
 SCSI controller 66
 SCSI interface 66
 track to track seek 68
 zoned bit recording 54

data redundancy
 3990-6 101
 9390 101
 9391-A30 101
 concurrent repair 101
 delayed copyback 101
 Dynamic Sparing 101
 floating spare 101
 immediate copyback 101
 performance 101
 RAMAC 3 101
 SIM 101
 spare drawer 101

data speed
 areal density 72
 capacity 72
 defect management 72
 disk drive cache 72
 embedded sector servo 72
 MR head 72
 No-ID sector servo 72
 operating costs 72
 power management 72
 predictive failure analysis 72

data speed (continued)
 PRML channel 72
 reliability 72
 rotational speed 72
 track capacity 72
 track density 72
 zoned bit recording 72

data transfer
 3990-6 39, 40, 46
 9390 39, 40, 46
 drawer cache 46
 hardware assist 39, 40
 parity 39, 40, 46
 partial track stage 39, 40
 RAMAC 3 drawer 39, 40, 46
 sequential detect 46
 sequential prestaging 46
 stage 39, 40

data transfer rate
 3090 118
 3390-6 88
 9390 88, 118
 9391-A30 88
 CE panel 88
 channel 118
 DDC cable 88
 device adapter 88
 ES/9000 118
 ESCON 118
 host support 118
 HSDA 88
 LIC 88
 logical paths 118
 multipath 88
 PDAD 88
 RAMAC 3 drawer 88
 RAMAC 3 Storage Frame 88
 S/390 118
 VPD 88

DB2
 3990-6 138
 9390-001 138
 cache 138
 configuration 138
 migration consolidation 138
 NVS 138
 performance 138
 response time 138
 throughput 138

DCAT
 CAA 132
 DASD Magic/2 132
 DSCAT 132
 modeling tools 132
 performance 132

DDC
 3990-6 80, 123
 9390 80
DDC (continued)
9391-A30 80
9392-B33 80
activation 123
download 123
HSDA 80
investment protection 123
LIC 123
logical volume 80
RAMAC 3 123
RAMAC 3 drawer 80
RAMAC 3 Storage Frame 80
DDC cable
3990-6 88
9390 88
9391-A30 88
CE panel 88
data transfer rate 88
device adapter 88
HSDA 88
LIC 88
multipath 88
PDAD 88
RAMAC 3 drawer 88
RAMAC 3 Storage Frame 88
VPD 88
defect management
areal density 72
capacity 64, 72
CRC 64
data control system 62
data speed 72
disk drive 62
disk drive cache 72
ECC 64
embedded sector servo 72
header data 64
ID field 64
LBN 62
MR head 72
No-ID sector format 62, 64
No-ID sector servo 72
operating costs 72
PBN 62
performance 64
power management 64, 72
predictive failure analysis 72
PRML channel 72
read head 62
reliability 64, 72
rotary actuator 62
rotational speed 72
sector search 64
servo control system 62
solid state memory 62
spare block 62
track capacity 72
track density 72
defect management (continued)
write head 62
zoned bit recording 72
delayed copyback
3990-6 101
9390 101
9391-A30 101
concurrent repair 101
data redundancy 101
Dynamic Sparing 101
floating spare 101
immediate copyback 101
performance 101
RAMAC 3 101
SIM 101
spare drawer 101
depth
9390 114
9391-A30 114
9392-B33 114
height 114
physical specifications 114
weight 114
width 114
design
high-availability 20
RAID-5 20
destage
CKD record 44
concurrent copy 90
drawer cache 90
FPGA 90
partial track 44
PPRC 90
SCSI block 44
SCSI slice 44
sequential processing 44
stage 90
storage frame maintenance 90
subsystem cache 90
update write 44
write penalty 44
XRC 90
destage management
availability 48
capacity 48
CRC 48
data integrity 48
disk drive 48, 166
drawer cache 155, 157—161, 163, 164
drawer operating system 166
hardware assist 48
highly parallel 48
logical volume 48
mapping 48
multiengine 48
multitasking 48
parity 159, 160, 163, 164
destage management (continued)
PDAD 48
performance 48, 166
RAID-5 18, 166
SCSI block 48, 166
sequential 159
sequential detect 48, 166
sequential processing 166
slice 158
update write 161, 163, 164, 166
write penalty 159, 163, 166
XOR 159, 163, 164
device adapter
3390-6 88
3990-6 99
9390 88
9390-001 99
9390-002 99
9391-A30 88
activation 99
cables 43
CE panel 88
CRC 43
data integrity 43
data transfer rate 88
DDC cable 88
download 99
drawer 43
frame 43
high-speed device adapter 43
HSDA 88
LIC 88, 99
multipath 88
PDAD 43, 88
PSM 43
rack 43
RAMAC 43
RAMAC 2 43
RAMAC 3 43, 99
RAMAC 3 drawer 88
RAMAC 3 Storage Frame 88
VPD 88
DEVSERVER
9392-3 146
RTYPE 146
DFP
3990-6 140
9390 140
DFSMS 140
MVS 140
RAMAC 3 Array Storage 140
software 140
DFSMS
3990-6 140
9390 140
DFP 140
MVS 140
RAMAC 3 Array Storage 140
DFSMS (continued)
software 140
DFW
battery 66
cache segment 66
CRC 66
data integrity 66
data rate 66
disk drive 66
disk drive cache 66
RAMAC 3 66
SCSI controller 66
SCSI interface 66
disaster recovery
fault-tolerant 148
performance 148
positioning 148
PPRC 148
RAMAC 3 Array Storage 148
XRC 148
disk cache
MR head 52
predictive failure analysis 52
rpm 52
sector format 52
tracks per inch 52
zoned bit recording 52
disk drive
3.5 in. 20
3390-3 25
9392-B33 25
availability 48
average seek 68
battery 66
cache segment 66
capacity 25, 48
CRC 48, 66
data control system 62
data integrity 48, 66
data rate 66, 68
defect management 62
destage management 48, 166
DFW 66
disk drive cache 66
drawer operating system 166
hardware assist 48
high-performance 20
highly parallel 48
latency 68
LBN 62
logical volume 25, 48
mapping 48
multiengine 48
multitasking 48
No-ID sector format 62
PBN 62
PDAD 48
performance 48, 68, 166
disk drive (continued)
 RAID-5 166
 RAMAC 3 66
 RAMAC 3 drawer 22, 25
 read head 62
 rotary actuator 62
 rpm 68
 SCSI 20
 SCSI block 48, 166
 SCSI controller 66
 SCSI interface 66
 sequential detect 48, 166
 sequential processing 166
 servo control system 62
 solid state memory 62
 spare block 62
 track to track seek 68
 Ultrastar 20
 Ultrastar 2XP 22
 update write 166
 write head 62
 write penalty 166

