

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page vii.

 First Edition (October 2019)

 This edition applies to:

 Virtual I/O Server (VIOS) V3.1.0.11

 AIX 7.2.2.1

 Hardware Management Console (HMC) V9 R1 920

 KSYS V1.3.0.1

 Notices

 This information was developed for products and services offered in the US. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, MD-NC119, Armonk, NY 10504-1785, US

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

 IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any obligation to you.

 The performance data and client examples cited are presented for illustrative purposes only. Actual performance results may vary depending on specific configurations and operating conditions.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 Statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

 COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided “AS IS”, without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at “Copyright and trademark information” at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks or registered trademarks of International Business Machines Corporation, and might also be trademarks or registered trademarks in other countries.

 AIX®

 DB2®

 GDPS®

 IBM®

 IBM Cloud™

 IBM Spectrum®

 Parallel Sysplex®

 POWER®

 POWER8®

 POWER9™

 PowerHA®

 PowerVM®

 Redbooks®

 Redbooks (logo)[image:]®

 Storwize®

 System Storage™

 SystemMirror®

 The following terms are trademarks of other companies:

 The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

 Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 Red Hat, are trademarks or registered trademarks of Red Hat, Inc. or its subsidiaries in the United States and other countries.

 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Other company, product, or service names may be trademarks or service marks of others.

 Preface

 This IBM® Redbooks® publication describes the IBM VM Recovery Manager for Power Systems, and addresses topics to help answer customers' complex high availability (HA) and disaster recovery (DR) requirements for IBM AIX® and Linux on IBM Power Systems servers to help maximize systems' availability and resources, and provide technical documentation to transfer the how-to skills to users and support teams.

 The IBM VM Recovery Manager for Power Systems product is an easy to use and economical HA and DR solution. Automation software, installation services, and remote-based software support help you streamline the process of recovery, which raises availability and recovery testing, and maintains a state-of-the-art HA and DR solution. Built-in functions and IBM Support can decrease the need for expert-level skills and shorten your recovery time objective (RTO), improve your recovery point objective (RPO), optimize backups, and better manage growing data volumes.

 This book examines the IBM VM Recovery Manager solution, tools, documentation, and other resources that are available to help technical teams develop, implement, and support business resilience solutions in IBM VM Recovery Manager for IBM Power Systems environments.

 This publication targets technical professionals (consultants, technical support staff, IT Architects, and IT Specialists) who are responsible for providing HA and DR solutions and support for IBM Power Systems.

 Authors

 This book was produced by a team of specialists from around the world working at IBM Redbooks, Austin Center.

 Dino Quintero is an IT Management Consultant and an IBM Level 3 Senior Certified IT Specialist with IBM Redbooks in Poughkeepsie, New York. Dino shares his technical computing passion and expertise by leading teams developing technical content in the areas of enterprise continuous availability (CA); enterprise systems management; high-performance computing (HPC); cloud computing; artificial intelligence (AI), which includes machine learning (ML) and deep learning (DL); and cognitive solutions. He also is a Certified Open Group Distinguished IT Specialist. Dino holds a Master of Computing Information Systems degree and a Bachelor of Science degree in Computer Science from Marist.

 Jose Martin Abeleira is a Senior Systems and Storage Administrator at DGI Uruguay. He is a former IBMer, a prior IBM Redbooks author, a Certified Consulting IT Specialist, and an IBM Certified Systems Expert Enterprise Technical Support for AIX and Linux in Montevideo, Uruguay. He worked with IBM for 8 years and has 15 years of AIX experience. He holds an Information Systems degree from Universidad Ort Uruguay. His areas of expertise include IBM Power Systems, AIX, UNIX, and Linux; Live Partition Mobility (LPM), IBM PowerHA® SystemMirror®, storage area network (SAN), and Storage on IBM DS line; and V7000, HITACHI HUSVM, and G200/G400.

 Adriano Almeida is a Senior Power Systems Consultant from IBM Systems Lab Services in Brazil. He has worked at IBM for 20 years. His areas of expertise include IBM AIX, PowerVM®, IBM Power Virtualization Center (IBM PowerVC), IBM PowerHA SystemMirror, Linux, IBM Cloud™ Private, and SAP HANA on IBM Power Systems. He is an IBM Certified Expert IT Specialist and IBM Certified Advanced Technical Expert on IBM Power Systems. He has worked extensively on PowerHA SystemMirror, PowerVM, and Linux and AIX projects, performing health checking, performance analysis and consulting on IBM Power Systems environments, and technical project leadership. He holds a degree in computing technology from the Faculdade de Tecnologia em Processamento de Dados do Litoral (FTPDL). He is a coauthor of Exploiting IBM PowerHA SystemMirror V6.1 for AIX Enterprise Edition, SG24-7841-01 and IBM PowerVM Best Practices, SG24-8062.

 Bernhard Buehler is an IT Specialist in Germany. He works for IBM Systems Lab Services in Nice, France. He has worked at IBM for 37 years and has 28 years of experience in AIX and the availability field. His areas of expertise include AIX, Linux, PowerHA SystemMirror, HA architecture, script programming, and AIX security. He is a co-author of several IBM Redbooks publications. He is also a co-author of several courses in the IBM AIX curriculum.

 Primitivo Cervantes is a Senior Certified IT Specialist at IBM US and provides HA and DR services to clients on hardware and software components for AIX and Linux. He holds a Bachelor of Science degree in Electrical Engineering from California State University, Long Beach. Primitivo has worked for IBM for over 30 years with most of those years in the HA and DR fields.

 Stuart Cunliffe is a senior IBM Systems Consultant with IBM UK. He has worked for
IBM since graduating from Leeds Metropolitan University in 1995, and has held roles in
IBM Demonstration Group, IBM Global Technologies Services (GTS) System Outsourcing, eBusiness hosting, and ITS. He currently works for IBM System Group Lab Services where he specializes in IBM Power Systems, helping customers gain the most out of their Power Systems infrastructure with solutions that offer PowerHA SystemMirror, PowerVM, IBM PowerVC, AIX, Linux, IBM Cloud Private, IBM Cloud Automation Manager, and IBM DevOps.

 Jes Kiran is a Development Architect for IBM VM Recovery Manager for HA and DR products. He has worked in the IT industry for the last 18 years, and has experience in the HA, DR, cloud, and virtualization areas. He is an expert in the Power, IBM Storage, and AIX platforms.

 Byron Martinez Martinez is an IT Specialist at IBM Colombia who provides services to clients for hardware and software components for UNIX -like systems. He holds a degree in electronics engineering from the National University of Colombia. During the last 4 years, he has worked as deployment professional for IBM Power Systems. His areas of expertise include Power Systems, AIX, PowerLinux, UNIX -based operating systems, PowerVM Virtualization, LPM, IBM Hardware Management Console (HMC), NIM Server, IBM Spectrum® Scale (formerly GPFS), IBM PowerHA SystemMirror, and SAN and Storage on Brocade Communications Systems and IBM Storwize® storage systems.

 Antony Steel is a Senior IT Specialist in Singapore. He has had over 25 years of field experience in AIX, performance tuning, clustering, and HA. He worked for IBM for 19 years in Australia and Singapore, and is now CTO for Systemethix in Singapore. He has co-authored many IBM Redbooks publications about Logical Volume Manager (LVM) and PowerHA SystemMirror, and helped prepare certification exams and runbooks for IBM Lab Services.

 Oscar Humberto Torres is an IBM Power Systems Consultant at IBM. He has been with IBM since 2009. He has 16 years of experience in Power Systems and UNIX. He holds a degree in systems engineering from Universidad Autonoma de Colombia. During the last 8 years, he worked as a Power Systems Consultant deploying services and training courses. His areas of expertise include Power Systems, SAP HANA on Power Systems, SUSE HA, AIX, LPM,
IBM Spectrum Scale (formerly GPFS), UNIX, IBM Cloud IBM PowerVC Manager, and IBM PowerHA SystemMirror.

 Stefan Velica is an IT Specialist who currently works for IBM GTS in Romania. He has 10 years of experience with IBM Power Systems. He is a Certified Specialist for IBM System p Administration, HACMP for AIX, high-end and entry/midrange IBM DS Series, and Storage Networking Solutions. His areas of expertise include IBM System Storage™, SAN, PowerVM, AIX, and PowerHA SystemMirror. Stefan holds a bachelor’s degree in Electronics and telecommunications engineering from the Polytechnic Institute of Bucharest.

 Thanks to the following people for their contributions to this project:

 Wade Wallace
IBM Redbooks, Austin Center

 P I Ganesh, Denise Genty, Kam Lee, Luis Pizaña, Ravi Shankar, Thomas Weaver,
IBM Austin

 Maria-Katharina Esser
IBM Germany

 Luis Bolinches
IBM Finland

 Javier Bazan Lazcano
IBM Argentina

 Kelvin Inegbenuda
IBM West Africa

 Ahmed (Mash) Mashhour
IBM Saudi Arabia

 Shawn Bodily
Clear Technologies, an IBM Business Partner

 Now you can become a published author, too!

 Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an IBM Redbooks residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, IBM Redbooks
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 http://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

Introduction to high availability and disaster recovery

 This chapter describes high availability (HA) and disaster recovery (DR), including technologies that are used with clusters to restart the servers. In addition, this chapter introduces the IBM VM Recovery Manager for HA and DR.

 The following topics are described in this chapter:

 •General high availability and disaster recovery overview

 •Restart technologies and clustering methods

 •VM Recovery Manager HA

 •IBM VM Recovery Manager DR

 1.1 General high availability and disaster recovery overview

 This section describes HA and DR topics as a high-level overview. Before providing details, the terminology that is used throughout this publication is defined. These definitions might not match the information that you find on the internet because sometimes different meanings exist for the same phrase.

 Availability	The ability of a service component to perform its required function at a stated instant or over a stated period. It is expressed as the availability ratio, for example, the proportion of time that the service is available for use by the customers within the agreed service hours.

 Continuous availability (CA)	The attribute of a system to deliver nondisruptive service to the user 365 days a year, 24 hours a day (assuming no planned or unplanned outages exist). Figure 1-1 shows this relationship.

 	
 Note: In most cases when people talk about HA, they mean CA.

 [image:]

 Figure 1-1 Continuous availability, HA, and continuous operation relationship

 Continuous operations (CO)	The ability of a system to continuously operate and mask planned outages from users. It uses redundant hardware and software components (often clustering) along with nondisruptive maintenance and change management procedures.

 HA	The ability of a system to provide access to applications regardless of local failures, whether these failures are in the business processes, the physical facilities, or the IT hardware or software. The aim is to mask unplanned outages from users.

 DR	The ability to continue processing with a minimal loss of integrity of a data center at a different site if a disaster destroys the primary site or otherwise renders it inoperable. With a DR solution, processing resumes at a different site and on different hardware.

 Recovery time objective (RTO)	The total time that you can allow for your systems to be offline. How long can you afford to be without your systems?

 Recovery point objective (RPO)	The point at which data is restored to if there is a disaster. When it is recovered, how much data can you afford to re-create?

 Business recovery objective (BRO)	The time within which business processes must be recovered, along with the minimum staff, assets, and services required within this time.

 Network recovery objective (NRO)	Indicates the maximum time that the network operations can be down for a business. How long can you afford to take to switch over the network?

 1.1.1 General concepts

 From a service perspective, three concepts exist:

 Active/Inactive	The service is running on one system. One or more physical backup systems exist. Backup systems are not powered on or virtual system definitions are not defined. Only a physical connection to the data exists.

 Active/Passive	The service is running on one system at a time, and one or more backup systems can take over the service. An active OS is running on the backup systems.

 Active/Active	The same service is running concurrent in multiple systems. The application has simultaneous access to the same data on all systems.

 An active/active solution requires that the application is aware of the redundant components; an active/passive and an active/inactive solution are exempt from this requirement.

 From an operating system or system perspective, two concepts also exist:

 •Internal-managed (In some documentation, it is called application-based HA or application-based DR.)

 •External-managed (In some documentation, it is called virtual machine (VM)-based HA or VM-based DR.)

 Figure 1-2 illustrates these two concepts. Detailed differences are described in the following sections.

 [image:]

 Figure 1-2 Internal- and external-managed HA and DR

 Internal-managed

 In an internal-managed environment, the operating system or the application has information that it is part of a cluster. In most cases. HA components are installed that check whether the cluster partners, hardware, and software components are reachable or available.

 Highlights of this environment include these items:

 •Can be used on physical or virtual systems.

 •Has a hot-standby topology.

 •Is based on independent operating systems.

 •Cluster logic is part of the OS or application.

 •Rolling migration is possible.

 •Supports active/passive and active/active architecture within the cluster.

 External-managed

 In an external-managed environment, the operating system has no information about whether it is part of a cluster.

 Highlights of this environment include these items:

 •Requires a virtual system.

 •Has a cold-standby topology.

 •Is based on a single operating system.

 •Cluster logic is outside of the OS or application.

 •Supports only an active/inactive architecture within the cluster.

 •Offers reduced license costs.

 1.1.2 Outage-related differences

 Independent of the selected architecture (internal- or external-managed), there are two main forms of outages: planned outages and unplanned outages. In this section, we describe the differences between internal and external-managed architectures regarding these two types of outages.

 Planned outages

 Before looking at the differences between internal- and external-managed environments, we look at the similarities between the two of them.

 As shown in Figure 1-3, an update or upgrade of the underlying hardware or firmware (FW) can be hidden from the user. The outage period is the time that it takes to move to the new hardware and FW environment. In both cases, you can make the change on the backup system while the application is still running on the production environment. From a planning point of view, you need a second downtime to move back to the production environment. Make the same hardware and FW changes on the production environment before you move the application back to it.

 In an internal-managed environment, the update of the operating system and application can be hidden from the user because you have multiple independent installations. As described in 1.1.1, “General concepts” on page 3, the update can be made on the backup system while the application is still running on the current environment, as shown in Figure 1-3.

 In an external-managed environment, you need a longer downtime to do an update to the operating systems or application because you have only one operating system and one installation of the application. You cannot hide the whole time that is needed to make the updates from the user, as shown in Figure 1-3.

 [image:]

 Figure 1-3 Software and hardware maintenance-dependent action times

 Unplanned outages

 As listed in Figure 1-4 on page 6, the unexpected outage of the hardware, operating system, or application can in some cases be covered in a similar way for both architectures. However, if data corruption occurs, the outage can be different.

 Because the data in both cases is available only once, the effect of data corruption is the same. This is the worst case scenario because it requires a restore of your data from your backup media. This restoration can take a long time, and your recovery point might be old.

 The outage time also can differ based on the cause of the outage. An outage of one of the components is detected much faster than data corruption on one of the components. The outage detection time does not differ much regarding the selected architecture.

 In an internal-managed environment, data corruption in the operating system or the application code can be partly hidden from the user. What is visible is the fallover time that is needed to restart the application on the backup system, as shown in Figure 1-4.

 In an external-managed environment, data corruption in the operating system or the application code cannot be hidden from the user. A simple restart does not help in this case. This situation requires a restore of your operating system, application code, or both. This task requires more time than a restart, as shown in Figure 1-4.

 [image:]

 Figure 1-4 Failure-dependent action times

 1.1.3 High availability and continuous availability

 In most cases, when the topic is about HA, the topic is really about CA. In this section, all references to HA are about CA.

 Measuring availability

 In many cases, people measure availability in percentage (%) numbers. You might find comments that are related to the three nines or four nines of HA. Table 1-1 shows what these percentage values mean in hours or minutes.

 Table 1-1 Availability measuring

 	
 Measurement

 	
 Availability %

 	
 Downtime/year

 	
 Downtime/month

 	
 Downtime/week

 	
 One nine

 	
 90

 	
 36.5 days

 	
 72 hours

 	
 16.8 hours

 	
 Two nines

 	
 99

 	
 3.65 days

 	
 7.2 hours

 	
 1.68 hours

 	
 Three nines

 	
 99.9

 	
 8.76 hours

 	
 43.2 min.

 	
 10.1 min.

 	
 Four nines

 	
 99.99

 	
 52.56 min.

 	
 4.32 min.

 	
 1.01 min.

 	
 Five nines

 	
 99.999

 	
 5.26 min.

 	
 25.9 sec.

 	
 6.05 sec.

 	
 Six nines

 	
 99.9999

 	
 31.55 sec.1

 	
 2.59 sec.

 	
 0.605 sec.

 1 https://en.wikipedia.org/wiki/High_availability

 Do these percentage numbers help for HA planning? Here is a fictional situation in which a customer has the following guidelines:

 1.	It is acceptable if the system goes offline for 1 hour every day.

 2.	If the system is down for 8 hours continuously, the company will be bankrupt.

 What does this mean in terms of the annual availability percentages?

 For guideline 1	In the worst case scenario, you might have up to 365 hours of outage but happy customers because you have an annual availability percentage of 95.833%.

 For guideline 2	In this case, if you have a single outage extending to and beyond 8 hours, then the customers are unhappy even though the annual availability percentage is 99.909%.

 Planing for availability

 The two important items to consider when planning for HA and DR solutions include RTO and RPO.

 RPO means how much data may be lost without a major business impact or how far can you go back in your backups to get consistent data.

 Figure 1-5 illustrates the three major RTO components:

 Outage	How long until the outage is recognized?

 Fallover	How long until fallover to the backup system occurs?

 Restart	How long until the service is restarted on the same or different hardware?

 Depending on the selected solution and the used application, these items have different values.

 [image:]

 Figure 1-5 RPO and RTO content for high availability

 Other considerations for high availability

 Several extra items must be considered when planning for a highly available environment, as shown in Figure 1-6.

 [image:]

 Figure 1-6 Other considerations for continuous availability

 The following list includes but is not limited to the items that are represented in Figure 1-6:

 •People

 The knowledge and experience of the system administrators managing the environment is important to the stability and usability of the availability solution.

 •Data

 An important aspect is that critical data must be redundant (by using a RAID 1, 5, or 6 setup) and backups must exist.

 •Hardware

 The hardware must be able to handle the expected workload because a slow responding system is as bad as a non-existing one.

 •Software

 The software (application) must be able to automatically recover after a system crash.

 •Environment

 The location of your data center is important, and it must not be too close to the coastline or a river due to the high risk of flooding. Additionally, electrical power support must be redundant.

 •Networking

 Also important is configuring an internal redundant network that is combined with a redundant internet connection.

 •Systems management

 Here, especially good change management control is important. You also must have organized incident and problem management.

 1.1.4 Disaster recovery

 This section describes some components of DR from an IT perspective.

 	
 Recovery plan: DR is a small component of the overall business recovery plan.

 The main purpose of DR is to have a defined and possibly automated procedure for recovery from a major business impact, such as an outage of the whole data center as the result of an earthquake, flooding, or storm.

 Planing for disaster recovery

 From a risk assessment perspective, you have the same challenges as described in “Measuring availability” on page 6.

 RTO and RPO for DR are normally different from the RPO and RTO values for availability.

 	
 Note: RPO means how much data can be lost without suffering a major impact to the business or how far back in time that you must go to get consistent data. The RPO for DR is greater than the RPO for availability. The worse case is the time between the disaster and when the last successful backup was completed.

 Figure 1-7 on page 10 shows the RTO summary of the four major components:

 Outage	How long until the outage is recognized.

 Prepare to repair	How long until a decision is made whether a DR situation must be declared.

 	
 Note: Declaring a disaster is often a management decision.

 Repair or fallover	How long until fallover to the backup system occurs, or how long until the original system is repaired or reinstalled.

 Minimum service	How long until full service is available on the same or different hardware.

 Depending on the selected solution and the application that are used, these items have different values.

 [image:]

 Figure 1-7 RPO and RTO content for disaster recovery

 As for availability, a DR solution must also address the items that are described in “Other considerations for high availability” on page 8.

 Other considerations for disaster recovery

 In addition to the considerations that are listed in “Other considerations for high availability” on page 8, check the distance between your data centers.

 In a few publications, the recommended minimum distance is listed as 5 km. However, this is not sufficient when you think about major natural events such as earthquakes, hurricanes, volcano eruptions, or other disasters. In such cases, even 100 km cannot be sufficient.

 1.2 Restart technologies and clustering methods

 Many technologies and solutions are available for IBM Power Systems to increase logical partition (LPAR) availability and application availability. In this section, we cover many of these options and highlight which solution is best suited to which environment.

 1.2.1 Live Partition Mobility

 Live Partition Mobility (LPM) is a component of the PowerVM Enterprise Edition hardware feature that you can use to move AIX, IBM i, and Linux LPARs from one system to another one. The mobility process transfers the system environment, which includes the processor state, memory, attached virtual devices, and connected users.

 Active partition mobility moves AIX, IBM i, and Linux LPARs that are running, including the operating system and applications, from one system to another. The LPAR and the applications running on that migrated LPAR do not need to be shut down.

 Inactive partition mobility moves a powered-off AIX, IBM i, or Linux LPAR from one system to another.

 Partition mobility provides systems management flexibility and is designed to improve system availability. For example:

 •You can avoid planned outages for hardware or FW maintenance by migrating LPARs to another server and then performing the maintenance. Partition mobility can help because you can use it to work around scheduled maintenance activities.

 •You can avoid downtime for a server upgrade by migrating LPARs to another server and then performing the upgrade to continue your work without disruption.

 •If a server indicates a potential failure, you can migrate its LPARs to another server before the failure occurs. Partition mobility can help avoid unplanned downtime.

 •You can consolidate workloads running on several small, underused servers onto a single large server.

 •You can move workloads from server to server to optimize resource use and workload performance within your computing environment. With active partition mobility, you can manage workloads with minimal downtime.

 •For some systems, you can move applications from one server to an upgraded server by using IBM PowerVM Editions LPM or the AIX Live Application Mobility software without affecting availability of the applications.

 However, while partition mobility provides many benefits, it does not provide the following functions:

 •Partition mobility does not provide automatic workload balancing.

 •Partition mobility does not provide a bridge to new functions. LPARs must be restarted and possibly reinstalled to take advantage of new features.

 When an LPAR is moved by using LPM, a profile is automatically created on the target server that matches the profile on the source server. The partition’s memory is then copied asynchronously from the source system to the target server, which creates a clone of a running partition. Memory pages that changed on the partition (“dirty” pages) are recopied. When a threshold is reached that indicates that enough memory pages were successfully copied to the target server, the LPAR on that target server becomes active, and any remaining memory pages are copied synchronously. The original source LPAR is then automatically removed.

 Because the Hardware Management Console (HMC) always migrates the last activated profile, an inactive LPAR that has never been activated cannot be migrated. For inactive partition mobility, you can either select the partition state that is defined in the hypervisor or select the configuration data that is defined in the last activated profile on the source server.

 There are many prerequisites that must be met before an LPAR can be classified as LPM ready. You must verify that the source and destination systems are configured correctly so that you can successfully migrate the mobile partition from the source system to the destination system. You must verify the configuration of the source and destination servers, the HMC, the Virtual I/O Server (VIOS) LPARs, the mobile partition, the virtual storage configuration, and the virtual network configuration.

 For more information about preparing for partition mobility, see IBM Knowledge Center.

 In addition to the minimum required FW, HMC versions, and VIOS versions, the high-level prerequisites for LPM include:

 •The LPAR to be moved can be in an active or inactive state.

 •The source and target systems must be in an active state.

 •The source and target systems VIOSs that provide the I/O for the LPAR must be active.

 •The source and the target systems must have a VIOS that is marked as the mover service partition (MSP).

 •The source and target mover server partitions must be active.

 •Resource Monitoring and Control (RMC) network communication must exist between the mobile partitions, service processor, and the MSPs.

 •The logical memory block (LMB) size must be the same on the source and the target system.

 •The target system must have enough resources (processors and memory) to host the partition.

 •The target system VIOSs must provide the networks that are required for the LPAR.

 •The source and the target system VIOSs must both be able to see all the LPARs storage logical unit numbers (LUNs).

 •All physical I/O devices must be removed from the partition before it can be moved.

 •For IBM i partitions, the restricted I/O partition cannot be set.

 You can use the HMC command miglpar or GUI to validate whether an LPAR is LPM-capable without performing the actual migration. For more information, see IBM Knowledge Center.

 Initiating LPM can be done by using the HMC GUI, the HMC command-line interface (CLI), IBM Power Virtualization Center (IBM PowerVC), IBM Lab Services LPM Automation Toolkit, and IBM VM Recovery Manager. However, there are a few restrictions:

 •The HMC GUI can initiate only a single LPM migration at a time.

 •The HMC CLI can initiate only a single LPM migration at a time, unless scripted.

 •IBM PowerVC can initiate only a single LPM migration at a time, unless frame evacuation is used.

 •IBM PowerVC cannot migrate inactive LPARs.

 You can confirm whether an IBM Power Systems server is licensed for LPM by going to the HMC and clicking Resources → All Systems → System Name → Licensed Capabilities.

 Figure 1-8 shows a Power Systems server that is LPM-capable.

 [image:]

 Figure 1-8 PowerVM Live Partition Mobility Capable

 1.2.2 Simplified Remote Restart

 Simplified Remote Restart (SRR) is a component of the PowerVM Enterprise Edition hardware feature that can restart AIX, IBM i, and Linux LPARs on a different physical server if the original server is no longer active. If the original physical server (source) has an error that causes an outage, you can restart the LPARs on another (target) server.

 If the source server has a physical fault that requires fixing, then you can use SRR to recover the key LPARs in a more timely manner. Also, if the source server is restarting, it might take longer to start the server, in which case you can use SRR for faster reprovisioning of the partition. This operation can complete quicker compared to restarting the server that failed and then restarting the partition.

 SSR (available from IBM POWER8® processor-based systems that use FW level 8.2.0 or later and HMC version 8.2.0 or later) removes the need to use a reserved storage device that is assigned to each partition. As a best practice, use SSR.

 Here are the characteristics of SSR:

 •SSR is not a suspend and resume or migration operation of the partition that preserves the active running state of the partition. During the remote restart operation, the LPAR is shut down and then restarted on a different system.

 •SSR preserves the resource configuration of the partition. If processors, memory, or I/O are added or removed while the partition is running, the remote restart operation activates the partition with the most recent configuration.

 When an LPAR is restarted by using SRR, a new profile is automatically created on the target server that matches the profile on the source server. That new profile is then mapped to the storage LUNs that were being used by the original partition (the partition is inactive). The new profile on the target server is then activated and the partition is again active. When the source server becomes active, you must remove the old profile to ensure that the partition is not accidentally restarted on that server (it restarts automatically). The automatic cleanup runs without the force option, which means that if a failure occurs during the cleanup (for example, RMC communications with the VIOS fails), the LPAR is left on the original source server and its status marked as Source Side Cleanup Failed.

 As with LPM, there are many prerequisites that must be met in order for SRR to work. However, if LPM is not working for an LPAR, then SRR does not work.

 Other than the minimum required FW, HMC versions, and VIOS versions, the high-level SRR prerequisites include:

 •The source system must be in a state of Initializing, Power Off, Powering Off, No connection, Error, or Error - Dump in progress.

 •The source systems VIOSs that provide the I/O for the LPAR must be inactive.

 •The target system must be in an active state.

 •The target systems VIOSs that provide the I/O for the LPAR must be active.

 •The LPAR that will be restarted must be in an inactive state.

 •The LMB size is the same on the source and the target system.

 •The target system must have enough resources (processors and memory) to host the partition.

 •The target system VIOSs must be able to provide the networks that are required for the LPAR.

 •The source and the target systems VIOSs must both be able to see all the LPARs storage LUNs.

 •All physical I/O devices must be removed from the partition before it can be moved.

 •For IBM i partitions, the restricted I/O partition cannot be set.

 In order for an LPAR to perform a remote restart operation, a flag must be set against it by using the HMC. It is possible to view and set this flag dynamically by using the HMC.

 With HMC V9 R1.910.0, many SRR enhancements were announced:

 •Remote Restart a partition with reduced or minimum CPU/Memory on the Target system

 When a system outage occurs and you want to restart all the partitions on another system to reduce the downtime, there might be scenarios where the target system does not have enough capacity to host all the partitions, but some partitions can be run with reduced resources (for example, development or test workloads versus production workloads). You can now restart a partition with reduced resources on target system.

 •Remote Restart by choosing different Virtual Switch on Target system

 You can validate or perform the remote restart operation for an LPAR when you want to start the LPAR with a different virtual switch on the target server than the virtual switch that the LPAR was assigned on the source server.

 •Remote Restart the partition without powering on the partition on Target system

 With this option, you can prevent an LPAR from being started during the remote restart operation. You can use this option in cases where you want to check the configuration on the target system before powering on the partition. All the other steps that are performed during a remote restart operation are performed in this case except for powering on the partition.

 •Remote Restart the partition for test purposes when the source managed system is in the Operating or Standby state

 Remote restart is supported when a system has failed. If you want to validate whether a remote restart operation works in case of a system failure, you can always use the validate option. However, if you want to go one step further and test restarting the partition on another system, you can do that by using the test option that is introduced with HMC V9 R1.910.0. The source partition must be in the shutdown state to use the test option for remote restart.

 •Display the partition configuration information

 HMC collects and persists the configuration data that is required for restarting a partition. You can now use the lsrrstartlpar command to view the persisted configuration information of all the LPARs that support SRR.

 •Remote Restart by way of the Rest API

 You can also perform the remote restart operation by using the Representational State Transfer (REST) API:

 https://<<HMCIP>>:12443/rest/api/uom/ManagedSystem/<ManagedSystem_UUID>LogicalPartition/<<PARTITION_UUID>>/do/RemoteRestart

 All the options and overrides are added to the REST API as well.

 You can initiate SRR by using the HMC CLI, REST APIs, IBM PowerVC, IBM Lab Services LPM and SRR Automation Toolkit, and IBM VM Recovery Manager. However, there are limitations:

 •The HMC GUI cannot be used to initiate partition restarts with SRR.

 •The HMC CLI (rrstartlpar) can initiate only a single partition restart with SRR.

 •Only up to 32 concurrent SRR operations can occur for a destination server (including concurrent rrstartlpar commands).

 •IBM PowerVC can initiate a single partition restart or a whole frame restart, but not a subset of SRR-capable partitions.

 •IBM PowerVC can optionally be configured to automatically launch SRR for all SRR capable partitions on a failed server.

 You can confirm whether an IBM POWER® server is licensed for SRR by opening the HMC and selecting Resources → All Systems → System Name → Licensed Capabilities, as shown in Figure 1-9.

 [image:]

 Figure 1-9 PowerVM Simplified Remote Restart Capability

 1.2.3 IBM PowerHA SystemMirror

 IBM PowerHA SystemMirror for AIX, IBM i, and Linux is a separate licensed product that provides HA clusters on IBM Power Systems servers. A PowerHA cluster must contain a minimum of two LPARs (called nodes) that communicate with each other by using heartbeats and keepalive packets. The cluster contains many resources, such as IP addresses, shared storage, and application scripts, that are grouped to form a resource group.

 If PowerHA detects an event within the cluster, it automatically acts to ensure that the resource group is placed on the most appropriate node in the cluster to ensure availability. A correctly configured PowerHA cluster after setup requires no manual intervention to protect against a single point of failure, such as failures of physical servers, nodes, applications, adapters, cables, ports, network switches, and storage area network (SAN) switches. The cluster can also be controlled manually if the resource groups must be balanced across the clusters or moved for planned outages.

 PowerHA Enterprise Edition also provides cross-site clustering where shared storage might not be an option but SAN-based replication is available. In this environment, PowerHA uses the remote copy facilities of the storage controllers to ensure that the nodes at each site have access to the same data, but on different storage devices. It is possible to combine both local and remote nodes within a PowerHA cluster to provide local HA and cross-site DR.

 Clusters within PowerHA can be configured in many ways:

 •Active/Passive: One node in the cluster runs the resource group, and its partners are in standby mode waiting to take on the resources when required. The passive nodes in the cluster must be running in order for them to participate in the cluster. Although the standby nodes do not have to have the full processor and memory allocation when in passive mode, they must still be active.

 •Active/Active: All nodes in the cluster are running a resource group but are also the standby node for another resource group in the cluster. Many resources groups can be configured within a cluster, so how they are spread out across the nodes and in which order they move is highly configurable.

 •Concurrent: All nodes in the cluster run the same resource group.

 1.2.4 Comparison of solutions

 In 1.2, “Restart technologies and clustering methods” on page 10, we described LPM, SRR, and PowerHA, which are three different solutions that each have their own advantages and disadvantages. In this section, we show where each solution fits in terms of providing HA or DR for applications running on your IBM Power Systems servers. We also highlight where solutions are not appropriate for your particular environment. IBM VM Recovery Manager HA uses the functions of LPM and SRR to perform its work, so you can see how it fits into the solutions.

 Ease of use

 Both LPM and SRR are relatively simple to configure and use. Although this book does not describe how to enable VM to be LPM- and SRR-ready, you can do this task in a few simple steps and verify your success online. Both LPM and SRR are included in IBM PowerVM Enterprise Edition so no extra software is required. You can start LPM by using the HMC GUI, the HMC CLI, IBM PowerVC, IBM Lab Service, LPM Automation Toolkit, or IBM VM Recovery Manager. You can start SSR by using the HMC CLI, REST APIs, IBM PowerVC, IBM Lab Services LPM and SRR Automation Toolkit, or IBM VM Recovery Manager.

 IBM PowerHA is a more complex product to set up because it requires a license and you must install the cluster code on all nodes in the cluster. It also requires an experienced
IBM PowerHA consultant to design and implement a successful cluster. After the cluster is active, it must be administered by an experience PowerHA administrator.

 VM Recovery Manager for HA is simpler to configure than IBM PowerHA, but relies on LPM and SRR being configured to function correctly.

 Availability, recovery times, and recovery points

 LPM, SRR, VM Recovery Manager for HA, and standard PowerHA must see the same shared storage to work successfully, so the recovery points must be the same. For VM Recovery Manager for DR and cross-site PowerHA, storage replication is needed and the recovery point depends on how storage replication is configured.

 The key differentiators in this section are availability and recovery times as shown in Table 1-2 on page 17. You can see how each product differs in terms of storage requirements, automation, server status, and outages.

 Table 1-2 Solutions comparison matrix

 	
 Solution

 	
 Storage Requirements

 	
 Automated failover

 	
 Source server status

 	
 Source VIOS status

 	
 VM/Application outage

 	
 LPM

 	
 Shared

 	
 No

 	
 Active

 	
 Active

 	
 No (if the VM is active)

 	
 SRR

 	
 Shared

 	
 No

 	
 Inactive

 	
 Inactive

 	
 Yes

 	
 VM Recovery Manager HA

 	
 Shared

 	
 Yes

 	
 Active or Inactive

 	
 Active or Inactive

 	
 Only if a server/VM outage occurs.

 	
 PowerHA Standard

 	
 Shared

 	
 Yes

 	
 Active or Inactive

 	
 Active or Inactive

 	
 Yes

 	
 PowerHA EE

 	
 Remote Copy

 	
 Yes

 	
 Active or Inactive

 	
 Active or Inactive

 	
 Yes

 	
 VM Recovery Manager DR

 	
 Remote Copy

 	
 No

 	
 Active or Inactive

 	
 Active or Inactive

 	
 Yes

 	
 Note: SRR can be automated by using IBM PowerVC.

 If you start with LPM, the source and targets servers (and their VIOSs) must be running and active. Although the VM that you want to move can be offline, the server it is hosted on must be online. If this criteria is met, then using LPM on an active VM does not result in any downtime. If that VM crashes, LPM does not automatically restart the VM or migrate it to another server because manual intervention is required. Therefore, for applications and VMs where a basic form of planned HA is required, using just LPM is sufficient. However, it is not sufficient when automatic mobility is required or recovery from an offline source server.

 As with LPM, SRR requires the destination server to see the same shared storage as the source server to rebuild the VM. The key difference between SRR and LPM is that the source server must be offline so that the rebuild is successful.

 1.3 VM Recovery Manager HA

 HA management is a critical feature of business continuity plans. Any downtime to the software stack can result in loss of revenues and disruption of services. IBM VM Recovery Manager HA for Power Systems is a HA solution that is easy to deploy and provides an automated solution to recover the VMs (LPARs).

 The VM Recovery Manager HA solution implements recovery of the VMs based on the VM restart technology. The VM restart technology relies on an out-of-band monitoring and management component that restarts the VMs on another server when the host infrastructure fails. The VM restart technology is different from the conventional cluster-based technology that deploys redundant hardware and software components for a near-real-time failover operation when a component fails. The cluster-based HA solutions are commonly deployed to protect critical workloads.

 The VM Recovery Manager HA solution is ideal to ensure HA for many VMs. Additionally, the VM Recovery Manager HA solution is easier to manage because it does not have clustering complexities.

 The VM Recovery Manager HA solution provides the capabilities that are described in the following sections.

 Host health monitoring

 The VM Recovery Manager HA solution monitors hosts for any failures. If a host fails, the VMs in the failed host are automatically restarted on other hosts. The VM Recovery Manager HA solution uses the host monitor (HM) module of the VIOS partition in a host to monitor the health of hosts.

 VM and application health monitoring

 The VM Recovery Manager HA solution monitors the VMs, its registered applications, and its hosts, for any failures. If a VM or a critical application fails, the corresponding VMs are started automatically on other hosts. The VM Recovery Manager HA solution uses the VM monitor (VMM) agent, which must be installed in each VM to monitor the health of VMs and registered applications.

 Unplanned HA management

 During an unplanned outage, when the VM Recovery Manager HA solution detects a failure in the environment, the VMs are restarted automatically on other hosts. You can also change the auto-restart policy to advisory mode. In advisory mode, failed VMs are not relocated automatically, but instead email or text messages are sent to the administrator. An administrator can use the interfaces to manually restart the VMs.

 Planned HA management

 During a planned outage, when you plan to update FW for a host, you can use the LPM operation of the VM Recovery Manager HA solution to vacate a host by moving all the VMs on the host to the remaining hosts in the group. After the upgrade operation is complete, you can use the VM Recovery Manager HA solution to restore the VM to its original host in a single operation.

 Advanced HA policies

 The VM Recovery Manager HA solution provides advanced policies to define relationships between VMs, such as collocation and anticollocation of VMs, the priority in which the VMs are restarted, and the capacity of VMs during failover operations.

 GUI- and command-line interface-based management

 You can use a GUI or CLI to manage the resources in the VM Recovery Manager HA solution. For a GUI, you can install the UI server and then use the web browser to manage the resources. Alternatively, the ksysmgr command and the ksysvmmgr command on KSYS LPAR provide end-to-end HA management for all resources.

 1.4 IBM VM Recovery Manager DR

 DR of applications and services is a key component to provide continuous business services. The IBM VM Recovery Manager DR for Power Systems solution is a DR solution that is easy to deploy and provides automated operations to recover the production site. The VM Recovery Manager DR solution is based on the IBM Geographically Dispersed Parallel Sysplex® (IBM GDPS®) offering concept that optimizes the usage of resources. This solution does not require you to deploy the backup VMs for DR. Thus, the VM Recovery Manager DR solution reduces the software license and administrative costs.

 	
 Note: VM Recovery Manager DR now supports the Single-Root I/O Virtualization (SR-IOV) Virtual Network Interface Controller (vNIC).

 The following HA and DR models are commonly used by customers:

 •Cluster-based technology

 •VM restart-based technology

 Clustered HA and DR solutions typically deploy redundant hardware and software components to provide near-real-time failover when one or more components fail. The VM restart-based HA and DR solution relies on an out-of-band monitoring and management component that restarts the VMs on other hardware when the host infrastructure fails. The VM Recovery Manager DR solution is based on the VM restart technology.

 1.4.1 Implementing IP change scripts on AIX

 When you move VMs by using VM Recovery Manager DR between sites, the default behavior as it relates to networking is to duplicate the host name, IP address, netmask, and so on, at the remote site so it looks just like the primary site VM. However, the customer network environment can dictate that the IP address, host name, netmask, and so on, be different at the DR site than the primary site. In this situation, we describe a methodology to change IP addresses between sites by using sample scripts.

 Introduction

 Implementation of scripts for switching IP addresses when moving an IBM AIX VM between sites can pose a challenge because AIX configures the IP address early in the startup process. You can update the IP address after the AIX VM is running and operational at the DR site, but that means the primary site IP address is active, even for a short period, at the DR site. This situation can be problematic for network switches, custom applications that depend on the network environment, and the application configuration.

 One method to meet this challenge is by using the AIX ghostdev system flag. This flag is primarily used for duplicating AIX images to multiple environments. With this flag, you can make an AIX mksysb image of a VM and use that image to build more VMs on other systems. When the AIX operation system comes upon this new VM, AIX detects that it is on another system and automatically removes the host name and IP address configuration as it comes up on the new host. In addition, the flag also removes the volume group (VG) information and changes devices, such as host bus adapters (HBAs), to their default values. Many customers customize device values for performance reasons and do not want the default values. We address how to return these values back to their wanted settings.

 Even though you do not use the ghostdev flag to make an AIX mksysb image, it is useful because of its automatic system detection and its ability to prevent using the primary site IP address at the DR site.

 Here is the strategy that you use:

 1.	Gather the host name and IP address information for each VM at each host.

 2.	Install our sample scripts, which are described later.

 3.	Configure the AIX operating system by setting the ghostdev parameter to 1.

 4.	Customize the sample script with the appropriate host name, IP addresses, and so on, for each particular host.

 5.	Run the data collection script, which collects data on the device configuration.

 6.	Move the VM from the primary site to the DR site.

 7.	Verify that the ghostdev parameter is operational.

 8.	Verify the DR scripts function by running the DR setup scripts.

 9.	Update /etc/inittab to automatically run the DR setup scripts.

 10.	Update cron to automatically run the data collection scripts.

 	
 Note: The sample scripts in the VM Recovery Manager DR product and in this publication are provided AS-IS and without any IBM Support Services.

 Example environment

 In our example, we use AIX 7.2.2 in our AIX VMs, but any supported version of AIX works. The environment consists of two sites, “sitert11” and “sitert12”. The AIX VMs are configured such that when the VMs are in sitert11, they have a different IP address and subnet than on site sitert12. We demonstrate by using one AIX VM. The VM has a host name of rt11006 when the VM is on host rt11, and a host name of rt11006b when the VM is on host rt12.

 Table 1-3 shows the site, VM, and IP address information.

 Table 1-3 VM Recovery Manager DR sample environment configuration

 	
 Component

 	
 Site: sitert11

 	
 Site: sitert12

 	
 Host

 	
 rt11

 	
 rt12

 	
 Host model

 	
 8286-42A

 	
 8286-42A

 	
 Host serial number

 	
 020607585

 	
 022100E5W

 	
 Host name

 	
 rt11006

 	
 rt11006b

 	
 IP address

 	
 10.40.32.110

 	
 10.40.0.191

 	
 Netmask

 	
 255.255.254.0

 	
 255.255.254.0

 	
 Default gateway

 	
 10.40.32.1

 	
 10.40.0.1

 	
 DNS server

 	
 9.3.1.200

 	
 9.3.1.200

 The goal here is to make sure that the scripts configure the VM such that when it is on system rt11, it has the appropriate IP and network configuration for that system. Likewise, when the VM is moved to system rt12, it must have the appropriate IP and network configuration for that system.

 Figure 1-10 and in Figure 1-11 show more details about this process.

 [image:]

 Figure 1-10 AIX VM before the VM Recovery Manager DR move to the DR site

 [image:]

 Figure 1-11 AIX VM after the VM Recovery Manager DR move to the DR site

 The AIX ghostdev parameter

 You use the AIX ghostdev parameter mainly for taking an image of an AIX operating system by using something like the AIX mksysb facility, and then you use that mksysb image to build more AIX VMs. AIX uses the ghostdev parameter to:

 •Determine whether it is operating on the same hardware as previously.

 •If it is a new AIX image, it clears the host name and IP address configuration.

 •It also clears the VG information and disk drive information, and sets devices to their default settings.

 Without the ghostdev parameter, a copied AIX VM comes up with the previous host name, IP address, and device configuration. Because those devices no longer exist on the copied VM, they are in Defined state. We call these devices ghost devices, hence the name of the ghostdev parameter.

 You use the ghostdev setting because you want to prevent the primary site IP addresses from becoming active, even for a short period, at the DR site. However, the clearing of the VG information and setting of devices to their default values means that you must use scripts to return those values to their customize settings.

 Gathering environment configuration data

 The first step in this process is to gather data that is pertinent for the configuration of the VM at each site. For each site, you need:

 •The machine type and the serial number of the system (host) the VM moves from and to.

 •The host name of the VM when it is at each host.

 •The related network configuration of the VM when it is at each host:

  –	IP address

  –	Netmask

  –	Default gateway

  –	DNS server

 The machine type and serial number of the host is obtained by running the AIX prtconf command. The network parameters (for example, IP address, and so on) can probably be acquired from your network administrator.

 Example 1-1 shows an example of using prtconf from the AIX VM to gather system model and serial number information.

 Example 1-1 System model and serial number information

 [image:]

 root@rt11006: /

 # prtconf | grep -iE "system model|serial number"

 System Model: IBM,8286-42A

 Machine Serial Number: 2100E5W

 [image:]

 Installing AIX sample scripts

 Installing the VM Recovery Manager DR IP address change scripts involves the following steps:

 1.	Downloading the scripts from the IBM Redbooks website.

 The VM Recovery Manager DR scripts can be downloaded from the IBM Redbooks website (see Appendix A, “Additional material” on page 371).

 Use your browser to download the compressed file to your PC or workstation.

 2.	Copying the VM Recovery Manager DR sample scripts to the managed VMs.

 From the location where you downloaded the VM Recovery Manager DR scripts, use your favorite method (scp, sftp, and so on) to copy the scripts to each managed VM. These scripts can be staged in any directory. It is a best practice to not put installation files in AIX system directories, and your favorite non- AIX system directory can be used.

 For our purposes, we assume that we downloaded the VM Recovery Manager DR script to a directory named /software_install.

 3.	Installing the VM Recovery Manager DR scripts to the appropriate location.

 After staging the VM Recovery Manager DR script to an installation directory (in our example, /software_install), you install the scripts by running the AIX tar command. As the root user, change to the / directory and run the following commands:

 cd /

 tar -xvf /software_install/VMR_DR_scripts.tar

 The scripts must be unpacked and installed in the /usr/local/DR directory. Several subdirectories and scripts are created under that /usr/local/DR directory.

 Verify that the following files are created under the /usr/local/DR directory:

 data_collection.ksh

 setup_dr.cfg

 setup_dr.ksh

 setup_dr_HBAs.ksh

 setup_dr_etc_exports.ksh

 setup_dr_ethernet.ksh

 setup_dr_hadiskhbs.ksh

 setup_dr_hostname_ip.ksh

 setup_dr_hosts.cfg

 setup_dr_reboot.ksh

 setup_dr_vgs.ksh

 setup_mkitab.ksh

 Verify that the following directories are also created:

 /usr/local/DR/data

 /usr/local/DR/data_default

 Description of the VM Recovery Manager DR scripts

 Table 1-4 describes the DR scripts and their functions.

 Table 1-4 DR scripts and their functions

 	
 Script name

 	
 Script function

 	
 data_collection.ksh

 	
 Collects system device data at the primary site. This data can be used by other scripts to customize the system devices when the VM moves between sites.

 	
 setup_dr.cfg

 	
 Parameter configuration file. Do not customize this file.

 	
 setup_dr.ksh

 	
 The main script that runs at the DR site to configure the DR IP addresses. This script calls the other scripts as necessary.

 	
 setup_dr_HBAs.ksh

 	
 Uses the data that collected to customize the HBAs at the DR site.

 	
 setup_dr_etc_exports.ksh

 	
 Uses the data that is collected to customize the NFS exports at the DR site.

 	
 setup_dr_ethernet.ksh

 	
 Uses the data that is collected to customize more IP addresses at the DR site. It is non-functioning and is provided as a shell.

 	
 setup_dr_hadiskhbs.ksh

 	
 Uses data that is collected to customize PowerHA cluster storage devices. This script is non-functional and is included only as a shell.

 	
 setup_dr_hostname_ip.ksh

 	
 Uses the configuration file information to set up the DR IP address and network information.

 	
 setup_dr_hosts.cfg

 	
 This file is customized by the user. It is the main configuration file that contains the host model, serial number information, and the IP address and network configuration for each host.

 	
 setup_dr_reboot.ksh

 	
 Restarts the VM as necessary and defined by the other DR scripts. The VM must be restarted after it first comes up at the DR site.

 	
 setup_dr_vgs.ksh

 	
 Uses the data that is collected to import the non-rootvg VGs as necessary.

 Updating the AIX ghostdev parameter

 On the AIX VM that will be moved from the primary site to the DR site, you want to customize the ghostdev parameter. By default, the AIX ghostdev parameter is not active. It can be displayed by running the following command:

 root@rt11006: /

 # # lsattr -El sys0 | grep ghostdev

 ghostdev 0 Recreate ODM devices on system change / modify PVID True

 To change the ghostdev parameter and make it active on the system, change the value from 0 to 1 by running the following command:

 chdev -l sys0 -a ghostdev=1

 Review that the ghostdev parameter has changed by running the following command:

 root@rt11006: /

 # lsattr -El sys0 | grep ghostdev

 ghostdev 1 Recreate ODM devices on system change / modify PVID True

 Customizing the AIX sample scripts

 The only script file that must be customized is setup_dr_hosts.cfg. The file contains a pair of stanzas that reflect the parameters for the primary site and the DR site. The file can contain as many stanzas as necessary if they follow the same format. For our example, we customize the IP address entries as shown:

 [HOST_INFO]

 IBM_MODEL="8286-42A"

 IBM_SERIAL="0607585"

 HOSTNAME=rt11006

 IP_ADDRESS=10.40.32.110

 NETMASK=255.255.254.0

 HOSTNAME_ADAPTER=$HOSTNAME_ADAPTER

 NAMESERVER=9.3.1.200

 DNSDOMAIN=aus.stglabs.ibm.com

 DEFAULT_ROUTE=10.40.32.1

 ETC_EXPORTS=${DR_DATA_DIR}/${HOSTNAME}.exports.txt

 export IBM_MODEL

 export IBM_SERIAL

 export HOSTNAME

 export IP_ADDRESS

 export NETMASK

 export HOSTNAME_ADAPTER

 export NAMESERVER

 export DNSDOMAIN

 export DEFAULT_ROUTE

 export ETC_EXPORTS

 [/HOST_INFO]

 and

 [HOST_INFO]

 IBM_MODEL="8286-42A"

 IBM_SERIAL="2100E5W"

 HOSTNAME=rt11006a

 IP_ADDRESS=10.40.0.191

 NETMASK=255.255.254.0

 HOSTNAME_ADAPTER=$HOSTNAME_ADAPTER

 NAMESERVER=9.3.1.200

 DNSDOMAIN=aus.stglabs.ibm.com

 DEFAULT_ROUTE=10.40.0.1

 ETC_EXPORTS=${DR_DATA_DIR}/${HOSTNAME}.exports.txt

 export HOSTNAME

 export IP_ADDRESS

 export NETMASK

 export HOSTNAME_ADAPTER

 export NAMESERVER

 export DNSDOMAIN

 export DEFAULT_ROUTE

 export ETC_EXPORTS

 [/HOST_INFO]

 Running the AIX sample scripts

 After configuring the AIX IP configurations, you run the scripts and verify the functions:

 1.	Run the data_collection.ksh script.

 The initial process involves collecting the system data while the VM is at the primary site. The data collection data files can later be used to customize the VM when it is operational at the DR site. The data that is collected is mainly system device and storage configuration.

 a.	To collect the system configuration, run the following script:

 /usr/local/DR/data_collection.ksh

 b.	The script produces no output but does create text files that contain the device and storage information. Theses files are in the /usr/local/DR/data and /usr/local/DR/data_default directories. To verify that the script ran successfully, run the following command:

 /usr/local/DR/data_collection.ksh;echo $?

 A successful execution of this script has a result of 0.

 2.	Initial AIX configuration verification

 Using the configuration that we described, log in to the AIX VM rt11006 and review the current configuration by running prtconf:

 a.	Run prtconf to verify the mode and serial number of the current system:

 root:rt11006: / >

 # prtconf | grep -iE "System Model|Machine Serial"

 System Model: IBM,8286-42A

 Machine Serial Number: 0607585

 b.	Run hostname to verify the VM host name:

 root:rt11006: / >

 # hostname

 rt11006

 c.	Run netstat to verify VM network routing table:

 root:rt11006: / >

 # netstat -rn

 Routing tables

 Destination Gateway Flags Refs Use If Exp Groups

 Route Tree for Protocol Family 2 (Internet):

 default 10.40.32.1 UG 1 15667 en0 - -

 10.40.32.0 10.40.32.110 UHSb 0 0 en0 - - =>

 10.40.32/23 10.40.32.110 U 1 1 en0 - -

 10.40.32.110 127.0.0.1 UGHS 0 1 lo0 - -

 10.40.33.255 10.40.32.110 UHSb 0 1 en0 - -

 127/8 127.0.0.1 U 2 117 lo0 - -

 Route Tree for Protocol Family 24 (Internet v6):

 ::1%1 ::1%1 UH 0 9181 lo0 - -

 d.	Run ifconfig to verify VM IP address configuration:

 root:rt11006: / >

 # ifconfig -a

 en0: flags=1e084863,814c0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHECKSUM_OFFLOAD(ACTIVE),LARGESEND,CHAIN>

 inet 10.40.32.110 netmask 0xfffffe00 broadcast 10.40.33.255

 tcp_sendspace 262144 tcp_recvspace 262144 rfc1323 1

 lo0: flags=e08084b,c0<UP,BROADCAST,LOOPBACK,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,LARGESEND,CHAIN>

 inet 127.0.0.1 netmask 0xff000000 broadcast 127.255.255.255

 inet6 ::1%1/64

 tcp_sendspace 131072 tcp_recvspace 131072 rfc1323 1

 3.	Verify that the AIX LPAR is ready to be moved.

 a.	For this example, only a single AIX VM is needed. The VM that is moved in this case is rt11006. For this reason, unmanage all VMs except the one to be moved by running the following commands:

 ksysmgr unmanage vm rt11007

 ksysmgr unmanage vm rt11008

 ksysmgr unmanage vm rt11009

 ...

 b.	To verify that the environment is ready, run a ksysmgr discovery and verification process:

 root:ksys7003rb.aus.stglabs.ibm.com: / >

 # ksysmgr discover site sitert11 verify=yes

 Host_group Default_HG was modified

 Running discovery on entire site, this may take few minutes...

 Storage state synchronization has started for Host_group Default_HG

 Storage state synchronization has completed for Host_group Default_HG

 Discovery has started for VM rt11006

 Configuration information retrieval started for VM rt11006

 Configuration information retrieval completed for VM rt11006

 Discovery has finished for sitert11

 1 out of 1 managed VMs have been successfully discovered

 Site verification started for sitert11

 Default_HG verification has started

 rt12-8286-42A-2100E5W verification has started

 rt11006 verification has started

 rt11006 verification has completed

 Default_HG verification has completed

 Verification has finished for sitert11

 1 out of 1 VMs have been successfully verified

 Lastly, the VM is checked and shown to be READY_TO_MOVE:

 root:ksys7003rb.aus.stglabs.ibm.com: / >

 # ksysmgr q vm rt11006

 VM:

 Name: rt11006

 UUID: 793E27BD-0113-4A26-93FE-F8DDD5D9B3F1

 Host: rt11-8286-42A-0607585

 State: READY_TO_MOVE

 Priority: Medium

 skip_resource_check: No

 skip_power_on: No

 memory_capacity: none

 cpu_capacity: none

 Dr Test State: INIT

 4.	Move the VM to the DR site.

 After you verify that the VM is ready to move, run ksysmgr to move the host group to the DR site:

 root:ksys7003rb.aus.stglabs.ibm.com: / >

 # ksysmgr move host_group Default_HG to=sitert12

 You are initiating a failover across sites

 Do you wish to proceed? [y|n]

 y

 Host_group move started for Default_HG to sitert12

 Shutdown on Default_HG Host_group has started for VM rt11006

 Shutdown on Default_HG Host_group has completed for VM rt11006

 Restart on sitert12 Host_group has started for VM rt11006

 Restart on sitert12 Host_group has completed for VM rt11006

 Move has completed for VM rt11006

 Configuration cleanup started on Default_HG Host_group for VM rt11006

 Rediscovering configuration for VM rt11006 on sitert12

 Done rediscovering configuration for VM rt11006 on sitert12

 Host_group move completed for Host_group Default_HG to sitert12

 1 out of 1 VMs have been successfully moved for Default_HG to sitert12

 5.	Log in to AIX VM and verify the IP address configuration.

 Verify the VM IP address configuration. A successful move shows that the IP address and host name changed to the wanted combination for the DR site.

 	
 Note: If the DR scripts are successfully configured, the AIX VM restarts after the initial configuration is performed by the AIX DR scripts.

 a.	Run prtconf to verify the mode and serial number of the current system:

 root:rt11006a: / >

 # prtconf | grep -iE "System Model|Machine Serial"

 System Model: IBM,8286-42A

 Machine Serial Number: 2100E5W

 b.	Run hostname to verify the VM host name:

 root:rt11006a: / >

 # hostname

 rt11006a

 c.	Run netstat to verify VM network routing table:

 root:rt11006a: / >

 # netstat -rn

 Routing tables

 Destination Gateway Flags Refs Use If Exp Groups

 Route Tree for Protocol Family 2 (Internet):

 default 10.40.0.1 UG 1 37 en0 - -

 10.40.0.0 10.40.0.191 UHSb 0 0 en0 - - =>

 10.40/23 10.40.0.191 U 1 0 en0 - -

 10.40.0.191 127.0.0.1 UGHS 0 2 lo0 - -

 10.40.1.255 10.40.0.191 UHSb 0 0 en0 - -

 127/8 127.0.0.1 U 2 72 lo0 - -

 Route Tree for Protocol Family 24 (Internet v6):

 ::1%1 ::1%1 UH 0 0 lo0 - -

 d.	Run ifconfig to verify the VM IP address configuration:

 root:rt11006a: / >

 # ifconfig -a

 en0: flags=1e084863,814c0<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,CHECKSUM_OFFLOAD(ACTIVE),LARGESEND,CHAIN>

 inet 10.40.0.191 netmask 0xfffffe00 broadcast 10.40.1.255

 tcp_sendspace 262144 tcp_recvspace 262144 rfc1323 1

 lo0: flags=e08084b,c0<UP,BROADCAST,LOOPBACK,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT,LARGESEND,CHAIN>

 inet 127.0.0.1 netmask 0xff000000 broadcast 127.255.255.255

 inet6 ::1%1/64

 tcp_sendspace 131072 tcp_recvspace 131072 rfc1323 1

 1.4.2 Implementing IP change scripts on Linux

 As shown in 1.4.1, “Implementing IP change scripts on AIX” on page 19, in the situation where the network configuration is different between the customer’s primary and DR sites, and where the same network IP addresses cannot be used across sites, we include a set of sample scripts to address this requirement for the Linux VMs.

 Introduction

 The implementation of scripts for switching IP addresses when moving a VM between sites is specific to Linux implementations because Linux typically uses the systemd processes for starting up resources. Using systemd for starting Linux system processes has many advantages due to its ability to start processes in parallel. When trying to implement a process that depends on other processes, you must understand how and where to insert your process.

 We do not describe in detail what systemd does or how it is configured in this book, but we provide enough information to our scripts that change the IP addresses depending on which site the VM is.

 Systemd consists of multiple components, of which a unit is one. Systemd manages units and can enable and disable them. Units are described by unit files, which are contained in the /etc/systemd/system directory. There are many types of units that systemd manages, and here you focus on the .service unit. The .service unit describes how to manage an application on the system. The .service unit describes how to run an application or script on the system. This unit updates the IP address of the VM.

 You create a service by creating systemd unit files. This service is run before the network configuration is performed on the VM. Use the following procedure:

 1.	Create a systemd service that does the following tasks:

  –	Starts before the network configuration service.

  –	Runs a script that copies the correct information to the network configuration files as part of its processing.

 2.	Create the script that is called by the service, which does the following tasks:

  –	Uses a system identifier (SID), which typically is a system serial number to determine the appropriate IP address for the VM.

  –	Copies the correct information to the network configuration files.

 	
 Note: For purposes of brevity, error checking is not included in the scripts in this chapter, but it is a best practice to include error checking in your scripts to determine whether the commands ran successfully.

 In addition, the sample scripts in the IBM VM Recovery Manager DR product and in this publication are provided as is and without any IBM Support services.

 Environment configuration data

 The first step in this process is to gather data that is pertinent for the configuration of the VM at each site. For each site, you need the following information:

 •The serial number of the system (host) that the VM moves from and to.

 •The host name of the VM when it is at each host.

 •The related network configuration of the VM when it is at each host:

  –	IP address and associate

  –	Netmask

  –	Default gateway

  –	DNS server

 The serial number of the host is obtained from the file /proc/device-tree/system-id and can be displayed on a Linux CLI by running cat /proc/device-tree/system-id. The network parameters (for example, IP address, and so on) can be acquired from your network administrator.

 Example environment

 In our example hardware and software setup, we use Red Hat Enterprise Linux (RHEL) server release 7.6 (Maipo). The environment consists of two sites, sitert11 and sitert12.

 The Linux VMs are configured such that when the VMs are in sitert11, they have a different IP address and subnet than on site sitert12. We demonstrate that setup by using one Linux VM. The VM has a host name of rt11009 when the VM is on host rt11, and it has a host name of rt11009b when the VM is on host rt12.

 For information about the site, VM, and IP address information, see Table 1-5.

 Table 1-5 IBM VM Recovery Manager DR sample environment configuration

 	
 Component

 	
 Site sitert11

 	
 Site sitert12

 	
 Host

 	
 rt11

 	
 rt12

 	
 Host serial number

 	
 020607585

 	
 022100E5W

 	
 IP address

 	
 10.40.32.113

 	
 10.40.0.194

 	
 Netmask

 	
 255.255.254.0

 	
 255.255.254.0

 	
 Default gateway

 	
 10.40.32.1

 	
 10.40.0.1

 	
 DNS server

 	
 9.3.1.200

 	
 9.3.1.200

 The goal here is to make sure that the scripts configure the VM such that when it is on system rt11that it has the appropriate IP and network configuration for that system. Likewise, when the VM is moved to system rt12, it must have the appropriate IP and network configuration for that system. For more information, see Figure 1-12 and Figure 1-13 on page 32.

 [image:]

 Figure 1-12 Linux VM before the VM Recovery Manager DR move to the DR site

 [image:]

 Figure 1-13 Linux VM before the VM Recovery DR move to the DR site

 Creating copies of the system files

 In our example, we first install the Linux VM on site sitert11 and host rt11 and configured the host name as rt11009 with IP address 10.40.32.113. These settings are the appropriate IP address and host name for this site and host.

 We then create copies of system files by using the serial number as part of the name to identify which network file applies to which host. In our case, we use serial number identifiers “020607585” for host rt11 and “022100E5W” for host rt12.

 You must use the appropriate identifiers for your hosts:

 •For the system file, use /etc/sysconfig/network-scripts/ifcfg-net0 and complete the following steps:

 a.	Create a copy by using the following commands:

 cd /etc/sysconfig/network-scripts

 cp -p ifcfg-net0 020607585.ifcfg-net0

 This file, 202607585.ifcfg-net0, corresponds to the network information that is needed for host rt11.

 b.	Create another copy by using the following commands:

 cd /etc/sysconfig/network-scripts

 cp -p ifcfg-net0 022100E5W.ifcfg-net0

 In our example, we update 022100E5W.ifcfg-net0 by using data that corresponds to host rt12.

 •For the system file, use /etc/hostname and complete the following steps:

 a.	Create a copy by using the following command:

 cp -p /etc/hostname /etc/020607585.hostname

 This file corresponds to the host name information that is needed for host rt11

 b.	Create a copy of /etc/hostname by using the following command:

 cp -p /etc/hostname /etc/022100E5W.hostname

 In our example, we updated /etc/022100E5W.hostname with the data that corresponds to host rt12.

 In total, we have all of the files that are shown in Table 1-6 and Table 1-7.

 Table 1-6 Standard and customized ifcfg-net0 files

 	
 File type

 	
 File name

 	
 Standard network file

 	
 /etc/sysconfig/network-scripts/ifcfg-net0

 	
 Customized for host rt11

 	
 /etc/sysconfig/network-scripts/020607585.ifcfg-net0

 	
 Customized for host rt12

 	
 /etc/sysconfig/network-scripts/022100E5W.ifcfg-net0

 Table 1-7 Standard and customized host name files

 	
 File type

 	
 File name

 	
 Standard host name file

 	
 /etc/hostname

 	
 Customized for host rt11

 	
 /etc/020607585.hostname

 	
 Customized for host rt12

 	
 /etc/022100E5W.hostname

 Contents of the customized system files

 In “Creating copies of the system files” on page 32, we created copies of Linux system files. We customize those files with parameters that are appropriate to the host where the VM will move to.

 For the contents on these customized files, see Table 1-8 and Table 1-9.

 Table 1-8 Contents of customized Linux host name files

 	
 File type

 	
 Host name file for rt11

 	
 Host name file for rt12

 	
 Host name file

 	
 /etc/020607585.hostname

 	
 /etc/022100E5W.hostname

 	
 Contents

 	
 rt11009.ausprv.stglabs.ibm.com

 	
 rt11009b.ausprv.stglabs.ibm.com

 Table 1-9 Contents of customized Linux network configuration files

 	
 File type

 	
 Host name file for rt11

 	
 Host name file for rt12

 	
 Contents

 	
 NAME="net0"

 HWADDR="52:bd:17:03:aa:0b"

 DEVICE="net0"

 ONBOOT=yes

 NETBOOT=yes

 UUID="0c7aade5-93e1-4e01-a6f7-ec5454eba555"

 IPV6INIT=yes

 BOOTPROTO=none

 IPADDR="10.40.32.113"

 NETMASK="255.255.254.0"

 GATEWAY="10.40.32.1"

 TYPE=Ethernet

 DNS1="9.3.1.200"

 	
 NAME="net0"

 HWADDR="52:bd:17:03:aa:0b"

 DEVICE="net0"

 ONBOOT=yes

 NETBOOT=yes

 UUID="0c7aade5-93e1-4e01-a6f7-ec5454eba555"

 IPV6INIT=yes

 BOOTPROTO=none

 IPADDR="10.40.0.194"

 NETMASK="255.255.254.0"

 GATEWAY="10.40.0.1"

 TYPE=Ethernet

 DNS1="9.3.1.200"

 Creating the script to copy appropriate customized file to the system file

 Create the script that copies the appropriate customized files to the system files. This script is named /usr/sbin/vmr_dr_ip_conf.sh. This file uses the Bash shell, and its full content is as follows:

 #!/bin/bash

 #

 SERIAL=$(/usr/bin/cat /proc/device-tree/system-id | /usr/bin/awk -F, '{print $2}')

 cp -p /etc/sysconfig/network-scripts/$SERIAL.ifcfg-net0 /etc/sysconfig/network-scripts/ifcfg-net0

 cp -p /etc/$SERIAL.hostname /etc/hostname

 This file copies each of the customized system files to the appropriate standard system file depending on which host (by serial number) the VM is operational.

 Creating the systemd unit file

 For our sample environment, we create and configure the systemd unit file that runs the vmr_dr_ip_conf.sh as /etc/systemd/system/vmr_dr_ip_conf.service. We create this file and use the vi editor to add the following content:

 [Unit]

 Description=Set IP conf based on system serial

 Before=network-pre.target

 Wants=network-pre.target

 DefaultDependencies=no

 Requires=local-fs.target

 After=local-fs.target

 [Service]

 Type=oneshot

 ExecStart=/usr/sbin/vmr_dr_ip_conf.sh

 RemainAfterExit=yes

 [Install]

 WantedBy=network.target

 Note following items about the vmr_dr_ip_conf.service file contents:

 •The Before, Wants, and WantedBy stanzas tell systemd to run this service before the network services start.

 •The ExecStart stanza tells systemd to run the /usr/sbin/vmr_dr_ip_conf.sh script.

 By using this file, the vmr_dr_ip_conf service runs before the network services start, and it customizes the system files with the appropriate parameters for the host on which it is running.

 Enabling the vmr_dr_ip_conf service

 To enable the vmr_dr_ip_conf service, run the following command:

 systemctl enable vmr_dr_ip_conf

 Here is the command output:

 systemctl enable vmr_dr_ip_conf

 Created symlink from /etc/systemd/system/network.target.wants/vmr_dr_ip_conf.service to /etc/systemd/system/vmr_dr_ip_conf.service.

 Verifying that the vmr_dr_ip_conf service is operational

 To verify that the vmr_dr_ip_conf service is operational, run the systemctl command. Verify that the vmr_dr_ip_conf service is “loaded” and “active”.

 (0) root @ rt11009: /root

 # systemctl | grep vmr

 vmr_dr_ip_conf.service loaded active exited Set IP conf based on system serial

 Verifying that the IP address scripts change the IP addresses during the DR event

 Now that the DR scripts are configured and the vmr_dr_ip_conf systemd service is set up and operational, the environment is ready to be tested by moving the Linux VM to the DR site.

 Test the environment by performing the following steps:

 1.	Do the initial Linux configuration verification.

 Using the configuration as noted in the previous sections, log in to a Linux VM (rt11009) and review the current configuration:

 a.	Verify that the vmr_dr_ip_conf service is operational:

 (0) root @ rt11009: /root

 # systemctl | grep vmr

 vmr_dr_ip_conf.service loaded active exited Set IP conf based on system serial

 b.	Verify the system serial number the VM is on by looking at the system-id file:

 (0) root @ rt11009: /root

 # cat /proc/device-tree/system-id

 IBM,020607585

 c.	Verify the host name of the VM by running the hostname command:

 (0) root @ rt11009: /root

 # hostname

 rt11009.ausprv.stglabs.ibm.com

 d.	Verify the IP address configuration by running the ifconfig command:

 (0) root @ rt11009: /root

 # ifconfig -a

 lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10<host>

 loop txqueuelen 1000 (Local Loopback)

 RX packets 128 bytes 11584 (11.3 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 128 bytes 11584 (11.3 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

 net0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 10.40.32.113 netmask 255.255.254.0 broadcast 10.40.33.255

 inet6 2002:903:15f:180:50bd:17ff:fe03:aa0b prefixlen 64 scopeid 0x0<global>

 inet6 fe80::50bd:17ff:fe03:aa0b prefixlen 64 scopeid 0x20<link>

 ether 52:bd:17:03:aa:0b txqueuelen 1000 (Ethernet)

 RX packets 566757 bytes 37564748 (35.8 MiB)

 RX errors 0 dropped 870 overruns 0 frame 0

 TX packets 1399 bytes 150523 (146.9 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

 device interrupt 19

 e.	Verify the routing configuration by using the netstat command:

 (0) root @ rt11009: /root

 # netstat -rn

 Kernel IP routing table

 Destination Gateway Genmask Flags MSS Window irtt Iface

 0.0.0.0 10.40.32.1 0.0.0.0 UG 0 0 0 net0

 10.40.32.0 0.0.0.0 255.255.254.0 U 0 0 0 net0

 2.	Verify that the Linux LPAR is ready to be moved.

 For this example, only a single Linux VM is needed. The VM that is moved in this case is rt11009. For this reason, we unmanage all VMs except the one to be moved:

 ksysmgr unmanage vm rt11006

 ksysmgr unmanage vm rt11007

 ksysmgr unmanage vm rt11008

 ...

 a.	To verify that the environment is ready, perform a discovery and verification process:

 root:ksys7003rb.aus.stglabs.ibm.com: / >

 # ksysmgr discover site sitert11 verify=yes

 Host_group Default_HG was modified

 Running discovery on entire site, this may take few minutes...

 Storage state synchronization has started for Host_group Default_HG

 Storage state synchronization has completed for Host_group Default_HG

 Discovery has started for VM rt11009

 Configuration information retrieval started for VM rt11009

 Configuration information retrieval completed for VM rt11009

 Discovery has finished for sitert11

 1 out of 1 managed VMs have been successfully discovered

 Site verification started for sitert11

 Default_HG verification has started

 rt12-8286-42A-2100E5W verification has started

 rt11009 verification has started

 rt11009 verification has completed

 Default_HG verification has completed

 Verification has finished for sitert11

 1 out of 1 VMs have been successfully verified

 b.	Lastly, the VM is checked and shown to be READY_TO_MOVE:

 root:ksys7003rb.aus.stglabs.ibm.com: / >

 # ksysmgr q vm rt11009

 VM:

 Name: rt11009

 UUID: 1CE6E32D-9E9E-4A59-9EFE-7275CA457DA2

 Host: rt11-8286-42A-0607585

 State: READY_TO_MOVE

 Priority: Medium

 skip_resource_check: No

 skip_power_on: No

 memory_capacity: none

 cpu_capacity: none

 Dr Test State: INIT

 3.	Move the VM to the DR site.

 After the VM is verified to be ready to move, run ksysmgr to move the host group to the DR site:

 root:ksys7003rb.aus.stglabs.ibm.com: / >

 # ksysmgr move host_group Default_HG to=sitert12

 You are initiating a failover across sites

 Do you wish to proceed? [y|n]

 y

 Host_group move started for Default_HG to sitert12

 Shutdown on Default_HG Host_group has started for VM rt11009

 Shutdown on Default_HG Host_group has completed for VM rt11009

 Restart on sitert12 Host_group has started for VM rt11009

 Restart on sitert12 Host_group has completed for VM rt11009

 Move has completed for VM rt11009

 Configuration cleanup started on Default_HG Host_group for VM rt11009

 Rediscovering configuration for VM rt11009 on sitert12

 Done rediscovering configuration for VM rt11009 on sitert12

 Host_group move completed for Host_group Default_HG to sitert12

 1 out of 1 VMs have been successfully moved for Default_HG to sitert12

 4.	At the DR site, log in to the Linux VM and verify the IP address configuration.

 After the VM is moved to the DR site, the VM IP address configuration is verified. The IP address and host name change to the wanted combination.

 a.	Verify the system serial number that the VM is on by looking at the system-id file:

 (0) root @ rt11009b: /root

 # cat /proc/device-tree/system-id

 IBM,022100E5W

 b.	Verify the host name of the VM by running the hostname command:

 (0) root @ rt11009b: /root

 # hostname

 rt11009b.ausprv.stglabs.ibm.com

 c.	Verify the IP address configuration by running the ifconfig command:

 (0) root @ rt11009b: /root

 # ifconfig -a

 lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10<host>

 loop txqueuelen 1000 (Local Loopback)

 RX packets 229 bytes 23056 (22.5 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 229 bytes 23056 (22.5 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

 net0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 10.40.0.194 netmask 255.255.254.0 broadcast 10.40.1.255

 inet6 2002:903:15f:180:50bd:17ff:fe03:aa0b prefixlen 64 scopeid 0x0<global>

 inet6 fe80::50bd:17ff:fe03:aa0b prefixlen 64 scopeid 0x20<link>

 ether 52:bd:17:03:aa:0b txqueuelen 1000 (Ethernet)

 RX packets 44760 bytes 2993269 (2.8 MiB)

 RX errors 0 dropped 62 overruns 0 frame 0

 TX packets 274 bytes 12776 (12.4 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

 device interrupt 19

 d.	Verify the routing configuration by running the netstat command:

 (0) root @ rt11009b: /root

 # netstat -rn

 Kernel IP routing table

 Destination Gateway Genmask Flags MSS Window irtt Iface

 0.0.0.0 10.40.0.1 0.0.0.0 UG 0 0 0 net0

 10.40.0.0 0.0.0.0 255.255.254.0 U 0 0 0 net0

 The DR scripts are verified and the VM can be moved to its home site.

[image:]
[image:]

IBM VM Recovery Manager High Availability components

 This chapter introduces the IBM VM Recovery Manager High Availability (HA) product from an architectural perspective. The chapter groups its various topics into the following sections:

 •Overview and capabilities

 •Solution components and detailed architecture

 •Communication flows

 	
 Note: When a specific concept, term, or abbreviation is used for the first time, it is emphasized in italics and the surrounding statement can be considered as its definition.

 2.1 Overview and capabilities

 This section presents an architecture overview and the key capabilities of the VM Recovery Manager HA product. Section 2.1.1, “Overview” on page 40 introduces the main idea of the solution, and 2.1.2, “Capabilities” on page 41 lists the relevant use cases that are covered by the tool.

 2.1.1 Overview

 VM Recovery Manager HA can be deployed across an existing PowerVM virtualized infrastructure that consists of Hardware Management Consoles (HMCs), managed systems, Virtual I/O Servers (VIOSs), and virtual machines (VMs). Figure 2-1 presents a generic architecture overview diagram for the VM Recovery Manager HA solution. The term host is used from now on for the physical POWER managed systems. More POWER hosts that are in the same data center and sharing common network connectivity and storage access configuration can be placed together in a host group so that if one host has an issue, the affected VMs are relocated on neighboring healthy hosts in the group.

 [image:]

 Figure 2-1 VM Recovery Manager HA architecture overview

 The core component of the solution is the KSYS controller, which is a piece of software running on a dedicated AIX logical partition (LPAR). The KSYS controller acts as an orchestrator by monitoring continuously the managed infrastructure. When a failure is detected, it makes VM relocation decisions and acts by restarting VMs on different hosts. Configurable user policies are accounted for during relocation. The limit of 24 VIOSs results in up to 12 managed systems per host group for typical dual-VIOS configurations. Up to four host groups are supported by a KSYS controller in large environments. If needed, you can also deploy multiple KSYS controller independent instances, each responsible for its separate group of managed systems.

 2.1.2 Capabilities

 With VM Recovery Manager HA, you have easier HA management of virtualized PowerVM environments. We restate here a bit more of its core capabilities that were introduced in 1.3, “VM Recovery Manager HA” on page 17.

 Host monitoring

 Managed hosts are monitored continuously for failures. When the KSYS controller concludes that a host failure happened, all the VMs previously running on the failed host are automatically restarted on neighboring healthy hosts. The decision that a host failure happened is made by assessing the health state of the VIOSs running on the host. Both VIOSs must be declared unhealthy based on specific logic to conclude that a host failure occurred.

 For more information about the specific logic, see “Host relocation decision” on page 95.

 Virtual machine monitoring

 The KSYS framework also monitors for possible failures at the VM level. If the failure detection component of the framework concludes that only a VM failed but the host is okay, then only the failed VM is restarted on a different host. A piece of software that is called the VM Agent must be installed in the VM so that a heartbeat message with the VM state is sent periodically to the KSYS controller. The lack of the heartbeat messages is the primary factor in deciding the VM relocation, but other factors are also considered when deciding.

 For more information about the decision process, see “VM relocation decision” on page 96.

 Application monitoring

 An application management framework, component of the installed VM Agent monitors the application by using a user-provided monitoring script. This local framework can restart the application by using user-provided stop and start scripts over a user-defined number of times. But, if this repeated local application restart does not solve the problem, then it is considered a permanent application failure and the KSYS controller can take over.

 The KSYS controller monitors all applications that are configured as critical by the user. When such a critical application faces a permanent application failure, the KSYS controller restarts the hosting VM. KSYS first restarts the VM on the same host so that the VM Agent can regain control for a new sequence of local application restart cycles. If the permanent application failure state is reached again, the local VM restarts and the inner application restart cycle is repeated for a limited pre-configured number of times. When the pre-configured restart limit count is reached, then the VM is restarted on a different host.

 For more information about the application management framework and critical application management topics, see 3.7.2, “Application Management Engine” on page 312.

 Unplanned high availability management

 During an unplanned outage, if the VM Recovery Manager HA framework detects a failure and the restart policy is set to auto mode, then the affected VMs are restarted automatically on the other hosts of the host group. If the restart policy is set to advisory mode, then the failed VMs are not relocated automatically but registered users are notified. The user can then check and decide whether to do a manual restart of the affected VMs by using the KSYS interface.

 Planned HA management

 When planned maintenance downtime is required (power circuits intervention, firmware (FW) update, and so on), you can use the Live Partition Mobility (LPM) option of the VM Recovery Manager HA to evacuate the host by migrating all its VMs to neighboring hosts in the group. When maintenance activities are complete, you can use the same VM Recovery Manager HA LPM option to bring the VMs back to their original host in a single operation.

 Advanced high availability policies

 Collocation and anticollocation relationships can be configured for managed VMs. Various policies are available, such as priority-based relocation, priority for the order in which VMs are restarted, host exclusion (blacklist) at VM relocation, and flexible capacity adjustment plus best fit relocation of VMs.

 For more information about the HA policies, see 3.6, “Setting up HA policies” on page 297.

 GUI- and command-line interface-based management

 You can use CLI tools on the KSYS controller and at the VM level. The KSYS controller CLI (ksysmgr) and the VM CLI (ksysvmmgr) installed together with the VM Agent on each managed VM provides full configuration and status management capabilities that cover every aspect of the solution. A GUI that is called the GUI server is also available as a separate installable piece of software for easier management through a web browser.

 For more information, see Chapter 4, “IBM VM Recovery Manager High Availability GUI deployment” on page 323.

 2.2 Solution components and detailed architecture

 The VM Recovery Manager HA solution consists of several key components that communicate and work together to provide a HA environment for systems across the same data center.

 2.2.1 Simplified component model

 We start with the simplified model in Figure 2-2 on page 43, where we place the components that are deployed during the initial setup into the existing PowerVM infrastructure system context, which consists of classical HMCs, hosts, VIOSs, and VMs.

 [image:]

 Figure 2-2 Simplified component model

 Figure 2-2 shows that from a high-level installation and deployment perspective, the product consists of three primary components:

 •KSYS controller

 •VM Agent

 •GUI server

 KSYS controller

 The KSYS controller acts as an overall orchestrator for the environment. You can refer to the KSYS controller as the KSYS subsystem or KSYS. The registered infrastructure is monitored, and if a failure is detected, the KSYS analyzes the situation, notifies the administrator, and can automatically relocate the affected VMs to other healthy hosts. The KSYS interacts with the registered HMCs, hosts, and VIOSs to collect configuration and status information about their managed resources.

 The KSYS controller runs on an AIX LPAR and can be separated from the managed infrastructure to avoid simultaneous KSYS and managed infrastructure outage. The KSYS remains operational even when parts of the managed infrastructure fail. Ensure that the AIX instance running the KSYS subsystem is monitored by local monitoring and incident management solutions. You can periodically check the KSYS subsystem health either by using the CLI or the VM Recovery Manager HA GUI dashboard.

 Virtual machine agent

 When VM and application monitoring is needed, you must install the VM Agent filesets. VM Agent filesets come bundled with the KSYS controller filesets. The VM Agent reacts to the following possible VM and application-level issues:

 VM failures	If the operating system of a VM is not working correctly or if the VM stopped working because of an error, the VM is restarted on another host within the host group. In normal operation, the KSYS controller receives the heartbeat from the VM Agent and nothing happens. When the heartbeat from the VM does not arrive, the KSYS controller reacts, enters a decision-making process, and restarts the VM.

 Application failures	Optionally, you can register the applications in the VM Agent to enable application monitoring. The VM Agent checks the health of the registered applications by running periodically an application-specific user-provided monitoring script. It restarts the application locally if the script returns an error. For critical applications, if the local restart does not succeed, the KSYS is notified and can do a local VM restart in the same host and even VM relocation on a different host.