disk drive cache
 areal density 72
 battery 66
 cache segment 66
 capacity 72
 CRC 66
 data integrity 66
 data rate 66
 data speed 72
 defect management 72
 DFW 66
 disk drive 66
 embedded sector servo 72
 MR head 72
 No-ID sector servo 72
 operating costs 72
 power management 72
 predictive failure analysis 72
 PRML channel 72
 RAMAC 3 66
 reliability 72
 rotational speed 72
 SCSI controller 66
 SCSI interface 66
 track capacity 72
 track density 72
 zoned bit recording 72

disk scrubbing (continued)
 RAMAC 3 41
 spare block 41

disk sweep
 failure analysis 71
 idle-time 71
 log recording 71

download
 3990-6 99, 123
 9390-001 99
 9390-002 99
 activation 99, 123
 DDC 123
 device adapter 99
 investment protection 123
 LIC 99, 123
 RAMAC 3 99, 123

drawer
 cables 43
 CRC 43
 data integrity 43
 device adapter 43
 frame 43
 high-speed device adapter 43
 PDAD 43
 PSM 43
 rack 43
 RAMAC 43
 RAMAC 2 43
 RAMAC 3 43

drawer cache
 3990-6 46, 95
 9390 46
 asynchronous destage 95
 cache 95
 cache manager 31, 33
 concurrent copy 90
 data transfer 46
 destage 90
 destage management 155, 157—161, 163, 164
 driver-receiver hardware 31, 33
 FPGA 90
 HSDA 31, 33
 NVS 95
 NVS management 95
 parity 46, 159, 160, 163, 164
 path manager 33
 PCAP 33
 PDAD 31, 33
 PPRC 90
 PSM 31, 33
 RAMAC 3 95
 RAMAC 3 drawer 31, 33, 46
 SCSI controller 33
 sequential 159
 sequential detect 46
 sequential prestaging 46
 slice 158
drawer cache (continued)
stage 90
storage frame maintenance 90
subsystem cache 90, 95
update write 161, 163, 164
write penalty 159, 163
XOR 33, 159, 163, 164
XRC 90
drawer maintenance
9390-A30 100
concurrent repair 103
copyback 100
dynamic disk reconstruction 100, 103
Dynamic Sparing 100, 103
RAID-5 103
RAMAC 3 103
spare drawer 100, 103
drawer operating system
destage management 166
disk drive 166
performance 166
RAID-5 166
SCSI block 166
sequential detect 166
sequential processing 166
update write 166
write penalty 166
drive failures
channel calibration 70
drive parameters 70
idle-time 70
predictive failure analysis 70
read/write circuits 70
drive parameters
channel calibration 70
drive failures 70
idle-time 70
predictive failure analysis 70
read/write circuits 70
driver-receiver hardware
cache manager 31, 33
drawer cache 31, 33
HSDA 31, 33
path manager 33
PCAP 33
PDAD 31, 33
PSM 31, 33
RAMAC 3 drawer 31, 33
SCSI controller 33
XOR 33
DSCAT
CAA 132
DASD Magic/2 132
DCAT 132
modeling tools 132
performance 132
dynamic disk reconstruction
9390-A30 100
dynamic disk reconstruction (continued)
concurrent repair 103
copyback 100
drawer maintenance 100, 103
Dynamic Sparing 100, 103
RAID-5 103
RAMAC 3 103
spare drawer 100, 103
Dynamic Sparing
3990-6 101
9390 101
9390-A30 100
9391-A30 101
concurrent repair 101, 103
copyback 100
data redundancy 101
delayed copyback 101
drawer maintenance 100, 103
dynamic disk reconstruction 100, 103
floating spare 101
immediate copyback 101
performance 101
RAID-5 103
RAMAC 3 101, 103
SIM 101
spare drawer 100, 101, 103
E
ECC
capacity 64
CRC 64
defect management 64
header data 64
ID field 64
No-ID sector format 64
performance 64
power management 64
reliability 64
sector search 64
embedded sector servo
areal density 72
capacity 72
data speed 72
defect management 72
disk drive cache 72
MR head 72
No-ID sector servo 72
operating costs 72
power management 72
predictive failure analysis 72
PRML channel 72
reliability 72
rotational speed 72
track capacity 72
track density 72
zoned bit recording 72
ES/9000
3090 118
ES/9000 (continued)
9390 118
channel 118
data transfer rate 118
ESCON 118
host support 118
logical paths 118
S/390 118
ESCD
9390-001 110
9390-002 113
IOCP 110, 113
ESCON
3990-6 118
3380 track format 82, 83
3390 track format 82, 83
9390-001 106
9390 118
9390-001 76, 78, 82, 120
9390-002 78, 83, 121
9392-B33 82, 83
asymmetric configurations 121
basic mode 76
cache 76, 78, 82, 83
channel 76, 78, 82, 83, 118, 120, 121
cluster symmetry 120, 121
data transfer rate 118
ES/9000 118
ESCON adapter card 120, 121
extended functions 78
field upgrade 78
host support 118
installation 106
IOCP 106
logical paths 118, 120, 121
migration 106
NVS 76, 78, 82, 83
physical planning 106
physical ports 120, 121
power supplies 78
RAMAC 3 Storage Frame 106
S/390 118
software 106
VPD 106
ESCON adapter card (continued)
PPRC 129, 130
RAMAC 3 drawer 127, 129, 130
recovery site 127
recovery system 129, 130
SDM 127
state data set 127
XRC 127
extended functions
9390-001 78
9390-002 78
cache 78
channel 78
ESCON 78
field upgrade 78
NVS 78
power supplies 78

F
failure analysis
disk sweep 71
idle-time 71
log recording 71
fault-tolerant
disaster recovery 148
performance 148
positioning 148
PPRC 148
RAMAC 3 Array Storage 148
XRC 148
feature codes
9390-001 122
9390-002 122
cache 122
NVS 122
field upgrade
9390-001 78
9390-002 78
cache 78
channel 78
ESCON 78
extended functions 78
NVS 78
power supplies 78
floating spare
3990-6 101
9390 101
9391-A30 101
concurrent repair 101
data redundancy 101
delayed copyback 101
Dynamic Sparing 101
immediate copyback 101
performance 101
RAMAC 3 101
SIM 101
spare drawer 101
floor space
- power 115
- RAMAC 115
- RAMAC 2 115
- RAMAC 3 115