 GUI server

 The administrator can operate the tool either directly on the KSYS controller by using CLI commands in terminal sessions or the web browser through the GUI server. GUI-based access offers a user-friendly management alternative to the CLI approach, and it can act as a single point of control for multiple KSYS instances within the environment. The GUI server topic is covered in Chapter 4, “IBM VM Recovery Manager High Availability GUI deployment” on page 323.

 2.2.2 Refined component model

 We now further refine the component model that is described in 2.2.1, “Simplified component model” on page 42 by providing more insights about the key subsystems that are involved, the connectivity topology, and some basic communication flows that are used to exchange data with each other. With this augmented model, which is shown in Figure 2-3, we can cover redundancy and security aspects, which are mandatory for an enterprise solution.

 [image:]

 Figure 2-3 Refined component model

 The product is also designed to minimize the setup effort after the software installation registers the HMCs with the correct credentials to the KSYS. This design enables visibility of all hosts, VIOSs, and VMs that the HMCs manage. You define the host groups by deciding which managed systems are a part of each host group. All VIOSs and VMs on a host that are added in a host group are registered and managed by default. You can manually exclude some VMs so they remain unmanaged.

 After this preliminary host group setup is complete, run a simple host group discovery command. The host group discovery scans and collects the required input and performs all the required settings. Allow the discovery to complete and do not manually intervene while it is running. Access the HMC and VIOS only if errors are detected after the discovery process.

 Consider an initial discovery that successfully completed for a host group. New components show up or are activated, as shown in Figure 2-3 on page 44, in addition to those in 2.2.1, “Simplified component model” on page 42. We introduce these new components as follows:

 •Host monitor

 •Shared Storage Pool cluster and Health Status Database

 •Virtual switch

 •VM monitor and Application Monitoring Framework

 Host monitor

 The KSYS accesses the HMCs and activates the host monitor (HM) daemon on each VIOS. The HM code is included as part of the VIOS V3.1 enhancements, so any VIOS 3.1 or later installation has it. To see whether any specific update must be applied, see IBM Knowledge Center. The HM daemon is activated on a VIOS when the user performs the first KSYS discovery operation for the host group containing the host where the VIOS is. The HM is ready to communicate with the KSYS controller through the HMC and VIOS.

 A key role of the HM is to monitor the heartbeat coming from the VMs running on the host and to update KSYS subsystem. HM also intermediates communication between the VM Agent and KSYS.

 Shared Storage Pool cluster and Health Status Database

 The first KSYS discovery operation that is performed by the user for a defined host group also deploys a Shared Storage Pool (SSP) cluster across the VIOSs. All these VIOSs must be set as MANAGED in the KSYS configuration, and they can share two disks of at least 10 GB each. One disk is used as repository disk for the SSP cluster, and the other one, the HA disk, is used to track the health state of the whole host group. If the SSP cluster is created by the KSYS subsystem, no other party may use it. You must not use this SSP cluster for any other purpose. If a user-defined SSP cluster exists on the involved VIOSs, then the KSYS subsystem uses the existing SSP cluster.

 A shared file system space and database are created on the shared disk for SSP management. KSYS creates its own schema inside this SSP management database. Health status information about VMs, HMs, and VIOSs of all hosts on the host group is then saved and kept inside that schema. This database is called the Health Status Database (HSDB). When the KSYS controller retrieves a piece of data by querying the HSDB, it uses a single VIOS in the host group and does not need to interrogate each VIOS separately. KSYS polls the HSDB every 20 seconds for health status updates. The retrieved updates are empty under normal operating conditions. Only when something is not healthy is information returned to KSYS.

 The SSP cluster is also used for a second purpose. The underlying Cluster Aware AIX (CAA) cluster performs its CAA heartbeats over the network and, when the network goes down, over the repository disk. CAA Autonomic Health Advisor File System (AHAFS) event monitoring is integrated with the SSP monitoring, and all this event monitoring framework is extended to update the health database with the received information from the CAA. CAA heartbeat and health monitoring aids KSYS to monitor for host failures.

 This is the bare minimum HA management that you obtain if you initialize only KSYS, configure the HMCs, and create the host group. KSYS initiates health management by using the deployed SSP cluster and HSDB, and it is ready to determine any subsequent host failure. This host monitoring is independent of any VM running on the host itself. A second thing that you can do is to install the VM Agent. It is optional, but if you install and configure this VM Agent on your VMs, you get some extra benefits, as explained “Virtual switch” and “VM monitor and Application Monitoring Framework” on page 47.

 Virtual switch

 During a host group discovery, if at least one VM on a member host is enabled for monitoring, then KSYS creates a virtual switch in each host hypervisor. One trunk Virtual Ethernet adapter is created on each VIOS and connected to the new virtual switch. The trunk adapters have different virtual LAN (VLAN) IDs (101 on one VIOS and 102 on the other VIOS). During discovery, two standard Virtual Ethernet adapters are also created on each VM that is enabled for monitoring. One Virtual Ethernet adapter has VLAN ID 101 and the other Virtual Ethernet adapter has VLAN ID 102. The virtual switch is configured in Virtual Ethernet Port Aggregator (VEPA) mode to isolate the VMs from each other. Each VM can communicate only with the trunk ports on the VIOS side and cannot reach the other VMs through this VEPA mode switch.

 Figure 2-4 shows a virtual switch and related Virtual Ethernet adapters on a host with three VMs, all enabled for monitoring at the KSYS level.

 [image:]

 Figure 2-4 Hypervisor vSwitch

 A private data link protocol is used for communication between HM and VM monitor (VMM) through the virtual switch. There is no TCP/IP stack that is configured on these private interfaces. They are used exclusively for two purposes:

 •To transmit heartbeat messages from the VM Agent to the HMs and from there to the KSYS subsystem.

 •To provide two-way connectivity between the KSYS controller and the VM Agent for the exchange of configuration and status updates about the monitored applications.

 By using this protocol, you get a complete communication path between the KSYS controller on one side and each VM Agent with its monitored applications on the other side. Redundancy is provided by an intrinsic design that is based on double components at the HMC and VIOS levels. Security is ensured by the virtual switch VEPA mode, which isolates the VM private interfaces.

 VM monitor and Application Monitoring Framework

 The VM Agent has two subsystems, each providing a specific function:

 VM monitor	This subsystem sends periodically a heartbeat message to the HMs in the underlying VIOSs. Those heartbeats help you detect OS hangs or fails. If the OS kernel crashes, for example, then HMs no longer receive the heartbeat from VMM and after some time update the HSDB. KSYS is polling HSDB periodically and is eventually informed about the VM missed heartbeat. This event can result in a VM relocation decision or at least a user notification about the issue, depending on the way this behavior is configured by the administrator.

 Application Monitoring Framework		This subsystem registers, starts, stops, and monitors the applications. For the monitoring framework, an application is defined by three user-provided scripts: a monitoring script, a start script, and a stop script. When you register an application, you specify these three scripts in the framework. The framework then checks the health of the registered applications by running periodically the provided monitoring script. It restarts the application locally in case the script returns with an error. For critical applications, if that repeated local restart does not succeed, the KSYS is notified and can decide on a local VM restart in the same host or VM relocation on a different host.

 For more information about the VM Agent structure and functions, see 2.2.8, “VM Agent architecture” on page 164.

 2.2.3 KSYS test cluster example

 In our KSYS test cluster, we deployed a simplistic two-HMC and two-host configuration. The primary focus here is to illustrate the functions that are described in 2.2.2, “Refined component model” on page 44. The detailed configuration is described in Chapter 3, “Planning and deploying IBM VM Recovery Manager High Availability for IBM Power Systems” on page 265.

 Assuming that the KSYS cluster is successfully installed and initialized, then its state can be Online, as shown in Example 2-1.

 Example 2-1 KSYS cluster state immediately after initial deployment

 [image:]

 # ksysmgr query ksyscluster

 Name: rbRMHA

 State: Online

 Type: HA

 # lsrpdomain

 Name OpState RSCTActiveVersion MixedVersions TSPort GSPort

 rbRMHA Online 3.2.4.1 No 12347 12348

 # lssrc -s IBM.VMR

 Subsystem Group PID Status

 IBM.VMR rsct_rm 8454466 active

 #

 [image:]

 Immediately after registering an HMC, you can see the universally unique identifier (UUID) for each of its managed systems, as shown in Example 2-2. For dual-HMC configurations, managed systems appear once under each managing HMC.

 Example 2-2 Host UUIDs

 [image:]

 # ksysmgr query hmc

 Name: rthmc6

 Ip: 9.3.207.78

 Login: hscroot

 Managed Host List:

 Host Name Uuid

 ========= ====

 rt12-8286-42A-2100E5W 4715697c-a486-3cbb-8b5a-2637fa4db054

 rt14-8286-42A-SN2100DEW 6e2f37f5-1824-347a-99fd-488f818086dd

 ==

 Name: rthmc3

 Ip: 9.3.18.159

 Login: hscroot

 Managed Host List:

 Host Name Uuid

 ========= ====

 rt13-8286-42A-21E0B2V 4462c37c-65c6-3614-b02a-aa09d752c2ee

 rt11-8286-42A-0607585 d04d8a4a-99fa-3e4b-80bc-c9d9716bd8f8

 ==

 #

 [image:]

 The host must be explicitly added to be managed by the KSYS cluster. You can select the hosts among the ones that are available at the registered HMCs level. When a host is added, all its VIOS LPARs are registered by default and set to the MANAGED state.

 Example 2-3 shows the VIOSs running on the hosts that we added in our test KSYS cluster.

 Example 2-3 VIOS LPARs on registered hosts

 [image:]

 # ksysmgr query host

 Name: rt14-8286-42A-SN2100DEW

 UUID: 6e2f37f5-1824-347a-99fd-488f818086dd

 FspIp: Must run discovery first to populate

 Host_group: No host_group defined

 VIOS: rt14v1

 rt14v2

 HMCs: rthmc6

 HA_monitor: enable

 VM_failure_detection_speed: normal

 Name: rt13-8286-42A-21E0B2V

 UUID: 4462c37c-65c6-3614-b02a-aa09d752c2ee

 FspIp: Must run discovery first to populate

 Host_group: No host_group defined

 VIOS: rt13v2

 rt13v1

 HMCs: rthmc3

 HA_monitor: enable

 VM_failure_detection_speed: normal

 #

 [image:]

 When a host has more than two VIOSs, you must keep in the KSYS configuration only two of the VIOSs to provide access to the shared storage resources. The other VIOSs must be explicitly unregistered from the KSYS cluster instance, as suggested in Example 2-4.

 Example 2-4 How to unmanage a VIOS LPAR

 [image:]

 # ksysmgr unmanage vios -h

 ksysmgr unmanage vios <viosname[,...]> | <viosuuid[,...]

 unmanage => unman*, umg

 vios => vios*

 #

 [image:]

 The host group of our two hosts is created, as shown in Example 2-5.

 Example 2-5 rbHG host group immediately after creation

 [image:]

 # ksysmgr query host_group

 Name: rbHG

 Hosts: rt13-8286-42A-21E0B2V

 rt14-8286-42A-SN2100DEW

 Memory_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 CPU_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 Skip_power_on: No

 HA_monitor: enable

 Restart_policy: auto

 VM_failure_detection_speed: normal

 Host_failure_detection_time: 90

 No SSP

 #

 [image:]

 When we installed and started the VM Agent on the VMs, we decided to keep them as managed in our configuration. Then, we performed the initial host group discovery and verification operations. Example 2-6 shows the output of the initial discovery. The SSP was created, but there is nothing about the virtual switches and trunk adapters.

 Example 2-6 SSP creation at initial host group discovery

 [image:]

 # ksysmgr discover host_group rbHG

 Running discovery on Host_group rbHG, this may take few minutes...

 SSP creation started for Host_group rbHG

 SSP creation completed for Host_group rbHG

 Discovery has started for VM rt13001

 Configuration information retrieval started for VM rt13001

 ...

 Configuration information retrieval completed for VM rt13001

 Discovery for VM rt13001 is complete

 ...

 Discovery has finished for rbHG

 8 out of 8 managed VMs have been successfully discovered

 Successfully created dir:/var/ksys/snapshots

 # ksysmgr verify host_group rbHG

 Host_group verification started for rbHG

 rt13001 verification has started

 ...

 rt13001 verification has completed

 ...

 Verification has finished for rbHG

 8 out of 8VMs have been successfully verified

 #

 [image:]

 The SSP cluster status on a VIOS node is available in Example 2-7.

 Example 2-7 SSP cluster status

 [image:]

 $ cluster -status

 Cluster Name State

 KSYS_rbRMHA_1 OK

 Node Name MTM Partition Num State Pool State

 rt13v2 8286-42A0221E0B2V 2 OK OK

 rt13v1 8286-42A0221E0B2V 1 OK OK

 rt14v1 8286-42A022100DEW 1 OK OK

 rt14v2 8286-42A022100DEW 2 OK OK

 $

 [image:]

 We repeated the discovery and verify operations, and checked that the system and managed VMs have the ha_monitor attribute enabled, as shown in Example 2-8. Now, trunk adapters appear.

 Example 2-8 Trunk adapter creation at host group discovery after enabling monitoring

 [image:]

 # ksysmgr modify system ha_monitor=enable

 KSYS ha_monitor has been updated

 # ksysmgr modify vm rt13001,rt13002,rt13005,rt13007,rt14001,rt14002,rt14005,rt14007 ha_monitor=enable

 For VM rt13001 attribute(s) 'ha_monitor' was successfully modified.

 ...

 For VM rt14007 attribute(s) 'ha_monitor' was successfully modified.

 # ksysmgr discover host_group rbHG verify=yes

 Running discovery on Host_group rbHG, this may take few minutes...

 Creating HA trunk adapter for VIOS rt14v2

 Finished creating HA trunk adapter for VIOS rt14v2

 Creating HA trunk adapter for VIOS rt13v2

 Finished creating HA trunk adapter for VIOS rt13v2

 Creating HA trunk adapter for VIOS rt14v1

 Finished creating HA trunk adapter for VIOS rt14v1

 Creating HA trunk adapter for VIOS rt13v1

 Finished creating HA trunk adapter for VIOS rt13v1

 Preparing VIOS in rt13-8286-42A-21E0B2V for HA management

 VIOS in rt13-8286-42A-21E0B2V prepared for HA management

 Preparing VIOS in rt14-8286-42A-SN2100DEW for HA management

 VIOS in rt14-8286-42A-SN2100DEW prepared for HA management

 Discovery has started for VM rt13001

 Configuration information retrieval started for VM rt13001

 ...

 Configuration information retrieval completed for VM rt14007

 Discovery for VM rt14007 is complete

 Discovery has finished for rbHG

 8 out of 8 managed VMs have been successfully discovered

 Host_group verification started for rbHG

 rt13001 verification has started

 ...

 rt14007 verification has completed

 Verification has finished for rbHG

 8 out of 8 VMs have been successfully verified

 #

 [image:]

 Example 2-9 shows the vSwitch and Virtual Ethernet adapter connectivity details of an AIX VM and its underlying VIOSs after the new discovery operation.

 Example 2-9 vSwitch Virtual Ethernet Adapter details: VM and VIOSs

 [image:]

 # uname -uL;oslevel -s

 IBM,0221E0B2V 3 rt13001

 7200-03-02-1845

 # lsdev -l ent*|while read ent bla; do echo; echo $ent; entstat -d $ent|grep -E "^Port\ VLAN|Switch"; done

 ent0

 Port VLAN ID: 1

 Switch ID: ETHERNET0

 ent1

 Port VLAN ID: 101

 Switch ID: rbRMHA_VSWITCH

 ent2

 Port VLAN ID: 102

 Switch ID: rbRMHA_VSWITCH

 #

 # uname -uL; /usr/ios/cli/ioscli ioslevel; oslevel -s

 IBM,0221E0B2V 1 rt13v1

 3.1.0.00

 7200-03-02-1845

 # entstat -d ent7|grep -E "^Port\ VLAN|Switch"

 Port VLAN ID: 102

 Switch ID: rbRMHA_VSWITCH

 Switch Mode: VEPA

 #

 # uname -uL; /usr/ios/cli/ioscli ioslevel; oslevel -s

 IBM,0221E0B2V 2 rt13v2

 3.1.0.00

 7200-03-02-1845

 # entstat -d ent5|grep -E "^Port\ VLAN|Switch"

 Port VLAN ID: 101

 Switch ID: rbRMHA_VSWITCH

 Switch Mode: VEPA

 #

 [image:]

 The VEPA mode of the switch ensures complete isolation between connected VM Virtual Ethernet adapters. They have connectivity only with the VIOS trunk adapter.

 2.2.4 KSYS as a Resource Monitoring and Control subsystem

 The KSYS daemon is implemented as a Resource Monitoring and Control (RMC) resource manager, and the ksysmgr CLI as an RMC client application. RMC is a subset function of Reliable Scalable Cluster Technology (RSCT). Before going into detail about the KSYS subsystem, we introduce some basic RMC concepts and terminology.

 Resource Monitoring and Control concepts

 RSCT is a set of software components that provide generic clustering services for AIX and Linux platforms. It consists of various core subsystems, such as Group Services, Topology Services, and System Registry.

 RMC is a subsystem of RSCT that is a generalized framework for managing, monitoring, and manipulating system resources. By system resources, we mean various physical or logical entities that are represented in an abstracted way in the RMC framework. Any resource abstraction, simply called resource, has attributes that describe configuration and state characteristics of the modeled entity and actions to model behavior and changes, like in usual object-oriented approaches. Resources with similar characteristics are instances of predefined resource classes.

 An example of a resource is IBM.MCP (Example 2-10), which keeps details about the HMC managing the LPAR.

 Example 2-10 IBM.MCP resource

 [image:]

 # lsrsrc IBM.MCP

 Resource Persistent Attributes for IBM.MCP

 resource 1:

 MNName = "9.3.18.181"

 NodeID = 6958593213159554706

 KeyToken = "vmhmc5"

 IPAddresses = {"9.3.207.188"}

 ConnectivityNames = {"9.3.18.181"}

 HMCName = "7042CR9*213BDAD"

 HMCIPAddr = "9.3.207.188"

 HMCAddIPs = ""

 HMCAddIPv6s = ""

 ActivePeerDomain = "rbRMHA"

 NodeNameList = {"ksys7004customer.aus.stglabs.ibm.com"}

 #

 [image:]

 On a typical AIX instance, the RMC subsystem is activated in a default stand-alone configuration immediately after the operating system installation. It is started by the SRC subsystem as the ctrmc daemon and can be used this way to manage and monitor the resources of a single machine. Associated local daemons, called resource managers, act as a software layer between resources and the RMC daemon. Resource managers map the programmatic abstracted resources and classes that are defined and maintained within the RMC framework to actual calls and commands handling their counterpart physical or logical entity resources. Resource managers also maintain definitions and persistent attributes of those abstract resource instances and classes they are responsible for in a collection of local files, referred to as the local registry. A resource manager daemon can be started by the SRC subsystem, by the RMC daemon on demand, or autostarted when RMC is brought online.

 You can configure ctrmc daemons on multiple systems to communicate with each other in a cluster configuration. With such a setup, you can manage and monitor resources of all systems (nodes) in the cluster. There are two cluster setups that are available: peer domain clusters and management domain clusters.

 A peer domain is a set of nodes that have a consistent knowledge of the existence of each other and of the resources that are shared among them. In a peer domain setup, RMC activates and uses core RSCT subsystems such as Topology Services, Group Services, and cluster security services subsystems.

 A management domain is defined as a set of nodes whose resources can be managed and monitored from one of the nodes, which is designated as the management control point (MCP). All other nodes are considered to be managed nodes. Topology Services and Group Services are not used in a management domain.

 The registry component provides data persistency and consistency services. Persistent data is stored in local registry files. In cluster configurations, data consistency is ensured by maintaining the local registry replicas in sync on all cluster nodes.

 The RMC framework provides APIs and also command utilities (mkrsrc, lsrsrc, chrsrc, rmsrc, lsactdef, runact, and so on) to support client applications, resource managers, and users to create and manipulate their resources and classes. Libraries and APIs are available to support all these functions, as shown in Figure 2-5.

 [image:]

 Figure 2-5 RMC framework

 An RMC client application can call API subroutines directly or can use command utilities, which are RMC clients themselves. A resource manager implements its own functions so that the RMC daemon can pass requests from client applications.

 A resource manager daemon can create and initialize its own specific in-memory constructs, mainly Resource Control Points (RCPs) and Resource Class Control Points (RCCPs) to handle its managed resources and resource classes in the registry. RCPs and RCCPs are instantiated objects of a class type that are initialized by a constructor and expose their functions by implemented methods. A resource manager itself might have a Resource Manager Control Point (RMCP) object.

 Resource managers use RSCT multi-page tracing capability for logging purposes. Code inside resource managers can send trace records (relevant to an internal functional context or decided by some criteria to be grouped) into a common logical trace file that is referred by a base name. Multiple distinct base names can be used. The tracing facility writes these records into a set of physical trace files that have the same base name and suffixes in the form of .number.sp. These physical files are referred to as trace page files and are written in a typical rotating manner.

 When the last page file that is associated with a logical trace file is full, the trace records are written to the first page file. The fixed number of these trace files limits the history information that is available for debugging purposes. If needed, you can modify the number and size of the page files. Additionally, you can activate the trace spooling feature to copy the completed files to another directory on the system where you have more space that is available. Trace spooling can be turned on or off. Manual or automated (crontab based or similar) cleanup maintenance is needed to avoid file system full situations for the spooling repository.

 Example 2-11 presents the ctrmc RMC daemon and the resource managers running on our AIX instance before the KSYS cluster creation. The AIX instance also shows up as part of a management domain. It is the management domain that is established between the managing HMC and its managed LPARs with the HMC in MCP role.

 Example 2-11 Default RMC subsystem

 [image:]

 # lssrc -g rsct

 Subsystem Group PID Status

 ctrmc rsct 12517638 active

 ctcas rsct inoperative

 # lssrc -g rsct_rm

 Subsystem Group PID Status

 IBM.HostRM rsct_rm 15532476 active

 IBM.ConfigRM rsct_rm 11796916 active

 IBM.DRM rsct_rm 6881586 active

 IBM.MgmtDomainRM rsct_rm 15466872 active

 IBM.ServiceRM rsct_rm 10289656 active

 IBM.ERRM rsct_rm inoperative

 IBM.AuditRM rsct_rm inoperative

 # rmcdomainstatus -s ctrmc

 Management Domain Status: Management Control Points

 I A 0x6091e3a8bed1be92 0001 9.3.207.188

 #

 [image:]

 We show the local AIX resource in Example 2-10 on page 53 that represents the HMC MCP. This management domain setup supports HMC and LPAR operations, like graceful shutdown; DLPAR; LPM; and others. In a dual-HMC configuration, there are two management domains.

 For more information about the RMC framework, see the IBM Knowledge Center and A Practical Guide for Resource Monitoring and Control (RMC), SG24-6615. These resources cover the default AIX resource managers and associated resources and classes that you have seen so far in the example outputs of this section.

 Let us now examine how the RMC framework is used by VM Recovery Manager HA to implement its KSYS controller function.

 KSYS components in the RMC framework

 Example 2-1 on page 48 showed that the KSYS cluster creation step configures the RMC subsystem as part of an RSCT peer domain. Example 2-12 shows the following extra details:

 •The peer domain has a single node.

 •Group Services and Topology Services subsystems are activated.

 •New resource managers are configured, including the IBM.VMR resource manager in which we are interested.

 Example 2-12 IBM.VMR RMC Resource Manager

 [image:]

 # lssrc -g rsct

 Subsystem Group PID Status

 ctrmc rsct 12517638 active

 ctcas rsct inoperative

 # lsrpdomain

 Name OpState RSCTActiveVersion MixedVersions TSPort GSPort

 rbRMHA Online 3.2.4.1 No 12347 12348

 # lsrpnode -i

 Name OpState RSCTVersion NodeNum NodeID

 ksys7004customer.aus.stglabs.ibm.com Online 3.2.4.1 1 cbd72d17633f31e3

 # rmcdomainstatus -s ctrmc

 Peer Domain Status

 S S 0xcbd72d17633f31e3 0001 ksys7004customer.aus.stglabs.ibm.com

 Management Domain Status: Management Control Points

 I A 0x6091e3a8bed1be92 0001 9.3.207.188

 # lssrc -a|grep ctha

 cthats cthats 7012846 active

 cthags cthags 9437456 active

 cthagsglsm cthags inoperative

 # lssrc -g rsct_rm

 Subsystem Group PID Status

 IBM.HostRM rsct_rm 15532476 active

 IBM.ConfigRM rsct_rm 11796916 active

 IBM.DRM rsct_rm 6881586 active

 IBM.MgmtDomainRM rsct_rm 15466872 active

 IBM.ServiceRM rsct_rm 10289656 active

 IBM.StorageRM rsct_rm 12648774 active

 IBM.VMR rsct_rm 8454466 active

 IBM.ERRM rsct_rm inoperative

 IBM.AuditRM rsct_rm inoperative

 IBM.LPRM rsct_rm inoperative

 #

 [image:]

 KSYS daemon is implemented in the form of the IBM.VMR resource manager. Figure 2-6 on page 57 shows the KSYS controller components that are interconnected within the RMC framework:

 •The ksysmgr utility

 •IBM.VMR resource manager

 •Resource and Class Registry

 [image:]

 Figure 2-6 KSYS in an RMC framework

 The ksysmgr utility

 As introduced in 3.5, “Configuring VM Recovery Manager HA” on page 281, ksysmgr represents internally the various entities it manages as objects of a predefined type CLASS, on which an ACTION can be performed. These objects are, in fact, just RMC resources of a specific RMC resource class, with predefined attributes and actions. Most of the ksysmgr commands start RMC-provided utilities that are revealed in the ksysmgr log /var/ksys/log/ksysmgr.log. The excerpt in Example 2-13 shows a sequence of actions that were logged during our KSYS cluster creation by the ksysmgr add ksyscluster command. Steps in the sequence start RMC utilities such as preprpnode, mkrpdomain, and lsrsrc.

 Example 2-13 KSYS cluster creation excerpt from /var/ksys/log/ksysmgr.log

 [image:]

 [15335792] !COMMAND!:"ksysmgr add ksyscluster rbRMHA ksysnodes=ksys7004customer type=HA"

 [15335792] add_ksyscluster()[52]: ENTERING

 [15335792] Getting hostname for ksys7004customer

 [15335792] known host ksys7004customer.aus.stglabs.ibm.com

 ...

 [15335792] Adding node to current cluster configuration

 [15335792] time:10/27/2018 13:26:16 -------------

 [15335792] runSystemCommand()[794] : RUNNING COMMAND:/usr/sbin/rsct/bin/preprpnode ksys7004customer > /dev/null 2>&1

 [15335792] runSystemCommand()[800]: Unaltered return status: 0

 [15335792] runSystemCommand()[827]: RC: 0

 [15335792] time:10/27/2018 13:26:16 -------------

 [15335792] runSystemCommand()[794] : RUNNING COMMAND:/usr/sbin/rsct/bin/mkrpdomain rbRMHA $(/usr/bin/hostname) > /dev/null 2>&1;

 [15335792] runSystemCommand()[800]: Unaltered return status: 0

 [15335792] runSystemCommand()[827]: RC: 0

 [15335792] Ksyscluster has been created, please run: "ksysmgr verify ksyscluster <ksysclustername>"

 [15335792] time:10/27/2018 13:26:20 -------------

 [15335792] runSystemCommand()[794] : RUNNING COMMAND:lssrc -s IBM.VMR | grep IBM.VMR | awk '{print $3}' >/tmp/ksysmgr.tmp.YQW7ea; [-s /tmp/ksysmgr.tmp.YQW7ea]

 [15335792] runSystemCommand()[800]: Unaltered return status: 0

 [15335792] runSystemCommand()[827]: RC: 0

 add_ksyscluster()[478]: EXITING SUCCESSFULLY

 [image:]

 IBM.VMR resource manager

 The IBM.VMR resource manager is responsible for its own set of resources and classes, and has specific attributes and actions. Example 2-14 starts by listing all resource classes that are defined at the RMC level after the KSYS cluster creation. The second column lists the associated resource manager of each class in the first column. Filtering by the IBM.VMR string in the second column, we get 11 classes as the final output. They are the RMC classes that are managed by the IBM.VMR resource manager.

 Example 2-14 Resource classes of the IBM.VMR resource manager

 [image:]

 # echo "class_name:mgr_name"; lsrsrc -c|grep -v class_name|while read cl; do echo "$cl:\c"; lsrsrcdef -c $cl|grep mgr_name|awk '{ print $3}';done|grep IBM.VMR

 class_name:mgr_name

 "IBM.VMR_HMC":"IBM.VMR"

 "IBM.VMR_CEC":"IBM.VMR"

 "IBM.VMR_LPAR":"IBM.VMR"

 "IBM.VMR_VIOS":"IBM.VMR"

 "IBM.VMR_SSP":"IBM.VMR"

 "IBM.VMR_SITE":"IBM.VMR"

 "IBM.VMR_SA":"IBM.VMR"

 "IBM.VMR_DP":"IBM.VMR"

 "IBM.VMR_DG":"IBM.VMR"

 "IBM.VMR_HG":"IBM.VMR"

 "IBM.VMR_APP":"IBM.VMR"

 #

 [image:]

 The RMC resource manager IBM.VMR implements its log files by using the common RSCT trace facility. Example 2-15 shows the default trace setup for the IBM.VMR resource manager.

 Example 2-15 Default tracing setup for the IBM.VMR resource manager

 [image:]

 # lssrc -ls IBM.VMR|grep -p trace

 Information about trace levels:

 ...

 _VMR Errors=255 Info=1 LPAR=4 Verify=4 KREST=5 KRI=4

 FDE=4 FDELong=4 CONFLICT=4 MSG=4 Debug=0

 /var/ct/3EmzyyOpynuvLXYdEkdZSO/log/mc/IBM.VMR/trace.1.sp -> spooling not enabled

 /var/ct/rbRMHA/log/mc/IBM.VMR/trace.conflict.1.sp -> spooling not enabled

 /var/ct/rbRMHA/log/mc/IBM.VMR/trace.fde.1.sp -> spooling not enabled

 /var/ct/rbRMHA/log/mc/IBM.VMR/trace.fdelong.1.sp -> spooling not enabled

 /var/ct/rbRMHA/log/mc/IBM.VMR/trace.krest.1.sp -> spooling not enabled

 /var/ct/rbRMHA/log/mc/IBM.VMR/trace.krestlong.1.sp -> spooling not enabled

 /var/ct/rbRMHA/log/mc/IBM.VMR/trace.ksys.1.sp -> spooling not enabled

 /var/ct/rbRMHA/log/mc/IBM.VMR/trace.msg.1.sp -> spooling not enabled

 /var/ct/rbRMHA/log/mc/IBM.VMR/trace.user.1.sp -> spooling not enabled

 #

 [image:]

 There are nine distinct logical trace files with a specific base name, each with its preconfigured number of physical page trace files. The product documentation mentions five of them (user, ksys, fde, krest, and krestlong), which are used for problem determination. The user and ksys files contain both information about the functions that are run for each operation, but ksys provides more details. When investigating a problem, start by checking the user log file and, if needed, go to ksys. Similarly, trace.fdelong.*.sp and trace.fde.*.sp are the detailed and the abridged trace files for the Failure Detection Engine (FDE), which is a core functional module that has its own dedicated trace files.

 The KSYS daemon communicates with HMCs and VIOSs in the infrastructure by using a wrapper library for the HMC Representational State Transfer (REST) API that is called libkrest. Inputs, outputs, and errors of libkrest calls are traced by dedicated high-level (trace.krest.*.sp) and detailed trace (trace.krestlong.*.sp) files.

 Typical trace file records have as their third field the pthread ID (pTID) of the thread logging the record. Example 2-16 shows sample records taken from the trace.user.*.sp files (after these are formatted by the rpttr -odict /var/ct/rbRMHA/log/mc/IBM.VMR/trace.user* command).

 Example 2-16 User trace file excerpt

 [image:]

 ...

 [00] 10/27/18 T(1) ____ 13:29:45.936221 ******************* Trace Started - Pid = 8454466 **********************

 [00] 10/27/18 T(304) _VMR 13:29:45.964261 [INFO,VMRDaemon,] Start LPAR category logging

 ...

 [00] 10/27/18 T(203) _VMR 14:29:50.997883 [INFO]: SCHEDULER initiated QUICK discoverVerify Started

 ...

 [00] 10/27/18 T(809) _VMR 14:47:09.403713 DEBUG VMR_HG.C[13572]: Policymap VmtoCECMapTable:

 ...

 [00] 10/27/18 T(9293) _VMR 15:58:58.094910 DEBUG VMR_HG.C[7580]: User triggered operation: migrate

 ...

 [00] 10/27/18 T(396) _VMR 15:59:03.095091 DEBUG VMR_HG.C[13348]: -------------POLICYMAP EXE START------------------------

 ...

 [01] 11/10/18 T(90a) _VMR 02:05:50.840332 DEBUG VMR_LPAR.C[4220]: do_recover_LPAR STARTED for VM: rt13001(4E395E99-FFFB-4345-8067-2D5296BA7D91) action_id: validate

 ...

 [image:]

 To get a first contact with the structure of the KSYS daemon, look for these thread IDs in the daemon thread stack snapshot that was taken, as shown in Example 2-17. The daemon had 142 threads at the moment the procstack command ran. Of them, 128 of them had the threadHandler() function called followed by TaskQueue::getTaskFromQueue() as distinctive sequence among the nested calls in each thread stack. Because it is not helpful to list them all, we selected one (pTID 2314) to represent all 128 of them in the output of the last command, prockstack 8454466. The output is further shortened for easier reading.

 Example 2-17 KSYS daemon thread stack

 [image:]

 # procstack 8454466|grep -c tid#

 142

 # procstack 8454466|grep -c "TaskQueue::getTaskFromQueue"

 129

 # procstack 8454466|grep -c "eventHandler"

 1

 # procstack 8454466|grep -c "threadHandler"

 128

 # procstack 8454466

 8454466: /opt/rsct/bin/IBM.VMRd

 ---------- tid# 15532537 (pthread ID: 1) ----------

 ...

 0xd28f9438 rsct_base::CDaemon::handleSRC(int)(0x3019cab0, 0x0) + 0x278

 0xd27a7b8c rsct_rmf3v::RMDaemon::handleSRC(int)(0x3019cab0, 0x0) + 0x10c

 0x1003e810 main() + 0x230

 0x10000208 __start() + 0x68

 ---------- tid# 23069115 (pthread ID: 37523) ----------

 ...

 ---------- tid# 34996731 (pthread ID: 38296) ----------

 ...

 0x10735d58 FDEthread(void*)(0x3024faa8) + 0x2af8

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 29557123 (pthread ID: 2314) ----------

 ...

 0x103f4d88 TaskQueue::getTaskFromQueue(Task**)(0x310711c0, 0x3108dad0) + 0xe8

 0x103f4fbc threadHandler(void*)(0x310701a0) + 0xbc

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 20840705 (pthread ID: 36495) ----------

 ...

 ...<<127x threadHandler/TaskQueue threads as pthread ID 2314 above>>

 ...

 ---------- tid# 35389853 (pthread ID: 918) ----------

 ...

 0x103f0a34 TaskQueue::getTaskFromQueue(Task**,int*)(0x321f7760, 0x32219ac0, 0x32219ad0) + 0x134

 0x103f1dcc eventHandler(void*)(0x321f7760) + 0x18c

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 22937869 (pthread ID: 1800) ----------

 ...

 ---------- tid# 15466975 (pthread ID: 515) ----------

 ...

 0xd279a3c8 rsct_rmf3v::RMSchedule::run(void*)(0x301ff3d8, 0x0) + 0x648

 0xd28fad78 rsct_base::CRunnable::threadMain()(0x301ff3d8) + 0x318

 0xd28fcd94 rsct_base::stubCRunnable(void*)(0x301ff3d8) + 0x14

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 10027361 (pthread ID: 258) ----------

 ...

 #

 [image:]

 We also analyzed the ksys trace files looking for the most active threads during the daemon startup. The result of this analysis also influenced the selection of the threads that are kept as relevant for the procstack output, as shown in Example 2-17 on page 60. The analysis is detailed in 2.2.5, “KSYS daemon restart exercise” on page 62. The field T(90a) of the last record in Example 2-16 on page 59 means that the record itself is written by the thread with pTID 2314, as shown in Example 2-17 on page 60, with the 90a value in parentheses being the hexadecimal representation of decimal 2314.

 Example 2-18 shows the kernel thread ID (TID) and the user space pTID decimal value as listed by the procstack command for some of the threads that are shown in Example 2-17 on page 60. In the last column, we added the matching thread pTID hexadecimal value.

 Example 2-18 Some thread IDs

 [image:]

 ---------- tid# 15532537 (pthread ID: 1) ---------- T(1)

 ---------- tid# 15466975 (pthread ID: 515) ---------- T(203)

 ---------- tid# 15270361 (pthread ID: 2057) ---------- T(809)

 ---------- tid# 23069115 (pthread ID: 37523) ---------- T(9293)

 ---------- tid# 35389853 (pthread ID: 918) ---------- T(396)

 ---------- tid# 29557123 (pthread ID: 2314) ---------- T(90a)

 ---------- tid# 34996731 (pthread ID: 38296) ---------- T(9598)

 [image:]

 A thread can log records in any logical trace file. The main thread (pTID 1), for example, writes at the daemon startup a time stamp message with the daemon process ID (PID) in each trace file. The FDE thread (having the distinctive FDEthread() function invoked) is writing with predilection in the trace.fde.*.sp files, as shown in Example 2-19, but it can also log records in other trace files.

 Example 2-19 A fde trace file excerpt

 [image:]

 ...

 [01] 11/13/18 T(9598) _VMR 18:25:50.024794 DEBUG VMR_HG.C[11664]: FDE performing doQuickQuery to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [01] 11/13/18 T(9598) _VMR 18:25:50.024798 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 33(VMDR_QUICK_QUERY)

 [01] 11/13/18 T(9598) _VMR 18:25:50.024820 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 [01] 11/13/18 T(9598) _VMR 18:25:50.024828 DEBUG VMR_HMC.C[6905]: getQuickQuery: Calling kriSubmitQuickQuery!. HMC:9.3.18.159, viosUuid: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 ...

 [image:]

 Again, the number in the third field, T(9598), repeated here in each line, is nothing else than the hexadecimal value for the decimal 38296 pTID, which you saw in as the thread identifier in the procstack output of Example 2-17 on page 60. The rest of the record is self-explanatory: date, time, source file plus the line of the code with the instruction throwing the message, and the descriptive message itself.

 Resource and Class Registry

 Example 2-20 shows the file system directory location and the file structure of the registry that is used as local persistent store by the IBM.VMR resource manager for its resources and classes.

 Example 2-20 Persistent registry of IBM.VMR resource manager

 [image:]

 # cd /var/ct/rbRMHA/registry/local_tree

 # ls *VMR*

 IBM,VMR_APP,Class IBM,VMR_HG,Class IBM,VMR_SITE,Class

 IBM,VMR_APP,Resources IBM,VMR_HG,Resources IBM,VMR_SITE,Resources

 IBM,VMR_CEC,Class IBM,VMR_HMC,Class IBM,VMR_SSP,Class

 IBM,VMR_CEC,Resources IBM,VMR_HMC,Resources IBM,VMR_SSP,Resources

 IBM,VMR_DG,Class IBM,VMR_LPAR,Class IBM,VMR_VIOS,Class

 IBM,VMR_DG,Resources IBM,VMR_LPAR,Resources IBM,VMR_VIOS,Resources

 IBM,VMR_DP,Class IBM,VMR_SA,Class

 IBM,VMR_DP,Resources IBM,VMR_SA,Resources

 #

 [image:]

 	
 Note: In a peer domain configuration with multiple nodes, a registry replica is kept consistently on each node by the RMC framework. The KSYS subsystem supports only one node peer domain, but the framework is prepared for multiple node extensions.

 2.2.5 KSYS daemon restart exercise

 We perform a daemon restart exercise to examine the content of the trace files in the immediate interval after the new daemon is started and to get more insights about how it operates. The ksysmgr sync ksyscluster command is used for restart, as shown in Example 2-21.

 Example 2-21 Restarting the KSYS cluster

 [image:]

 # ksysmgr sync ksyscluster rbRMHA

 Ksyscluster seems to already be online and running, restarting KSYS subsystem

 Starting KSYS subsystem ...

 Waiting for KSYS subsystem to start ...

 KSYS subsystem has started, you can begin adding HMCs, Hosts, etc

 #

 [image:]

 We expect that a restart of the KSYS daemon ends with a process memory context and thread layout similar to what was there before restart.

 It is not that difficult to compare thread stack snapshots that are taken before and after restart as a first confirmation. Example 2-22 presents the thread stack snapshot that is taken after a restart.

 Example 2-22 KSYS daemon thread stack after restart

 [image:]

 # lssrc -a|grep VMR

 IBM.VMR rsct_rm 16646518 active

 # procstack 16646518|grep -c tid#

 142

 # procstack 16646518|grep -c "TaskQueue::getTaskFromQueue"

 129

 # procstack 16646518|grep -c "eventHandler"

 1

 # procstack 16646518|grep -c "threadHandler"

 128

 #

 # procstack 16646518

 16646518: /opt/rsct/bin/IBM.VMRd

 ---------- tid# 29557231 (pthread ID: 1) ----------

 ...

 0xd28f9438 rsct_base::CDaemon::handleSRC(int)(0x3019cab0, 0x0) + 0x278

 0xd27a7b8c rsct_rmf3v::RMDaemon::handleSRC(int)(0x3019cab0, 0x0) + 0x10c

 0x1003e810 main() + 0x230

 0x10000208 __start() + 0x68

 ---------- tid# 32047601 (pthread ID: 37780) ----------

 ...

 ---------- tid# 23396853 (pthread ID: 37266) ----------

 ...