FPGA
- concurrent copy 90
- destage 90
- drawer cache 90
- PPRC 90
- stage 90
- storage frame maintenance 90
- subsystem cache 90
- XRC 90

frame
- cables 43
- CRC 43
- data integrity 43
- device adapter 43
- drawer 43
- high-speed device adapter 43
- PDAD 43
- PSM 43
- rack 43
- RAMAC 43
- RAMAC 2 43
- RAMAC 3 43

full frame
- 3990-6 84
- 9390-001 84
- addressing 84
- half-full frame 84
- RAMAC 3 84

G
general availability
- date 8
- RAMAC 15
- RAMAC 2 15
- RAMAC 3 15
- RAMAC 3 Array Storage 8
- RAMAC Electronic Array 15
- RAMAC Scalable Array 15
- RAMAC Virtual Array 15

H
half-full frame
- 3990-6 84—86
- 9390 85, 86
- 9390-001 84
- addressing 84—86
- full frame 84
- RAMAC 3 84—86
- string 0 85, 86

hardware assist (continued)
- availability 48
- capacity 48
- CKD track 38
- CRC 48
- data integrity 48
- data transfer 39, 40
- destage management 48
- disk drive 48
- highly parallel 48
- logical volume 48
- mapping 38, 48
- multigas 48
- multitasking 48
- parity 39, 40
- partial track stage 39, 40
- PDAD 48
- performance 48
- RAMAC 3 drawer 38—40
- SCSI block 38, 48
- sequential detect 48
- stage 38—40

hardware components
- design 18

high-speed device adapter
- cables 43
- CRC 43
- data integrity 43
- device adapter 43
- drawer 43
- frame 43
- PDAD 43
- PSM 43
- rack 43
- RAMAC 43
- RAMAC 2 43
high-speed device adapter (continued)
 RAMAC 3 43
host support
 3090 118
 9390 118
channel 118
data transfer rate 118
ES/9000 118
ESCON 118
logical paths 118
S/390 118
HSDA
 3390-6 88
 3990-6 80
 9390 80, 88
 9391-A30 80, 88
 9392-B33 80
cache manager 31, 33
CE panel 88
data transfer rate 88
DDC 80
DDC cable 88
device adapter 88
drawer cache 31, 33
driver-receiver hardware 31, 33
LIC 88
logical volume 80
multipath 88
path manager 33
PCAP 33
PDAD 31, 33, 88
PSM 31, 33
RAMAC 3 drawer 31, 33, 80, 88
RAMAC 3 Storage Frame 80, 88
SCSI controller 33
VPD 88
XOR 33

ID field (continued)
 track density 56
 write element 60
ID sector format
 alternate sector 56
capacity 58
CRC 56
data per track 61
ID field 56, 60
logical sector number 56
MR head 56, 58, 60
No-ID sector format 61
read element 60
read head 58
read head trajectory 60
rotary actuator 58
sector status 56
track alignment 58
track capacity 56
track density 56, 61
tracks per inch 61
write element 60
write head 58
idle-time
 channel calibration 70
disk sweep 71
drive failures 70
drive parameters 70
failure analysis 71
log recording 71
predictive failure analysis 70
read/write circuits 70
immediate copyback
 3990-6 101
 9390 101
 9391-A30 101
concurrent repair 101
data redundancy 101
delayed copyback 101
Dynamic Sparing 101
floating spare 101
performance 101
RAMAC 3 101
SIM 101
spare drawer 101
inner zones
 data rate 54
 outer zones 54
 RAMAC 54
 RAMAC 2 54
 RAMAC 3 54
 zoned bit recording 54
installation
 3990-6 106
 ESCON 106
 IOCP 106
 migration 106
 physical planning 106
installation (continued)
 RAMAC 3 Storage Frame 106
 software 106
 VPD 106
interprocessor communications
 array management 35
 background processing 35
 cache management 35
 logical interface 35
 lower interface 35
 physical interface 35
 RAMAC 3 drawer 35
 resource management 35
investment protection
 3990-6 123
 activation 123
 DDC 123
 download 123
 LIC 123
 RAMAC 3 123
IOPC
 3990-6 106
 9390-001 108, 110
 9390-002 112, 113
 ESCD 110, 113
 ESCON 106
 installation 106
 migration 106
 physical planning 106
 RAMAC 3 Storage Frame 106
 software 106
 VPD 106

J
journal data set
 3990-6 127
 9390-002 127
 control data set 127
 ESCON adapter card 127
 performance 127
 RAMAC 3 drawer 127
 recovery site 127
 SDM 127
 state data set 127
 XRC 127

L
latency
 average seek 68
 data rate 68
 disk drive 68
 performance 68
 rpm 68
 track to track seek 68
LBN
 data control system 62
 defect management 62
LBN (continued)
 disk drive 62
 No-ID sector format 62
 PBN 62
 read head 62
 rotary actuator 62
 servo control system 62
 solid state memory 62
 spare block 62
 write head 62
LIC
 3390-6 88
 3990-6 99, 123
 9390 88
 9390-001 99
 9390-002 99
 9391-A30 88
 activation 99, 123
 CE panel 88
 change 13
 data transfer rate 88
 DDC 123
 DDC cable 88
 device adapter 88, 99
 download 99, 123
 HSDA 88
 investment protection 123
 multipath 88
 PDAD 88
 RAMAC 399, 123
 RAMAC 3 drawer 88
 RAMAC 3 Storage Frame 88
 VPD 88
log recording
 disk sweep 71
 failure analysis 71
 idle-time 71
logical cylinder
 logical volume 30
 RAMAC 3 drawer 30
logical interface
 array management 35
 background processing 35
 cache management 35
 interprocessor communications 35
 lower interface 35
 physical interface 35
 RAMAC 3 drawer 35
 resource management 35
logical paths
 3090 118
 9390 118
 9390-001 120
 9390-002 121
 asymmetric configurations 121
 channel 118, 120, 121
 cluster symmetry 120, 121
 data transfer rate 118
logical paths (continued)
ES/9000 118
ESCON 118, 120, 121
ESCON adapter card 120, 121
host support 118
physical ports 120, 121
S/390 118

logical sector number
alternate sector 56
CRC 56
ID field 56
ID sector format 56
MR head 56
sector status 56
track capacity 56
track density 56