 0x10735d58 FDEthread(void*)(0x32777ac8) + 0x2af8

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 21365075 (pthread ID: 37009) ----------

 ...

 0x103f0a34 TaskQueue::getTaskFromQueue(Task**,int*)(0x3263eb40, 0x32774ac0, 0x32774ad0) + 0x134

 0x103f1dcc eventHandler(void*)(0x3263eb40) + 0x18c

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 32440809 (pthread ID: 36752) ----------

 ...

 0x103f4d88 TaskQueue::getTaskFromQueue(Task**)(0x32624c30, 0x32748ad0) + 0xe8

 0x103f4fbc threadHandler(void*)(0x3260f690) + 0xbc

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 16843039 (pthread ID: 36495) ----------

 ...

 ...<<127x threadHandler/TaskQueue threads as pthread ID 36752 above>>

 ...

 ---------- tid# 20840721 (pthread ID: 515) ----------

 ...

 0xd279a3c8 rsct_rmf3v::RMSchedule::run(void*)(0x301ff3d8, 0x0) + 0x648

 0xd28fad78 rsct_base::CRunnable::threadMain()(0x301ff3d8) + 0x318

 0xd28fcd94 rsct_base::stubCRunnable(void*)(0x301ff3d8) + 0x14

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 12321057 (pthread ID: 258) ----------

 ...

 #

 [image:]

 We see that the same layout that is shown in Example 2-17 on page 60 is created after restart with the number of threads as 142, among which are one event handler (starting eventHandler()), one FDE thread (starting FDEthread()), one scheduler thread (starting rsct_rmf3v::RMSchedule::run()), and the pool of 128 task handlers (starting threadHandler() and TaskQueue::getTaskFromQueue()), as expected.

 Example 2-23 shows the way we extracted the content that is logged to the fde and ksys trace files into the post-restart_fde.log and post-restart_ksys.log log files after the daemon restarts.

 Example 2-23 Collecting the content of the ksys and fde trace files after the daemon restarts

 [image:]

 # lssrc -a|grep VMR

 IBM.VMR rsct_rm 16646518 active

 # ksysmgr trace log=fde > fde.log

 # cat fde.log|sed '/Trace Started - Pid = 16646518/,$!d' > post-restart_fde.log

 # head -1 post-restart_fde.log

 [06] 11/19/18 T(1) ____ 13:48:35.140684 ******************* Trace Started - Pid = 16646518 **********************

 # tail -1 post-restart_fde.log

 [06] 11/19/18 T(9192) _VMR 13:53:37.658738 DEBUG FDEthread.C[709]: Sleep for 20 sec. sleepCounter 13

 # ksysmgr trace log=ksys > ksys.log

 # cat ksys.log|sed '/Trace Started - Pid = 16646518/,$!d' > post-restart_ksys.log

 # head -1 post-restart_ksys.log

 [15] 11/19/18 T(1) ____ 13:48:35.161478 ******************* Trace Started - Pid = 16646518 **********************

 # tail -1 post-restart_ksys.log

 [15] 11/19/18 T(9192) _VMR 14:01:23.787096 DEBUG VMR_HMC.C[6938]: getQuickQuery [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 #

 [image:]

 The ksysmgr trace log=fde and ksysmgr trace log=ksys commands in Example 2-23 are the KSYS equivalents of the RSCT commands rpttr -odict /var/ct/rbRMHA/log/mc/IBM.VMR/trace.fde* and rpttr -odict /var/ct/rbRMHA/log/mc/IBM.VMR/trace.ksys*. Running the sed command deletes the rows before the distinctive record signaling daemon restart with the new daemon PID (pattern Trace Started - Pid = 16646518). From the time stamps in the first and last row of the truncated log files, we see that the traces are from the first minutes after restart (12 minutes for ksys).

 Most active threads during the KSYS daemon start

 We now identify the most active threads during the daemon start. We count how many times each thread writes into the collected ksys trace file during the first minutes after the daemon restart (Example 2-24).

 Example 2-24 Thread writing frequency in the ksys trace file after restart

 [image:]

 # cat post-restart_ksys.log|wc -l

 1203

 # grep "11/19/18 T(" post-restart_ksys.log|grep "T(1)"|wc -l

 5

 # for t in `grep "11/19/18 T(" post-restart_ksys.log|grep -v "T(1)"|while read f1 f2 f3 others; do echo $f3; done|sort -u`; do echo "$t \c"; grep "11/19/18 T(" post-restart_ksys.log|grep -v "T(1)"|while read f1 f2 f3 others; do echo $f3; done|grep -c $t; done|sort -nrk2

 T(304) 626

 T(9192) 66

 T(90a) 66

 T(4041) 56

 T(8788) 50

 T(8687) 50

 T(8889) 49

 T(8586) 49

 T(3d3e) 47

 T(203) 30

 T(9091) 12

 T(405) 10

 T(809) 6

 T(9394) 4

 T(4849) 1

 T(3c3d) 1

 T(393a) 1

 T(2d2e) 1

 #

 [image:]

 Table 2-1 shows decimal pTID values in the second column. The last column shows the distinctive call that is started in the thread’s stack.

 Table 2-1 Writing frequency of threads showing up in the ksys trace file after daemon restart

 	
 Log pTID

 (hex)

 	
 pTID

 	
 Trace writes

 	
 Distinctive thread stack call taken from procstack output

 	
 T(1)

 	
 1

 	
 5

 	
 main()

 	
 T(304)

 	
 -

 	
 626

 	
 - (Terminated already at the moment we ran the procstack command.)

 	
 T(9192)

 	
 37266

 	
 66

 	
 FDEthread()

 	
 T(90a)

 	
 2314

 	
 66

 	
 threadHandler()

 	
 T(4041)

 	
 16449

 	
 56

 	
 threadHandler()

 	
 T(8788)

 	
 34696

 	
 50

 	
 threadHandler()

 	
 T(8687)

 	
 34439

 	
 50

 	
 threadHandler()

 	
 T(8889)

 	
 34953

 	
 49

 	
 threadHandler()

 	
 T(8586)

 	
 34182

 	
 49

 	
 threadHandler()

 	
 T(3d3e)

 	
 15678

 	
 47

 	
 threadHandler()

 	
 T(203)

 	
 515

 	
 30

 	
 rmf3v::RMSchedule::run()

 	
 T(9091)

 	
 37009

 	
 12

 	
 eventHandler()

 	
 T(405)

 	
 1029

 	
 10

 	
 rsct_gscl_V1::GSController::dispatch()

 	
 T(809)

 	
 2057

 	
 6

 	
 rsct_gscl_V1::GSController::dispatch()

 	
 T(9394)

 	
 37780

 	
 4

 	
 rsct_rmf3v::RMRmcp::dispatchRequests

 	
 T(4849)

 	
 18505

 	
 1

 	
 threadHandler()

 	
 T(3c3d)

 	
 15421

 	
 1

 	
 threadHandler()

 	
 T(393a)

 	
 14650

 	
 1

 	
 threadHandler()

 	
 T(2d2e)

 	
 11566

 	
 1

 	
 threadHandler()

 Here are more comments about the results that are shown in Table 2-1 on page 65:

 •The thread T(304), which is not present in the procstack output, was active during restart.

 •Eleven threads from the pool of 128 task handler threads had more or less activity.

 •An FDE thread is created and writes in the ksys log, in addition to its dedicated fde and fdelong logs.

 •A scheduler thread and an event thread Handler were created as before restart.

 •Other threads that are related to core RSCT activities write ksys traces, but discreetly

 Resource and Resource Class Control Points instantiation

 We now look for more structure in the startup sequence and for relevant patterns suggesting the creation of the in-memory constructs that are associated with our expected resources and objects: HMCs, hosts, VIOSs, host groups, VMs, and applications. As introduced in “Resource Monitoring and Control concepts” on page 52, we search for RCP and RCCP-related traces (Example 2-25).

 Example 2-25 RCP and RCCP traces in the ksys trace file after the daemon restart

 [image:]

 # grep -i rcp post-restart_ksys.log|wc -l

 404

 [# grep -i rccp post-restart_ksys.log|wc -l

 112

 # grep -i rccp post-restart_ksys.log|head -4

 [15] 11/19/18 T(304) _VMR 13:48:38.197869 VMR_SITERccp::VMR_SITERccp Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.198199 VMR_SITERccp::VMR_SITERccp Leaving

 [15] 11/19/18 T(304) _VMR 13:48:38.198395 VMR_HMCRccp::VMR_HMCRccp Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.198452 VMR_HMCRccp::createRcp Entered

 #

 [image:]

 The occurrences of the first matching string, VMR_SITERccp, suggest that a constructor of a VMR_SITERccp class ran. Searching for other VMR_SITERccp occurrences produces the output in Example 2-26.

 Example 2-26 Searching for SITE RCCP

 [image:]

 # sed '/VMR_SITERccp/!d;=' post-restart_ksys.log

 13

 [15] 11/19/18 T(304) _VMR 13:48:38.197869 VMR_SITERccp::VMR_SITERccp Entered

 23

 [15] 11/19/18 T(304) _VMR 13:48:38.198199 VMR_SITERccp::VMR_SITERccp Leaving

 668

 [15] 11/19/18 T(304) _VMR 13:49:26.232232 VMR_SITERccp::scheduleQuickCheck Entered.

 672

 [15] 11/19/18 T(304) _VMR 13:49:26.232238 VMR_SITERccp::scheduleQuickCheck Leaving.

 674

 [15] 11/19/18 T(304) _VMR 13:49:26.232239 VMR_SITERccp::scheduleDetailCollectOnce Entered.

 679

 [15] 11/19/18 T(304) _VMR 13:49:26.232291 VMR_SITERccp::scheduleDetailCollectOnce Leaving.

 699

 [15] 11/19/18 T(9394) _VMR 13:49:26.476082 VMR_SITERccp::validateSetClassParms Entered, number of values=57.

 700

 [15] 11/19/18 T(9394) _VMR 13:49:26.476093 VMR_SITERccp::validateSetClassParms Leaving.

 # cat post-restart_ksys.log|wc -l

 1203

 #

 [image:]

 The VMR_SITERccp::VMR_SITERccp constructor leaves traces at the beginning of the start sequence, in line range 13 - 23, and then some of the VMR_SITERccp class methods are started almost a second later in the sequence, starting with line 668, somewhere in the middle of the whole log file.

 In Example 2-27, we then filter all output that is logged by the VMR_HMCRccp::VMR_HMCRccp constructor, which corresponds to the next RCCP match in Example 2-25 on page 66.

 Example 2-27 HMC RCCP constructor log

 [image:]

 # sed '/VMR_HMCRccp::VMR_HMCRccp Entered/,/VMR_HMCRccp::VMR_HMCRccp Leaving/!d' post-restart_ksys.log

 [15] 11/19/18 T(304) _VMR 13:48:38.198395 VMR_HMCRccp::VMR_HMCRccp Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.198452 VMR_HMCRccp::createRcp Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.198477 DEBUG VMR_HMC.C[407]: Setting site ID as 0 as HA only cluster type for HMC rthmc3

 [15] 11/19/18 T(304) _VMR 13:48:38.198583 VMR_HMCRcp::VMR_HMCRcp Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.200763 VMR_HMCRcp::VMR_HMCRcp Leaving

 [15] 11/19/18 T(304) _VMR 13:48:38.200799 VMR_HMCRccp::createRcp Leaving, pRcp=31667bc0

 [15] 11/19/18 T(304) _VMR 13:48:38.200842 VMR_HMCRccp::createRcp Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.200851 DEBUG VMR_HMC.C[407]: Setting site ID as 0 as HA only cluster type for HMC rthmc6

 [15] 11/19/18 T(304) _VMR 13:48:38.200907 VMR_HMCRcp::VMR_HMCRcp Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.202221 VMR_HMCRcp::VMR_HMCRcp Leaving

 [15] 11/19/18 T(304) _VMR 13:48:38.202252 VMR_HMCRccp::createRcp Leaving, pRcp=3168a150

 [15] 11/19/18 T(304) _VMR 13:48:38.202262 VMR_HMCRccp::VMR_HMCRccp Leaving

 #

 [image:]

 Two HMC RCPs are created inside the HMC RCCP constructor, one for each HMC in the infrastructure.

 The Entered and Leaving strings appear frequently in our previous examples as start and end markers for class constructors and methods. So, we use this technique to delimit the log sections of each RCCP constructor. Example 2-28 shows the results of this technique for the Rccp Entered and Rccp Leaving patterns.

 Example 2-28 All RCCPs created at daemon startup

 [image:]

 # cat post-restart_ksys.log|wc -l

 1203

 # sed '/Rccp Entered/!d;=' post-restart_ksys.log |sed 'N;s/\n/:/'

 13:[15] 11/19/18 T(304) _VMR 13:48:38.197869 VMR_SITERccp::VMR_SITERccp Entered

 25:[15] 11/19/18 T(304) _VMR 13:48:38.198395 VMR_HMCRccp::VMR_HMCRccp Entered

 38:[15] 11/19/18 T(304) _VMR 13:48:38.202592 VMR_CECRccp::VMR_CECRccp Entered

 90:[15] 11/19/18 T(304) _VMR 13:49:10.223135 VMR_LPARRccp::VMR_LPARRccp Entered

 551:[15] 11/19/18 T(304) _VMR 13:49:26.229629 VMR_SARccp::VMR_SARccp Entered

 555:[15] 11/19/18 T(304) _VMR 13:49:26.230234 VMR_VIOSRccp::VMR_VIOSRccp Entered

 588:[15] 11/19/18 T(304) _VMR 13:49:26.230852 VMR_DPRccp::VMR_DPRccp Entered

 592:[15] 11/19/18 T(304) _VMR 13:49:26.231005 VMR_DGRccp::VMR_DGRccp Entered

 597:[15] 11/19/18 T(304) _VMR 13:49:26.231318 VMR_HGRccp::VMR_HGRccp Entered

 639:[15] 11/19/18 T(304) _VMR 13:49:26.231898 VMR_SSPRccp::VMR_SSPRccp Entered

 646:[15] 11/19/18 T(304) _VMR 13:49:26.232153 VMR_APPRccp::VMR_APPRccp Entered

 # sed '/Rccp Leaving/!d;=' post-restart_ksys.log |sed 'N;s/\n/:/'

 23:[15] 11/19/18 T(304) _VMR 13:48:38.198199 VMR_SITERccp::VMR_SITERccp Leaving

 36:[15] 11/19/18 T(304) _VMR 13:48:38.202262 VMR_HMCRccp::VMR_HMCRccp Leaving

 88:[15] 11/19/18 T(304) _VMR 13:49:10.222904 VMR_CECRccp::VMR_CECRccp Leaving

 549:[15] 11/19/18 T(304) _VMR 13:49:26.229397 VMR_LPARRccp::VMR_LPARRccp Leaving

 553:[15] 11/19/18 T(304) _VMR 13:49:26.230084 VMR_SARccp::VMR_SARccp Leaving

 585:[15] 11/19/18 T(304) _VMR 13:49:26.230695 VMR_VIOSRccp::VMR_VIOSRccp Leaving

 590:[15] 11/19/18 T(304) _VMR 13:49:26.230864 VMR_DPRccp::VMR_DPRccp Leaving

 595:[15] 11/19/18 T(304) _VMR 13:49:26.231168 VMR_DGRccp::VMR_DGRccp Leaving

 637:[15] 11/19/18 T(304) _VMR 13:49:26.231759 VMR_HGRccp::VMR_HGRccp Leaving

 644:[15] 11/19/18 T(304) _VMR 13:49:26.232014 VMR_SSPRccp::VMR_SSPRccp Leaving

 660:[15] 11/19/18 T(304) _VMR 13:49:26.232224 VMR_APPRccp::VMR_APPRccp Leaving

 # sed '13,660!d' post-restart_ksys.log|grep -c "T(304)"

 602

 # sed '13,660!d' post-restart_ksys.log|grep -v "T(304)"|wc -l

 46

 # sed '13,660!d' post-restart_ksys.log|grep -v "T(304)"|grep -v "^[[:space:]]*$"

 Added VM's List =

 # sed '13,660!d' post-restart_ksys.log|grep -v "T(304)"|grep -c "^[[:space:]]*$"

 45

 #

 [image:]

 You can easily associate the RCCPs that are shown in Example 2-28 on page 67 with their counterpart resource classes, which re identified in Example 2-14 on page 58.

 With the last four sed commands, we check that there are no other threads than T(304) logs in the line range 13 - 660. Thread T(304) logs 602 records as counted by the grep -c "T(304)" command. Then, the remaining 46 lines prove to be 45 white space lines plus one line consisting of only the “Added VM's List =” string. So, only T(304) is logging all these entries in the sequence. By the row number of each start and end marker, we see that RCCP constructors are run one after the other and log their messages in subsequent compact sections.

 The largest RCCP constructor section is the largest section of the LPAR RCCP, VMR_LPARRccp::VMR_LPARRccp, from lines 90 - 549 because one LPAR RCP is created for each of the 16 existing VMs, as shown in Example 2-29.

 Example 2-29 Counting the LPAR RCPs

 [image:]

 # sed '90,549!d;=' post-restart_ksys.log |sed 'N;s/\n/:/'|grep "createRcp Leaving"

 139:[15] 11/19/18 T(304) _VMR 13:49:10.223764 VMR_LPARRccp::createRcp Leaving, pRcp=325e9810

 165:[15] 11/19/18 T(304) _VMR 13:49:10.224098 VMR_LPARRccp::createRcp Leaving, pRcp=325e6380

 ...

 517:[15] 11/19/18 T(304) _VMR 13:49:10.228205 VMR_LPARRccp::createRcp Leaving, pRcp=326024b0

 543:[15] 11/19/18 T(304) _VMR 13:49:10.228476 VMR_LPARRccp::createRcp Leaving, pRcp=32600990

 # sed '90,549!d;=' post-restart_ksys.log |sed 'N;s/\n/:/'|grep -c "createRcp Leaving"

 16

 #

 [image:]

 The CEC RCCP constructor generated records in lines 38 - 88. Example 2-30 on page 69 lists only the first 10 lines in the range.

 Example 2-30 CEC RCCP constructor log

 [image:]

 # sed '/VMR_CECRccp::VMR_CECRccp Entered/,/VMR_CECRccp::VMR_CECRccp Leaving/!d' post-restart_ksys.log|head

 [15] 11/19/18 T(304) _VMR 13:48:38.202592 VMR_CECRccp::VMR_CECRccp Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.202596 DEBUG VMR_CEC.C[413]: creating thread pool with 128 active threads

 [15] 11/19/18 T(304) _VMR 13:48:38.219775 VMR_CECRccp::createRcp Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.219842 DEBUG VMR_CEC.C[813]: setting its failover for CEC policy to best_fit

 [15] 11/19/18 T(304) _VMR 13:48:38.219890 VMR_CECRcp::VMR_CECRcp Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.219904 DEBUG VMR_CEC.C[4398]: Initializing the mutex

 [15] 11/19/18 T(304) _VMR 13:48:38.219906 VMR_CECRcp::VMR_CECRcp Leaving

 [15] 11/19/18 T(304) _VMR 13:48:38.219956 VMR_CECRcp::set_partnerUUIDs Entered

 [15] 11/19/18 T(304) _VMR 13:48:38.219957 VMR_CECRcp::set_partnerUUIDs Leaving

 # sed '/VMR_CECRccp::VMR_CECRccp Entered/,/VMR_CECRccp::VMR_CECRccp Leaving/!d' post-restart_ksys.log|grep "VMR_CECRccp::createRcp"

 [15] 11/19/18 T(304) _VMR 13:48:38.219775 VMR_CECRccp::createRcp Entered

 [15] 11/19/18 T(304) _VMR 13:48:54.221478 VMR_CECRccp::createRcp Leaving, rt13-8286-42A-21E0B2V, pRcp=325c4470

 [15] 11/19/18 T(304) _VMR 13:48:54.221613 VMR_CECRccp::createRcp Entered

 [15] 11/19/18 T(304) _VMR 13:49:10.222859 VMR_CECRccp::createRcp Leaving, rt14-8286-42A-SN2100DEW, pRcp=325c688

 #

 [image:]

 Notice the message about the creation of the pool with 128 threads. An RCP is created for each host that is registered as managed by KSYS.

 The next log section in the sequence is about the host group RCCP constructor. Example 2-31 shows the complete details of this section.

 Example 2-31 Host group RCCP creation

 [image:]

 # sed -n '/VMR_HGRccp::VMR_HGRccp Entered/=' post-restart_ksys.log

 597

 # sed '/VMR_HGRccp::VMR_HGRccp Entered/,/VMR_HGRccp::VMR_HGRccp Leaving/!d' post-restart_ksys.log

 [15] 11/19/18 T(304) _VMR 13:49:26.231318 VMR_HGRccp::VMR_HGRccp Entered

 [15] 11/19/18 T(304) _VMR 13:49:26.231400 VMR_HGRccp::createRcp Entered

 [15] 11/19/18 T(304) _VMR 13:49:26.231409 DEBUG VMR_HG.C[828]: setting its redundancy to 2

 [15] 11/19/18 T(304) _VMR 13:49:26.231411 DEBUG VMR_HG.C[833]: create: RestartPolicy is autorestart

 [15] 11/19/18 T(304) _VMR 13:49:26.231412 DEBUG VMR_HG.C[838]: setting its HAmonitor to Enabled

 [15] 11/19/18 T(304) _VMR 13:49:26.231413 DEBUG VMR_HG.C[843]: setting its hostFDT to 90

 [15] 11/19/18 T(304) _VMR 13:49:26.231414 DEBUG VMR_HG.C[848]: setting its VMFDS to

 [15] 11/19/18 T(304) _VMR 13:49:26.231415 DEBUG VMR_HG.C[868]: setting its failover policy to to best_fit

 [15] 11/19/18 T(304) _VMR 13:49:26.231416 DEBUG VMR_HG.C[872]: setting its spawnFDE to 1

 [15] 11/19/18 T(304) _VMR 13:49:26.231448 DEBUG VMR_HG.C[937]: setting its PreHAmonitor to Enabled

 [15] 11/19/18 T(304) _VMR 13:49:26.231449 DEBUG VMR_HG.C[944]: Setting its DisocveryState =1

 [15] 11/19/18 T(304) _VMR 13:49:26.231464 VMR_HGRcp::VMR_HGRcp Entered

 [15] 11/19/18 T(304) _VMR 13:49:26.231468 DEBUG VMR_HG.C[2825]: Initializing the mutex in VMR_HGRcp::VMR_HGRcp

 [15] 11/19/18 T(304) _VMR 13:49:26.231469 DEBUG VMR_HG.C[2831]: Initializing the mutex its_VMutex in VMR_HGRcp::VMR_HGRcp

 [15] 11/19/18 T(304) _VMR 13:49:26.231470 DEBUG VMR_HG.C[2838]: Initializing the condition in VMR_HGRcp::VMR_HGRcp

 [15] 11/19/18 T(304) _VMR 13:49:26.231473 DEBUG VMR_HG.C[2857]: Relocationmap Initialized. rc = 0

 [15] 11/19/18 T(304) _VMR 13:49:26.231476 DEBUG VMR_threads.C[1201]: EventProcessor rc from pthread_mutex_init is 0

 [15] 11/19/18 T(304) _VMR 13:49:26.231543 DEBUG VMR_threads.C[1205]: rc from pthread_create is 0

 [15] 11/19/18 T(304) _VMR 13:49:26.231544 DEBUG VMR_threads.C[1206]: evtThID is 37009

 [15] 11/19/18 T(304) _VMR 13:49:26.231546 DEBUG VMR_HG.C[2864]: Created the EventProcessor for HG: rbHG(id:1)

 [15] 11/19/18 T(304) _VMR 13:49:26.231546 VMR_HGRcp::VMR_HGRcp Leaving

 [15] 11/19/18 T(304) _VMR 13:49:26.231561 DEBUG VMR_HG.C[604]: Updated its_activeSiteID = 0, its_SiteID1 = 0, its_PairSiteID = 0

 [15] 11/19/18 T(304) _VMR 13:49:26.231562 DEBUG VMR_HG.C[610]: Updated its_Priority = 1

 [15] 11/19/18 T(304) _VMR 13:49:26.231568 DEBUG VMR_HG.C[616]: Updated its_Redundancy = 2

 [15] 11/19/18 T(304) _VMR 13:49:26.231586 DEBUG VMR_HG.C[2281]: Entered printRCPList, size of list is 1

 [15] 11/19/18 T(304) _VMR 13:49:26.231587 DEBUG VMR_HG.C[2292]: Entered printRcpElements

 [15] 11/19/18 T(304) _VMR 13:49:26.231589 DEBUG VMR_HG.C[2294]: name is rbHG, HG id is 1 , activeSiteID = 0, number of hosts is 2, site ID is 0

 [15] 11/19/18 T(304) _VMR 13:49:26.231590 DEBUG VMR_HG.C[2295]: number of PAIR hosts is 0, pair site ID is 0, priority is 1

 [15] 11/19/18 T(304) _VMR 13:49:26.231590 DEBUG VMR_HG.C[2298]: Leaving printRcpElements

 [15] 11/19/18 T(304) _VMR 13:49:26.231599 DEBUG VMR_HG.C[13572]: Policymap VmtoCECMapTable:

 [15] 11/19/18 T(304) _VMR 13:49:26.231617 DEBUG VMR_HG.C[13576]: VM:4E395E99-FFFB-4345-8067-2D5296BA7D91, CEC:4462c37c-65c6-3614-b02a-aa09d752c2ee, Misc:restart_cleanup, M, best_fit

 [15] 11/19/18 T(304) _VMR 13:49:26.231619 DEBUG VMR_HG.C[13565]: Policymap UserVmtoCECMapTable:

 [15] 11/19/18 T(304) _VMR 13:49:26.231628 DEBUG VMR_HG.C[14786]: updated its_Flexmem_table

 [15] 11/19/18 T(304) _VMR 13:49:26.231635 DEBUG VMR_HG.C[14798]: updated its_Flexproc_table

 [15] 11/19/18 T(304) _VMR 13:49:26.231637 DEBUG VMR_HG.C[1018]: Setting the scheduler to resyncApps

 [15] 11/19/18 T(304) _VMR 13:49:26.231641 DSchedCb::schedOnce Scheduling ONCE delay = 10000

 [15] 11/19/18 T(304) _VMR 13:49:26.231643 DSchedCb::schedOnce called

 [15] 11/19/18 T(304) _VMR 13:49:26.231658 DEBUG VMR_HG.C[9385]: ResyncAPPs Scheduler added.

 [15] 11/19/18 T(304) _VMR 13:49:26.231659 VMR_HGRccp::createRcp Leaving, pRcp=3263e420

 [15] 11/19/18 T(304) _VMR 13:49:26.231759 VMR_HGRccp::VMR_HGRccp Leaving

 # sed -n '/VMR_HGRccp::VMR_HGRccp Leaving/=' post-restart_ksys.log

 637

 #

 [image:]

 The VMR_HGRccp::createRcp method is entered once, and inside this method the VMR_HGRcp::VMR_HGRcp RCP constructor is also entered only one time. We defined only the rbHG host group in our example, so these log entries apply to this unique host group.

 Among the various configuration and state attributes being initialized, we notice that an FDE thread is referred to is inside the VMR_HGRccp::createRcp call (setting its spawnFDE to 1). We also notice that an EventProcessor thread is created (evtThID is 37009), which, by pTID, is exactly our earlier assumed event thread Handler, that is, the one with the distinctive eventHandler() function launched in its stack. We derive from these findings that dedicated FDE and event thread Handlers are created for each existing host group.

 The last relevant action that we notice in the HGRccp creation log is the scheduling of a resyncApps action (ResyncAPPs Scheduler added), which is supposed to be run once and with a delay parameter of 10000. The value appears to be in milliseconds because 10 seconds later the scheduler thread, T(203), calls the HG_ResyncShed::callback function followed by the VMR_HGRcp::resyncAppInfo method. These calls are logged at 13:49:36.234278 (see ksys log lines 761 - 762 in Example 2-42 on page 80) and in Example 2-31 on page 69, DSchedCb::schedOnce is called at 13:49:26.231643, which is a 10-second difference.

 The next RCCP section in the sequence is for the SSP, and it is shown in Example 2-32.

 Example 2-32 Shared Storage Pool RCCP creation

 [image:]

 # sed '/VMR_SSPRccp::VMR_SSPRccp Entered/,/VMR_SSPRccp::VMR_SSPRccp Leaving/!d' post-restart_ksys.log

 [15] 11/19/18 T(304) _VMR 13:49:26.231898 VMR_SSPRccp::VMR_SSPRccp Entered

 [15] 11/19/18 T(304) _VMR 13:49:26.231937 VMR_SSPRccp::createRcp Entered

 [15] 11/19/18 T(304) _VMR 13:49:26.231957 VMR_SSPRcp::VMR_SSPRcp Entered

 [15] 11/19/18 T(304) _VMR 13:49:26.231958 VMR_SSPRcp::VMR_SSPRcp Leaving

 [15] 11/19/18 T(304) _VMR 13:49:26.232004 VMR_SSPRccp::createRcp Leaving, pRcp=3263f7d0

 [15] 11/19/18 T(304) _VMR 13:49:26.232014 VMR_SSPRccp::VMR_SSPRccp Leaving

 #

 [image:]

 Again, only one SSP RCP is created because we have only one host group that is defined, so there is only one SSP.

 The last RCCP section in the sequence is for the managed applications (Example 2-33).

 Example 2-33 Application RCCP creation

 [image:]

 # sed '/VMR_APPRccp::VMR_APPRccp Entered/,/VMR_APPRccp::VMR_APPRccp Leaving/!d' post-restart_ksys.log

 [15] 11/19/18 T(304) _VMR 13:49:26.232153 VMR_APPRccp::VMR_APPRccp Entered

 [15] 11/19/18 T(304) _VMR 13:49:26.232155 DEBUG VMR_APP.C[257]: Inside VMR_APPRccp constructor

 [15] 11/19/18 T(304) _VMR 13:49:26.232155 DEBUG VMR_APP.C[262]: VMR_APPRccp calling createRCPs.

 [15] 11/19/18 T(304) _VMR 13:49:26.232189 VMR_APPRccp::createRcp Entered

 [15] 11/19/18 T(304) _VMR 13:49:26.232190 DEBUG VMR_APP.C[333]: Inside VMR_APPRccp::CreateRCP

 [15] 11/19/18 T(304) _VMR 13:49:26.232196 DEBUG VMR_APP.C[435]: VMR_APPRccp::CreateRCP Calling VMR_APPRcp function.

 [15] 11/19/18 T(304) _VMR 13:49:26.232201 VMR_APPRcp::VMR_APPRcp Entered

 [15] 11/19/18 T(304) _VMR 13:49:26.232202 DEBUG VMR_APP.C[1661]: Inside VMR_APPRcp function.

 [15] 11/19/18 T(304) _VMR 13:49:26.232204 DEBUG VMR_APP.C[1688]: Leaving VMR_APPRcp

 [15] 11/19/18 T(304) _VMR 13:49:26.232205 VMR_APPRcp::VMR_APPRcp Leaving

 [15] 11/19/18 T(304) _VMR 13:49:26.232206 DEBUG VMR_APP.C[2062]: set_AppLparDetail:Updating APP Lpar details.Name:rt13001,UUID:4E395E99-FFFB-4345-8067-2D5296BA7D91

 [15] 11/19/18 T(304) _VMR 13:49:26.232208 DEBUG VMR_APP.C[2086]: Updating app status.

 [15] 11/19/18 T(304) _VMR 13:49:26.232219 VMR_APPRccp::createRcp Leaving, pRcp=32634170

 [15] 11/19/18 T(304) _VMR 13:49:26.232220 DEBUG VMR_APP.C[472]: VMR_APPRccp::CreateRCP leaving.

 [15] 11/19/18 T(304) _VMR 13:49:26.232224 VMR_APPRccp::VMR_APPRccp Leaving

 #

 [image:]

 Only one application RCP is created because we have only one application that is defined (Example 2-34).

 Example 2-34 Defined applications

 [image:]

 # ksysmgr q app

 Name: tsApp

 Status: GREEN

 AppID: 1541473063965437000

 VM: rt13001

 Critical: no

 MaxRestart: 3

 Monitoring: 1

 #

 [image:]

 Quick Discovery and Deep Discovery scheduling records

 Going further with the log entries, we notice a new group of scheduling-related records immediately after the last RCCP creation section, as shown in Example 2-35, which lists the next 24 recorded lines in the ksys log after the last RCCP constructor returns.

 Example 2-35 Scheduler records in the ksys trace file after daemon restart

 [image:]

 # sed '/VMR_APPRccp::VMR_APPRccp Leaving/,$!d;=' post-restart_ksys.log |sed 'N;s/\n/:/'|head -25

 660:[15] 11/19/18 T(304) _VMR 13:49:26.232224 VMR_APPRccp::VMR_APPRccp Leaving

 661:

 662:[15] 11/19/18 T(304) _VMR 13:49:26.232225 DEBUG VMR_APP.C[274]: Leaving VMR_APPRccp

 663:[15] 11/19/18 T(304) _VMR 13:49:26.232226 VMR_HMCRccp::schedule Entered.

 664:[15] 11/19/18 T(304) _VMR 13:49:26.232228 DSchedCb::schedPeriodic starting HMC Ping Interval=10

 665:[15] 11/19/18 T(304) _VMR 13:49:26.232230 VMR_HMCRccp::schedule Leaving, pCycle=10.

 666:

 667:[15] 11/19/18 T(304) _VMR 13:49:26.232231 DEBUG VMRRmcp.C[241]: VMRRmcp Init, START

 668:[15] 11/19/18 T(304) _VMR 13:49:26.232232 VMR_SITERccp::scheduleQuickCheck Entered.

 669:[15] 11/19/18 T(304) _VMR 13:49:26.232233 DEBUG VMR_SITE.C[5261]: ***** SCHEDULE QUICK *****

 670:[15] 11/19/18 T(304) _VMR 13:49:26.232236 DEBUG VMR_SITE.C[5287]: qIntvl = 1 hrs

 671:[15] 11/19/18 T(304) _VMR 13:49:26.232237 DSchedCb::schedPeriodic starting SITE Quick Check Schedule Interval=3600

 672:[15] 11/19/18 T(304) _VMR 13:49:26.232238 VMR_SITERccp::scheduleQuickCheck Leaving.

 673:

 674:[15] 11/19/18 T(304) _VMR 13:49:26.232239 VMR_SITERccp::scheduleDetailCollectOnce Entered.

 675:[15] 11/19/18 T(304) _VMR 13:49:26.232287 DEBUG VMR_SITE.C[5150]: ***** SCHEDULE DETAILED COLLECT ONCE *****

 676:[15] 11/19/18 T(304) _VMR 13:49:26.232288 DEBUG VMR_SITE.C[5153]: number of seconds since epoch = 1542693600

 677:[15] 11/19/18 T(304) _VMR 13:49:26.232289 DSchedCb::schedOnce Scheduling ONCE time in sec = 1542693600

 678:[15] 11/19/18 T(304) _VMR 13:49:26.232291 DSchedCb::schedOnce called

 679:[15] 11/19/18 T(304) _VMR 13:49:26.232291 VMR_SITERccp::scheduleDetailCollectOnce Leaving.

 680:

 681:[15] 11/19/18 T(304) _VMR 13:49:26.232293 DEBUG VMRRmcp.C[244]: VMRRmcp Init, FINISH

 682:[15] 11/19/18 T(304) _VMR 13:49:26.232294 DEBUG VMRDaemon.C[275]: INFO: Calling kri_global_init.

 683:[15] 11/19/18 T(9091) _VMR 13:49:26.242487 DEBUG VMR_threads.C[1284]: Entered event thread Handler. HG: 1

 684:[15] 11/19/18 T(9091) _VMR 13:49:26.242490 DEBUG VMR_threads.C[1290]: Got the HGRcp

 # sed '/VMR_APPRccp::VMR_APPRccp Leaving/,$!d;=' post-restart_ksys.log |sed 'N;s/\n/:/'|head -25|grep -c "T(304)"

 19

 # sed '683,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|grep "T(304)"

 #

 [image:]

 After finishing with the last RCCP, as part of a VMRRmcp Init piece of code, a periodic QuickCheck action is scheduled at 1 hour and a DetailCollectOnce action is scheduled at an epoch time. Converting the epoch time 1542693600 to a human-readable format, we see that it is the next midnight moment (local CST time, Greenwich mean time: Tuesday 20 Nov 2018 6:00:00 AM) compared with the execution moment (11/19/18 T(304) _VMR 13:49:26.232288). The scheduling is done at the VMR_SITERccp method level, so we conclude it applies for all host groups in the environment. This is the scheduling setup for the periodic Quick Discovery and for the Deep Discovery tasks. For more information, see “Quick Discovery and Deep Discovery scheduling records” on page 72.

 We also see from the last command in Example 2-35 on page 72 that the last record that is generated by the T(304) thread in our ksys log is about a global initialization of the krest library module in line 682 (Calling kri_global_init.). So after line 682, we expect records that are logged by the other threads: the FDE thread, event thread Handler, task threads in the pool, scheduler thread, and so on.

 Review the restart moment and the initial records that are logged in the ksys log up until the first RCCP is created (Example 2-36).

 Example 2-36 Detailed startup sequence of a KSYS daemon restart

 [image:]

 # sed '1,13!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'

 1:[15] 11/19/18 T(1) ____ 13:48:35.161478 ******************* Trace Started - Pid = 16646518 **********************

 2:[15] 11/19/18 T(1) _VMR 13:48:35.161711VMRDaemon::VMRDaemon Leaving

 3:[15] 11/19/18 T(1) _VMR 13:48:35.162523VMRRmcp::VMRRmcp Entered

 4:[15] 11/19/18 T(1) _VMR 13:48:35.162729VMRRmcp::VMRRmcp Leaving

 5:[15] 11/19/18 T(1) _VMR 13:48:35.162828IBM.VMRd: Resource manager has been successfully initialized.

 6:[15] 11/19/18 T(304) _VMR 13:48:35.172692 VMRDaemon.C(177):[INFO,VMRDaemon] Start LPAR category logging

 7:[15] 11/19/18 T(304) _VMR 13:48:35.172697 VMRDaemon.C(178):[INFO,VMRDaemon] Start Verify category logging

 8:[15] 11/19/18 T(304) _VMR 13:48:38.196786 DEBUG VMRDaemon.C[227]: INFO: VMs not provided. Selecting all the VMs ###############.

 9:[15] 11/19/18 T(304) _VMR 13:48:38.196789 DEBUG VMRDaemon.C[235]: INFO: KSYS_TST_CG: VMRDG_ KSYS_TST_VM:

 10:[15] 11/19/18 T(304) _VMR 13:48:38.196791 DEBUG VMRDaemon.C[238]: vmr_restart value set to 1

 11:

 12:[15] 11/19/18 T(304) _VMR 13:48:38.196792 DEBUG VMRDaemon.C[247]: INFO: skip_policyMap = 0

 13:[15] 11/19/18 T(304) _VMR 13:48:38.197869 VMR_SITERccp::VMR_SITERccp Entered

 #

 [image:]

 You can easily count the first five entries that are posted by the main thread (T(1)), which matches the number of traces that is left by the main thread in our whole ksys log excerpt, as shown in Table 2-1 on page 65.

 The main thread then hands off the execution control to the created thread T(304). This created thread logs six initial records, and then handles the whole sequence of RCCPs and RCPs initialization, as shown in Example 2-28 on page 67. We counted 602 records that are signed by T(304). The number of records that are signed by T(304) in Example 2-35 on page 72 after the return from the last RCCP constructor is 18 (19 - 1). Adding up all these occurrences, we get exactly the number for T(304) that is shown in Table 2-1 on page 65 (6+602+18=626).

 Event thread Handler start

 We saw in Example 2-35 on page 72 that the last record that was left by the T(304) thread in our ksys log is 682. Let us continue with the next 25 records (Example 2-37).

 Example 2-37 Entering the event thread Handler

 [image:]

 # sed '683,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|head -25

 683:[15] 11/19/18 T(9091) _VMR 13:49:26.242487 DEBUG VMR_threads.C[1284]: Entered event thread Handler. HG: 1

 684:[15] 11/19/18 T(9091) _VMR 13:49:26.242490 DEBUG VMR_threads.C[1290]: Got the HGRcp

 685:[15] 11/19/18 T(9091) _VMR 13:49:26.242491 DEBUG VMR_threads.C[1298]: recovery_LPAR function triggered

 686:[15] 11/19/18 T(9091) _VMR 13:49:26.242732 DEBUG VMR_HG.C[15217]: Fetching the HAstate for lpar 017D6CF0-4262-40FD-B83F-34EF0D58CFE5

 687:[15] 11/19/18 T(9091) _VMR 13:49:26.242780 DEBUG VMR_HG.C[15217]: Fetching the HAstate for lpar 18554EB7-180D-41D5-988C-9742F1CB6F9F

 688:[15] 11/19/18 T(9091) _VMR 13:49:26.242827 DEBUG VMR_HG.C[15217]: Fetching the HAstate for lpar 192575B8-E6A7-4E67-B77C-049C45ECD027

 689:[15] 11/19/18 T(9091) _VMR 13:49:26.242876 DEBUG VMR_HG.C[15217]: Fetching the HAstate for lpar 4E395E99-FFFB-4345-8067-2D5296BA7D91

 690:[15] 11/19/18 T(9091) _VMR 13:49:26.242925 DEBUG VMR_HG.C[15217]: Fetching the HAstate for lpar 192ABBED-306B-4D6B-B8A2-9F7C3BF9D2E6

 691:[15] 11/19/18 T(9091) _VMR 13:49:26.242991 DEBUG VMR_HG.C[15217]: Fetching the HAstate for lpar 31603D8C-5A2F-437C-BA33-F25321415CC4

 692:[15] 11/19/18 T(9091) _VMR 13:49:26.243040 DEBUG VMR_HG.C[15217]: Fetching the HAstate for lpar 57275F1E-3680-4EEF-945A-FE7670500310

 693:[15] 11/19/18 T(9091) _VMR 13:49:26.243089 DEBUG VMR_HG.C[15217]: Fetching the HAstate for lpar 626FC239-7BF5-4976-B8C0-6D0C7C9ED9EB

 694:[15] 11/19/18 T(9091) _VMR 13:49:26.243096 DEBUG VMR_HG.C[2324]: STATE: Phase is being changed from: DISCOVER_ONLY to: READY

 695:[15] 11/19/18 T(9394) _VMR 13:49:26.246393 VMRRmcp::connectionChanged entered, conn_changed=1.