logical volume
3390-3 24, 25
3990-6 80
9390 80
9391-A30 80
9392-B33 24, 25, 80
asynchronous destage 97
availability 48
batch 97
capacity 24, 25, 48
CRC 48
data integrity 48
DDC 80
destage management 48
disk drive 25, 48
hardware assist 48
highly parallel 48
HSDA 80
large block 97
logical cylinder 30
long chain 97
lower interface 97
mapping 26, 28, 30, 48
multiengine 48
multitasking 48
NVS 97
NVS management 97
NVS-full 97
online 97
PDAD 48
performance 48, 97
RAMAC 2 drawer 28
RAMAC 3 97
RAMAC 3 drawer 22, 24, 25, 30, 80, 97
RAMAC 3 Storage Frame 80
RAMAC drawer 26
SCSI block 48
sequential data streams 97
sequential detect 48, 97
long chain
asynchronous destage 97
batch 97

long chain (continued)
large block 97
logical volume 97
lower interface 97
NVS 97
NVS management 97
NVS-full 97
online 97
performance 97
RAMAC 3 97
RAMAC 3 drawer 97
sequential data streams 97
sequential detect 97

lower interface
array management 35
asynchronous destage 97
background processing 35
batch 97
cache management 35
interprocessor communications 35
large block 97
logical interface 35
logical volume 97
long chain 97
NVS 97
NVS management 97
NVS-full 97
online 97
performance 97
physical interface 35
performance 97
resource management 35
sequential data streams 97
sequential detect 97
speed 8

LRU processing
3990-6 93
9390 93
cache 93
sequential detect 93
VPD 93

M
mapping
availability 48
capacity 48
CKD track 38
CRC 48
data integrity 48
destage management 48
disk drive 48
hardware assist 38, 48
highly parallel 48
logical cylinder 30
logical volume 26, 28, 30, 48
multiengine 48
multitasking 48
mapping (continued)
PDAD 48
performance 48
RAMAC 2 drawer 28
RAMAC 3 drawer 30, 38
RAMAC drawer 26
SCSI block 38, 48
sequential detect 48
stage 38

microcode
CMOS 42
data integrity 42
performance 42
RAMAC 3 42
SCSI header 42

migration
3990-6 106
ESCON 106
installation 106
IOCP 106
physical planning 106
RAMAC 3 Storage Frame 106
software 106
VPD 106

migration consolidation
3990-6 138
9390-001 138
cache 138
configuration 138
DB2 138
NVS 138
performance 138
response time 138
throughput 138

modeling tools
CAA 132
DASD Magic/2 132
DCAT 132
DSCAT 132
performance 132

MR head (continued)
read element 60
read head 58
read head trajectory 60
reliability 72
rotary actuator 58
rotational speed 72
rpm 52
sector format 52
sector status 56
track alignment 58
track capacity 56, 72
track density 56, 72
tracks per inch 52
write element 60
write head 58
zoned bit recording 52, 72

multiengine
availability 48
capacity 48
CRC 48
data integrity 48
destage management 48
disk drive 48
hardware assist 48
highly parallel 48
logical volume 48
mapping 48
multitasking 48
PDAD 48
performance 48
SCSI block 48
sequential detect 48

multipath
3390-6 88
9390 88
9391-A30 88
CE panel 88
data transfer rate 88
DDC cable 88
device adapter 88
HSDA 88
LIC 88
PDAD 88
RAMAC 3 drawer 88
RAMAC 3 Storage Frame 88
VPD 88

multitasking
availability 48
capacity 48
CRC 48
data integrity 48
destage management 48
disk drive 48
hardware assist 48
highly parallel 48
logical volume 48
mapping 48
multitasking (continued)
 multiengine 48
 PDAD 48
 performance 48
 SCSI block 48
 sequential detect 48
MVS
 3990-6 140
 9390 140
 DFP 140
 DFSMS 140
 RAMAC 3 Array Storage 140
 software 140

N
No-ID sector format
 capacity 64
 CRC 64
 data control system 62
 data per track 61
 defect management 62, 64
 disk drive 62
 ECC 64
 header data 64
 ID field 64
 ID sector format 61
 LBN 62
 PBN 62
 performance 64
 power management 64
 read head 62
 reliability 64
 rotary actuator 62
 sector search 64
 servo control system 62
 solid state memory 62
 spare block 62
 track density 61
 tracks per inch 61
 write head 62
No-ID sector servo
 areal density 72
 capacity 72
 data speed 72
 defect management 72
 disk drive cache 72
 embedded sector servo 72
 MR head 72
 operating costs 72
 power management 72
 predictive failure analysis 72
 PRML channel 72
 reliability 72
 rotational speed 72
 track capacity 72
 track density 72
 zoned bit recording 72
NVS
 3380 track format 82, 83
 3390 track format 82, 83
 3990-6 95, 137, 138
 9390 137
 9390-001 76, 78, 82, 122, 138
 9390-002 78, 83, 122
 9392-B33 82, 83
 asynchronous destage 95, 97
 basic mode 76
 batch 97
 cache 76, 78, 82, 83, 95, 122, 137, 138
 channel 76, 78, 82, 83
 configuration 137, 138
 DB2 138
 drawer cache 95
 ESCON 76, 78, 82, 83
 extended functions 78
 feature codes 122
 field upgrade 78
 large block 97
 logical volume 97
 long chain 97
 lower interface 97
 migration consolidation 138
 NVS management 95, 97
 NVS-full 97
 online 97
 performance 97, 137, 138
 power supplies 78
 RAMAC 3 95, 97
 RAMAC 3 drawer 97
 response time 138
 sequential data streams 97
 sequential detect 97
 size 8, 13
 subsystem cache 95
 throughput 138
NVS management
 3990-6 95
 asynchronous destage 95, 97
 batch 97
 cache 95
 drawer cache 95
 large block 97
 logical volume 97
 long chain 97
 lower interface 97
 NVS 95, 97
 NVS-full 97
 online 97
 performance 97
 RAMAC 3 95, 97
 RAMAC 3 drawer 97
 sequential data streams 97
 sequential detect 97
 subsystem cache 95
operating costs
 areal density 72
 capacity 72
 data speed 72
 defect management 72
 disk drive cache 72
 embedded sector servo 72
 MR head 72
 No-ID sector servo 72
 power management 72
 predictive failure analysis 72
 PRML channel 72
 reliability 72
 rotational speed 72
 track capacity 72
 track density 72
 zoned bit recording 72

outer zones
 data rate 54
 inner zones 54
 RAMAC 54
 RAMAC 2 54
 RAMAC 3 54
 zoned bit recording 54

parity
 3990-6 39, 40, 46
 9390 39, 40, 46
 availability 41
 background task 41
 bad block 41
 cycle 41
 data integrity 41
 data transfer 39, 40, 46
 destage management 159, 160, 163, 164
 disk scrubbing 41
 drawer cache 46, 159, 160, 163, 164
 hardware assist 39, 40
 parity 46, 164