 696:[15] 11/19/18 T(9394) _VMR 13:49:26.246394 VMRRmcp::connectionChanged leaving.

 697:[15] 11/19/18 T(9192) _VMR 13:49:26.265532 DEBUG VMR_HMC.C[3578]: Session is Empty !!!. Trying to get HMC Session.

 698:[15] 11/19/18 T(9192) _VMR 13:49:26.265536 DEBUG VMR_HMC.C[3630]: Calling krigetSessionId(). HMCIP=9.3.18.159, UserName=hscroot, Passwd=*****

 699:[15] 11/19/18 T(9394) _VMR 13:49:26.476082 VMR_SITERccp::validateSetClassParms Entered, number of values=57.

 700:[15] 11/19/18 T(9394) _VMR 13:49:26.476093 VMR_SITERccp::validateSetClassParms Leaving.

 701:

 702:[15] 11/19/18 T(809) _VMR 13:49:26.478390 VMR_HMCRccp::chgClassCommitted Entered.

 703:[15] 11/19/18 T(809) _VMR 13:49:26.478391 VMR_HMCRccp::chgClassCommitted Leaving.

 704:

 705:[15] 11/19/18 T(9192) _VMR 13:49:27.865262 DEBUG VMR_HMC.C[6938]: getQuickQuery [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 706:[15] 11/19/18 T(9192) _VMR 13:49:27.865475 DEBUG VMR_VIOS.C[4156]: set the RelocInitiated value for VIOS 5AC3E0DC-13FC-4221-9617-8EF61C4CDD83 as 0

 707:

 # sed '683,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|head -25|grep -c "T(9091)"

 12

 # sed '695,$!d;=' post-restart_ksys.log|grep -c "T(9091)"

 0

 #

 [image:]

 In Example 2-37 on page 74, note the following facts:

 •Entering the event thread Handler T(9091) triggers the VM recovery function for all eight managed VMs in our configured host group, and the host group goes to the READY state.

 •Some discreet RSCT activity that is done by the T(9394) and T(809) threads is detected. This activity is state updates for resources in the RMC registry.

 •The FDE thread T(9192) appears with its first ksys records, one of which is about opening a REST API session with the HMC, and the other one about performing a first getQuickQuery request.

 •After logging this first group of 12 records about the VM recovery activation, our event handler remains quiet until the end of the ksys log excerpt.

 FDE thread start and the first QuickQuery

 We try to correlate the records of the FDE thread in the ksys log excerpt with its beginning records in the counterpart fde log excerpt (Example 2-38). We extracted these logs from trace files, as shown in Example 2-23 on page 64.

 Example 2-38 Initial records in the fde trace file after daemon restart

 [image:]

 # sed '1,$!d;=' post-restart_fde.log|sed 'N;s/\n/:/'|head -25

 1:[06] 11/19/18 T(1) ____ 13:48:35.140684 ******************* Trace Started - Pid = 16646518 **********************

 2:[06] 11/19/18 T(9192) _VMR 13:49:26.243690 DEBUG FDEthread.C[69]: Entering

 3:[06] 11/19/18 T(9192) _VMR 13:49:26.265358 DEBUG FDEthread.C[127]: Monitoring Enabled for HG rbHG.

 4:[06] 11/19/18 T(9192) _VMR 13:49:26.265375 DEBUG FDEthread.C[145]: CEC is 4462c37c-65c6-3614-b02a-aa09d752c2ee

 5:[06] 11/19/18 T(9192) _VMR 13:49:26.265383 DEBUG FDEthread.C[158]: VIOS 315CE56B-9BA0-46A1-B4BC-DA6108574E7E in CEC

 6:[06] 11/19/18 T(9192) _VMR 13:49:26.265391 DEBUG FDEthread.C[208]: Use VIOS rt13v2: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E for polling

 7:[06] 11/19/18 T(9192) _VMR 13:49:26.265394 DEBUG FDEthread.C[285]: Current scan [1]

 8:[06] 11/19/18 T(9192) _VMR 13:49:26.265412 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 9:[06] 11/19/18 T(9192) _VMR 13:49:26.265424 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 10:[06] 11/19/18 T(9192) _VMR 13:49:26.265454 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 11:[06] 11/19/18 T(9192) _VMR 13:49:26.265463 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 12:[06] 11/19/18 T(9192) _VMR 13:49:26.265471 DEBUG VMR_HG.C[11664]: FDE performing doQuickQuery to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 13:[06] 11/19/18 T(9192) _VMR 13:49:26.265475 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 33(VMDR_QUICK_QUERY)

 14:[06] 11/19/18 T(9192) _VMR 13:49:26.265495 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 15:[06] 11/19/18 T(9192) _VMR 13:49:26.517072 DEBUG VMR_HMC.C[6905]: getQuickQuery: Calling kriSubmitQuickQuery!. HMC:9.3.18.159, viosUuid: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 16:[06] 11/19/18 T(9192) _VMR 13:49:26.657903 DEBUG VMR_HMC.C[6925]: getQuickQuery: Job submitted. Now doing WaitTillJobCompletion() ..

 17:[06] 11/19/18 T(9192) _VMR 13:49:26.657908 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1540961034191, retCnt = 1

 18:[06] 11/19/18 T(9192) _VMR 13:49:27.776247 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1540961034191, retCnt = 2

 19:[06] 11/19/18 T(9192) _VMR 13:49:27.865264 DEBUG VMR_HMC.C[6938]: getQuickQuery [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 20:[06] 11/19/18 T(9192) _VMR 13:49:27.865286 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 33(VMDR_QUICK_QUERY), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 21:[06] 11/19/18 T(9192) _VMR 13:49:27.865296 DEBUG VMR_HG.C[11671]: FDE doQuickQuery success to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 22:[06] 11/19/18 T(9192) _VMR 13:49:27.865298 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 23:[06] 11/19/18 T(9192) _VMR 13:49:27.865303 DEBUG needAttn.C[1566]: START handleVIOResponse scan [1].

 24:[06] 11/19/18 T(9192) _VMR 13:49:27.865442 DEBUG needAttn.C[167]: machine_type = 8286

 25:[06] 11/19/18 T(9192) _VMR 13:49:27.865444 DEBUG needAttn.C[176]: model = 42A

 #

 [image:]

 Comparing the moment when the FDE thread entered its run (13:49:26.243690) with the moment the event thread Handler entered (13:49:26.242487 in Example 2-37 on page 74), we see that the FDE thread started 1.2 ms later. The FDE thread logs at its start details about the VIOS that it uses for polling and then initiates its first scan, which is a QuickQuery. The steps of the QuickQuery are as follows:

 1.	This first FDE polling scan is started by starting a doQuickQuery call, which is logged in the fde trace file at 13:49:26.265471, and also logged as tried by the rthmc3 HMC at 13:49:26.265495.

 2.	So, the FDE thread logs its first message in the ksys trace file, which is the record about the empty HMC session found, at 13:49:26.265532 (Example 2-37 on page 74).

 3.	After the new HMC session is opened at 13:49:26.265536 (Example 2-37 on page 74), the QuickQuery request is submitted to a VIOS at 13:49:26.517072 (Example 2-38 on page 76).

 4.	The response is obtained by job polling, and a record about its completion is logged in the ksys trace file at 13:49:27.865262.

 5.	The first FDE doQuickQuery call logs its return at 13:49:27.865296 1.6 seconds after its invocation.

 The whole sequence of HMC and VIOS low-level steps for this first QuickQuery request after the daemon restart as they are logged in the krest and krestlog trace files is described in “QuickQuery asynchronous job example” on page 105. Also, a complete analysis of a generic QuickQuery request flow, including the way its response payload content is parsed and further processed by the KSYS side, is available in “QuickQuery flow” on page 234.

 After the first QuickQuery occurrence at line 705 of our ksys log file and the subsequent two lines that are shown in Example 2-37 on page 74 (706 - 707), we continue with the next section of 25 rows from the ksys log, as shown in Example 2-39. All these lines are ksys records that are logged by the FDE thread about VIOS- and CEC-related initialization actions performed while parsing and processing this first QuickQuery response payload.

 Example 2-39 FDE thread traces in the ksys log after the first QuickQuery

 [image:]

 # sed '708,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|head -25

 708:[15] 11/19/18 T(9192) _VMR 13:49:27.865476 DEBUG VMR_VIOS.C[4158]:

 709:

 710: CEC IS UP, READY FOR RELOCATION

 711:

 712:

 713:[15] 11/19/18 T(9192) _VMR 13:49:27.866167 DEBUG VMR_VIOS.C[4172]: Adding cleanLpars task for the cec 4462c37c-65c6-3614-b02a-aa09d752c2ee

 714:[15] 11/19/18 T(9192) _VMR 13:49:27.866172 DEBUG VMR_LPAR.C[11257]: adding task for clean_lpars

 715:[15] 11/19/18 T(9192) _VMR 13:49:27.866180 DEBUG VMR_LPAR.C[11260]: Add task is done for CLEAN_LPARS

 716:[15] 11/19/18 T(9192) _VMR 13:49:27.866198 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_CAA_STATE_UP_DETECTED, event type:3, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 717:[15] 11/19/18 T(9192) _VMR 13:49:27.866540 DEBUG VMR_SITE.C[7096]: ERROR: catopen Failed

 718:[15] 11/19/18 T(3c3d) _VMR 13:49:27.867594 DEBUG VMR_LPAR.C[14099]: Entered into CLEAN_LPARS task

 719:[15] 11/19/18 T(9192) _VMR 13:49:27.869826 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_HM_RESP_DETECTED, event type:4, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 720:[15] 11/19/18 T(9192) _VMR 13:49:27.880119 DEBUG VMR_VIOS.C[4156]: set the RelocInitiated value for VIOS 315CE56B-9BA0-46A1-B4BC-DA6108574E7E as 0

 721:

 722:[15] 11/19/18 T(9192) _VMR 13:49:27.880120 DEBUG VMR_VIOS.C[4158]:

 723:

 724: CEC IS UP, READY FOR RELOCATION

 725:

 726:

 727:[15] 11/19/18 T(9192) _VMR 13:49:27.880764 DEBUG VMR_VIOS.C[4172]: Adding cleanLpars task for the cec 4462c37c-65c6-3614-b02a-aa09d752c2ee

 728:[15] 11/19/18 T(9192) _VMR 13:49:27.880769 DEBUG VMR_LPAR.C[11257]: adding task for clean_lpars

 729:[15] 11/19/18 T(9192) _VMR 13:49:27.880776 DEBUG VMR_LPAR.C[11260]: Add task is done for CLEAN_LPARS

 730:[15] 11/19/18 T(9192) _VMR 13:49:27.880791 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_CAA_STATE_UP_DETECTED, event type:3, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 731:[15] 11/19/18 T(393a) _VMR 13:49:27.881922 DEBUG VMR_LPAR.C[14099]: Entered into CLEAN_LPARS task

 732:[15] 11/19/18 T(9192) _VMR 13:49:27.883755 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_HM_RESP_DETECTED, event type:4, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 #

 [image:]

 We can easily identify the following actions, which are performed for each VIOS separately (starting from line 708 in Example 2-37 on page 74, then going through Example 2-39 on page 77 and Example 2-40, and finishing at line 758 in Example 2-42 on page 80):

 •The RelocInitiated flag is set to 0, so the underlying CEC enters the READY FOR RELOCATION state.

 •The FDE thread hands off a clean_lpars task to one thread in the pool of task threads.

 •The eventNotify service is launched for the VIOS_CAA_STATE_UP_DETECTED and VIOS_HM_RESP_DETECTED events.

 Example 2-40 FDE thread traces in the ksys log after the first QuickQuery (continued)

 [image:]

 # sed '733,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|head -25

 733:[15] 11/19/18 T(9192) _VMR 13:49:27.893914 DEBUG VMR_VIOS.C[4156]: set the RelocInitiated value for VIOS 166C89EF-57D8-4E75-815C-AA5B885560B1 as 0

 734:

 735:[15] 11/19/18 T(9192) _VMR 13:49:27.893914 DEBUG VMR_VIOS.C[4158]:

 736:

 737: CEC IS UP, READY FOR RELOCATION

 738:

 739:

 740:[15] 11/19/18 T(9192) _VMR 13:49:27.894557 DEBUG VMR_VIOS.C[4172]: Adding cleanLpars task for the cec 6e2f37f5-1824-347a-99fd-488f818086dd

 741:[15] 11/19/18 T(9192) _VMR 13:49:27.894562 DEBUG VMR_LPAR.C[11257]: adding task for clean_lpars

 742:[15] 11/19/18 T(9192) _VMR 13:49:27.894569 DEBUG VMR_LPAR.C[11260]: Add task is done for CLEAN_LPARS

 743:[15] 11/19/18 T(9192) _VMR 13:49:27.894594 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_CAA_STATE_UP_DETECTED, event type:3, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 744:[15] 11/19/18 T(4849) _VMR 13:49:27.895744 DEBUG VMR_LPAR.C[14099]: Entered into CLEAN_LPARS task

 745:[15] 11/19/18 T(9192) _VMR 13:49:27.897512 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_HM_RESP_DETECTED, event type:4, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 746:[15] 11/19/18 T(9192) _VMR 13:49:27.907998 DEBUG VMR_VIOS.C[4156]: set the RelocInitiated value for VIOS 4E0F6F60-214B-4D2C-A436-0EAC46F7F71F as 0

 747:

 748:[15] 11/19/18 T(9192) _VMR 13:49:27.907999 DEBUG VMR_VIOS.C[4158]:

 749:

 750: CEC IS UP, READY FOR RELOCATION

 751:

 752:

 753:[15] 11/19/18 T(9192) _VMR 13:49:27.908667 DEBUG VMR_VIOS.C[4172]: Adding cleanLpars task for the cec 6e2f37f5-1824-347a-99fd-488f818086dd

 754:[15] 11/19/18 T(9192) _VMR 13:49:27.908681 DEBUG VMR_LPAR.C[11257]: adding task for clean_lpars

 755:[15] 11/19/18 T(9192) _VMR 13:49:27.908688 DEBUG VMR_LPAR.C[11260]: Add task is done for CLEAN_LPARS

 756:[15] 11/19/18 T(9192) _VMR 13:49:27.908704 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_CAA_STATE_UP_DETECTED, event type:3, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 757:[15] 11/19/18 T(2d2e) _VMR 13:49:27.909960 DEBUG VMR_LPAR.C[14099]: Entered into CLEAN_LPARS task

 #

 [image:]

 All threads handling the CLEAN_LPARS tasks are listed in Example 2-41. You can easily check in Table 2-1 on page 65 that they are all from the task thread pool.

 Example 2-41 CLEAN_LPARS tasks in thread pool

 [image:]

 # sed '705,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|grep "Entered into CLEAN_LPARS task"

 718:[15] 11/19/18 T(3c3d) _VMR 13:49:27.867594 DEBUG VMR_LPAR.C[14099]: Entered into CLEAN_LPARS task

 731:[15] 11/19/18 T(393a) _VMR 13:49:27.881922 DEBUG VMR_LPAR.C[14099]: Entered into CLEAN_LPARS task

 744:[15] 11/19/18 T(4849) _VMR 13:49:27.895744 DEBUG VMR_LPAR.C[14099]: Entered into CLEAN_LPARS task

 757:[15] 11/19/18 T(2d2e) _VMR 13:49:27.909960 DEBUG VMR_LPAR.C[14099]: Entered into CLEAN_LPARS task

 #

 [image:]

 Because our test environment has two hosts, each with two VIOSs, we are done with these side actions that were triggered by the first succeeded FDE QuickQuery. Checking after the moment FDE logs its last line, 758, as shown in Example 2-42 on page 80, we see a long interval of 8 seconds during which nothing happens. Then, a new thread, T(203), wakes up at 13:49:36.234247 and starts logging continuously resyncAppInfo records.

 Application resynchronization

 The new thread that appears after the quiet interval is the scheduler action that was set before the return from the HG Rcp constructor that are shown in Example 2-31 on page 69. We compared the moment when the ResyncAPPs action was added in the scheduler for later execution with the moment when the scheduled action was started by the scheduler, which correlated with the delay parameter of 10000 milliseconds. The T(203) scheduler thread appears here after these 10 seconds elapsed, which explains these 8 seconds of complete silence in our ksys log.

 The T(203) scheduler thread initiates the VMR_HGRcp::resyncAppInfo method call under HG_ResyncShed::callback, as shown in Example 2-42. Then, a complex ResyncAPPs action is performed by multiple threads in parallel.

 Example 2-42 Scheduler thread triggering application resync actions

 [image:]

 # sed '758,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|head -25

 758:[15] 11/19/18 T(9192) _VMR 13:49:27.911679 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_HM_RESP_DETECTED, event type:4, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 759:[15] 11/19/18 T(203) _VMR 13:49:36.234247 DEBUG VMR_HMC.C[1704]: Checking the HMC state of site 0

 760:[15] 11/19/18 T(203) _VMR 13:49:36.234252 DEBUG VMR_HMC.C[1545]: Found one reachable HMC rthmc3 for site 0

 761:[15] 11/19/18 T(203) _VMR 13:49:36.234278 DEBUG VMR_HG.C[9305]: HG_ResyncShed::callback Called.

 762:[15] 11/19/18 T(203) _VMR 13:49:36.234280 DEBUG VMR_HG.C[16338]: VMR_HGRcp::resyncAppInfo Entered

 763:[15] 11/19/18 T(203) _VMR 13:49:36.234315 DEBUG VMR_LPAR.C[15086]: Entered VMR_LPARRccp::getHGLPARList

 764:[15] 11/19/18 T(203) _VMR 13:49:36.235011 DEBUG VMR_LPAR.C[15130]: Leaving VMR_LPARRccp::getHGLPARList

 765:[15] 11/19/18 T(203) _VMR 13:49:36.235018 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt13007

 766:[15] 11/19/18 T(203) _VMR 13:49:36.235021 DEBUG VMR_HG.C[16390]: VMR_HGRcp::resyncAppInfo addTask is invoked for resync

 767:[15] 11/19/18 T(203) _VMR 13:49:36.235055 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt13006

 768:[15] 11/19/18 T(203) _VMR 13:49:36.235057 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt13003

 769:[15] 11/19/18 T(203) _VMR 13:49:36.235058 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt13002

 770:[15] 11/19/18 T(203) _VMR 13:49:36.235061 DEBUG VMR_HG.C[16390]: VMR_HGRcp::resyncAppInfo addTask is invoked for resync

 771:[15] 11/19/18 T(203) _VMR 13:49:36.235077 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt13004

 772:[15] 11/19/18 T(203) _VMR 13:49:36.235079 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt13008

 773:[15] 11/19/18 T(203) _VMR 13:49:36.235081 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt13001

 774:[15] 11/19/18 T(203) _VMR 13:49:36.235083 DEBUG VMR_HG.C[16390]: VMR_HGRcp::resyncAppInfo addTask is invoked for resync

 775:[15] 11/19/18 T(203) _VMR 13:49:36.235102 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt13005

 776:[15] 11/19/18 T(203) _VMR 13:49:36.235104 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt14004

 777:[15] 11/19/18 T(203) _VMR 13:49:36.235106 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt14005

 778:[15] 11/19/18 T(203) _VMR 13:49:36.235108 DEBUG VMR_HG.C[16390]: VMR_HGRcp::resyncAppInfo addTask is invoked for resync

 779:[15] 11/19/18 T(203) _VMR 13:49:36.235125 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt14008

 780:[15] 11/19/18 T(203) _VMR 13:49:36.235127 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt14001

 781:[15] 11/19/18 T(203) _VMR 13:49:36.235129 DEBUG VMR_HG.C[16390]: VMR_HGRcp::resyncAppInfo addTask is invoked for resync

 782:[15] 11/19/18 T(203) _VMR 13:49:36.235146 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt14002

 #

 [image:]

 T(203) is the thread that we assume to be a scheduler one because of its distinctive rmf3v::RMSchedule::run() invoked function, which shows up in the procstack command output in Example 2-22 on page 62. All 30 messages this thread logs in our ksys trace file excerpt, as we counted for T(203) row in Table 2-1 on page 65, appear contiguously in Example 2-42 on page 80 and Example 2-43. The sed command at the end of Example 2-43 confirms this fact. The range of 30 lines is 759 - 788, and there is no other occurrence of a message from this T(203) scheduler thread in the ksys trace file excerpt.

 Example 2-43 Scheduler thread triggering application resync actions (continued)

 [image:]

 # sed '783,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|head -25

 783:[15] 11/19/18 T(203) _VMR 13:49:36.235163 DEBUG VMR_HG.C[16390]: VMR_HGRcp::resyncAppInfo addTask is invoked for resync

 784:[15] 11/19/18 T(203) _VMR 13:49:36.235181 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt14006

 785:[15] 11/19/18 T(203) _VMR 13:49:36.235183 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt14007

 786:[15] 11/19/18 T(203) _VMR 13:49:36.235185 DEBUG VMR_HG.C[16390]: VMR_HGRcp::resyncAppInfo addTask is invoked for resync

 787:[15] 11/19/18 T(203) _VMR 13:49:36.235203 DEBUG VMR_HG.C[16374]: VMR_HGRcp::resyncAppInfo Name: rt14003

 788:[15] 11/19/18 T(203) _VMR 13:49:36.235217 DEBUG VMR_HG.C[9307]: HG_ResyncShed::callback Done!!

 789:[15] 11/19/18 T(4041) _VMR 13:49:36.235297 DEBUG VMR_LPAR.C[13924]: RESYNC_APP:CECusage:1

 790:[15] 11/19/18 T(4041) _VMR 13:49:36.235299 DEBUG VMR_LPAR.C[18542]: In update_HAState for state_bit of VM rt13007 to 0x20000000.

 791:[15] 11/19/18 T(3d3e) _VMR 13:49:36.235833 DEBUG VMR_LPAR.C[13924]: RESYNC_APP:CECusage:2

 792:[15] 11/19/18 T(3d3e) _VMR 13:49:36.235835 DEBUG VMR_LPAR.C[18542]: In update_HAState for state_bit of VM rt13002 to 0x20000000.

 793:[15] 11/19/18 T(90a) _VMR 13:49:36.235890 DEBUG VMR_LPAR.C[13924]: RESYNC_APP:CECusage:3

 794:[15] 11/19/18 T(90a) _VMR 13:49:36.235892 DEBUG VMR_LPAR.C[18542]: In update_HAState for state_bit of VM rt13001 to 0x20000000.

 795:[15] 11/19/18 T(8889) _VMR 13:49:36.235954 DEBUG VMR_LPAR.C[13924]: RESYNC_APP:CECusage:1

 796:[15] 11/19/18 T(8889) _VMR 13:49:36.235955 DEBUG VMR_LPAR.C[18542]: In update_HAState for state_bit of VM rt14005 to 0x20000000.

 797:[15] 11/19/18 T(8788) _VMR 13:49:36.236015 DEBUG VMR_LPAR.C[13924]: RESYNC_APP:CECusage:2

 798:[15] 11/19/18 T(8788) _VMR 13:49:36.236016 DEBUG VMR_LPAR.C[18542]: In update_HAState for state_bit of VM rt14002 to 0x20000000.

 799:[15] 11/19/18 T(8687) _VMR 13:49:36.236070 DEBUG VMR_LPAR.C[13924]: RESYNC_APP:CECusage:3

 800:[15] 11/19/18 T(8687) _VMR 13:49:36.236071 DEBUG VMR_LPAR.C[18542]: In update_HAState for state_bit of VM rt14001 to 0x20000000.

 801:[15] 11/19/18 T(8586) _VMR 13:49:36.236127 DEBUG VMR_LPAR.C[13924]: RESYNC_APP:CECusage:4

 802:[15] 11/19/18 T(8586) _VMR 13:49:36.236128 DEBUG VMR_LPAR.C[18542]: In update_HAState for state_bit of VM rt14007 to 0x20000000.

 803:[15] 11/19/18 T(405) _VMR 13:49:36.238105 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt13007 to 0x20000004.

 804:[15] 11/19/18 T(4041) _VMR 13:49:36.238466 DEBUG VMR_LPAR.C[18581]: In update_HAState for HASTATE of VM rt13007 from 0x4 to 0x20000004.

 805:[15] 11/19/18 T(4041) _VMR 13:49:36.238470 DEBUG VMR_LPAR.C[13944]: ResyncAPP: Acquired preempt lock of the VM: rt13007.

 806:[15] 11/19/18 T(4041) _VMR 13:49:36.238471 DEBUG VMR_LPAR.C[23158]: resyncAllAppsInfo entered

 807:[15] 11/19/18 T(4041) _VMR 13:49:36.238500 DEBUG VMR_LPAR.C[23179]: resyncAllAppsInfo ::LparUuid:[017D6CF0-4262-40FD-B83F-34EF0D58CFE5],dbell:0x2

 # sed '789,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|grep -c "T(203)"

 0

 # sed '759,788!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|grep -c "T(203)"

 30

 #

 [image:]

 HG_ResyncShed::callback calls the VMR_HGRcp::resyncAppInfo host group RCP method, which first retrieves the list of all VMs (16 for our host group) and then launches an addTask call for the resync of each managed VM among them. Example 2-44 lists the VMs that are configured as managed.

 Example 2-44 Managed VMs at the daemon startup moment

 [image:]

 # ksysmgr q vm state=manage|grep "^Name:"

 Name: rt14007

 Name: rt14002

 Name: rt14001

 Name: rt14005

 Name: rt13001

 Name: rt13002

 Name: rt13003

 Name: rt13007

 #

 [image:]

 Table 2-2 lists the resyncAPP task threads in the first column as they show up in the log (see Example 2-43 on page 81) and the assigned managed VM for each thread separately in the second column.

 Table 2-2 The resyncAPP task threads and assigned VMs

 	
 resyncAPP task thread

 	
 Assigned VM

 	
 T(4041)

 	
 rt13007

 	
 T(3d3e)

 	
 rt13002

 	
 T(90a)

 	
 rt13001

 	
 T(8889)

 	
 rt14005

 	
 T(8788)

 	
 rt14002

 	
 T(8687)

 	
 rt14001

 	
 T(8586)

 	
 rt14007

 The first records of each thread already are presented in Example 2-43 on page 81. Similar sequences of records are logged by each thread, and the records are interlaced as the threads run in parallel. The last record of each sequence is shown in Example 2-52 on page 88. We further examine in detail the sequence of the first resyncAPP task thread T(4041), which handles the rt13007 VM.

 In Example 2-45, we select the records of the T(4041) thread that is present in Example 2-43 on page 81 and also include the particular record showing up there as logged by the T(405) thread because it is also related to the rt13007 VM.

 Example 2-45 Start of the resyncAPP flow for the rt13007 VM

 [image:]

 789:[15] 11/19/18 T(4041) _VMR 13:49:36.235297 DEBUG VMR_LPAR.C[13924]: RESYNC_APP:CECusage:1

 790:[15] 11/19/18 T(4041) _VMR 13:49:36.235299 DEBUG VMR_LPAR.C[18542]: In update_HAState for state_bit of VM rt13007 to 0x20000000.

 803:[15] 11/19/18 T(405) _VMR 13:49:36.238105 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt13007 to 0x20000004.

 804:[15] 11/19/18 T(4041) _VMR 13:49:36.238466 DEBUG VMR_LPAR.C[18581]: In update_HAState for HASTATE of VM rt13007 from 0x4 to 0x20000004.

 805:[15] 11/19/18 T(4041) _VMR 13:49:36.238470 DEBUG VMR_LPAR.C[13944]: ResyncAPP: Acquired preempt lock of the VM: rt13007.

 806:[15] 11/19/18 T(4041) _VMR 13:49:36.238471 DEBUG VMR_LPAR.C[23158]: resyncAllAppsInfo entered

 807:[15] 11/19/18 T(4041) _VMR 13:49:36.238500 DEBUG VMR_LPAR.C[23179]: resyncAllAppsInfo ::LparUuid:[017D6CF0-4262-40FD-B83F-34EF0D58CFE5],dbell:0x2

 [image:]

 These first records of the resyncAPP flow for the rt13007 VM show the required VM state changes to start the actual flow. A highly significant state bit is set so that the VM HASTATE is 0x4 - 0x20000004. The state update appears to be even performed in the RMC persistent registry by the T(405) thread, as suggested by the name of the function call chgResourceCommited. We already see in Table 2-1 on page 65 that the distinctive stack call for the T(405) thread is rsct_gscl_V1::GSController::dispatch(), so we rather associate the T(405) thread with the core RSCT-related activity. The initial 0x4 state value matches the HAState attribute value for the IBM.VMR_LPAR RMC resource of the rt13007 VM (Example 2-46). We also check at that moment the HA_monitor_state VM attribute at the ksysmgr level, which was set to the STARTED value.

 Example 2-46 VM HA state attribute for the rt13007 VM

 [image:]

 # ksysmgr -v q vm rt13007|grep -i stat

 State: READY

 VM_status: NO_OPERATION_IN_PROGRESS

 HA_monitor_state: STARTED

 RMC_state: active

 LPM Validation Status

 # lsrsrc -s 'Name="rt13007"' IBM.VMR_LPAR|grep -i stat

 HMstate = "STARTED"

 HAState = 4

 VerifyState = {["6e2f37f5-1824-347a-99fd-488f818086dd","Fail","Errors:

 PartitionState = "running"

 RmcState = "active"

 MigrationState = ""

 RRestartState = ""

 HMstateHM1 = "STARTED"

 HMstateHM2 = "STARTED"

 # ksysmgr q vm rt13007|grep ^UUID

 UUID: 017D6CF0-4262-40FD-B83F-34EF0D58CFE5

 #

 [image:]

 Continuing with the resyncAPP flow of rt13007 VM, we then see that a lock is acquired for the VM. Then, the resyncAllAppsInfo function is entered and a dbell:0x2 code appears that is associated with the rt13007 VM. The dbell identifier is a short name for Door Bell. Door Bell is a short notification coming from the VM Agent toward the KSYS to notify you that some status or configuration changes happened at the application level. KSYS reacts to the notification by initiating a communication session where all relevant application details are requested and obtained from the VM Agent. The dbell concept is covered together with the Application Reporting (AR) Messaging protocol in 2.3.3, “Application Reporting flow” on page 262.

 Let us examine the rest of the records in the sequence that are logged by the T(4041) thread (Example 2-47 and Example 2-48 on page 85).

 Example 2-47 The resyncAPP flow for the rt13007 VM

 [image:]

 # sed '808,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|grep "T(4041)"|wc -l

 50

 # sed '808,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|grep "T(4041)"|head -25

 808:[15] 11/19/18 T(4041) _VMR 13:49:36.241014 DEBUG VMR_LPAR.C[11756]: exchangeMsgWith_VM_HM::command:0x2

 809:[15] 11/19/18 T(4041) _VMR 13:49:36.241015 DEBUG VMR_LPAR.C[23805]: isVM_ProperState::State:0x20000004

 810:[15] 11/19/18 T(4041) _VMR 13:49:36.241021 DEBUG VMR_LPAR.C[20647]: Entering generateKSYSMesg

 811:[15] 11/19/18 T(4041) _VMR 13:49:36.241046 DEBUG VMR_LPAR.C[20673]: Leaving generateKSYSMesg : <Command code="0x2"/>

 812:[15] 11/19/18 T(4041) _VMR 13:49:36.241048 DEBUG VMR_LPAR.C[11781]: exchangeMsgWith_VM_HM::hsTag:1542894422 seqNub:1

 813:[15] 11/19/18 T(4041) _VMR 13:49:36.241051 DEBUG VMR_LPAR.C[22652]: doPutMsg::putMsgPayload::30250758:<Command code="0x2"/>

 814:[15] 11/19/18 T(4041) _VMR 13:49:36.241052 DEBUG VMR_LPAR.C[23805]: isVM_ProperState::State:0x20000004

 815:[15] 11/19/18 T(4041) _VMR 13:49:36.241192 DEBUG VMR_LPAR.C[22729]: doPutMsg::CEC: 4462c37c-65c6-3614-b02a-aa09d752c2ee, vios: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 816:[15] 11/19/18 T(4041) _VMR 13:49:36.241195 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 47(VMDR_PUT_MSG)

 817:[15] 11/19/18 T(4041) _VMR 13:49:36.241211 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 901:[15] 11/19/18 T(4041) _VMR 13:49:36.449355 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1540961034192, retCnt = 1

 919:[15] 11/19/18 T(4041) _VMR 13:49:36.686337 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 47(VMDR_PUT_MSG), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 920:[15] 11/19/18 T(4041) _VMR 13:49:36.686348 DEBUG VMR_LPAR.C[22755]: doMsg::putMsg successfully placed to HM.

 921:[15] 11/19/18 T(4041) _VMR 13:49:36.686385 DEBUG VMR_LPAR.C[23805]: isVM_ProperState::State:0x20000004

 922:[15] 11/19/18 T(4041) _VMR 13:49:36.686468 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 46(VMDR_QUERY_MSG)

 923:[15] 11/19/18 T(4041) _VMR 13:49:36.686488 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 929:[15] 11/19/18 T(4041) _VMR 13:49:36.976827 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1540961034195, retCnt = 1

 935:[15] 11/19/18 T(4041) _VMR 13:49:37.194401 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 46(VMDR_QUERY_MSG), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 942:[15] 11/19/18 T(4041) _VMR 13:49:39.194587 DEBUG VMR_LPAR.C[23805]: isVM_ProperState::State:0x20000004

 943:[15] 11/19/18 T(4041) _VMR 13:49:39.194663 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 46(VMDR_QUERY_MSG)

 944:[15] 11/19/18 T(4041) _VMR 13:49:39.194684 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 945:[15] 11/19/18 T(4041) _VMR 13:49:39.305734 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1540961034199, retCnt = 1

 946:[15] 11/19/18 T(4041) _VMR 13:49:39.395018 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 46(VMDR_QUERY_MSG), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 947:[15] 11/19/18 T(4041) _VMR 13:49:41.395162 DEBUG VMR_LPAR.C[23805]: isVM_ProperState::State:0x20000004

 948:[15] 11/19/18 T(4041) _VMR 13:49:41.395237 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 46(VMDR_QUERY_MSG)

 #

 [image:]

 A messaging flow is initiated by KSYS exactly as in the case where a dbell:0x2 notification was received from the VM Agent. The retrieved result in this particular case, “No data from XML”, means that no application is configured on the rt13007 VM.

 Example 2-48 The resyncAPP flow for the rt13007 VM (continued)

 [image:]

 # sed '949,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|grep "T(4041)"

 949:[15] 11/19/18 T(4041) _VMR 13:49:41.395257 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 950:[15] 11/19/18 T(4041) _VMR 13:49:41.519016 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1540961034200, retCnt = 1

 951:[15] 11/19/18 T(4041) _VMR 13:49:41.607202 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 46(VMDR_QUERY_MSG), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 952:[15] 11/19/18 T(4041) _VMR 13:49:41.607303 DEBUG VMR_LPAR.C[23805]: isVM_ProperState::State:0x20000004

 953:[15] 11/19/18 T(4041) _VMR 13:49:41.607384 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 48(VMDR_GET_MSG)

 954:[15] 11/19/18 T(4041) _VMR 13:49:41.607403 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 955:[15] 11/19/18 T(4041) _VMR 13:49:41.718408 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1540961034201, retCnt = 1

 956:[15] 11/19/18 T(4041) _VMR 13:49:41.807140 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 48(VMDR_GET_MSG), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 957:[15] 11/19/18 T(4041) _VMR 13:49:41.807147 DEBUG VMR_LPAR.C[22912]: doGetMsg::getMsg successfully got message.

 958:[15] 11/19/18 T(4041) _VMR 13:49:41.807161 DEBUG VMR_LPAR.C[23805]: isVM_ProperState::State:0x20000004

 959:[15] 11/19/18 T(4041) _VMR 13:49:41.807318 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 49(VMDR_ACK_MSG)

 960:[15] 11/19/18 T(4041) _VMR 13:49:41.807334 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 962:[15] 11/19/18 T(4041) _VMR 13:49:41.946264 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1540961034202, retCnt = 1

 968:[15] 11/19/18 T(4041) _VMR 13:49:42.055598 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 49(VMDR_ACK_MSG), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 969:[15] 11/19/18 T(4041) _VMR 13:49:42.055604 DEBUG VMR_LPAR.C[22606]: doAckMsg::Ack completed successfully for tag:1542894422

 970:[15] 11/19/18 T(4041) _VMR 13:49:42.055612 DEBUG VMR_LPAR.C[23205]: Parse Message for complete info

 971:[15] 11/19/18 T(4041) _VMR 13:49:42.055623 DEBUG VMR_LPAR.C[23071]: parseAppsInfo::Application detail related doorbell received.:0

 972:[15] 11/19/18 T(4041) _VMR 13:49:42.055736 DEBUG VMR_LPAR.C[20713]: Document correctly cur

 973:[15] 11/19/18 T(4041) _VMR 13:49:42.055738 DEBUG VMR_LPAR.C[21392]: parseKSYSMsg Leaving

 974:[15] 11/19/18 T(4041) _VMR 13:49:42.055754 DEBUG VMR_LPAR.C[23097]: parseAppsInfo::existingAppUuidList has change.0

 975:[15] 11/19/18 T(4041) _VMR 13:49:42.055756 DEBUG VMR_LPAR.C[23104]: parseAppsInfo::No data from XML

 976:[15] 11/19/18 T(4041) _VMR 13:49:42.058908 DEBUG VMR_LPAR.C[13947]: ResyncAPP: Released preempt lock of the VM: rt13007.

 977:[15] 11/19/18 T(4041) _VMR 13:49:42.058916 DEBUG VMR_LPAR.C[18615]: In clear_HAState for state_bit of VM rt13007 to 0x20000000.

 979:[15] 11/19/18 T(4041) _VMR 13:49:42.061663 DEBUG VMR_LPAR.C[18651]: In clear_HAState for HASTATE of VM rt13007 from 0x20000004 to 0x4.

 980:[15] 11/19/18 T(4041) _VMR 13:49:42.061668 DEBUG VMR_CEC.C[9776]: usage_count 2

 #

 [image:]

 Example 2-49 lists one record for each of the task threads that resulted from the previous addTask invocations. Each thread handles the resyncapp action for its assigned VM. All threads are from the task thread pool, which can be checked by TID in Table 2-1 on page 65.

 Example 2-49 The resyncAPP task threads from thread pool

 [image:]

 # sed '789,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|grep "ResyncAPP: Acquired preempt lock of the VM"

 805:[15] 11/19/18 T(4041) _VMR 13:49:36.238470 DEBUG VMR_LPAR.C[13944]: ResyncAPP: Acquired preempt lock of the VM: rt13007.

 820:[15] 11/19/18 T(8586) _VMR 13:49:36.244815 DEBUG VMR_LPAR.C[13944]: ResyncAPP: Acquired preempt lock of the VM: rt14007.

 837:[15] 11/19/18 T(8687) _VMR 13:49:36.284617 DEBUG VMR_LPAR.C[13944]: ResyncAPP: Acquired preempt lock of the VM: rt14001.

 854:[15] 11/19/18 T(8788) _VMR 13:49:36.313490 DEBUG VMR_LPAR.C[13944]: ResyncAPP: Acquired preempt lock of the VM: rt14002.

 871:[15] 11/19/18 T(8889) _VMR 13:49:36.378297 DEBUG VMR_LPAR.C[13944]: ResyncAPP: Acquired preempt lock of the VM: rt14005.

 888:[15] 11/19/18 T(90a) _VMR 13:49:36.429445 DEBUG VMR_LPAR.C[13944]: ResyncAPP: Acquired preempt lock of the VM: rt13001.

 904:[15] 11/19/18 T(3d3e) _VMR 13:49:36.462762 DEBUG VMR_LPAR.C[13944]: ResyncAPP: Acquired preempt lock of the VM: rt13002.

 #

 [image:]

 We expect all threads to follow the same flow of execution, but we are more interested in the result of the thread T(90a), which deals with the VM rt13001, as we know it is the only VM that has a configured application (Example 2-50).

 Example 2-50 Configured applications

 [image:]

 # ksysmgr q app

 Name: tsApp

 Status: GREEN

 AppID: 1541473063965437000

 VM: rt13001

 Critical: no

 MaxRestart: 3

 Monitoring: 1

 #

 [image:]

 Again, we do not get into many details of the resyncAPP flow of VM rt13001 because this topic is covered in 2.3.3, “Application Reporting flow” on page 262. Example 2-51 shows the result for the application running on the VM rt13001.

 Example 2-51 Result of the resyncAPP flow for the rt13001 VM

 [image:]

 # sed '789,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|grep "T(90a)"|tail -30

 1054:[15] 11/19/18 T(90a) _VMR 13:49:43.338445 DEBUG VMR_LPAR.C[22606]: doAckMsg::Ack completed successfully for tag:1543092222

 1055:[15] 11/19/18 T(90a) _VMR 13:49:43.338455 DEBUG VMR_LPAR.C[23205]: Parse Message for complete info

 1056:[15] 11/19/18 T(90a) _VMR 13:49:43.338468 DEBUG VMR_LPAR.C[23071]: parseAppsInfo::Application detail related doorbell received.:0

 1057:[15] 11/19/18 T(90a) _VMR 13:49:43.338751 DEBUG VMR_LPAR.C[20713]: Document correctly cur

 1058:[15] 11/19/18 T(90a) _VMR 13:49:43.339333 DEBUG VMR_LPAR.C[21392]: parseKSYSMsg Leaving

 1059:[15] 11/19/18 T(90a) _VMR 13:49:43.339384 DEBUG VMR_APP.C[1617]: getLparAppUuidList:: LparUUID:[4E395E99-FFFB-4345-8067-2D5296BA7D91], AppUuid:[1541473063965437000]

 1060:[15] 11/19/18 T(90a) _VMR 13:49:43.339390 DEBUG VMR_LPAR.C[23097]: parseAppsInfo::existingAppUuidList has change.0

 1061:[15] 11/19/18 T(90a) _VMR 13:49:43.339470 DEBUG VMR_APP.C[1528]: prepareAppAttrList::Entered.

 1062:[15] 11/19/18 T(90a) _VMR 13:49:43.339531 DEBUG VMR_APP.C[1534]: prepareAppAttrList::AppUUID:1541473063965437000

 1063:[15] 11/19/18 T(90a) _VMR 13:49:43.339561 DEBUG VMR_APP.C[1564]: prepareAppAttrList::App Rcp is available.

 1064:[15] 11/19/18 T(90a) _VMR 13:49:43.339566 DEBUG VMR_APP.C[2553]: getAllAttrib_of_App::Entered.:1541473063965437000

 1065:[15] 11/19/18 T(90a) _VMR 13:49:43.339578 DEBUG VMR_APP.C[2582]: getAllAttrib_of_App::Leaving.

 1066:[15] 11/19/18 T(90a) _VMR 13:49:43.339579 DEBUG VMR_APP.C[1584]: prepareAppAttrList::All existing app details has been filled up.

 1067:[15] 11/19/18 T(90a) _VMR 13:49:43.339581 DEBUG VMR_APP.C[2598]: extractAttrFromMap::Entered.

 1068:[15] 11/19/18 T(90a) _VMR 13:49:43.339743 DEBUG VMR_APP.C[2735]: extractAttrFromMap::Leaving.

 1069:[15] 11/19/18 T(90a) _VMR 13:49:43.339786 DEBUG VMR_LPAR.C[23113]: parseAppsInfo::prepareAppAttrList:1

 1070:[15] 11/19/18 T(90a) _VMR 13:49:43.339788 DEBUG VMR_LPAR.C[23119]: parseAppsInfo::compare_And_DoUpdate calling

 1071:[15] 11/19/18 T(90a) _VMR 13:49:43.339800 DEBUG VMR_APP.C[1331]: compare_And_DoUpdate::Entered.

 1072:[15] 11/19/18 T(90a) _VMR 13:49:43.339804 DEBUG VMR_APP.C[2105]: compare_current_vs_new:: Entered.1541473063965437000

 1073:[15] 11/19/18 T(90a) _VMR 13:49:43.339819 DEBUG VMR_APP.C[2247]: compare_current_vs_new:: Leaving.

 1074:[15] 11/19/18 T(90a) _VMR 13:49:43.339827 DEBUG VMR_APP.C[2461]: checkRebootOrRelocation::Entered. AppUuid:1541473063965437000

 1075:[15] 11/19/18 T(90a) _VMR 13:49:43.339829 DEBUG VMR_APP.C[2468]: APP:[1541473063965437000]:isMonitored:1:critical:no:color:GREEN

 1076:[15] 11/19/18 T(90a) _VMR 13:49:43.339831 DEBUG VMR_APP.C[2515]: checkRebootOrRelocation::Leaving. AppUuid:1541473063965437000

 1077:[15] 11/19/18 T(90a) _VMR 13:49:43.339833 DEBUG VMR_APP.C[1373]: APP:[1541473063965437000] not required any action on LPAR.

 1078:[15] 11/19/18 T(90a) _VMR 13:49:43.339898 DEBUG VMR_APP.C[1452]: No Action needed on LPAR[4E395E99-FFFB-4345-8067-2D5296BA7D91].

 1079:[15] 11/19/18 T(90a) _VMR 13:49:43.339907 DEBUG VMR_APP.C[1470]: compare_And_DoUpdate::Leaving.

 1080:[15] 11/19/18 T(90a) _VMR 13:49:43.343607 DEBUG VMR_LPAR.C[13947]: ResyncAPP: Released preempt lock of the VM: rt13001.

 1081:[15] 11/19/18 T(90a) _VMR 13:49:43.343616 DEBUG VMR_LPAR.C[18615]: In clear_HAState for state_bit of VM rt13001 to 0x20000000.

 1083:[15] 11/19/18 T(90a) _VMR 13:49:43.346942 DEBUG VMR_LPAR.C[18651]: In clear_HAState for HASTATE of VM rt13001 from 0x20000004 to 0x4.

 1084:[15] 11/19/18 T(90a) _VMR 13:49:43.346949 DEBUG VMR_CEC.C[9776]: usage_count 1

 #

 [image:]

 As in the ksysmgr output of Example 2-50 on page 87, we see in the log records of Example 2-51 on page 87 that the resyncAPP retrieved result contains details about only one application that was discovered, which is AppUuid:1541473063965437000 with a GREEN status.

 Now that we clarified the resyncAPP flow, we identify the latest logged line of all resyncAPP tasks and continue from there. Example 2-52 shows the last line of each thread separately so that it is easy to identify that the latest line is 1169.

 Example 2-52 Last logged line of each resyncAPP task

 [image:]

 # sed '789,$!d;=' postrestart_ksys.log|sed 'N;s/\n/:/'|sed -n '/T(4041)/h;$!b;g;p'

 980:[15] 11/19/18 T(4041) _VMR 13:49:42.0616 DEBUG VMR_CEC.C[9776]: usage_count 2

 # sed '789,$!d;=' postrestart_ksys.log|sed 'N;s/\n/:/'|sed -n '/T(8586)/h;$!b;g;p'

 1110:[15] 11/19/18 T(8586) _VMR 13:49:43.4379 DEBUG VMR_CEC.C[9776]: usage_count 3

 # sed '789,$!d;=' postrestart_ksys.log|sed 'N;s/\n/:/'|sed -n '/T(8687)/h;$!b;g;p'

 1155:[15] 11/19/18 T(8687) _VMR 13:49:48.5615 DEBUG VMR_CEC.C[9776]: usage_count 1

 # sed '789,$!d;=' postrestart_ksys.log|sed 'N;s/\n/:/'|sed -n '/T(8788)/h;$!b;g;p'

 1169:[15] 11/19/18 T(8788) _VMR 13:49:48.7029 DEBUG VMR_CEC.C[9776]: usage_count 0

 # sed '789,$!d;=' postrestart_ksys.log|sed 'N;s/\n/:/'|sed -n '/T(8889)/h;$!b;g;p'

 1124:[15] 11/19/18 T(8889) _VMR 13:49:43.5399 DEBUG VMR_CEC.C[9776]: usage_count 2

 # sed '789,$!d;=' postrestart_ksys.log|sed 'N;s/\n/:/'|sed -n '/T(90a)/h;$!b;g;p'

 1084:[15] 11/19/18 T(90a) _VMR 13:49:43.3469 DEBUG VMR_CEC.C[9776]: usage_count 1

 # sed '789,$!d;=' postrestart_ksys.log|sed 'N;s/\n/:/'|sed -n '/T(3d3e)/h;$!b;g;p'

 1097:[15] 11/19/18 T(3d3e) _VMR 13:49:43.3750 DEBUG VMR_CEC.C[9776]: usage_count 0

 #

 [image:]

 We also must identify the lines that are logged in 789 - 1169 by other threads than those handling the resyncAPP tasks (Example 2-53).

 Example 2-53 Records in resyncAPP flows not logged by resyncAPP task threads

 [image:]

 # sed '789,1169!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|egrep -v "T\(4041\)|T\(8586\)|T\(8687\)|T\(8788\)|T\(8889\)|T\(90a\)|T\(3d3e\)"

 803:[15] 11/19/18 T(405) _VMR 13:49:36.238105 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt13007 to 0x20000004.

 818:[15] 11/19/18 T(405) _VMR 13:49:36.244447 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt14007 to 0x20000004.

 835:[15] 11/19/18 T(405) _VMR 13:49:36.284252 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt14001 to 0x20000004.

 852:[15] 11/19/18 T(405) _VMR 13:49:36.313110 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt14002 to 0x20000004.

 869:[15] 11/19/18 T(405) _VMR 13:49:36.377773 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt14005 to 0x20000004.

 886:[15] 11/19/18 T(405) _VMR 13:49:36.428750 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt13001 to 0x20000004.

 902:[15] 11/19/18 T(405) _VMR 13:49:36.455869 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt13002 to 0x20000004.

 978:[15] 11/19/18 T(405) _VMR 13:49:42.061246 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt13007 to 0x4.

 1082:[15] 11/19/18 T(405) _VMR 13:49:43.346419 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt13001 to 0x4.

 1095:[15] 11/19/18 T(809) _VMR 13:49:43.374562 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt13002 to 0x4.

 1108:[15] 11/19/18 T(809) _VMR 13:49:43.437520 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt14007 to 0x4.

 1122:[15] 11/19/18 T(809) _VMR 13:49:43.539527 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt14005 to 0x4.

 1153:[15] 11/19/18 T(405) _VMR 13:49:48.561214 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt14001 to 0x4.

 1167:[15] 11/19/18 T(809) _VMR 13:49:48.702620 DEBUG VMR_LPAR.C[9124]: In chgResourceCommited for HASTATE of VM rt14002 to 0x4.

 #

 [image:]

 So, only T(405) and T(809) inserted some records in this range (among the bulk resyncAPP related records). All of the records are about updating the HASTATE persistent attribute, as shown in Example 2-45 on page 83.

 Steady state periodic actions

 After resyncAPP tasks are complete, the ksys daemon goes to a steady state in which periodic actions are run as follows:

 •Two QuickQuery + 1x NeedAttention actions every 20s, which are performed by FDE.

 •A QuickDiscovery every hour and a DeepDiscovery once a day.

 For the QuickQuery and NeedAttention actions, we easily find records that are logged in the ksys log from the excerpt that is shown in Example 2-54.

 Example 2-54 Steady state records in ksys log

 [image:]

 # sed '1168,$!d;=' post-restart_ksys.log|sed 'N;s/\n/:/'|head

 1168:[15] 11/19/18 T(8788) _VMR 13:49:48.702963 DEBUG VMR_LPAR.C[18651]: In clear_HAState for HASTATE of VM rt14002 from 0x20000004 to 0x4.

 1169:[15] 11/19/18 T(8788) _VMR 13:49:48.702969 DEBUG VMR_CEC.C[9776]: usage_count 0

 1170:[15] 11/19/18 T(9192) _VMR 13:49:49.286774 DEBUG VMR_HMC.C[6938]: getQuickQuery [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 1171:[15] 11/19/18 T(9192) _VMR 13:50:10.644768 DEBUG VMR_HMC.C[6827]: getNeedAttn [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 1172:[15] 11/19/18 T(9192) _VMR 13:50:30.849437 DEBUG VMR_HMC.C[6938]: getQuickQuery [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 1173:[15] 11/19/18 T(9192) _VMR 13:50:51.098277 DEBUG VMR_HMC.C[6938]: getQuickQuery [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 1174:[15] 11/19/18 T(9192) _VMR 13:51:12.521614 DEBUG VMR_HMC.C[6827]: getNeedAttn [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 1175:[15] 11/19/18 T(9192) _VMR 13:51:32.724744 DEBUG VMR_HMC.C[6938]: getQuickQuery [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 1176:[15] 11/19/18 T(9192) _VMR 13:51:53.003394 DEBUG VMR_HMC.C[6938]: getQuickQuery [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 1177:[15] 11/19/18 T(9192) _VMR 13:52:14.344143 DEBUG VMR_HMC.C[6827]: getNeedAttn [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 #

 [image:]

 The hourly QuickDiscovery and the daily DeepDiscovery actions happen as described in “Quick Discovery and Deep Discovery scheduling records” on page 72. The DeepDiscovery start moment of the day can be manually changed by running ksysmgr, as detailed in “Discovery and verification” on page 92.

 In conclusion, Figure 2-7 shows a synthetic result of our findings in the daemon restart exercise.

 [image:]

 Figure 2-7 KSYS daemon threads

 2.2.6 KSYS subsystem functional modules

 Figure 2-8 presents the KSYS subsystem from a purely functional perspective. Functions are implemented inside the code of the IBM.VMR resource manager and the ksysmgr utility. The libkrest module is a helper library that the KSYS daemon uses to talk to HMCs and VIOSs.

 [image:]

 Figure 2-8 KSYS functional modules

 We further detail the role of each grouping module in the following sections.

 Configuration Management

 The Configuration Management module handles requests of the create, delete, or change types, which are needed to manipulate KSYS objects (IBM.VMR resources). Such requests come either directly from the ksysmgr commands that are entered by the user, or indirectly from other modules that are running their specific jobs. All initial elementary steps, such as when you first define the KSYS cluster, add HMCs and hosts, and then create a host group, are typical configuration steps. Any reverse elementary steps, such as when you delete host groups, hosts, and HMCs, are also typical configuration actions.

 Discovery and verification

 After host group creation, you must run a discovery operation for the host group, as shown in Example 2-55.

 Example 2-55 Host group discovery invocation

 [image:]

 ksysmgr discover host_group <hg_name> [verify=<yes|no>]

 [image:]

 During this initial discovery of a host group, the KSYS subsystem deploys a special monitoring setup for the involved VMs and hosts. It creates an SSP cluster that is based on the input that is specified in the preliminary configuration steps. The real SSP cluster (Example 2-7 on page 50) of a host group is represented in the KSYS configuration by an associated IBM.VMR_SSP resource (Example 2-56).

 Example 2-56 SSP resource of a host group

 [image:]

 # lsrsrc IBM.VMR_SSP

 Resource Persistent Attributes for IBM.VMR_SSP

 resource 1:

 Name = "SSP_1"

 SspName = "KSYS_rbRMHA_1"

 SspUuid = "1509d1bd-3fbe-3b4b-bd52-7cb482efecca"

 SspState = "UP"

 PoolName = "default_pool_1"

 PoolUuid = "000000000A2819F1000000005BD4C329"

 ViosCount = 4

 ViosUuidList = {"315CE56B-9BA0-46A1-B4BC-DA6108574E7E","5AC3E0DC-13FC-4221-9617-8EF61C4CDD83","4E0F6F60-214B-4D2C-A436-0EAC46F7F71F","166C89EF-57D8-4E75-815C-AA5B885560B1"}

 VmCount = 16

 RepositoryDisk = "01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExNA=="

 SspDiskList = {"01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExMw=="}

 HgID = 1

 SiteID = 0

 ActiveSiteID = 0

 SspVersion = "VIOS 3.1.0.00 "

 CommonXsdVersion = "4.00"

 Phase = "INIT"

 PhaseDetail = 0

 ErrMsg = " "

 DrTestPhase = ""

 DrTestPhaseDetail = 0

 WarnMsg = ""

 InfoMsg = ""

 Phasebit = 0

 PhaseDetail1 = 0

 DrTestPhaseDetail1 = 0

 ActivePeerDomain = "rbRMHA"

 #

 [image:]

 Subsequent discoveries can be started by user or by the KSYS scheduler. You normally run a discovery command each time a change is made in your environment. By default, the KSYS scheduler starts a so called Deep Discovery once in every 24 hours at midnight, as described in “Quick Discovery and Deep Discovery scheduling records” on page 72. You can change this setting, as shown in Example 2-57.

 Example 2-57 Changing the auto_discovery_time system attribute

 [image:]

 # ksysmgr q system|grep auto_discovery_time

 auto_discovery_time: 00:00 hours

 # ksysmgr mod system auto_discovery_time -h

 ksysmgr modify system

 [auto_discovery_time=<hh:mm>]

 hh - hour: 00 to 23

 mm - minute: 00 to 59

 ...

 #

 [image:]

 Deep Discovery means that discovery is followed by a complete verification step. Every hour, the system performs a Quick Discovery, which is discovery only with no verification. The KSYS subsystem scans the environment for any changes that occurred since the last discovery and adapts to the modified environment. Collected changes are saved persistently such that they survive any daemon or KSYS node crash or restart event. Any changes in the configuration or issues that are found during a discovery are reported to the user and related change or error records are written in log and trace files.

 A discovery must be completed successfully before running the first verification. The verification process ensures that the backup host can accommodate the VM. Verification consists of an LPM validate operation that is performed for every VM on all the available backup hosts on the host group. Any issues that are found during verification trigger a notification to registered users, and then are logged in to log files.

 Such verification can be started either for a host group, as shown in Example 2-58, or only for a host or VM, as shown in Example 2-59.

 Example 2-58 Host group level verification

 [image:]

 # ksysmgr discover host_group <hg_name> verify=true

 # ksysmgr verify host_group <hg_name>

 [image:]

 In the case of a host or VM, we rather use LPM validation instead of verification.

 Example 2-59 Host or VM level validation

 [image:]

 # ksysmgr lpm host <hostname|uuid> [to=<hostname|uuid>] action=validate

 # ksysmgr lpm vm <vm1[,vm2,...]> [to=<hostname|uuid>] action=validate

 [image:]

 Failure Detection Engine

 The FDE thread of a host group starts only after a user-initiated first discovery action completes successfully for that host group. If the KSYS cluster has multiple host groups that are defined, then the set of all running FDE threads can be seen as a functional FDE module. For a single defined host group, the FDE module consists of its unique FDE thread.

 The responsibility of the FDE module is to check periodically the health status of the managed VMs and hosts and to initiate VM relocation actions when needed. The FDE module does not perform the actual VM relocation or cleanup. It just triggers the relocation by informing the Relocation Engine module.

 The health status of the managed VMs is monitored by heartbeats. VM Agents periodically send heartbeats to the HMs running on the underlying VIOSs. HMs save received VM heartbeat details in the HSDB. Each HM also updates periodically its own status to the same HSDB. VIOSs monitor each other’s health among themselves through the SSP and underlying CAA cluster mechanisms.

 The FDE thread of a host group retrieves a consolidated health status for all hosts and VMs in that host group by submitting periodic requests to a designated VIOS that is selected among all of the ones that are on the host group. These FDE requests reach the designated VIOS by using specific REST API requests that are addressed to the HMC, which intermediates between the KSYS and the VIOS. For more information about how HMC intermediates the communication with the VIOS, see “The libkrest library and HMC pass-through APIs” on page 98.

 Example 2-60 shows an excerpt with a typical sequence of QuickQuery and Need Attention records from an FDE trace file.

 Example 2-60 Excerpt from an FDE trace file

 [image:]

 # ksysmgr trace log=fde|grep -E "doQuickQ|doNeedAtt"|head

 [00] 11/14/18 T(9598) _VMR 17:04:34.868328 DEBUG VMR_HG.C[11671]: FDE doQuickQuery success to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [00] 11/14/18 T(9598) _VMR 17:04:54.917742 DEBUG VMR_HG.C[11584]: FDE performing doNeedAttn GLOBAL_DATA to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [00] 11/14/18 T(9598) _VMR 17:04:56.208343 DEBUG VMR_HG.C[11592]: FDE doNeedAttn success GLOBAL_DATA to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [00] 11/14/18 T(9598) _VMR 17:05:16.209922 DEBUG VMR_HG.C[11664]: FDE performing doQuickQuery to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [00] 11/14/18 T(9598) _VMR 17:05:17.502986 DEBUG VMR_HG.C[11671]: FDE doQuickQuery success to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [00] 11/14/18 T(9598) _VMR 17:05:37.554433 DEBUG VMR_HG.C[11664]: FDE performing doQuickQuery to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [00] 11/14/18 T(9598) _VMR 17:05:38.842073 DEBUG VMR_HG.C[11671]: FDE doQuickQuery success to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [00] 11/14/18 T(9598) _VMR 17:05:58.900100 DEBUG VMR_HG.C[11584]: FDE performing doNeedAttn GLOBAL_DATA to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 ...

 #

 [image:]

 We see that the FDE thread sends two QuickQuery requests followed by a Need Attention request at 20-second intervals on average. FDE uses two types of periodic requests:

 •QuickQuery (QQ)

 •NeedsAttention (NA)

 QuickQuery is issued more frequently. The reply of a QuickQuery request contains a consolidated list of XML elements and subelements with one element for each host on the host group inside each host element with a subelement for each VIOS on the host. The VIOS XML subelement contains attributes about the VIOS health status:

 state	State of the VIOS as a node in the CAA cluster underlying the SSP with possible values of UP or DOWN.

 hmResponsive	Indication that the HM daemon on the VIOS is sending heartbeats (value 1) or not (value 0).

 hmResponseSec		The time that is elapsed (in seconds) since the HM sent a heartbeat to HSDB.

 hasData	Indication that HSDB has information about a CAA event.

 reason	Code corresponding to the current CAA event reason, if any.

 Example 2-102 on page 139 shows that when an issue is present at the VIOS level, it is also reported in the NeedsAttention replies and the QuickQuery replies.

 Although it can provide VIOS details, a NeedsAttention request obtains VM health and state change information. We describe the specific XML elements, subelements, and attributes of a NeedsAttention reply later and mention here only two relevant VM attributes for the current context:

 state	State of the VMM monitoring agent running on the VM as reported to HMs and registered in the HSDB at the VIOS level.

 missedHb	Time in seconds since the moment when the heartbeat was not received as expected by the VIOS HMs from the VM Agent (when the heartbeat is received, this attribute is not reported in the NA reply).

 The QQ and NA requests, their XML replies and contained XML elements, subelements, and attributes, together with what is happening at the KSYS and VIOS levels since the moment FDE initiates doQuickQuery or doNeedAttn actions until the moment they return as logged in Example 2-60 on page 94, are detailed in 2.3.2, “Failure Detection Engine: QuickQuery and NeedsAttention flows” on page 234.

 If both VIOSs of a host are unhealthy, then the FDE decides that all managed VMs of the affected host must be relocated to other hosts on the host group. If VIOSs of a host are healthy but some VMs are not, then the FDE initiates relocation of only those unhealthy VMs. FDE first checks for host relocation and then for VM relocation. Let us see in more detail how these decisions are made.

 Host relocation decision

 FDE initiates the relocation of the entire host only if both VIOSs of the host are found to be in an unhealthy state. The primary factor that initiates a VIOS state health check is its CAA state, which is retrieved from the HSDB as the VIOS state attribute value in QQ or NA replies. If the VIOS CAA state is DOWN, then FDE performs the following steps:

 1.	Pings the VIOS. If that task succeeds, the VIOS is treated as healthy.

 2.	Get the LPAR runtime state of the VIOS from the HMC by running lssyscfg -r lpar.

 3.	Declare the down VIOS as healthy only when the following situations are true:

  –	The VIOS is in the Not Activated or in Open Firmware LPAR state.

  –	The reason attribute value (retrieved from the HSDB together with CAA state) is SHUTDOWN.

 For a host with both VIOSs declared unhealthy, an extra check is done before the host relocation decision. The FDE sends a sanity health request directly to the involved VIOSs. If at least one VIOS in the host is now healthy, then the relocation is canceled. Otherwise, the host relocation decision occurs. Only VMs that are declared as managed at the ksysmgr level are relocated; the unmanaged ones are ignored.

 VM relocation decision

 The primary factor for initiating a VM relocation is the lack of heartbeat from the VM. Only VMs that are registered as managed and have the ha_monitor attribute set to enable at the ksysmgr level are considered for VM relocation. The sensitivity of the FDE reaction to a missed heartbeat event can be adjusted at the ksysmgr level by using two parameters: host_failure_detection_time and vm_failure_detection_speed. You can set both parameters either at the global KSYS system or at a particular host group level.

 Example 2-61 shows the parameters default values and ranges. The vm_failure_detection_speed can be also adjusted at the VM level.

 Example 2-61 Missed heartbeat sensitivity parameters

 [image:]

 # ksysmgr -v q system|grep -i detection

 host_failure_detection_time: 90 seconds

 vm_failure_detection_speed: normal

 # ksysmgr -v q hg rbHG|grep -i detection

 VM_failure_detection_speed: normal

 Host_failure_detection_time: 90

 # ksysmgr -v q vm vmraix1|grep -i detection

 VM_failure_detection_speed: normal

 #

 # ksysmgr modify system -?|grep -i detection

 [host_failure_detection_time=<90-600>]

 [vm_failure_detection_speed=<fast | normal | slow>]

 # ksysmgr modify hg rbHG -?|grep -i detection

 ...

 [vm_failure_detection_speed=<fast | normal | slow>]

 [host_failure_detection_time=<90-600>]

 # ksysmgr modify vm vmraix1 -?|grep -i detection

 [vm_failure_detection_speed=<fast | normal | slow>]

 #

 [image:]

 From the host_failure_detection_time and vm_failure_detection_speed parameters (hostFDT and VMFDS) and from a third one called VMthreshold, which is hardcoded to a fix value of 50, the VM Failure Detection Time (VMFDT) parameter is derived for each monitored VM as follows:

 •If VMFDS is set to fast, then the parameter is VMFDT=hostFDT+VMthreshold.

 •If VMFDS is set to normal, then the parameter is VMFDT=hostFDT+2*VMthreshold.

 •If VMFDS is set to slow, then the parameter is VMFDT=hostFDT+3*VMthreshold.

 So, the default value of the VMFDT is 190, and its minimum and maximum values are 140 and 750.

 Also, FDE has an HBoffset parameter for each managed and monitored VM. HBoffset is used to ensure that the VM is not relocated again immediately after a successful relocation and that it is left enough time to be activated on the new host. HBoffset is set to 0 by default and increases each time FDE finds the VM is the Not Activated state.

 While processing the NA reply, the FDE thread looks for the missedHb attribute in each VM subelement. If the missedHb attribute is not present in a VM, then the VM is declared as healthy, which means that the heartbeat was recently received at the HM level and the HSDB was updated. The HBmissed variable is set to 0 and no other action is performed for the considered VM. But if a missedHb attribute value is present, then the HBmissed variable for that VM is set to the missedHb attribute value to be used later.

 The HBmissed variable that is obtained is compared with the VMFDT value that is derived for the specific VM. If (HBmissed < VMFDT), then no action is performed. Otherwise, FDE performs the following process:

 1.	Checks whether the VM is pingable. If the VM is pingable, then the missed heartbeat event is ignored and FDE does not relocate the VM.

 2.	Retrieves the LPAR runtime state (from the lssyscfg -r lpar -F state output), current reference code (by viewing the refcode attribute in the lsrefcode -r lpar command output), and current profile details (from the lssyscfg -r prof output) of the VM from the HMC. The HMC GUI help page of the Activate Partitions task for a partition lists the following possible LPAR state values:

  –	Running: The LPAR is powered on and the OS instance on the LPAR is running.

  –	Not Activated: The LPAR is powered off.

  –	Open Firmware: The LPAR is in the System Management Services (SMS) menu.

  –	Shutting Down: The OS instance on the LPAR is shutting down.

  –	Error: The LPAR is in an error state.

  –	Not Available: The HMC cannot retrieve the state of the LPAR from the host.

  –	Migrating - Running: Live LPM is in progress.

  –	Migrating - Not Activated: The LPAR is shut down and being migrated to another host.

  –	Hardware Discovery: The HMC is performing hardware discovery.

 3.	Relocate the VM if the LPAR state is in the Running state ((HBmissed - HBoffset) > VMFDT) and its current reference code indicates that the system is started. Here are the reference codes:

  –	0 or ‘’ (empty): AIX is fully started.

  –	Linux ppc64: Big Endian 64-bit Red Hat is started.

  –	Linux ppc64le: Little Endian 64-bit Red Hat is started.

  –	SUSE Linux: SUSE Linux is started.

 4.	If the LPAR state is Not Activated, then complete the following steps:

 a.	Update the offset so that it goes to Running state (HBoffset = HBmissed) in the future.

 b.	If HBmissed > 2*VMFDT, check the reference code history of the LPAR for the word3 attribute of the most recent entry with the refcode attribute having a value of D200A200. If this word3 value is NULL, then relocate the VM. Otherwise, it contains the reason for the shutdown (D200A200) and no action must be performed.

 5.	If the LPAR is in the Open Firmware state where Hbmissed > VMFDT and the bootMode in the LPAR profile is not sms (SMS), then relocate the VM.

 6.	Generate a VM_LPM_HANG_DETECTED event if the VM is in the Migrating - Running state and HBmissed is greater than 86400 (24 hours in seconds).

 7.	Generate a VM_NONRESP_DETECTED event if the VM state is Not Available, or Error or Shutting Down or Hardware Discovery or Migrating - Not Activated) and HBmissed > 2*FDT.

 The libkrest library and HMC pass-through APIs

 The libkrest library is a wrapper library for the HMC REST APIs that intermediates the KSYS daemon access to the REST resources that are exposed by the HMC REST server. Any communication between the KSYS daemon and the HMCs is logged by libkrest in dedicated krest and krestlong trace files. To understand the records in these trace files, we need some familiarity with the HMC REST API framework and its basic concepts.

 HMC REST API concepts

 Client applications use the GET, PUT, POST, and DELETE HTTP methods to act on web resources that are maintained by the HMC REST server. URL patterns, HTTP request or response headers and payload formats, response status codes, and others are described in the HMC REST API documentation. The request and response payloads are formatted as XML structures that follow the Atom Publishing Protocol specifications.

 Operations that are provided by the HMC REST API can be synchronous or asynchronous. Some of the requests coming to the HMC REST server need a significant amount of elapsed time to complete. To optimize the usage of HMC resources and give the client application the opportunity to perform other processing, these long-running operations can run asynchronously by using HMC REST API job resources, which are also called jobs.

 In the synchronous case, the HMC REST server does not respond to the client request until all the processing that is associated with the request completes. When this processing completes either successfully or in error, the server provides the final result to the client side. The client remains blocked during this time.

 In the asynchronous case, the HMC REST server performs some minimal validation and quickly returns an HTTP 200 (OK) result to the client, which indicates that the request was accepted. Along with the HTTP 200 (OK) result, the REST server replies with an identifier that represents the asynchronous job resource that is created to serve the request. The response payload is formatted in a particular Atom Publishing Protocol XML structure. The Content-Type header of the response is set to application/atom+xml, and the client is provided with details about the newly created job resource, including the job URI, inside the XML payload of the response.

 After receiving the HTTP 200 (OK) response status code and the job details in the response payload the client can now launch a Job Status GET request to determine whether the job completed. When the is not completed and is still running, the returned job status code is set to RUNNING. If the job completed successfully, the returned job status code is set to COMPLETED_OK. Errors and other special cases are handled with extra status codes. These job status codes and related details are provided inside the XML payload of the Job Status GET method response.

 An extensive set of use cases and URL patterns is presented in the HMC REST API reference documentation in a so-called URL model. We compared the URL patterns in the model with URL occurrences in more krestlong log excerpts, including the one taken after the KSYS daemon restart. All URL patterns in the model and URL occurrences in the logs have a common beginning path stub, /rest/api/. We obtained matches with only four URL patterns in the model:

 •/rest/api/web/Logon

 •/rest/api/uom/{R}/{UUID}/do/{OP}

 •/rest/api/uom/{R}/{UUID}

 •/rest/api/uom/jobs/{JOBID}

 The {R} identifier is a REST resource of a so-called root element type. The {UUID} identifier is a UUID of a resource instance. The {OP} identifier is the name of a job operation. The {JOBID} is the identifier of a submitted job. We selected the URL model details that are relevant to these four matched URL patterns. They are cited exactly as they appear in the HMC REST API reference documentation.

 URL model

 •Concepts:

  –	Anchor URL patterns provide services for a type of root/child element.

  –	Instance URL patterns provide services for a uniquely identified root/child element.

 •URL Pattern Grammar building blocks:

 {R}	Root element type.

 {UUID}	A unique UUID value.

 {OP}	The name of a type of job (an operation).

 {JOBID}	The ID of a submitted job.

 URL model use cases for root elements

 •ROOT ANCHOR URL patterns:

 /rest/api/uom/{R}/operations	Get the defined job operations for {R}.

 /rest/api/uom/{R}/jobs	Get all known jobs for {R}.

 /rest/api/uom/{R}get	The feed of all known instances of {R}.

 •ROOT INSTANCE URL patterns:

 /rest/api/uom/{R}/{UUID}/do/{OP}	Get a template for a job of type {OP}.

 /rest/api/uom/{R}/{UUID}/jobs	Get all known jobs for this element of {R}.

 /rest/api/uom/{R}/{UUID}/jobs/{JOBID}	Get the details for the one job.

 /rest/api/uom/{R}/{UUID}	Get the XML details of this instance of {R}.

 Resource /rest/api/web/Logon

 The API receives a user ID and password as a logon request and responds with X-API-Session. This transaction establishes a valid user session.

 Resource to obtain a job status by using a job ID

 To obtain a job status by using a job ID, use the /rest/api/uom/jobs/{job_id} resource.

 When a job is started, a status is returned. The status provides information about the result of the job and other related details.

 The current HMC REST API reference documentation is available in IBM Knowledge Center as part of the product documentation for various Power Systems servers.

 Example 2-62 shows the matches of URL occurrences in our krestlong log excerpt with the URL patterns in the model.

 Example 2-62 Matching model URL patterns with URL occurrences in the krestlong log excerpt

 [image:]

 $ cat post-restart_krestlong.log|wc -l

 38915

 $ grep "/rest/api/" post-restart_krestlong.log|head -5

 [10] 11/19/18 T(9192) _VMR 13:49:26.265679 DEBUG libkrest_query.c[1536]: PUT at '/rest/api/web/Logon', with header 'Content-Type: application/vnd.ibm.powervm.web+xml; type=LogonRequest', payload size 173 bytes

 [10] 11/19/18 T(9192) _VMR 13:49:26.265681 DEBUG libkrest_query.c[1540]: URL: [https://9.3.18.159:12443/rest/api/web/Logon]

 [10] 11/19/18 T(9192) _VMR 13:49:26.517243 DEBUG libkrest_query.c[1536]: PUT at '/rest/api/uom/VirtualIOServer/315CE56B-9BA0-46A1-B4BC-DA6108574E7E/do/PassThroughInterface', with header 'Content-Type: application/vnd.ibm.powervm.web+xml; type=JobRequest', payload size 1373 bytes

 [10] 11/19/18 T(9192) _VMR 13:49:26.517245 DEBUG libkrest_query.c[1540]: URL: [https://9.3.18.159:12443/rest/api/uom/VirtualIOServer/315CE56B-9BA0-46A1-B4BC-DA6108574E7E/do/PassThroughInterface]

 <link rel="SELF" href="https://9.3.18.159:12443/rest/api/uom/jobs/1540961034191"/>

 $ grep "/rest/api/" post-restart_krestlong.log|tail -5

 <link rel="MANAGEMENT_CONSOLE" href="https://9.3.18.159:12443/rest/api/uom/ManagementConsole/ec3e2415-2e77-3a0d-b107-20f0df07ec66"/>

 [04] 11/19/18 T(9192) _VMR 13:57:28.863213 DEBUG libkrest_query.c[1536]: GET at '/rest/api/uom/jobs/1540961034289', with header 'none', payload size 0 bytes

 [04] 11/19/18 T(9192) _VMR 13:57:28.863215 DEBUG libkrest_query.c[1540]: URL: [https://9.3.18.159:12443/rest/api/uom/jobs/1540961034289]

 <link rel="SELF" href="https://9.3.18.159:12443/rest/api/uom/jobs/1540961034289/9095c232-1d0e-49ad-bc1c-6817a9edc62a"/>

 <link rel="MANAGEMENT_CONSOLE" href="https://9.3.18.159:12443/rest/api/uom/ManagementConsole/ec3e2415-2e77-3a0d-b107-20f0df07ec66"/>

 $ grep -c "/rest/api/" post-restart_krestlong.log

 480

 $ grep -c "/rest/api/web/Logon" post-restart_krestlong.log

 10

 $ grep "/rest/api/uom/VirtualIOServer/" post-restart_krestlong.log|grep -c "/do/PassThroughInterface"

 108

 $ grep -c "/rest/api/uom/jobs/" post-restart_krestlong.log

 285

 $ grep -c "/rest/api/uom/ManagementConsole/" post-restart_krestlong.log

 77

 $

 [image:]

 We identified only two {R} root element types in our log: VirtualIOServer and ManagementConsole.

 The ManagementConsole root element type appears in occurrences of the /rest/api/uom/ManagementConsole/{UUID} pattern, with two distinct UUID values, one for each HMC.

 The URL occurrences for the VirtualIOServer root element type match each time the /rest/api/uom/{R}/{UUID}/do/{OP} pattern, with {OP} taking the PassThroughInterface string value and {UUID} taking the UUID values of our managed VIOSs. Plenty of job status requests that match the /rest/api/uom/jobs/{job_id} pattern are also present, so we have good reasons to consider that the predominant requests are PassThroughInterface job operations for instances of the VirtualIOServer root element type.

 HMC pass-through APIs

 The URL model shows that the /rest/api/uom/{R}/operations pattern is available to obtain the defined job operations for the {R} root element type. To get more insights about the PassThroughInterface operation of the VirtualIOServer root element type, we tried this pattern with {R} set to VirtualIOServer (Example 2-64 on page 102). The obtained result is presented in Example 2-63.

 Example 2-63 Defined job operations for the VirtualIOServer root element

 [image:]

 <entry xmlns="http://www.w3.org/2005/Atom" xmlns:ns2="http://a9.com/-/spec/opensearch/1.1/" xmlns:ns3="http://www.w3.org/1999/xhtml">

 <id>b704f5cd-20b0-34c6-b33f-3c082aa34d51</id>

 <title>OperationSet</title>

 <published>2018-12-09T11:48:24.157-06:00</published>

 <link rel="SELF" href="https://rthmc3:12443/rest/api/uom/VirtualIOServer/operations/b704f5cd-20b0-34c6-b33f-3c082aa34d51"/>

 <link rel="MANAGEMENT_CONSOLE" href="https://rthmc3:12443/rest/api/uom/ManagementConsole/ec3e2415-2e77-3a0d-b107-20f0df07ec66"/>

 <author>...</author>

 <content type="application/vnd.ibm.powervm.web+xml; type=OperationSet">

 <OperationSet:OperationSet xmlns:OperationSet="http://www.ibm.com/xmlns/systems/power/firmware/web/mc/2012_10/" xmlns="http://www.ibm.com/xmlns/systems/power/firmware/web/mc/2012_10/" xmlns:ns2="http://www.w3.org/XML/1998/namespace/k2" schemaVersion="V1_8_0">

 <Metadata>...</Metadata>

 <SetName kb="ROR" kxe="false">VirtualIOServer</SetName>

 <DefinedOperations kxe="false" kb="ROO" schemaVersion="V1_8_0">

 <Metadata>...</Metadata>

 <Operation schemaVersion="V1_8_0">...</Operation>

 ...

 <Operation schemaVersion="V1_8_0">...</Operation>

 <Operation schemaVersion="V1_8_0">

 <Metadata>...</Metadata>

 <OperationName kb="ROR" kxe="false">PassThroughInterface</OperationName>

 <GroupName kb="ROR" kxe="false">VirtualIOServer</GroupName>

 <ProgressType kb="ROR" kxe="false">DISCRETE</ProgressType>

 <AllPossibleParameters kb="ROO" kxe="false" schemaVersion="V1_8_0">

 <Metadata>...</Metadata>

 <OperationParameter schemaVersion="V1_8_0">

 <Metadata>...</Metadata>

 <ParameterName kxe="false" kb="ROR">inputXML</ParameterName>

 </OperationParameter>

 </AllPossibleParameters>

 <AllPossibleResults kb="ROO" kxe="false" schemaVersion="V1_8_0">

 <Metadata>...</Metadata>

 <OperationParameter schemaVersion="V1_8_0">

 <Metadata>...</Metadata>

 <ParameterName kxe="false" kb="ROR">StdError</ParameterName>

 </OperationParameter>

 <OperationParameter schemaVersion="V1_8_0">

 <Metadata>...</Metadata>

 <ParameterName kxe="false" kb="ROR">StdOut</ParameterName>

 </OperationParameter>

 <OperationParameter schemaVersion="V1_8_0">

 <Metadata>...</Metadata>

 <ParameterName kxe="false" kb="ROR">RMCReturnCode</ParameterName>

 </OperationParameter>

 <OperationParameter schemaVersion="V1_8_0">

 <Metadata>...</Metadata>

 <ParameterName kxe="false" kb="ROR">CMDReturnCode</ParameterName>

 </OperationParameter>

 </AllPossibleResults>

 <AllDiscreteStates kb="ROO" kxe="false" schemaVersion="V1_8_0">...</AllDiscreteStates>

 </Operation>

 <Operation schemaVersion="V1_8_0">...</Operation>

 </DefinedOperations>

 </OperationSet:OperationSet>

 </content>

 </entry>

 [image:]

 The result is an Atom entry XML element response payload and contains the details for all defined operations. In Example 2-63 on page 101, we manually formatted the element content for easier reading. We kept only the details about the input and result parameters for the PassThroughInterface operation. The request itself, /rest/api/uom/VirtualIOServer/operations, is shown in Example 2-64, together with the required user session housekeeping.