parity (continued)
 partial track stage 39, 40
 RAMAC 41
 RAMAC 2 41
 RAMAC 3 41
 RAMAC 3 drawer 39, 40, 46
 sequential 159
 sequential detect 46
 sequential prestaging 46
 spare block 41
 stage 39, 40
 update write 163, 164
 write penalty 159, 163
 XOR 159, 163, 164

partial track
 CKD record 44
 destage 44
 SCSI block 44
 SCSI slice 44
 sequential processing 44
 update write 44
 write penalty 44

partial track stage
 3990-6 39, 40
 9390 39, 40
 data transfer 39, 40
 hardware assist 39, 40
 parity 39, 40
 RAMAC 3 drawer 39, 40
 stage 39, 40

path manager
 cache manager 33
 drawer cache 33
 driver-receiver hardware 33
 HSDA 33
 PCAP 33
 PDAD 33
 PSM 33
 RAMAC 3 drawer 33
 SCSI controller 33
 XOR 33

PBN
 data control system 62
 defect management 62
 disk drive 62
 LBN 62
 No-ID sector format 62
 read head 62
 rotary actuator 62
 servo control system 62
 solid state memory 62
 spare block 62
 write head 62

PCAP
 cache manager 33
 drawer cache 33
 driver-receiver hardware 33
 HSDA 33
PCAP (continued)
path manager 33
PDAD 33
PSM 33
RAMAC 3 drawer 33
SCSI controller 33
XOR 33

PDAD
3390-6 88
9390 88
9391-A30 88
availability 48

PDAD (continued)
asyncronous destage 97
availability 48
average seek 68
batch 97
CAA 132
cache 137, 138
capacity 48, 64
CMOS 42
current repair 101
configuration 137, 138
control data set 127
CRC 48, 64
delayed copyback 101
destage management 48, 166
disaster recovery 148
disk drive 48, 68, 166
drawer operating system 166
Dynamic Sparing 101
Dynamic Sparing 101
ESCON adapter card 127
fault-tolerant 148
floating spare 101
hardware assist 48
header data 64
high-speed device adapter 43
highly parallel 48
ID field 64
immediate copyback 101
journal data set 127
large block 97
latency 68
logical volume 48, 97
long chain 97
lower interface 97
mapping 48
microcode 42
migration consolidation 138
modeling tools 132
multiengine 48
multitasking 48
No-ID sector format 64
NVS 97, 137, 138
NVS management 97
NVS-full 97
online 97
PPRC 148
positioning 148
power management 64
PPRC 148
QSAM 136
performance (continued)
RAID-5 166
RAMAC 2 Array DASD 134, 136
RAMAC 3 42, 97, 101
RAMAC 3 Array Storage 134, 136, 148
RAMAC 3 drawer 97, 127
recovery site 127
reliability 64
response time 138
rpm 68
SCSI block 48, 166
SCSI header 42
SDM 127
sector search 64
sequential data streams 97
sequential detect 48, 97, 134, 166
sequential processing 166
sequential write 136
SIM 101
spare drawer 101
state data set 127
throughput 138
track to track seek 68
update write 166
VSAM 134
write penalty 166
XRC 127, 148
physical interface
array management 35
background processing 35
cache management 35
interprocessor communications 35
logical interface 35
lower interface 35
RAMAC 3 drawer 35
resource management 35
physical planning
3990-6 106
ESCON 106
installation 106
IOC 106
migration 106
RAMAC 3 Storage Frame 106
software 106
VPD 106
physical ports
9390-001 120
9390-002 121
asymmetric configurations 121
channel 120, 121
cluster symmetry 120, 121
ESCON 120, 121
ESCON adapter card 120, 121
logical paths 120, 121
physical specifications
9390 114
9391-A30 114
9392-B33 114
physical specifications (continued)
deepth 114
height 114
weight 114
width 114
positioning
disaster recovery 148
fault-tolerant 148
performance 148
PPRC 148
RAMAC 2 Array Subsystem 151
RAMAC 3 Array Storage 148, 149
RAMAC Electronic Array 151
RAMAC Scalable Array 149
RAMAC Virtual Array 149
S/390 Internal Disk 151
XRC 148
power
floor space 115
RAMAC 115
RAMAC 2 115
RAMAC 3 115
power boundaries
9390-001 116
9390-002 117
power management
areal density 72
capacity 64, 72
CRC 64
data speed 72
defect management 64, 72
disk drive cache 72
ECC 64
embedded sector servo 72
header data 64
ID field 64
MR head 72
No-ID sector format 64
No-ID sector servo 72
operating costs 72
performance 64
predictive failure analysis 72
PRML channel 72
reliability 64, 72
rotational speed 72
sector search 64
track capacity 72
track density 72
zoned bit recording 72
power supplies
9390-001 78
9390-002 78
cache 78
channel 78
ESCON 78
extended functions 78
field upgrade 78
NVS 78
PPRC
9390-002 129, 130
application system 129, 130
destage 90
disaster recovery 148
drawer cache 90
ESCON adapter card 129, 130
fault-tolerant 148
FPGA 90
performance 148
positioning 148
RAMAC 3 Array Storage 148
RAMAC 3 drawer 129, 130
recovery system 129, 130
drawer cache 90
storage frame maintenance 90
subsystem cache 90
XRC 90, 148
predictive failure analysis
areal density 72
capacity 72
channel calibration 70
data speed 72
defect management 72
disk cache 52
disk drive cache 72
drive failures 70
drive parameters 70
embedded sector servo 72
idle-time 70
MR head 52, 72
No-ID sector servo 72
operating costs 72
power management 72
PRML channel 72
read/write circuits 70
reliability 72
rotational speed 72
rpm 52
sector format 52
track capacity 72
track density 72
tracks per inch 52
zoned bit recording 52, 72
PRML channel (continued)
rotational speed 72
track capacity 72
track density 72
zoned bit recording 72
PSM
cables 43
cache manager 31, 33
CRC 43
data integrity 43
device adapter 43
drawer 43
drawer cache 31, 33
driver-receiver hardware 31, 33
frame 43
high-speed device adapter 43
HSDA 31, 33
path manager 33
PCAP 33
PDAD 31, 33, 43
rack 43
RAMAC 43
RAMAC 2 43
RAMAC 3 43
RAMAC 3 drawer 31, 33
SCSI controller 33
XOR 33
PTF
AOM 141
CUIR 142
DEVSERV 144
DFDSS 143
DFSMS 144
DFSMSdss 143
EREP 143
HCD 141
ICKDSF 143
LISTDATA 142
Q
QSAM
performance 136
RAMAC 2 Array DASD 136
RAMAC 3 Array Storage 136
sequential write 136
R
rack
cables 43
CRC 43
data integrity 43
device adapter 43
drawer 43
frame 43
high-speed device adapter 43
PDAD 43
PSM 43
RAMAC (continued)
RAMAC 43
RAMAC 2 43
RAMAC 3 43