 Example 2-64 Obtaining the defined job operations for the VirtualIOServer root element

 [image:]

 $ cat login.xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 <LogonRequest xmlns="http://www.ibm.com/xmlns/systems/power/firmware/web/mc/2012_10/"

 schemaVersion="V1_1_0">

 <Metadata> <Atom/> </Metadata>

 <UserID kb="CUR" kxe="false">hscroot</UserID>

 <Password kb="CUR" kxe="false">abc123</Password>

 </LogonRequest>

 $ curl -k -X PUT -H "Content-Type: application/vnd.ibm.powervm.web+xml; type=LogonRequest" https://rthmc3:12443/rest/api/web/Logon -d @login.xml

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 <LogonResponse xmlns="http://www.ibm.com/xmlns/systems/power/firmware/web/mc/2012_10/" xmlns:ns2="http://www.w3.org/XML/1998/namespace/k2" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <X-API-Session kxe="false" kb="ROR">JF_rY...WDQI=</X-API-Session>

 </LogonResponse>

 $ curl -sk -H "X-API-Session: JF_rY...WDQI=" https://rthmc3:12443/rest/api/uom/VirtualIOServer/operations >vios.operations.xml

 $ curl -k -X DELETE -H "X-API-Session: JF_rY...WDQI=" https://rthmc3:12443/rest/api/web/Logon

 $

 [image:]

 Running curl on a Linux client, we first established a user session with the HMC REST server and obtained the session token. Then, we performed our request on the VirtualIOServer root resource and then deleted the session. The session token is shortened for easier reading. All requests that are used here can be considered as good examples of synchronous operations.

 Content that is exchanged by the PassThroughInterface operation between KSYS and VIOS, like inputXML, stdOut, and the rest of parameters in Example 2-63 on page 101, might be in XML format, so it must be encoded and encapsulated in the HTTP XML payload that is exchanged between the KSYS and the HMC. The HMC REST server uses the RMC daemon running on the HMC and the RMC connection that is maintained by the RMC daemon running on the VIOS.

 Figure 2-9shows this encapsulation mechanism of the XML data that is exchanged by KSYS with the VIOS itself.

 [image:]

 Figure 2-9 XML data encapsulation in the PassThroughInterface operation

 The structure and meaning of the XML element messages that are exchanged by KSYS with a VIOS are shown in the new vioHADR2.00 XML Schema Definition (XSD) that was introduced with VIOS V3.1, as shown in Example 2-65.

 Example 2-65 The vioHADR2.00 XML Schema Definition file

 [image:]

 # /usr/ios/cli/ioscli ioslevel

 3.1.0.00

 # ls -l /usr/lib/vioHADR2.00.xsd

 -r-------- 1 root system 44919 Sep 21 19:50 /usr/lib/vioHADR2.00.xsd

 # head -10 /usr/lib/vioHADR2.00.xsd

 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

 <!-- "@(#)37 1.50 src/rspc/usr/lib/libviohealth/vioHADR2.00.xsd, sysxvio_health, rspc72M 9/17/18 14:41:03" -->

 <!-- XML Schema Version: "1.50 9/17/18 14:41:03"

 -->

 <xsd:schema

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00"

 #

 [image:]

 The RMC setup allows the invocation of the vioservice command on the VIOS side with appropriate arguments and input that is passed from the HMC side. The vioservice command syntax and usage is shown in Example 2-66.

 Example 2-66 The vioservice command syntax

 [image:]

 # /usr/ios/sbin/vioservice

 vioservice [-E errorinfofile] [-O streamoutputfile] <resource> [options]

 Known resources:

 capabilities

 cmd

 ioscli

 padmin

 viosmgr

 debug

 debug_level (a number that indicates the debug level)

 resource (a separate resource)

 lib

 libvio

 cluster

 lu

 partition

 query

 sp

 version

 libviopass

 passthru

 pcm

 resources

 version

 Options:

 lib/*/* [-n ElementsPerChunk] [-t tracelevel] [-v version]

 Example Commands:

 vioservice cmd/ioscli/cluster -status

 vioservice lib/libvio/lu -n 10

 vioservice debug/8/lib/libvio/cluster

 Note:

 Any one of these fields can be terminated with "/resources" to display

 available subcommands.

 Examples:

 lib/libvio/resources

 cmd/resources

 #

 [image:]

 The command logs in viosvc.log and viosvc.log.err in the /home/ios/logs directory. Example 2-67 shows a vioservice log excerpt with an entry that is determined by a QuickQuery request (VIO_HS_QUICK_QUERY) that came from the KSYS side.

 Example 2-67 QuickQuery request in viosvc.log

 [image:]

 # alog -f /home/ios/logs/viosvc.log -o | more

 ...

 [START 27066876 65733113 12/09/18-19:05:24.752 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 27066876 65733113 12/09/18-19:05:24.753 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Quick Query">

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 </VIO>

]

 [0 27066876 65733113 12/09/18-19:05:24.806 viosvc_res.c 1.26 464] vio_response.result=[<VIO><Response>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="5ac3e0dc-13fc-4221-9617-8ef61c4cdd83" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="2100DEW">

 <viosStat uuid="166c89ef-57d8-4e75-815c-aa5b885560b1" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="4e0f6f60-214b-4d2c-a436-0eac46f7f71f" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000001' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 </Response></VIO>

]

 [END 27066876 65733113 12/09/18-19:05:24.806 vioservice.c 1.18 323] exited with rc=0

 [START 27066624 62783899 12/09/18-19:05:46.528 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 viosvc.log (99%)

 [image:]

 We first see the inputXML content as extracted by the HMC REST server from the HTTP request payload and passed through RMC as input to the vioservice command. Then, the vioservice command runs, generates its result on standard output, and exits with a return code. Standard output content and the return code value are passed back through RMC to the HMC REST server to be encoded and sent back to libkrest and KSYS as parameter values for the stdOut and CMDReturnCode parameters in the response XML payload.

 QuickQuery asynchronous job example

 Now, we look at our KSYS daemon and at the first 10 records that are logged in the krest trace files after the KSYS daemon restart (Example 2-68).

 Example 2-68 The krest log immediately after the KSYS daemon restart

 [image:]

 # sed '1,10!d;=' post-restart_krest.log|sed 'N;s/\n/:/'

 1:[00] 11/19/18 T(1) ____ 13:48:35.136313 ******************* Trace Started - Pid = 16646518 **********************

 2:[00] 11/19/18 T(9192) _VMR 13:49:26.265561 DEBUG libkrest.c[1179]: krigetSessionId:hmc 9.3.18.159...

 3:[00] 11/19/18 T(9192) _VMR 13:49:26.517055 DEBUG libkrest.c[1267]: krigetSessionId returning 0.

 4:[00] 11/19/18 T(9192) _VMR 13:49:26.517092 DEBUG libkrest.c[9398]: kriSubmitQuickQuery:hmc->(9.3.18.159),vios->(315CE56B-9BA0-46A1-B4BC-DA6108574E7E)

 5:[00] 11/19/18 T(9192) _VMR 13:49:26.657896 DEBUG libkrest.c[9514]: kriSubmitQuickQuery returning 0 with jobid->(1540961034191).

 6:[00] 11/19/18 T(9192) _VMR 13:49:26.657912 DEBUG libkrest.c[2351]: krigetJobResult:hmc->(9.3.18.159),jobid->(1540961034191)

 7:[00] 11/19/18 T(9192) _VMR 13:49:26.776208 DEBUG libkrest.c[2644]: krigetJobResult returning 0 with josbstatus RUNNING.

 8:[00] 11/19/18 T(9192) _VMR 13:49:27.776254 DEBUG libkrest.c[2351]: krigetJobResult:hmc->(9.3.18.159),jobid->(1540961034191)

 9:[00] 11/19/18 T(9192) _VMR 13:49:27.865258 DEBUG libkrest.c[2644]: krigetJobResult returning 0 with josbstatus COMPLETED_OK.

 10:[00] 11/19/18 T(4041) _VMR 13:49:36.241269 DEBUG libkrest.c[11582]: kriSubmit_Msg:hmc->(9.3.18.159),

 #

 [image:]

 Now that we introduced the HMC REST API and the mechanics of an asynchronous job, we see in Example 2-68 on page 105 that the FDE thread, T(9192), opens a session and a session token is returned. Then, the thread submits a QuickQuery job request to the HMC at IP address 9.3.18.159 for the VIOS with UUID 315CE56B-9BA0-46A1-B4BC-DA6108574E7E. An entire job progress pattern follows, and the job with the jobid 1540961034191 is created. The first job status check shows the job in the RUNNING state, so it is still running. Finally, the second check shows that the job is complete with the status COMPLETED_OK.

 We now check the progress of the same job request in the corresponding krestlong trace file. Example 2-69 shows an excerpt from the beginning of the krestlong log file, covering the initial logon request and the immediate request that follows, which is the first QuickQuery request submission after our KSYS daemon restart.

 Example 2-69 The krestlong log immediately after the KSYS daemon restart

 [image:]

 [10] 11/19/18 T(1) ____ 13:48:35.132087 ******************* Trace Started - Pid = 16646518 **********************

 [10] 11/19/18 T(304) _VMR 13:48:35.172701 [INFO,VMRDaemon,] Start KREST category logging

 [10] 11/19/18 T(304) _VMR 13:49:26.232328 DEBUG libkrest.c[4444]: libkrest global initialization...

 ...

 [10] 11/19/18 T(9192) _VMR 13:49:26.265637 DEBUG libkrest.c[521]: libkrest context initialization successful

 [10] 11/19/18 T(9192) _VMR 13:49:26.265679 DEBUG libkrest_query.c[1536]: PUT at '/rest/api/web/Logon', with header 'Content-Type: application/vnd.ibm.powervm.web+xml; type=LogonRequest', payload size 173 bytes

 [10] 11/19/18 T(9192) _VMR 13:49:26.265681 DEBUG libkrest_query.c[1540]: URL: [https://9.3.18.159:12443/rest/api/web/Logon]

 ...

 [10] 11/19/18 T(9192) _VMR 13:49:26.517109 DEBUG libkrest.c[521]: libkrest context initialization successful

 [10] 11/19/18 T(9192) _VMR 13:49:26.517114 DEBUG libkrest.c[9462]: Using 2.00 as vio hadr version [Default]

 [10] 11/19/18 T(9192) _VMR 13:49:26.517176 DEBUG <?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Quick Query">

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 </VIO>

 ...

 [10] 11/19/18 T(9192) _VMR 13:49:26.517216 DEBUG <JobRequest:JobRequest

 xmlns:JobRequest="http://www.ibm.com/xmlns/systems/power/firmware/web/mc/2012_10/"

 xmlns="http://www.ibm.com/xmlns/systems/power/firmware/web/mc/2012_10/"

 xmlns:ns2="http://www.w3.org/XML/1998/namespace/k2" schemaVersion="V1_3_0">

 <Metadata> <Atom/> </Metadata>

 <RequestedOperation kb="CUR" kxe="false" schemaVersion="V1_3_0">

 <Metadata> <Atom/> </Metadata>

 <OperationName kb="ROR" kxe="false">PassThroughInterface</OperationName>

 <GroupName kxe="false" kb="ROR">VirtualIOServer</GroupName>

 </RequestedOperation>

 <JobParameters kb="CUR" kxe="false" schemaVersion="V1_3_0">

 <Metadata> <Atom/> </Metadata>

 <JobParameter schemaVersion="V1_3_0">

 <ParameterName kxe="false" kb="ROR">inputXML</ParameterName>

 <ParameterValue kxe="false" kb="CUR"><![CDATA[<?xml version="1.0"?> <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Quick Query"> <Request action_str="VIO_HS_QUICK_QUERY"/> </VIO>]]>

 </ParameterValue>

 </JobParameter>

 </JobParameters>

 </JobRequest:JobRequest>

 [10] 11/19/18 T(9192) _VMR 13:49:26.517243 DEBUG libkrest_query.c[1536]: PUT at '/rest/api/uom/VirtualIOServer/315CE56B-9BA0-46A1-B4BC-DA6108574E7E/do/PassThroughInterface', with header 'Content-Type: application/vnd.ibm.powervm.web+xml; type=JobRequest', payload size 1373 bytes

 [10] 11/19/18 T(9192) _VMR 13:49:26.517245 DEBUG libkrest_query.c[1540]: URL: [https://9.3.18.159:12443/rest/api/uom/VirtualIOServer/315CE56B-9BA0-46A1-B4BC-DA6108574E7E/do/PassThroughInterface]

 ...

 [image:]

 Entries are logged by the FDE thread T(9192). XML input for the QuickQuery request that is addressed to the VIOS is logged as generated, and then the XML payload for the HTTP PUT request is addressed to the HMC. Inside the XML payload of the PUT request, we recognize the CDATA section with the specific QuickQuery XML content for the ParameterValue element that is associated with the inputXML ParameterName element, as shown in the definition of the PassThroughInterface job operation that is detailed in Example 2-63 on page 101. This content is supposed to be passed by the HMC REST server to the vioservice command that is run by RMC on the VIOS that is identified with the UUID that is specified in the /rest/api/uom/VirtualIOServer/315CE56B-9BA0-46A1-B4BC-DA6108574E7E/do/PassThroughInterface resource identifier.

 The response for the PUT request, both header and payload, is shown in Example 2-70.

 Example 2-70 QuickQuery PUT response

 [image:]

 [10] 11/19/18 T(9192) _VMR 13:49:26.657014 DEBUG HTTP/1.1 200 OK

 Date: Mon, 19 Nov 2018 18:49:27 GMT

 Server: Apache

 ...

 X-Powered-By: Servlet/3.0

 X-Transaction-ID: XT10620389

 Content-Type: application/atom+xml

 Content-Language: en-US

 Content-Length: 2830

 ...

 <entry xmlns="http://www.w3.org/2005/Atom" xmlns:ns2="http://a9.com/-/spec/opensearch/1.1/" xmlns:ns3="http://www.w3.org/1999/xhtml">

 <id>8bda9318-74d8-48a7-8ee4-054a2245a8d6</id>

 <title>JobResponse</title>

 <published>2018-11-19T18:49:27.879Z</published>

 <link rel="SELF" href="https://9.3.18.159:12443/rest/api/uom/jobs/1540961034191"/>

 <author>

 <name>IBM Power Systems Management Console</name>

 </author>

 <content type="application/vnd.ibm.powervm.web+xml; type=JobResponse">

 <JobResponse:JobResponse xmlns:JobResponse="http://www.ibm.com/xmlns/systems/power/firmware/web/mc/2012_10/" xmlns="http://www.ibm.com/xmlns/systems/power/firmware/web/mc/2012_10/" xmlns:ns2="http://www.w3.org/XML/1998/namespace/k2" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <RequestURL kb="ROR" kxe="false" href="VirtualIOServer/315CE56B-9BA0-46A1-B4BC-DA6108574E7E/do/PassThroughInterface" rel="via" title="The URL to which the JobRequest was submitted."/>

 <TargetUuid kb="ROR" kxe="false">

 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 </TargetUuid>

 <JobID kxe="false" kb="ROR">1540961034191</JobID>

 <TimeStarted kb="ROR" kxe="false">0</TimeStarted>

 <TimeCompleted kxe="false" kb="ROR">0</TimeCompleted>

 <Status kb="ROR" kxe="false">NOT_STARTED</Status>

 <JobRequestInstance kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <RequestedOperation kxe="false" kb="CUR" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <OperationName kb="ROR" kxe="false">PassThroughInterface</OperationName>

 <GroupName kb="ROR" kxe="false">VirtualIOServer</GroupName>

 </RequestedOperation>

 <JobParameters kxe="false" kb="CUR" schemaVersion="V1_3_0">

 <Metadata> <Atom/> </Metadata>

 <JobParameter schemaVersion="V1_3_0">

 <Metadata> <Atom/> </Metadata>

 <ParameterName kxe="false" kb="ROR">inputXML</ParameterName>

 <ParameterValue kxe="false" kb="CUR"><?xml version="1.0"?> <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Quick Query"> <Request action_str="VIO_HS_QUICK_QUERY"/> </VIO>

 </ParameterValue>

 </JobParameter>

 </JobParameters>

 </JobRequestInstance>

 <Progress kb="ROO" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 </Progress>

 <Results kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 </Results>

 </JobResponse:JobResponse>

 </content>

 </entry>

 [10] 11/19/18 T(9192) _VMR 13:49:26.657421 DEBUG libkrest_xml.c[2100]: Start of the Function:text

 ...

 [10] 11/19/18 T(9192) _VMR 13:49:26.657430 DEBUG libkrest_xml.c[2115]: In process node JobID:1540961034191

 [10] 11/19/18 T(9192) _VMR 13:49:26.657433 DEBUG libkrest_xml.c[2115]: In process node Status:NOT_STARTED

 ...

 [image:]

 The relevant items that we emphasized are the Content-Type: application/atom+xml header, and from the payload, the job URI; the jobid 1540961034191; and the job status NOT_STARTED.

 As already suggested by the krest log excerpt in Example 2-68 on page 105, we expect to see in the krestlong file the detailed log entries about the way the KSYS daemon is polling for the job status through Job Status GET requests. We obtain a first GET at '/rest/api/uom/jobs/1540961034191' entry, as shown in Example 2-71.

 Example 2-71 First job status GET request for jobid 1540961034191

 [image:]

 [10] 11/19/18 T(9192) _VMR 13:49:26.657930 DEBUG libkrest.c[521]: libkrest context initialization successful

 [10] 11/19/18 T(9192) _VMR 13:49:26.657935 DEBUG libkrest_query.c[1536]: GET at '/rest/api/uom/jobs/1540961034191', with header 'none', payload size 0 bytes

 [10] 11/19/18 T(9192) _VMR 13:49:26.657937 DEBUG libkrest_query.c[1540]: URL: [https://9.3.18.159:12443/rest/api/uom/jobs/1540961034191]

 ...

 [image:]

 The response for this first job status GET request is shown in Example 2-72.

 Example 2-72 The response of the first job status GET request

 [image:]

 [10] 11/19/18 T(9192) _VMR 13:49:26.774897 DEBUG HTTP/1.1 200 OK

 Date: Mon, 19 Nov 2018 18:49:27 GMT

 ...

 <entry xmlns="http://www.w3.org/2005/Atom" ... >

 <id>91c71222-36a6-314c-8baa-dcd35e364b7a</id>

 <title>JobResponse</title>

 ...

 <content type="application/vnd.ibm.powervm.web+xml; type=JobResponse">

 <JobResponse:JobResponse ... >

 <Metadata> <Atom/> </Metadata>

 <RequestURL kb="ROR" kxe="false" href="VirtualIOServer/315CE56B-9BA0-46A1-B4BC-DA6108574E7E/do/PassThroughInterface" rel="via" title="The URL to which the JobRequest was submitted."/>

 <TargetUuid kb="ROR" kxe="false">

 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 </TargetUuid>

 <JobID kxe="false" kb="ROR">1540961034191</JobID>

 <TimeStarted kb="ROR" kxe="false">1542653367879</TimeStarted>

 <TimeCompleted kxe="false" kb="ROR">0</TimeCompleted>

 <Status kb="ROR" kxe="false">RUNNING</Status>

 <JobRequestInstance kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <RequestedOperation kxe="false" kb="CUR" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <OperationName kb="ROR" kxe="false">PassThroughInterface</OperationName>

 <GroupName kb="ROR" kxe="false">VirtualIOServer</GroupName>

 </RequestedOperation>

 <JobParameters kxe="false" kb="CUR" schemaVersion="V1_3_0">

 ...

 </JobParameters>

 </JobRequestInstance>

 <Progress kb="ROO" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <DiscreteProgress kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <CurrentState kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <UntranslatedMessage kb="ROR" kxe="false">

 VIOS PassThroughInterface job is started

 </UntranslatedMessage>

 <MessageKey kxe="false" kb="ROR">PERFORMPASSTHROUGHAPI_STARTED</MessageKey>

 </CurrentState>

 <CompletedStates kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <NLSStaticMessage schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <UntranslatedMessage kb="ROR" kxe="false">

 VIOS PassThroughInterface job is not yet started

 </UntranslatedMessage>

 <MessageKey kxe="false" kb="ROR">NOT_STARTED</MessageKey>

 </NLSStaticMessage>

 </CompletedStates>

 </DiscreteProgress>

 </Progress>

 <Results kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 </Results>

 </JobResponse:JobResponse>

 </content>

 </entry>

 [10] 11/19/18 T(9192) _VMR 13:49:27.776259 DEBUG libkrest.c[481]: Resetting retinfo fields...

 [image:]

 This time, we again emphasized the job status, which is now RUNNING. Then, we removed the job parameter content, which is the same as in the response of the previous PUT request, and emphasized the progress details for the PassThroughInterface operation itself. Its status is PERFORMPASSTHROUGHAPI_STARTED.

 The second job status GET request follows in the krestlong log 1 second later after the response entry of the first request with an identical GET at the '/rest/api/uom/jobs/1540961034191' entry (Example 2-73).

 Example 2-73 Second job status GET request for jobid 1540961034191

 [image:]

 [10] 11/19/18 T(9192) _VMR 13:49:27.776273 DEBUG libkrest.c[521]: libkrest context initialization successful

 [10] 11/19/18 T(9192) _VMR 13:49:27.776280 DEBUG libkrest_query.c[1536]: GET at '/rest/api/uom/jobs/1540961034191', with header 'none', payload size 0 bytes

 [10] 11/19/18 T(9192) _VMR 13:49:27.776282 DEBUG libkrest_query.c[1540]: URL: [https://9.3.18.159:12443/rest/api/uom/jobs/1540961034191]

 [image:]

 The response for this second job status GET request is shown in Example 2-74.

 Example 2-74 The response of the second job status GET request

 [image:]

 [10] 11/19/18 T(9192) _VMR 13:49:27.864132 DEBUG HTTP/1.1 200 OK

 Date: Mon, 19 Nov 2018 18:49:29 GMT

 ...

 <entry xmlns="http://www.w3.org/2005/Atom" ...>

 <id>91c71222-36a6-314c-8baa-dcd35e364b7a</id>

 <title>JobResponse</title>

 ...

 <content type="application/vnd.ibm.powervm.web+xml; type=JobResponse">

 <JobResponse:JobResponse ...>

 <Metadata> <Atom/> </Metadata>

 <RequestURL kb="ROR" kxe="false" href="VirtualIOServer/315CE56B-9BA0-46A1-B4BC-DA6108574E7E/do/PassThroughInterface" rel="via" title="The URL to which the JobRequest was submitted."/>

 <TargetUuid kb="ROR" kxe="false">315CE56B-9BA0-46A1-B4BC-DA6108574E7E</TargetUuid>

 <JobID kxe="false" kb="ROR">1540961034191</JobID>

 <TimeStarted kb="ROR" kxe="false">1542653367879</TimeStarted>

 <TimeCompleted kxe="false" kb="ROR">1542653368001</TimeCompleted>

 <Status kb="ROR" kxe="false">COMPLETED_OK</Status>

 <JobRequestInstance kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <RequestedOperation kxe="false" kb="CUR" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <OperationName kb="ROR" kxe="false">PassThroughInterface</OperationName>

 <GroupName kb="ROR" kxe="false">VirtualIOServer</GroupName>

 </RequestedOperation>

 <JobParameters kxe="false" kb="CUR" schemaVersion="V1_3_0">

 ...

 </JobParameters>

 </JobRequestInstance>

 <Progress kb="ROO" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <DiscreteProgress kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <CompletedStates kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <NLSStaticMessage schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <UntranslatedMessage kb="ROR" kxe="false">VIOS PassThroughInterface job is not yet started</UntranslatedMessage>

 <MessageKey kxe="false" kb="ROR">NOT_STARTED</MessageKey>

 </NLSStaticMessage>

 <NLSStaticMessage schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <UntranslatedMessage kb="ROR" kxe="false">VIOS PassThroughInterface job is started</UntranslatedMessage>

 <MessageKey kxe="false" kb="ROR">PERFORMPASSTHROUGHAPI_STARTED</MessageKey>

 </NLSStaticMessage>

 <NLSStaticMessage schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <UntranslatedMessage kb="ROR" kxe="false">VIOS PassThroughInterface job is in progress</UntranslatedMessage>

 <MessageKey kxe="false" kb="ROR">PERFORMPASSTHROUGHAPI_INPROGRESS</MessageKey>

 </NLSStaticMessage>

 <NLSStaticMessage schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <UntranslatedMessage kb="ROR" kxe="false">VIOS PassThroughInterface job is completed</UntranslatedMessage>

 <MessageKey kxe="false" kb="ROR">PERFORMPASSTHROUGHAPI_COMPLETED</MessageKey>

 </NLSStaticMessage>

 </CompletedStates>

 </DiscreteProgress>

 </Progress>

 <Results kb="ROR" kxe="false" schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <JobParameter schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <ParameterName kxe="false" kb="ROR">StdOut</ParameterName>

 <ParameterValue kxe="false" kb="CUR"><VIO><Response>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="5ac3e0dc-13fc-4221-9617-8ef61c4cdd83" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="2100DEW">

 <viosStat uuid="166c89ef-57d8-4e75-815c-aa5b885560b1" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="4e0f6f60-214b-4d2c-a436-0eac46f7f71f" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000001' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 </Response></VIO>

 </ParameterValue>

 </JobParameter>

 <JobParameter schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <ParameterName kxe="false" kb="ROR">RMCReturnCode</ParameterName>

 <ParameterValue kxe="false" kb="CUR">0</ParameterValue>

 </JobParameter>

 <JobParameter schemaVersion="V1_8_0">

 <Metadata> <Atom/> </Metadata>

 <ParameterName kxe="false" kb="ROR">CMDReturnCode</ParameterName>

 <ParameterValue kxe="false" kb="CUR">0</ParameterValue>

 </JobParameter>

 </Results>

 </JobResponse:JobResponse>

 </content>

 </entry>

 ...

 [image:]

 The response in Example 2-74 on page 111 is long because it contains all the progress history of the PassThroughInterface operation and the final job results. We again emphasized the job status, which is now COMPLETED_OK, so this is the last job status GET request. The remaining of the payload must then contain the expected result for the job. Examining the remaining payload, we see the expected result. The job input parameter content was again removed for easier reading and the progress history of the PassThroughInterface operation itself was again emphasized. This time, there is no current state and the progress history contains all traversed states, with the final one being PERFORMPASSTHROUGHAPI_COMPLETED.

 The expected job result is in the last emphasized section, which is the Results XML element. Inside it is the content for the StdOut parameter as returned by the vioservice command, then the content of the CMDReturnCode parameter, which is the returned value of the vioservice command execution, and finally the content of the RMCReturnCode parameter, which is the returned value of the RMC command execution in corresponding ParameterValue XML elements.

 The last krestlong entries about this job operation, which immediately follow the response payload with the job results, are listed in Example 2-75.

 Example 2-75 Job results as extracted from the last job status response payload

 [image:]

 [10] 11/19/18 T(9192) _VMR 13:49:27.864945 DEBUG libkrest.c[2473]: <StdOut>

 [10] 11/19/18 T(9192) _VMR 13:49:27.864954 DEBUG libkrest.c[2555]: job_result->result : <VIO><Response>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="5ac3e0dc-13fc-4221-9617-8ef61c4cdd83" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="2100DEW">

 <viosStat uuid="166c89ef-57d8-4e75-815c-aa5b885560b1" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="4e0f6f60-214b-4d2c-a436-0eac46f7f71f" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000001' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 </Response></VIO>

 [10] 11/19/18 T(9192) _VMR 13:49:27.864956 DEBUG libkrest.c[2473]: <RMCReturnCode>

 [10] 11/19/18 T(9192) _VMR 13:49:27.864957 DEBUG libkrest.c[2473]: <CMDReturnCode>

 [10] 11/19/18 T(9192) _VMR 13:49:27.864959 DEBUG libkrest.c[2494]: job_result->rc : 0

 [10] 11/19/18 T(4041) _VMR 13:49:36.241274 DEBUG libkrest.c[481]: Resetting retinfo fields...

 [image:]

 This is the final job result that is obtained for the first QuickQuery job request that is submitted by the FDE thread to its known servicing VIOS after the KSYS daemon restart. The way FDE thread uses this XML response payload is described in “QuickQuery flow” on page 234.

 We started the analysis of this QuickQuery request, which is also the first HMC REST API job request after the KSYS daemon restart, in Example 2-69 on page 106. We presented in detail a complete asynchronous job operation that is performed by KSYS to communicate with a managed VIOS by the HMC pass-through APIs.

 2.2.7 Host monitor, Health Status Database, and related VIOS internals

 Section “HMC pass-through APIs” on page 101 showed how the HMC to VIOS RMC connection and vioservice command support KSYS to communicate with the VIOS side by HMC pass through APIs. On the VIOS side, the component endpoints that are involved in this communication include the HSDB database on the SSP cluster and the HM daemon. The HM daemon also intermediates KSYS communication with VM Agents running on VMs.

 Figure 2-10 on page 115 shows a view of the internal VIOS subsystems supporting the various communication flows that are involved. It also suggests possible flow initiators, either external to VIOS, like KSYS; HMC; and VMM, or internal, like the vio_daemon and HM (ksys_hsmond) daemons.

 [image:]

 Figure 2-10 VIOS subsystems supporting KSYS communication with HSDB and HM

 We further consider the VIOS components in Figure 2-10 and not addressed so far:

 •Health library

 •The SSP cluster and HSDB database

 •Host monitor daemon

 Health library

 The libviohealth.a library has APIs to support KSYS to VIOS communication. The vioservice lib/libviopass/passthru command is run for any request to the VIOS side that originated on KSYS. The XML input of each request, which is generated on the KSYS side in the vioHADR2.00 format, is extracted by the HMC REST server from the HTTP request payload. Example 2-67 on page 105 shows how it occurs for a VIO_HS_QUICK_QUERY request. We did not see how the message reaches its destination endpoint, but now we can describe the next step. The vioservice command launches the libviopass.a library, which internally launches the appropriate API from the libviohealth.a library, as shown in Example 2-76.

 Example 2-76 The libviohealth.a APIs that were launched for KSYS requests

 [image:]

 # dump -H /usr/ios/sbin/vioservice|grep -p "Import File Strings"

 Import File Strings

 INDEX PATH BASE MEMBER

 0 /usr/lib:/lib:/usr/lpp/xlC/lib

 1 libc.a shr.o

 2 libviolog.a shr.o

 3 libvio.a shr.o

 4 libviopass.a shr.o

 # dump -Tv /usr/ios/sbin/vioservice|grep IMP|grep "libviopass.a"

 [54] 0x00000000 undef IMP DS EXTref libviopass.a(shr.o) vioPassThru

 # dump -Tv /usr/lib/libviopass.a|grep IMP|grep "libviohealth.a"|awk '{print $1, $4, $7, $8}'

 [13] IMP libviohealth.a(shr.o) vioHsHandle

 [14] IMP libviohealth.a(shr.o) vioHsFreeHandle

 [15] IMP libviohealth.a(shr.o) vioHsRmHostGrp

 [16] IMP libviohealth.a(shr.o) vioHsAddMs

 [17] IMP libviohealth.a(shr.o) vioHsNeedsAttention

 [18] IMP libviohealth.a(shr.o) vioHsQuickQuery

 [19] IMP libviohealth.a(shr.o) vioHsQueryVM

 [20] IMP libviohealth.a(shr.o) vioHsAddVm

 [21] IMP libviohealth.a(shr.o) vioHsStartVm

 [22] IMP libviohealth.a(shr.o) vioHsStopVm

 [23] IMP libviohealth.a(shr.o) vioHsAcknowledge

 [24] IMP libviohealth.a(shr.o) vioHsRemoveVm

 [25] IMP libviohealth.a(shr.o) vioHsPutMsg

 [26] IMP libviohealth.a(shr.o) vioHsGetMsg

 [27] IMP libviohealth.a(shr.o) vioHsRemoveAllMsg

 [28] IMP libviohealth.a(shr.o) vioHsAckMsg

 [29] IMP libviohealth.a(shr.o) vioHsSyncMsg

 [30] IMP libviohealth.a(shr.o) vioHsQueryMsg

 [31] IMP libviohealth.a(shr.o) vioHsQueryNodeData

 [32] IMP libviohealth.a(shr.o) vioHsConfigureHM

 [33] IMP libviohealth.a(shr.o) vioHsSetComHmVersions

 [34] IMP libviohealth.a(shr.o) vioHsRemoveMs

 [35] IMP libviohealth.a(shr.o) vioHsRemoveVios

 [36] IMP libviohealth.a(shr.o) vioHsAddVios

 [37] IMP libviohealth.a(shr.o) vioHsQueryMSforVMs

 [38] IMP libviohealth.a(shr.o) vioHsQueryConflict

 #

 [image:]

 You can easily see that most of the function names in the last column of the last output in Example 2-76 on page 115 fit with a corresponding KSYS to VIOS request type in the set of all these types of requests that is extracted in Example 2-77 from the /usr/lib/vioHADR2.00.xsd XSD file.

 Example 2-77 KSYS request types as defined in /usr/lib/vioHADR2.00.xsd

 [image:]

 ...

 <vioHADR2.00xsd:simpleType name="reqActionType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="VIO_HS_ADD_MS"/>

 <xsd:enumeration value="VIO_HS_REMOVE_MS"/>

 <xsd:enumeration value="VIO_HS_STOP_VM"/>

 <xsd:enumeration value="VIO_HS_START_VM"/>

 <xsd:enumeration value="VIO_HS_ADD_VM"/>

 <xsd:enumeration value="VIO_HS_REMOVE_VM"/>

 <xsd:enumeration value="VIO_HS_ADD_VIOS"/>

 <xsd:enumeration value="VIO_HS_REMOVE_VIOS"/>

 <xsd:enumeration value="VIO_HS_REMOVE_HOST_GROUP"/>

 <xsd:enumeration value="VIO_HS_CONFIGURE_HM"/>

 <xsd:enumeration value="VIO_HS_PUT_MSG"/>

 <xsd:enumeration value="VIO_HS_GET_MSG"/>

 <xsd:enumeration value="VIO_HS_ACK_MSG"/>

 <xsd:enumeration value="VIO_HS_SYNC_MSG"/>

 <xsd:enumeration value="VIO_HS_REMOVE_ALL_MSG"/>

 <xsd:enumeration value="VIO_HS_NEEDS_ATTENTION"/>

 <xsd:enumeration value="VIO_HS_QUICK_QUERY"/>

 <xsd:enumeration value="VIO_HS_ACKNOWLEDGE"/>

 <xsd:enumeration value="VIO_HS_QUERY_NODE_DATA"/>

 <xsd:enumeration value="VIO_HS_QUERY_VM"/>

 <xsd:enumeration value="VIO_HS_QUERY_MSG"/>

 <xsd:enumeration value="VIO_HS_QUERY_MS_FOR_VMS"/>

 <xsd:enumeration value="VIO_HS_QUERY_CONFLICT"/>

 </xsd:restriction>

 </xsd:simpleType>

 ...

 [image:]

 We regrouped these KSYS to VIOS request types into three categories:

 •Actions.

 •Queries to report the health status for VIOSs and VMs.

 •Requests that are used for message passing from KSYS to VM and the HM daemon.

 You can refer to the /usr/lib/vioHADR2.00.xsd XSD file for descriptions of these request type definitions and for more information about the related input and response XML elements format and attributes.

 KSYS to VIOS communication traces are logged in to the viohs.log file in the /home/ios/logs/health directory. In Example 2-78, we examine the occurrence of previously identified APIs that starting with the vioHs prefix in the viohs.log file. We look first for the vioHs pattern in a snapshot of viohs.log that was taken on one VIOS of our test environment. Then, we count the occurrences of each identified KSYS to VIOS request to the libhealth.a API.

 Example 2-78 KSYS to VIOS communication traces in the viohs.log file

 [image:]

 # pwd

 /home/ios/logs/health

 # alog -f viohs.log -o > viohs.log.libhealth.txt

 # grep vioHs viohs.log.libhealth.txt|head -8

 [3 15925534 64487765 01/19/19-09:27:33.160 hs_query_vm.c vioHsQueryVM 1.15 236] Error handling msys rc = 129.

 [3 17105352 63963515 01/19/19-09:27:33.173 hs_atten.c vioHsQuickQuery 1.107 4669] End, rc=0

 [3 16318970 64553255 01/19/19-09:27:38.578 hs_query_vm.c vioHsQueryVM 1.15 236] Error handling msys rc = 129.

 [3 19399132 66650623 01/19/19-09:27:54.80 hs_query_vm.c vioHsQueryVM 1.15 236] Error handling msys rc = 129.

 [3 15597924 28508545 01/19/19-09:27:57.618 hs_atten.c vioHsQuickQuery 1.107 4669] End, rc=0

 [3 15597926 66519541 01/19/19-09:27:59.477 hs_remove_vm.c vioHsRemoveVm 1.18 103] RemoveVM request tag is 1122B46D0FDEDF37

 [3 15597926 66519541 01/19/19-09:27:59.477 hs_remove_vm.c vioHsRemoveVm 1.18 116] RemoveVM requested for (1) machines

 [3 15597926 66519541 01/19/19-09:27:59.577 hs_remove_vm.c vioHsRemoveVm 1.18 140] skipping 24808803-eb32-4d0a-8aa5-a5b60216f15a: unknown machine

 #

 # grep vioHs viohs.log.libhealth.txt|tail -4

 [3 20382194 66978263 01/20/19-01:56:41.563 hs_atten.c vioHsQuickQuery 1.107 4669] End, rc=0

 [3 20382198 60817889 01/20/19-01:57:03.553 hs_atten.c vioHsQuickQuery 1.107 4669] End, rc=0

 [3 20382202 66191779 01/20/19-01:57:25.594 hs_atten.c vioHsNeedsAttention 1.107 4587] End, rc=0

 [3 17170756 66847175 01/20/19-01:57:49.944 hs_atten.c vioHsQuickQuery 1.107 4669] End, rc=0

 # grep -c vioHs viohs.log.libhealth.txt

 4045

 # grep -c vioHsQuickQuery viohs.log.libhealth.txt

 1747

 # grep -c vioHsNeedsAttention viohs.log.libhealth.txt

 873

 # grep -c vioHsQueryVM viohs.log.libhealth,txt

 276

 # grep -c vioHsRemoveVm viohs.log.libhealth.txt

 1104

 # grep vioHs viohs.log.libhealth.txt|egrep -v "vioHsQuickQuery|vioHsNeedsAttention|vioHsQueryVM|vioHsRemoveVm"|head -4

 [3 16056632 65143055 01/19/19-10:32:36.797 hs_ms.c vioHsAddMs 1.83 2254] Begin.

 [3 16056632 65143055 01/19/19-10:32:36.820 hs_ms.c vioHsAddMs 1.83 2274] Managed system is already existing.

 [3 16056632 65143055 01/19/19-10:32:36.820 hs_ms.c vioHsAddMs 1.83 2451] END.

 [3 17105370 65864085 01/19/19-11:40:46.475 hs_ms.c vioHsAddMs 1.83 2254] Begin.

 # grep -c vioHsAddMs viohs.log.libhealth.txt

 45

 #

 [image:]

 So, any string containing the vioHs substring in our log excerpt in Example 2-78 on page 117 is an occurrence of an API call from the libviohealth.a library:

 4045=1747+873+276+1104+45.

 Another legitimate question about our viohs.log file excerpt is which are the processes writing there. From our presentation so far, the best candidate appears to be the vioservice command. We choose the last entry of the tail output in Example 2-78 on page 117, which is a vioHsQuickQuery trace that is left by the thread 66847175 of process 17170756. Checking for this PID-TID combination in viosvc.log of the vioservice command, we obtain the request and response details of a related VIO_HS_QUICK_QUERY request, as shown in Example 2-79.

 Example 2-79 VIO_HS_QUICK_QUERY request trace in viosvc.log and viohs.log

 [image:]

 # alog -f /home/ios/logs/viosvc.log -o > viosvc.log.libhealth.txt

 # more viosvc.log.libhealth.txt

 ...

 [START 17170756 66847175 01/20/19-01:57:49.883 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 17170756 66847175 01/20/19-01:57:49.883 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Quick Query">

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 </VIO>

]

 [0 17170756 66847175 01/20/19-01:57:49.945 viosvc_res.c 1.26 464] vio_response.result=[<VIO><Response>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="5ac3e0dc-13fc-4221-9617-8ef61c4cdd83" state="UP" hmResponsive="0" hmResponseSec='0' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="2100DEW">

 <viosStat uuid="4e0f6f60-214b-4d2c-a436-0eac46f7f71f" state="UP" hmResponsive="0" hmResponseSec='0' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="166c89ef-57d8-4e75-815c-aa5b885560b1" state="UP" hmResponsive="0" hmResponseSec='0' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 </Response></VIO>

]

 [END 17170756 66847175 01/20/19-01:57:49.945 vioservice.c 1.18 323] exited with rc=0

 viosvc.log.libhealth.txt (92%)

 #

 # cd health

 # pwd

 /home/ios/logs/health

 # more viohs.log.libhealth.txt

 ...

 [START 17170756 66847175 01/20/19-01:57:49.884 ha_util.c 1.43 230]

 [3 17170756 66847175 01/20/19-01:57:49.884 hs_util.c hs_libvio_traces 1.66 60] HEALTH:66847175 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetCluster

 InfoFromODM! cluster name='KSYS_rbRMHA_1' id=43b050741b4111e9803e001018affe76

 [3 17170756 66847175 01/20/19-01:57:49.886 hs_util.c hs_libvio_traces 1.66 60] HEALTH:66847175 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 200176e8

 [3 17170756 66847175 01/20/19-01:57:49.906 hs_util.c hs_libvio_traces 1.66 60] HEALTH:66847175 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 200176e8

 [3 17170756 66847175 01/20/19-01:57:49.944 hs_atten.c vioHsQuickQuery 1.107 4669] End, rc=0

 [END 17170756 66847175 01/20/19-01:57:49.944 ha_util.c 1.43 253] exited with rc=0

 viohs.log.libhealth.txt: END

 #

 [image:]

 We also added in Example 2-79 on page 118 the traces that were written by our vioservice thread (17170756 66847175) in viohs.log around the examined vioHsQuickQuery call such that while looking at the time stamps of these traces in both logs, you can easily visualize the whole sequence of steps that is performed.

 HM also uses some health library APIs to report its health and the health of VMs. These APIs are referred as callback APIs. Example 2-80 lists the libviohealth.a callback APIs that can be started from the HM side.