RAID-5
concurrent repair 103
destage management 166
disk drive 166
drawer maintenance 103
drawer operating system 166
dynamic disk reconstruction 103
Dynamic Spacing 103
performance 166
RAMAC 3 103
SCSI block 166
sequential detect 166
sequential processing 166
spare drawer 103
update write 166
write penalty 166

RAMAC
availability 41
background task 41
bad block 41
cables 43
CRC 43
cycle 41
data integrity 41, 43
data rate 54
device adapter 43
disk scrubbing 41
drawer 43
floor space 115
frame 43
high-speed device adapter 43
inner zones 54
outer zones 54
parity 41
PDAD 43
power 115
PSM 43
rack 43
RAMAC 41, 43, 54, 115
RAMAC 3 41, 43, 54, 115
spare block 41
zoned bit recording 54

RAMAC 2 (continued)
floor space 115
frame 43
high-speed device adapter 43
inner zones 54
outer zones 54
parity 41
PDAD 43
power 115
PSM 43
rack 43
RAMAC 41, 43, 54, 115
RAMAC 3 41, 43, 54, 115
spare block 41
zoned bit recording 54

RAMAC 2 Array DASD
performance 134, 136
QSAM 136
RAMAC 3 Array Storage 134, 136
sequential detect 134
sequential write 136
VSAM 134

RAMAC 2 Array Subsystem
positioning 151
RAMAC Electronic Array 151
S/390 Internal Disk 151

RAMAC 2 drawer
logical volume 28
mapping 28

RAMAC 3
3990-6 84—86, 95, 99, 101, 123
9390 85, 86, 101
9390-001 84, 99
9390-002 99
9391-A30 101
activation 99, 123
addressing 84—86
asynchronous destage 95, 97
availability 41
background task 41
bad block 41
batch 97
battery 66
cables 43
cache 95
cache segment 66
CMOS 42
current repair 101, 103
CRC 43, 66
cycle 41
data integrity 41—43, 66
data rate 54, 66
data redundancy 101
DDC 123
delayed copyback 101
device adapter 43, 99
DFW 66
disk drive 66
RAMAC 3 (continued)
disk drive cache 66
disk scrubbing 41
download 99, 123
drawer 43
drawer cache 95
drawer maintenance 103
dynamic disk reconstruction 103
Dynamic Sparing 101, 103
floating spare 101
floor space 115
frame 43
full frame 84, 86
half-full frame 84, 85
high-speed device adapter 43
immediate copyback 101
inner zones 54
investment protection 123
large block 97
LIC 99, 123
logical volume 97
long chain 97
lower interface 97
microcode 42
NVS 95, 97
NVS management 95, 97
NVS-full 97
online 97
outer zones 54
parity 41
PDAD 43
performance 42, 97, 101
power 115
PSM 43
rack 43
RAID-5 103
RAMAC 41, 43, 54, 115
RAMAC 2 41, 43, 54, 115
RAMAC 3 drawer 97
SCSI controller 66
SCSI header 42
SCSI interface 66
sequential data streams 97
sequential detect 97
SIM 101
spare block 41
spare drawer 101, 103
string 0 85, 86
subsystem cache 95
zoned bit recording 54

RAMAC 3 Array Storage (continued)
performance 134, 136, 148
positioning 148, 149
PPRC 148
QSAM 136
RAMAC 2 Array DASD 134, 136
RAMAC Scalable Array 149
RAMAC Virtual Array 149
sequential detect 134
sequential write 136
software 140
VM 140
VSAM 134
VSE 140
XRC 148
RAMAC 3 drawer
3390-3 24, 25
3390-6 88
9390-6 39, 40, 46, 80, 127
9390 39, 40, 46, 80, 88
9390-002 127, 129, 130
9391-A30 80, 88
9392-B33 24, 25, 80
application system 129, 130
asynchronous destage 97
batch 97
cache manager 31, 33
capacity 24, 25
CE panel 88
CKD track 38
control data set 127
data transfer 39, 40, 46
data transfer rate 88
DDC 80
DDC cable 88
device adapter 88
disk drive 25
drawer cache 31, 33, 46
driver-receiver hardware 31, 33
ESCON adapter card 127, 129, 130
hardware assist 38–40
HSDA 31, 33, 80, 88
journal data set 127
large block 97
LIC 88
logical cylinder 30
logical volume 24, 25, 30, 80, 97
long chain 97
lower interface 97
mapping 30, 38
multipath 88
NVS 97
NVS management 97
NVS-full 97
online 97
parity 39, 40, 46
partial track stage 39, 40
path manager 33
RAMAC 3 drawer (continued)
PCAP 33
PDAD 31, 33, 88
PDAD 31, 33, 88
PDAD 88
PPRC 129, 130
PSM 31, 33
RAMAC 3 97
RAMAC 3 Storage Frame 80, 88
recovery site 127
SCSI block 38
SCSI controller 33
SDM 127
sequential data streams 97
sequential detect 46, 97
sequential prestaging 46
stage 38-40
state data set 127
VPD 88
XOR 33
XRC 127
RAMAC 3 Storage Frame
3390-6 88
3990-6 80, 106
9390 80, 88
9391-A30 80, 88
9392-B33 80
CE panel 88
data transfer rate 88
DDC 80
DDC cable 88
device adapter 88
ESCON 106
HSDA 80, 88
installation 106
IOCP 106
LIC 88
logical volume 80
migration 106
multipath 88
PDAD 88
physical planning 106
RAMAC 3 drawer 80, 88
software 106
VPD 88, 106
RAMAC drawer
logical volume 26
mapping 26
RAMAC Electronic Array
positioning 151
RAMAC 2 Array Subsystem 151
S/390 Internal Disk 151
RAMAC Scalable Array
positioning 149
RAMAC 3 Array Storage 149
RAMAC Virtual Array 149
RAMAC Virtual Array (continued)
RAMAC 3 Array Storage 149
RAMAC Scalable Array 149
read element
ID field 60
ID sector format 60
MR head 60
read head trajectory 60
write element 60
read head
capacity 58
data control system 62
defect management 62
disk drive 62
ID sector format 58
LBN 62
MR head 58
No-ID sector format 62
PBN 62
rotary actuator 58, 62
servo control system 62
solid state memory 62
spare block 62
track alignment 58
write head 58, 62
read head trajectory
ID field 60
ID sector format 60
MR head 60
read element 60
write element 60
read/write circuits
channel calibration 70
drive failures 70
drive parameters 70
idle-time 70
predictive failure analysis 70
recovery
design 18
recovery site
3990-6 127
9390-002 127
control data set 127
ESCON adapter card 127
journal data set 127
performance 127
RAMAC 3 drawer 127
SDM 127
state data set 127
XRC 127
recovery system
9390-002 129, 130
application system 129, 130
ESCON adapter card 129, 130
PPRC 129, 130
RAMAC 3 drawer 129, 130
reliability
areal density 72
reliability (continued)
capacity 64, 72
CRC 64
data speed 72
defect management 64, 72
disk drive cache 72
ECC 64
embedded sector servo 72
header data 64
ID field 64
MR head 72
No-ID sector format 64
No-ID sector servo 72
operating costs 72
performance 64
power management 64, 72
predictive failure analysis 72
PRML channel 72
rotational speed 72
sector search 64
track capacity 72
track density 72
zoned bit recording 72
resource management
array management 35
background processing 35
cache management 35
interprocessor communications 35
logical interface 35
lower interface 35
physical interface 35
RAMAC 3 drawer 35
response time
3990-6 138
9390-001 138
cache 138
configuration 138
DB2 138
migration consolidation 138
NVS 138
performance 138
throughput 138
rotary actuator
capacity 58
data control system 62
defect management 62
disk drive 62
ID sector format 58
LBN 62
MR head 58
No-ID sector format 62
PBN 62
read head 58, 62
servo control system 62
solid state memory 62
spare block 62
track alignment 58
write head 58, 62
rotational speed
areal density 72
capacity 72
data speed 72
defect management 72
disk drive cache 72
embedded sector servo 72
MR head 72
No-ID sector servo 72
operating costs 72
power management 72
predictive failure analysis 72
PRML channel 72
reliability 72
track capacity 72
track density 72
zoned bit recording 72
rpm
average seek 68
data rate 68
disk cache 52
disk drive 68
latency 68
MR head 52
performance 68
predictive failure analysis 52
sector format 52
track to track seek 68
tracks per inch 52
zoned bit recording 52
S
S/390
3090 118
9390 118
channel 118
data transfer rate 118
ES/9000 118
ESCON 118
host support 118
logical paths 118
S/390 Internal Disk
positioning 151
RAMAC 2 Array Subsystem 151
RAMAC Electronic Array 151
SCSI block
availability 48
capacity 48
CKD record 44
CKD track 38
CRC 48
data integrity 48
destage 44
destage management 48, 166
disk drive 48, 166
drawer operating system 166
hardware assist 38, 48
highly parallel 48
SCSI block (continued)
logical volume 48
mapping 38, 48
multiengine 48
multitasking 48
partial track 44
PDAD 48
performance 48, 166
RAID-5 166
RAMAC 3 drawer 38
SCSI slice 44
sequential detect 48, 166
sequential processing 44, 166
stage 38
update write 44, 166
write penalty 44, 166

SCSIcontroller
battery 66
cache manager 33
cache segment 66
CRC 66
data integrity 66
data rate 66
DFW 66
disk drive 66
disk drive cache 66
drawer cache 33
driver-receiver hardware 33
HSDA 33
path manager 33
PCAP 33
PDAD 33
PSM 33
RAMAC 3 66
RAMAC 3 drawer 33
SCSI interface 66
XOR 33

SCSI header
CMOS 42
data integrity 42
microcode 42
performance 42
RAMAC 3 42

SCSI interface
battery 66
cache segment 66
CRC 66
data integrity 66
data rate 66
DFW 66
disk drive 66
disk drive cache 66
RAMAC 3 66
SCSI controller 66

SCSI slice
CKD record 44
destage 44
partial track 44

SCSI slice (continued)
SCSI block 44
sequential processing 44
update write 44
write penalty 44

SDM
3990-6 127
9390-001 126
9390-002 126, 127
9391-A30 126
control data set 127
ESCON adapter card 127
journal data set 127
performance 127
RAMAC 3 drawer 127
recovery site 127
state data set 127
XRC 126, 127
XRC session 126

sector format
disk cache 52
MR head 52
predictive failure analysis 52
rpm 52
tracks per inch 52
zoned bit recording 52

sector search
capacity 64
CRC 64
defect management 64
ECC 64
header data 64
ID field 64
No-ID sector format 64
performance 64
power management 64
reliability 64

sector status
alternate sector 56
CRC 56
ID field 56
ID sector format 56
logical sector number 56
MR head 56
track capacity 56
track density 56

sequential
destage management 159
drawer cache 159
parity 159
write penalty 159
XOR 159

sequential data streams
asynchronous destage 97
batch 97
large block 97
logical volume 97
long chain 97
sequential data streams (continued)
lower interface 97
NVS 97
NVS management 97
NVS-full 97
online 97
performance 97
RAMAC 3 97
RAMAC 3 drawer 97
sequential detect 97
sequential detect
3990-6 46, 93
9390 46, 93
asynchronous destage 97
availability 48
batch 97
cache 93
capacity 48
CRC 48
data integrity 48
data transfer 46
destage management 48, 166
disk drive 48, 166
drawer cache 46
drawer operating system 166
hardware assist 48
highly parallel 48
large block 97
logical volume 48, 97
long chain 97
lower interface 97
LRU processing 93
mapping 48
multiengine 48
multitasking 48
NVS 97
NVS management 97
NVS-full 97
online 97
parity 46
PDAD 48
performance 48, 97, 134, 166
RAID-5 166
RAMAC 2 Array DASD 134
RAMAC 3 97
RAMAC 3 Array Storage 134
RAMAC 3 drawer 46, 97
SCSI block 48, 166
sequential data streams 97
sequential prestaging 46
sequential processing 166
update write 166
VPD 93
VSAM 134
write penalty 166
sequential prestaging
3990-6 46
9390 46
sequential prestaging (continued)
data transfer 46
drawer cache 46
parity 46
RAMAC 3 drawer 46
sequential detect 46
sequential processing
CKD record 44
destage 44
destage management 166
disk drive 166
drawer operating system 166
partial track 44
performance 166
RAID-5 166
RAMAC 3 drawer 22
SCSI block 44, 166
SCSI slice 44
sequential detect 166
update write 44, 166
write penalty 44, 166
sequential write
performance 136
QSAM 136
RAMAC 2 Array DASD 136
RAMAC 3 Array Storage 136
servo control system
data control system 62
defect management 62
disk drive 62
LBN 62
No-ID sector format 62
PBN 62
read head 62
rotary actuator 62
solid state memory 62
spare block 62
write head 62
SIM
3990-6 101
9390 101
9391-A30 101
concurrent repair 101
data redundancy 101
delayed copyback 101
Dynamic Sparing 101
floating spare 101
immediate copyback 101
performance 101
RAMAC 3 101
spare drawer 101
slice
destage management 158
drawer cache 158
software
3990-6 106, 140
9390 140
APAR 141–144
software (continued)
DFP 140
DFSMS 140
ESCON 106
installation 106
IOP 106
migration 106
MVS 140
physical planning 106
PTF 141—144
RAMAC 3 Array Storage 140
RAMAC 3 Storage Frame 106
VM 140
VPI 106
VSE 140
software components
design 18
solid state memory
data control system 62
defect management 62
disk drive 62
LBN 62
No-ID sector format 62
PBN 62
read head 62
rotary actuator 62
servo control system 62
spare block 62
write head 62
spare block
availability 41
background task 41
bad block 41
cycle 41
data control system 62
data integrity 41
defect management 62
disk drive 62
disk scrubbing 41
LBN 62
No-ID sector format 62
parity 41
PBN 62
RAMAC 41
RAMAC 2 41
RAMAC 3 41
read head 62
rotary actuator 62
servo control system 62
solid state memory 62
write head 62
spare drawer (continued)
data redundancy 101
delayed copyback 101
drawer maintenance 100, 103
dynamic disk reconstruction 100, 103
Dynamic Sparing 100, 101, 103
floating spare 101
immediate copyback 101
performance 101
RAID-5 103
RAMAC 3 101, 103
SIM 101
stage
3990-6 39, 40
9390 39, 40
CKD track 38
concurrent copy 90
data transfer 39, 40
destage 90
drawer cache 90
FPGA 90
hardware assist 38—40
mapping 38
parity 39, 40
partial track stage 39, 40
PPRC 90
RAMAC 3 drawer 38—40
SCSI block 38
storage frame maintenance 90
subsystem cache 90
XRC 90
state data set
3990-6 127
9390-02 127
control data set 127
ESCON adapter card 127
journal data set 127
performance 127
RAMAC 3 drawer 127
recovery site 127
SM 127
XRC 127
storage frame maintenance
concurrent copy 90
destage 90
drawer cache 90
FPGA 90
PPRC 90
stage 90
subsystem cache 90
XRC 90
string 0
3990-6 85, 86
9390 85, 86
addressing 85, 86
full frame 86
half-full frame 85
RAMAC 3 85, 86

Index 207
update write (continued)
disk drive 166
drawer cache 161, 163, 164
drawer operating system 166
parity 163, 164
partial track 44
performance 166
RAID-5 166
SCSI block 44, 166
SCSI slice 44
sequential detect 166
sequential processing 44, 166
write penalty 44, 163, 166
XOR 163, 164

V
VM
3990-6 140
9390 140
RAMAC 3 Array Storage 140
software 140
volume emulation
capacity 18
VPD
3390-6 88
3990-6 93, 106
9390 88, 93
9391-A30 88
cache 93
CE panel 88
data transfer rate 88
DDC cable 88
device adapter 88
ESCON 106
HSDA 88
installation 106
IOCP 106
LIC 88
LRU processing 93
migration 106
multipath 88
PDAD 88
physical planning 106
RAMAC 3 drawer 88
RAMAC 3 Storage Frame 88, 106
sequential detect 93
software 106
VSAM
performance 134
RAMAC 2 Array DASD 134
RAMAC 3 Array Storage 134
sequential detect 134
VSE
3990-6 140
9390 140
RAMAC 3 Array Storage 140
software 140

W
weight
9390 114
9391-A30 114
9392-B33 114
depth 114
height 114
physical specifications 114
width 114

width
9390 114
9391-A30 114
9392-B33 114
depth 114
height 114
physical specifications 114
weight 114
write element
ID field 60
ID sector format 60
MR head 60
read element 60
read head trajectory 60
write head
capacity 58
data control system 62
defect management 62
disk drive 62
ID sector format 58
LBN 62
MR head 58
No-ID sector format 62
PBN 62
read head 58, 62
rotary actuator 58, 62
servo control system 62
solid state memory 62
spare block 62
track alignment 58
write penalty
CKD record 44
destage 44
destage management 159, 163, 166
disk drive 166
drawer cache 159, 163
drawer operating system 166
parity 159, 163
partial track 44
performance 166
RAID-5 166
SCSI block 44, 166
SCSI slice 44
sequential 159
sequential detect 166
sequential processing 44, 166
update write 44, 163, 166
XOR 159, 163

Index 209
X

XOR
- cache manager 33
- destage management 159, 163, 164
- drawer cache 33, 159, 163, 164
- driver-receiver hardware 33
- HSDA 33
- parity 159, 163, 164
- path manager 33
- PCAP 33
- PDAD 33
- PSM 33
- RAMAC 3 drawer 33
- SCSI controller 33
- sequential 159
- update write 163, 164
- write penalty 159, 163

XRC
- 3990-6 127
- 9390-001 126
- 9390-002 126, 127
- 9391-A30 126
- concurrent copy 90
- control data set 127
- destage 90
- disaster recovery 148
- drawer cache 90
- ESCON adapter card 127
- fault-tolerant 148
- FPGA 90
- journal data set 127
- performance 127, 148
- positioning 148
- PPRC 90, 148
- RAMAC 3 Array Storage 148
- RAMAC 3 drawer 127
- recovery site 127
- SDM 126, 127
- stage 90
- state data set 127
- storage frame maintenance 90
- subsystem cache 90
- XRC session 126

XRC session
- 9390-001 126
- 9390-002 126
- 9391-A30 126
- SDM 126
- XRC 126

Z

zoned bit recording (continued)
- disk cache 52
- disk drive cache 72
- embedded sector servo 72
- inner zones 54
- MR head 52, 72
- No-ID sector servo 72
- operating costs 72
- outer zones 54
- power management 72
- predictive failure analysis 52, 72
- PRML channel 72
- RAMAC 54
- RAMAC 2 54
- RAMAC 3 54
- reliability 72
- rotational speed 72
- rpm 52
- sector format 52
- track capacity 72
- track density 72
- tracks per inch 52

zoned bit recording
- areal density 72
- capacity 72
- data rate 54
- data speed 72
- defect management 72