 Example 2-80 The libviohealth.a APIs started from HM

 [image:]

 # dump -Tv /usr/sbin/ksys_hsmond|grep IMP|grep libviohealth.a|awk '{print $1, $4, $7, $8}'

 [253] IMP /usr/lib/libviohealth.a(shr.o) vioCreateHmTrans

 [254] IMP /usr/lib/libviohealth.a(shr.o) vioFreeHmTrans

 [255] IMP /usr/lib/libviohealth.a(shr.o) vioHmClientMissed

 [256] IMP /usr/lib/libviohealth.a(shr.o) vioHmHbDetected

 [257] IMP /usr/lib/libviohealth.a(shr.o) vioHmHb

 [258] IMP /usr/lib/libviohealth.a(shr.o) vioHmStartVMs

 [259] IMP /usr/lib/libviohealth.a(shr.o) vioHmStopVMs

 [260] IMP /usr/lib/libviohealth.a(shr.o) vioHmVmDiscover

 [261] IMP /usr/lib/libviohealth.a(shr.o) vioHmRemoveVMs

 [262] IMP /usr/lib/libviohealth.a(shr.o) vioHmVMremoved

 [263] IMP /usr/lib/libviohealth.a(shr.o) vioHmVmSuspend

 [264] IMP /usr/lib/libviohealth.a(shr.o) vioHmVmResume

 [265] IMP /usr/lib/libviohealth.a(shr.o) vioHmReadMsg

 [266] IMP /usr/lib/libviohealth.a(shr.o) vioHmShortMsg

 [267] IMP /usr/lib/libviohealth.a(shr.o) vioHmWriteMsg

 [268] IMP /usr/lib/libviohealth.a(shr.o) vioHmAckMsg

 [269] IMP /usr/lib/libviohealth.a(shr.o) vioHmPrepErrorHandler

 [270] IMP /usr/lib/libviohealth.a(shr.o) vioHmErrHandler

 [271] IMP /usr/lib/libviohealth.a(shr.o) vioHmConfigureService

 [272] IMP /usr/lib/libviohealth.a(shr.o) vioHmVmReport

 [273] IMP /usr/lib/libviohealth.a(shr.o) vioHmRestartVMs

 [274] IMP /usr/lib/libviohealth.a(shr.o) vioHmGetRecoveryLock

 [275] IMP /usr/lib/libviohealth.a(shr.o) vioHmReleaseRecoveryLock

 #

 [image:]

 HM to VIOS communication traces are logged in to the viohm.log file in the same /home/ios/logs/health directory. In Example 2-81, we look for the occurrences of each identified HM to VIOS request to the libhealth.a API in a snapshot of viohm.log that was taken on one VIOS of our test environment.

 Example 2-81 HM to VIOS communication traces in the viohm.log file

 [image:]

 # pwd

 /home/ios/logs/health

 # alog -f viohm.log -o > viohm.log.libhealth.txt

 # grep vioHm viohm.log.libhealth.txt|head -4

 [3 16777576 72483203 10/29/18-16:46:44.935 hm_discover.c vioHmVmDiscover 1.41 946] Begin, vm uuid '73a45810-6b63-4a1d-898e-bc6a7edcd043'

 [3 16777576 72483203 10/29/18-16:46:44.964 hm_discover.c vioHmVmDiscover 1.41 1050] End rc = 0.

 [3 16777576 75891147 10/29/18-16:47:10.993 ha_socket.c vioHmStartVMs 1.56.1.53 793] starting 1 vms

 [3 16777576 72483203 10/29/18-16:47:45.66 hm_discover.c vioHmVmDiscover 1.41 946] Begin, vm uuid '192575b8-e6a7-4e67-b77c-049c45ecd027'

 # dump -Tv /usr/sbin/ksys_hsmond|grep IMP|grep libviohealth.a|awk '{print $8}'|while read vioHmAPI; do echo "$vioHmAPI\t\c"; grep -c "$vioHmAPI\ " viohm.log.libhealth.txt; done

 vioCreateHmTrans 0

 vioFreeHmTrans 0

 vioHmClientMissed 9

 vioHmHbDetected 83

 vioHmHb 145

 vioHmStartVMs 39

 vioHmStopVMs 64

 vioHmVmDiscover 66

 vioHmRemoveVMs 0

 vioHmVMremoved 0

 vioHmVmSuspend 14

 vioHmVmResume 0

 vioHmReadMsg 254

 vioHmShortMsg 472

 vioHmWriteMsg 254

 vioHmAckMsg 254

 vioHmPrepErrorHandler 0

 vioHmErrHandler 0

 vioHmConfigureService 0

 vioHmVmReport 103

 vioHmRestartVMs 0

 vioHmGetRecoveryLock 0

 vioHmReleaseRecoveryLock 0

 #

 [image:]

 The libviohealth.a library is closely linked with libvio.a and uses APIs that are already available there. We mention, as examples, APIs to parse XML input or APIs to access the HSDB database in the SSP, as shown in Example 2-82.

 Example 2-82 APIs in libvio.a that are used by libviohealth.a

 [image:]

 # dump -H /usr/lib/libviohealth.a|grep -p "Import File Strings"

 Import File Strings

 INDEX PATH BASE MEMBER

 0 /usr/lib:/lib

 1 libvio.a shr.o

 2 libviolog.a shr.o

 3 libc.a shr.o

 4 libodm.a shr.o

 5 libcfg.a shr.o

 6 libpthreads.a shr_xpg5.o

 7 / unix

 # dump -H /usr/lib/libvio.a|grep -p "Import File Strings"

 Import File Strings

 INDEX PATH BASE MEMBER

 0 /usr/lib:/lib

 1 libcfg.a shr.o

 2 libc.a shr.o

 3 libxml2.a libxml2.shr.o

 4 libodm.a shr.o

 5 liblvm.a shr.o

 6 / unix

 7 libbsd.a shr.o

 8 libpthreads.a shr_xpg5.o

 # dump -Tv /usr/lib/libviohealth.a|grep IMP|egrep -i "db|schema"|awk '{print $1, $4, $7, $8}'

 [0] IMP libvio.a(shr.o) vioFinishQueryDB

 [1] IMP libvio.a(shr.o) vioFreeStmtDB

 [2] IMP libvio.a(shr.o) vioDisconnectDB

 [3] IMP libvio.a(shr.o) vioConnectDB

 [4] IMP libvio.a(shr.o) vioAllocStmtDB

 [9] IMP libvio.a(shr.o) vioRollbackDB

 [10] IMP libvio.a(shr.o) vioCommitDB

 [11] IMP libvio.a(shr.o) vioQueryDB

 [12] IMP libvio.a(shr.o) vioGetCountFromDB

 [28] IMP libvio.a(shr.o) vioCheckSchemaExists

 [29] IMP libvio.a(shr.o) vioModifyWithRetryDB

 [33] IMP libvio.a(shr.o) vioUpdateDB

 [34] IMP libvio.a(shr.o) vioDeleteDB

 [35] IMP libvio.a(shr.o) vioInsertDB

 #

 [image:]

 The SSP cluster and HSDB database

 The vio_daemon daemon provides core SSP cluster functions for a VIOS node that is a member of a cluster. Figure 2-10 on page 115 shows vio_daemon as being distinct from the SSP cluster, but we describe it in this section because the cluster and database are closely related. Other subsystems contribute to the operation of an SSP cluster, like cthags, caa, and pool. In Example 2-83, we see the status of all these subsystems after a fresh VIOS V3.1 installation and before the creation of an SSP cluster.

 Example 2-83 Initial SSP daemons status

 [image:]

 # /usr/ios/cli/ioscli ioslevel

 3.1.0.10

 # oslevel -s

 7200-03-02-1846

 # lssrc -a|head -1; lssrc -a|egrep "caa|cthags|^ pool|vio_daemon"|sort

 Subsystem Group PID Status

 clcomd caa 6816124 active

 clconfd caa inoperative

 pool inoperative

 vio_daemon 7471600 active

 #

 [image:]

 Example 2-84 shows the same daemons on a VIOS in our test environment host group after the SSP cluster creation with hdisk4 as repo_disk and hdisk3 as ha_disk.

 Example 2-84 SSP daemons on a VIOS node in a host group SSP cluster

 [image:]

 # lssrc -a|head -1; lssrc -a|egrep "caa|cthags|^ pool|vio_daemon"|sort

 Subsystem Group PID Status

 clcomd caa 8716570 active

 clconfd caa 5833058 active

 cthags cthags 13500738 active

 pool 18809098 active

 vio_daemon 9634178 active

 # /usr/ios/cli/ioscli cluster -status

 Cluster Name State

 KSYS_rbRMHA_1 OK

 Node Name MTM Partition Num State Pool State

 rt14v2 8286-42A022100DEW 2 OK OK

 rt14v1 8286-42A022100DEW 1 OK OK

 rt13v1 8286-42A0221E0B2V 1 OK OK

 rt13v2 8286-42A0221E0B2V 2 OK OK

 # /usr/lib/cluster/clras lsrepos

 hdisk4 has a cluster repository signature.

 Found 1 cluster repository disk.

 # lspv|grep hdisk4

 hdisk4 00f9e0b2b719cb37 caavg_private active

 # /usr/ios/cli/ioscli pv -list

 POOL_NAME: default_pool_1

 TIER_NAME: SYSTEM

 FG_NAME: Default

 PV_NAME SIZE(MB) STATE UDID

 hdisk3 20480 ONLINE 3321360050768028104268800000000000~

 #

 [image:]

 The PowerVM product documentation for SSP mentions that in VIOS V3.1 the SSP Management database was migrated from SolidDB in previous VIOS versions to the PostgreSQL database, as described in this excerpt from the “Getting started with shared storage pools by using the VIOS command line” section of IBM Power Systems Virtual I/O Server:

 “In VIOS version 3.1 the SSP Management data is stored in a PostgreSQL database. All data files of the database are stored in the file system of the SSP cluster pool. If the VIOS node that manages the SSP database is unable to access the file system of the SSP cluster pool, while the PostgreSQL database process is performing an I/O operation, the PostgreSQL database aborts all operations and generates a core memory dump. The PostgreSQL database also generates the pool file system errors and stores them in the system error log file. The SSP database automatically recovers when the VIOS node that manages the SSP database regains access to the file system of the SSP cluster pool.”

 First, we identify the file system of the SSP cluster pool and the VIOS node that manages the SSP database for our test environment host group SSP cluster. We expect the file system to be on the disk that is provided by the ha_disk parameter at the host group creation and show up under the same mount point on all VIOS nodes (Example 2-85).

 Example 2-85 The shared file system of the host group SSP cluster pool

 [image:]

 # pooladm pool list

 Pool Path

 /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310

 # pooladm pool lsdisk /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310 -v

 Tier: SYSTEM

 Name: /dev/hdisk3

 UID: 000000000A2819F3000000005C420426

 Capacity: 20 GB

 State: Up

 Failure Group: Default

 Partitions: 319

 Spare Partitions: 1

 Stale Partitions: 0

 ECCR Partitions: 0

 Sector Size: 512 bytes

 Max Transfer: 512 KB

 Data Start: 8388608 bytes

 # mount|head -2;mount|grep "/var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310"

 node mounted mounted over vfs date options

 -------- --------------- --------------- ------ ------------ ---------------

 /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310 /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310 poolfs Jan 18 11:20

 # grep poolfs /etc/vfs

 poolfs 20 /usr/sbin/pooladm none

 # clcmd df -g /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310

 NODE rt13v2.ausprv.stglabs.ibm.com

 Filesystem GB blocks Free %Used Iused %Iused Mounted on

 /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310 19.88 19.36 3% - - /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310

 NODE rt13v1.ausprv.stglabs.ibm.com

 Filesystem GB blocks Free %Used Iused %Iused Mounted on

 /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310 19.88 19.36 3% - - /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310

 NODE rt14v1.ausprv.stglabs.ibm.com

 Filesystem GB blocks Free %Used Iused %Iused Mounted on

 /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310 19.88 19.36 3% - - /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310

 NODE rt14v2.ausprv.stglabs.ibm.com

 Filesystem GB blocks Free %Used Iused %Iused Mounted on

 /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310 19.88 19.36 3% - - /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310

 #

 [image:]

 For more information about the pooladm options that are used in Example 2-85 on page 123, run the pooladm help and pooladm pool help commands. The VIOS node that manages the SSP database is known as a database node (DBN). Some details about the way that the VIOS node that manages the SSP database regains access to the file system of the SSP cluster pool are described in the “Problem summary” and “Problem conclusion” sections of APAR IJ08692: VIOS SSP CANNOT ELECT DBN.

 Though APAR IJ08692 applies to AIX 6.1 and was fixed in VIOS 2.2.6.32, we expect the functions that are described to also be relevant for VIOS V3.1 and subsequent versions.

 Going further with our SSP cluster examination, we see a PostgreSQL database server instance that runs on the DBN node under the control of the vios_daemon subsystem (Example 2-86).

 Example 2-86 Database server instance on the DBN node

 [image:]

 # lssrc -ls vio_daemon|grep DBN

 DBN NODE ID: 43947aac1b4111e9803e001018affe76

 DBN Role: Other

 # /usr/ios/cli/ioscli cluster -status -verbose|grep -p DBN

 Node Name: rt14v2.ausprv.stglabs.ibm.com

 Node Id: 43947aac1b4111e9803e001018affe76

 Node MTM: 8286-42A022100DEW

 Node Partition Num: 2

 Node State: OK

 Node Repos State: OK

 Node Upgrade Status: 3.1.0.00 ON_LEVEL

 Node Roles: DBN

 Pool Name: default_pool_1

 Pool Id: 000000000A2819F3000000005C420425

 Pool State: OK

 # clcmd -m rt14v2.ausprv.stglabs.ibm.com lssrc -s vio_daemon

 NODE rt14v2.ausprv.stglabs.ibm.com

 Subsystem Group PID Status

 vio_daemon 2032030 active

 # clcmd -m rt14v2.ausprv.stglabs.ibm.com proctree 2032030

 NODE rt14v2.ausprv.stglabs.ibm.com

 7864602 /usr/sbin/srcmstr

 2032030 /usr/sbin/vio_daemon -d 4

 17563970 /usr/ios/db/bin/postgres -D /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310/VIO

 3735808 postgres: SSP: stats collector process

 12976504 postgres: SSP: autovacuum launcher process

 14418338 postgres: SSP: checkpointer process

 14549484 postgres: SSP: logger process

 18153846 postgres: SSP: wal writer process

 20578610 postgres: SSP: writer process

 23134664 postgres: SSP: bgworker: logical replication launcher

 24183042 postgres: SSP: archiver process last was 000000010000000000000005.00000028.ba

 10486100 vio_chgmgt

 # clcmd -m rt14v2.ausprv.stglabs.ibm.com ps -fp 17563970

 NODE rt14v2.ausprv.stglabs.ibm.com

 UID PID PPID C STIME TTY TIME CMD

 vpgadmin 17563970 2032030 0 10:52:20 - 0:32 /usr/ios/db/bin/postgres -D /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310/VIOSCFG/DB/PG -p 6090

 #

 [image:]

 The PostgreSQL database server instance (PID 17563970) was started as a vpgadmin user, and its listening port is specified in the command line as -p 6090. The database files are kept in the shared file system of the SSP cluster pool (by using the -D data directory option). Options in the command line have priority over the ones in the configuration files. The default configuration files are in the same location (by using the -D option), so the remaining database settings can be checked there.

 As an example, we look in postgresql.conf on the DBN node itself for the log directory and some local session settings (Example 2-87).

 Example 2-87 Log location and trust authentication settings in the configuration files

 [image:]

 # lssrc -ls vio_daemon|grep DBN

 DBN NODE ID: 43947aac1b4111e9803e001018affe76

 DBN Role: Primary

 # cd /var/vio/SSP/KSYS_rbRMHA_1/D_E_F_A_U_L_T_061310/VIOSCFG/DB/PG

 # ls *.conf

 pg_hba.conf pg_ident.conf postgresql.auto.conf postgresql.conf

 # grep log_directory postgresql.conf

 log_directory = '/home/ios/logs/pg_sspdb' # directory where log files are written,

 # grep -i socket postgresql.conf

 #unix_socket_directories = '/tmp' # comma-separated list of directories

 #unix_socket_group = '' # (change requires restart)

 #unix_socket_permissions = 0777 # begin with 0 to use octal notation

 # grep ^local pg_hba.conf

 local all all trust

 # ls -l /tmp|grep vpgadmin|grep ^s

 srwxrwxrwx 1 vpgadmin bin 0 Jan 19 03:11 .s.PGSQL.6080

 srwxrwxrwx 1 vpgadmin bin 0 Jan 19 03:18 .s.PGSQL.6090

 #

 [image:]

 For more insights into the database layout, we use a psql client interactive session through a local UNIX domain socket connection on the DBN node, as shown in Example 2-88.

 Example 2-88 SSP cluster database layout

 [image:]

 # /usr/ios/db/bin/psql -U vpgadmin -l -p 6090

 List of databases

 Name | Owner | Encoding | Collate | Ctype | Access privileges

 -----------+-----------+----------+---------+-------+-----------------------

 postgres | vpgadmin | LATIN1 | en_US | en_US |

 template0 | vpgadmin | LATIN1 | en_US | en_US | =c/vpgadmin +

 | | | | | vpgadmin=CTc/vpgadmin

 template1 | vpgadmin | LATIN1 | en_US | en_US | =c/vpgadmin +

 | | | | | vpgadmin=CTc/vpgadmin

 vios | viosadmin | LATIN1 | en_US | en_US |

 (4 rows)

 # /usr/ios/db/bin/psql -U vpgadmin -d vios -p 6090 -P pager=off

 psql (10.2)

 Type "help" for help.

 vios=# \dn

 List of schemas

 Name | Owner

 --------+-----------

 public | vpgadmin

 vios | viosadmin

 vioshs | viosadmin

 (3 rows)

 vios=# \dt vioshs.*

 List of relations

 Schema | Name | Type | Owner

 --------+-------------------+-------+-----------

 vioshs | cluster | table | viosadmin

 vioshs | config_hm_daemon | table | viosadmin

 vioshs | config_hm_service | table | viosadmin

 vioshs | config_hs_service | table | viosadmin

 vioshs | conflict | table | viosadmin

 vioshs | locked | table | viosadmin

 vioshs | map | table | viosadmin

 vioshs | ms | table | viosadmin

 vioshs | msg | table | viosadmin

 vioshs | recovervm | table | viosadmin

 vioshs | removed_vm | table | viosadmin

 vioshs | trans | table | viosadmin

 vioshs | vios | table | viosadmin

 vioshs | vm | table | viosadmin

 (14 rows)

 vios=# \q

 # /usr/ios/db/bin/postgres -V

 postgres (PostgreSQL) 10.2#

 [image:]

 The health status tables are grouped under the vioshs schema as part of the vios SSP cluster database. Using the same database as the SSP cluster provides some benefits:

 •Using existing database access code

 •Rolling upgrade that is automatically supported

 •Database resiliency as ensured by the DBN election mechanism

 In Example 2-89, we continue with the same psql session, and suggest two methods that you can use to list the column names of a table to help you select only the columns of interest in a subsequent query.

 Example 2-89 Some SQL queries

 [image:]

 vios=# set search_path to vioshs;

 SET

 vios=# select * from cluster limit 0;

 clusterid | dbstate | doexch | cur_major | cur_minor | ksysmsgsync | dbninstance | recoverytag | recoveryts

 -----------+---------+--------+-----------+-----------+-------------+-------------+-------------+------------

 (0 rows)

 vios=# select clusterid, dbstate, cur_major, ksysmsgsync, dbninstance, recoverytag from cluster;

 clusterid | dbstate | cur_major | ksysmsgsync | dbninstance | recoverytag

 -----------+---------+-----------+-------------+-------------+-------------

 1 | 8 | 2 | 1 | 1 | 1

 (1 row)

 vios=# select column_name, data_type from information_schema.columns where table_name='ms' and table_schema='vioshs';

 column_name | data_type

 -------------+-------------------

 msid | bigint

 clusterid | bigint

 mtm | character varying

 machinetype | character varying

 model | character varying

 serial | character varying

 (6 rows)

 vios=# select msid, clusterid, machinetype, model from ms;

 msid | clusterid | machinetype | model

 ----------------------+-----------+-------------+-------

 -3157136219997566938 | 1 | 8286 | 42A

 -4860436880512962013 | 1 | 8286 | 42A

 (2 rows)

 vios=#

 [image:]

 CAA event monitoring

 Before the creation of any SSP cluster on a new VIOS V3.1 installation, you can find the AHAFS AIX Event Infrastructure already set up, as shown in Example 2-90.

 Example 2-90 Autonomic Health Advisor File System setup before SSP cluster creation

 [image:]

 # /usr/ios/cli/ioscli ioslevel

 3.1.0.10

 # oslevel -s

 7200-03-02-1846

 # df -vT ahafs

 Filesystem 512-blocks Used Free %Used Iused Ifree %Iused Mounted on

 /ahafs - - - - 42 32726 1% /aha

 # find /aha -name "*.mon"

 /aha/fs/modFile.monFactory/var/sea/SEAevents.mon

 # fuser -V /aha/fs/modFile.monFactory/var/sea/SEAevents.mon

 /aha/fs/modFile.monFactory/var/sea/SEAevents.mon:

 inode=37 size=1 fd=3 6881786

 # ps -o pid,args -p 6881786

 PID COMMAND

 6881786 /usr/sbin/SEAmon /aha

 # ls -d /aha/*/*.monFactory

 /aha/cluster/cap.monFactory /aha/disk/repDiskState.monFactory

 /aha/cluster/hostnameChange.monFactory /aha/disk/vgState.monFactory

 /aha/cluster/networkAdapterState.monFactory /aha/fs/modDir.monFactory

 /aha/cluster/nodeAddress.monFactory /aha/fs/modFile.monFactory

 /aha/cluster/nodeContact.monFactory /aha/fs/modFileAttr.monFactory

 /aha/cluster/nodeList.monFactory /aha/fs/utilFs.monFactory

 /aha/cluster/nodeState.monFactory /aha/mem/vmo.monFactory

 /aha/cluster/siteState.monFactory /aha/mem/waitTmPgInOut.monFactory

 /aha/cpu/pidProcessMon.monFactory /aha/mem/waitersFreePg.monFactory

 /aha/cpu/processMon.monFactory /aha/net/inetsock.monFactory

 /aha/cpu/schedo.monFactory /aha/pool/pool.membership.monFactory

 /aha/cpu/waitTmCPU.monFactory /aha/pool/tier.capacity.monFactory

 /aha/disk/clDiskList.monFactory /aha/pool/tier.ecLowWaterMark.monFactory

 /aha/disk/clDiskState.monFactory /aha/pool/tier.freespace.monFactory

 /aha/disk/diskState.monFactory /aha/pool/tier.overcommit.monFactory

 #

 [image:]

 The .monFactory directories for the expected predefined AIX and CAA event producers are there. Additionally, we notice some VIOS-specific ones in the /aha/pool directory, which by name appear to be related to the pool subsystem supporting the SSP cluster operation. Only one monitor file shows up as being used to monitor the modifications to the /var/sea/SEAevents file by a SEAmon process.

 When an SSP cluster is deployed, a couple of other monitor files show up on its member nodes, as shown in Example 2-91, where we picked the DBN node. The same monitor files, except for the ones in the /aha/pool base directory, show up on all the other nodes.

 Example 2-91 AHAFS monitor files on the DBN node after the SSP cluster creation

 [image:]

 # lssrc -ls vio_daemon|grep DBN

 DBN NODE ID: 43947aac1b4111e9803e001018affe76

 DBN Role: Primary

 # find /aha -name "*.mon"

 /aha/cpu/processMon.monFactory/usr/sbin/rsct/bin/hagsd.mon

 /aha/fs/modFile.monFactory/var/sea/SEAevents.mon

 /aha/fs/utilFs.monFactory/var.mon

 /aha/cluster/hostnameChange.monFactory/nodeHostNameEvent.mon

 /aha/cluster/cap.monFactory/capEvent.mon

 /aha/cluster/siteState.monFactory/siteEvent.mon

 /aha/cluster/nodeList.monFactory/nodeListEvent.mon

 /aha/cluster/networkAdapterState.monFactory/networkAdapterStateEvent.mon

 /aha/cluster/nodeAddress.monFactory/nodeAddressEvent.mon

 /aha/cluster/nodeState.monFactory/nodeStateEvent.mon

 /aha/disk/repDiskState.monFactory/repDiskStateEvent.mon

 /aha/disk/clDiskState.monFactory/clDiskStateEvent.mon

 /aha/pool/tier.freespace.monFactory/poolId:000000000A2819F3000000005C420425,tierName:SYSTEM,unitName:percentage.mon

 /aha/pool/tier.ecLowWaterMark.monFactory/poolId:000000000A2819F3000000005C420425,tierName:SYSTEM.mon

 #

 [image:]

 The vio_daemon (PID 2032030) is among the event consumers. It monitors CAA cluster events and SSP pool events (Example 2-92).

 Example 2-92 AHAFS monitor files and event consumers on the DBN node

 [image:]

 # for f in `find /aha -name "*.mon"`; do fuser -V $f; done

 /aha/cpu/processMon.monFactory/usr/sbin/rsct/bin/hagsd.mon:

 inode=44 size=1 fd=11 11207164

 /aha/fs/modFile.monFactory/var/sea/SEAevents.mon:

 inode=37 size=1 fd=3 6291956

 /aha/fs/utilFs.monFactory/var.mon:

 inode=45 size=1 fd=4 24838578

 /aha/cluster/hostnameChange.monFactory/nodeHostNameEvent.mon:

 inode=60 size=1 fd=38 10617192

 /aha/cluster/cap.monFactory/capEvent.mon:

 inode=59 size=1 fd=37 10617192

 /aha/cluster/siteState.monFactory/siteEvent.mon:

 inode=54 size=1 fd=14 11207164

 /aha/cluster/nodeList.monFactory/nodeListEvent.mon:

 inode=53 size=2 fd=12 10617192

 inode=53 size=2 fd=13 11207164

 /aha/cluster/networkAdapterState.monFactory/networkAdapterStateEvent.mon:

 inode=47 size=3 fd=34 2032030

 inode=47 size=3 fd=36 10617192

 inode=47 size=3 fd=10 11207164

 /aha/cluster/nodeAddress.monFactory/nodeAddressEvent.mon:

 inode=52 size=3 fd=13 10617192

 inode=52 size=3 fd=12 11207164

 inode=52 size=3 fd=5 24838578

 /aha/cluster/nodeState.monFactory/nodeStateEvent.mon:

 inode=46 size=3 fd=20 2032030

 inode=46 size=3 fd=35 10617192

 inode=46 size=3 fd=9 11207164

 /aha/disk/repDiskState.monFactory/repDiskStateEvent.mon:

 inode=57 size=1 fd=36 2032030

 /aha/disk/clDiskState.monFactory/clDiskStateEvent.mon:

 inode=56 size=1 fd=35 2032030

 /aha/pool/tier.freespace.monFactory/poolId:000000000A2819F3000000005C420425,tierName:SYSTEM,unitName:percentage.mon:

 inode=58 size=1 fd=40 2032030

 /aha/pool/tier.ecLowWaterMark.monFactory/poolId:000000000A2819F3000000005C420425,tierName:SYSTEM.mon:

 inode=61 size=1 fd=41 2032030

 # ps -o pid,args -p 11207164,24838578,10617192,2032030

 PID COMMAND

 2032030 /usr/sbin/vio_daemon -d 4

 10617192 /opt/rsct/bin/IBM.ConfigRMd

 11207164 /usr/sbin/rsct/bin/hagsd cthags

 24838578 /usr/sbin/clconfd

 #

 [image:]

 Table 2-3 presents the documented CAA event types for each of the CAA event producers showing up as configured for the vio_daemon event consumer in Example 2-92 on page 129.

 Table 2-3 CAA event types

 	
 CAA event producer

 	
 CAA event type

 	
 Event description

 	
 networkAdapterState

 	
 ADAPTER_UP, ADAPTER_DOWN, ADAPTER_ADD, ADAPTER_DEL

 	
 Generated when a network interface goes down or comes up.

 	
 nodeState

 	
 NODE_UP, NODE_DOWN

 	
 Generated, for example, when a node fails or is shut down.

 	
 repDiskState

 	
 REP_UP, REP_DOWN

 	
 Generated when a repository disk goes down or comes up.

 	
 clDiskState

 	
 DISK_UP, DISK_DOWN

 	
 Generated when a cluster disk goes down or comes up.

 This whole monitoring framework is extended for KSYS such that vio_daemon can update the HSDB about received CAA events. When vio_daemon is notified about a CAA event occurrence, it uses libvio.a and ultimately libviohealth.a to update tables in the vios.vioshs schema. The VIOS state in the vios table is updated with the received node state from CAA and the trans table is inserted with CAA event details. To see how some of these event flows happen, we manually perform a shutdown of a non-DBN VIOS node and then start it.

 The VIOS shutdown generates a NODE_DOWN event on the rest of the CAA cluster nodes. We are interested to see how this event is recorded in the HSDB database and in the logs of all components that are involved. Example 2-93 shows the vios and trans database tables just before the VIOS node shutdown. The VIOSs are in the normal state and the trans table is clean.

 Example 2-93 The vios and trans tables before the VIOS node shutdown

 [image:]

 vios=# select viosuuid, state, reason from vios;

 viosuuid | state | reason

 --------------------------------------+-------+--------

 315ce56b-9ba0-46a1-b4bc-da6108574e7e | 1 | 0

 4e0f6f60-214b-4d2c-a436-0eac46f7f71f | 1 | 0

 5ac3e0dc-13fc-4221-9617-8ef61c4cdd83 | 1 | 0

 166c89ef-57d8-4e75-815c-aa5b885560b1 | 1 | 0

 (4 rows)

 vios=# select * from trans;

 vmuuid | viosuuid | msid | tag | opcode | state | data | integer | txstarted

 --------+----------+------+-----+--------+-------+------+---------+-----------

 (0 rows)

 vios=#

 [image:]

 To reduce the rate of the updates in the database log and make sure that the CAA event updates in the database are not affected by KSYS, we stop KSYS (by running stopsrc -s IBM.VMR) during the test. We also stop HMs by running clcmd stopsrc -s ksys_hsmon on one VIOS. At the database level, we modify some log parameters for easier reading, as shown in Example 2-94.

 Example 2-94 Database log parameters change

 [image:]

 vios=# ALTER SYSTEM SET log_duration = false;

 ALTER SYSTEM

 vios=# ALTER SYSTEM SET log_connections = true;

 ALTER SYSTEM

 vios=# ALTER SYSTEM SET log_disconnections = true;

 ALTER SYSTEM

 vios=# ALTER SYSTEM SET log_line_prefix = '%m|%c|%r';

 ALTER SYSTEM

 vios=# SELECT pg_reload_conf();

 pg_reload_conf

 t

 (1 row)

 vios=#

 [image:]

 In Example 2-95, we show the SSP cluster state after the node shutdown and an excerpt from the CAA log on the DBN node with related data about the generated CAA NODE_DOWN event.

 Example 2-95 SSP cluster state and CAA log excerpt for the NODE_DOWN event

 [image:]

 # lssrc -ls vio_daemon|grep DBN

 DBN NODE ID: 43947aac1b4111e9803e001018affe76

 DBN Role: Primary

 # /usr/ios/cli/ioscli cluster -status

 Cluster Name State

 KSYS_rbRMHA_1 DEGRADED

 Node Name MTM Partition Num State Pool State

 rt14v2 8286-42A022100DEW 2 OK OK

 rt14v1 8286-42A022100DEW 1 OK OK

 rt13v1 8286-42A0221E0B2V 1 OK OK

 rt13v2 8286-42A0221E0B2V 2 DOWN

 # cp /var/adm/ras/syslog.caa /var/adm/ras/syslog.caa.caaevttst.txt

 # more /var/adm/ras/syslog.caa.caaevttst.txt

 ...

 Jan 20 09:07:47 rt14v2 caa:info unix: kcluster_lock.c count_active_nodes 418 up_node_map 0xF db_node_map 0x0 local_up_node_map 0xF local_db_node_map 0x0

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_ip.c update_site_state 3748 update_site_state : site=LOCAL new_up_st=1 old_up_st=1

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_ip.c update_site_state 3808 Site Shid 1, State 10000, Flags 0

 Jan 20 09:08:04 rt14v2 caa:info unix: kbase_kernext_services.c aha_thread_queue 646 The AHAFS event is EVENT_TYPE=NODE_DOWN REASON=NODE_SHUTDOWN NODE_N

 UMBER=4 NODE_ID=0xD32BFA3C1B4111E9805D001018AFFE76 CLUSTER_ID=0x43B050741B4111E9803E001018AFFE76

 Jan 20 09:08:04 rt14v2 caa:debug cluster[2032030]: [8500] caa_event_monitor.c caa_aha_monitor 279 Have data on fd,slot [20,1]

 Jan 20 09:08:04 rt14v2 caa:debug cluster[2032030]: [8500] caa_event_monitor.c read_event_node 515 Found reason NODE_SHUTDOWN

 Jan 20 09:08:04 rt14v2 caa:info cluster[2032030]: [8500] caa_event_monitor.c caa_aha_process_event 881 Calling VIO with event details:

 Jan 20 09:08:04 rt14v2 caa:info cluster[2032030]: [8500] caa_event_monitor.c caa_aha_process_event 882 Type 0x1

 Jan 20 09:08:04 rt14v2 caa:info cluster[2032030]: [8500] caa_event_monitor.c caa_aha_process_event 883 Reason 0x40

 Jan 20 09:08:04 rt14v2 caa:info cluster[2032030]: [8500] caa_event_monitor.c caa_aha_process_event 884 Node UUID D32BFA3C1B4111E9805D001018AFFE76

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_cap_register 2635 Unregister monitoring the capabilities 0x1

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_hostname_change_register 2754 Unregister monitoring the node's hostname change 0x1

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_nodelist_register 2094 The nodeList /nodeListEvent is already registered.

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_nodelist_register 2108 nodeList set opqId = 0x1

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_address_register 1612 The node /nodeAddressEvent is already registered.

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_address_register 1625 nodeAddress set opqId = 0x1

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_nodeexit_register 1976 The nodeState /nodeStateEvent is already registered.

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_nodeexit_register 1990 nodeState set opqId = 0x1

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_interface_register 1735 The node /networkAdapterStateEvent is already registered.

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_interface_register 1750 networkAdapterState set opqId = 0x1

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_cap_register 2696 cap set opqId = 0x1

 Jan 20 09:08:04 rt14v2 caa:info unix: kcluster_event.c ahafs_hostname_change_register 2814 HostnameChange set opqId = 0x1

 Jan 20 09:08:04 rt14v2 caa:info cluster[2032030]: [8500] caa_event_monitor.c caa_aha_monitor 256 Starting wait on select().

 Jan 20 09:08:31 rt14v2 caa:info cluster[20840742]: [1] clcmd.c main 72 START clcmd command starts...

 syslog.caa.caaevttst.txt (98%)

 [image:]

 We obtain the expected CAA NODE_DOWN event that is logged around 09:08:04, as marked in bold in Example 2-95 on page 131. Now, we check the vio_demon log entries on the DBN node around the same 09:08:04 moment and look for their TID. We also do a quick check of the thread stack for the thread that logged the entries, which has the TID 0x2134 (Example 2-96).

 Example 2-96 The vio_daemon log entries and involved thread details

 [image:]

 # pwd

 /home/ios/logs

 # cp viod.log viod.log.caaevttst.txt

 # more viod.log.caaevttst.txt

 ...

 Jan 20 2019, 09:07:58.675 0x129 viod_dbhandler.c viod_start_db_timer 1.83 340 TRC -- Setting up the DB handler timer dbcl 110099400

 Jan 20 2019, 09:08:04.201 0x2134 violibDB.c vioCheckSchemaExists 1.132.12.3 23524 DEB -- Parms schemaName=vioshs

 Jan 20 2019, 09:08:04.219 0x2134 violibDB.c modifyDB 1.132.12.3 2040 DEB -- Statement = SET search_path TO vios

 Jan 20 2019, 09:08:04.222 0x2134 violibDB.c vioGetEADB 1.132.12.3 16415 DEB -- eaName = VIO_DB_RWLEVEL has no value

 Jan 20 2019, 09:08:04.222 0x2134 violibDB.c vioQueryDB 1.132.12.3 2692 DEB -- Statement= SELECT COUNT(schema_name) FROM information_schema.schemata WHERE schema_name='vioshs'

 Jan 20 2019, 09:08:04.225 0x2134 violibDB.c bindQueryResults 1.132.12.3 2497 DEB -- Query column count = 1

 Jan 20 2019, 09:08:21.114 0x1 viod_misc_handler.c viod_cache_timercb 1.3 283 TRC -- Misc task handler condition set 0x1100994b0

 viod.log.caaevttst.txt (91%)

 # printf "%d\n" 0x2134

 8500

 # lssrc -s vio_daemon

 Subsystem Group PID Status

 vio_daemon 2032030 active

 # procstack 2032030|grep tid|grep 8500

 ---------- tid# 62521639 (pthread ID: 8500) ----------

 # procstack 2032030|more

 ...

 ---------- tid# 62521639 (pthread ID: 8500) ----------

 0x090000000016590c __fd_select(??, ??, ??, ??, ??) + 0xcc

 0x090000000128b7a0 caa_aha_monitor(??) + 0x760

 0x0900000000b40674 vio_caa_aha_monitor(??, ??) + 0x54

 0x000000010006e8fc viod_cluster_caa_thread(??) + 0x21c

 0x090000000059ffe8 _pthread_body(??) + 0xe8

 ---------- tid# 64029023 (pthread ID: 8243) ----------

 /62521639

 #

 [image:]

 The health library log entries around the same moment, 09:08:04, are written by the same vio_daemon thread, which is tid# 62521639 (Example 2-97).

 Example 2-97 Health library entries around the CAA NODE_DOWN event occurrence moment

 [image:]

 # pwd

 /home/ios/logs/health

 # alog -f viohs.log -o > viohs.log.20jan.caaevttst.txt

 # more viohs.log.20jan.caaevttst.txt

 ...

 [END 19661164 79298955 01/20/19-08:38:55.639 ha_util.c 1.43 253] exited with rc=0

 [START 2032030 62521639 01/20/19-09:08:04.226 ha_util.c 1.43 230]

 [3 2032030 62521639 01/20/19-09:08:04.226 hs_util.c hs_libvio_traces 1.66 60] HEALTH:62521639 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetCluste

 rInfoFromODM! cluster name='KSYS_rbRMHA_1' id=43b050741b4111e9803e001018affe76

 [3 2032030 62521639 01/20/19-09:08:04.226 hs_util.c hs_libvio_traces 1.66 60] HEALTH:62521639 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 1100987d0

 [3 2032030 62521639 01/20/19-09:08:04.280 hs_util.c hs_libvio_traces 1.66 60] HEALTH:62521639 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 1105341b0

 viohs.log.20jan.caaevttst.txt: END

 #

 [image:]

 The entries in the database log around the same moment, 09:08:04, match perfectly in terms of content and time stamps with the previous entries that were logged by the vio_daemon in its own log and in the health library log (Example 2-98).

 Example 2-98 Database log around the CAA NODE_DOWN event occurrence moment

 [image:]

 # ifconfig en0|grep inet

 inet 10.40.25.243 netmask 0xfffffe00 broadcast 10.40.25.255

 # pwd

 /home/ios/logs/pg_sspdb

 # more pg_sspdb-20-08-27.log

 ...

 2019-01-20 09:07:58.675 CST|5c448ece.bb01f0|10.40.25.243(49883)LOG: disconnection: session time: 0:00:00.030 user=viosadmin database=vios host=10.40.25.243 port=49883

 2019-01-20 09:08:04.206 CST|5c448ed4.18d01ce|10.40.25.243(49884)LOG: connection received: host=10.40.25.243 port=49884

 2019-01-20 09:08:04.210 CST|5c448ed4.18d01ce|10.40.25.243(49884)LOG: connection authorized: user=viosadmin database=vios

 2019-01-20 09:08:04.216 CST|5c448ed4.18d01ce|10.40.25.243(49884)LOG: statement: SET DateStyle = 'ISO';SET extra_float_digits = 2;show transaction_isolation

 2019-01-20 09:08:04.217 CST|5c448ed4.18d01ce|10.40.25.243(49884)LOG: statement: select oid, typbasetype from pg_type where typname = 'lo'

 2019-01-20 09:08:04.218 CST|5c448ed4.18d01ce|10.40.25.243(49884)LOG: statement: set client_encoding to 'UTF8'

 2019-01-20 09:08:04.219 CST|5c448ed4.18d01ce|10.40.25.243(49884)LOG: statement: BEGIN;SET search_path TO vios

 2019-01-20 09:08:04.220 CST|5c448ed4.18d01ce|10.40.25.243(49884)LOG: statement: COMMIT

 2019-01-20 09:08:04.222 CST|5c448ed4.18d01ce|10.40.25.243(49884)LOG: statement: BEGIN;SELECT COUNT(schema_name) FROM information_schema.schemata WHERE schema_name='vioshs'

 2019-01-20 09:08:04.231 CST|5c448ed4.18d01ce|10.40.25.243(49884)LOG: disconnection: session time: 0:00:00.024 user=viosadmin database=vios host=10.40.25.243 port=49884

 2019-01-20 09:08:04.237 CST|5c448ed4.18d01d0|10.40.25.243(49885)LOG: connection received: host=10.40.25.243 port=49885

 2019-01-20 09:08:04.258 CST|5c448ed4.18d01d0|10.40.25.243(49885)LOG: connection authorized: user=viosadmin database=vios

 2019-01-20 09:08:04.263 CST|5c448ed4.18d01d0|10.40.25.243(49885)LOG: statement: SET DateStyle = 'ISO';SET extra_float_digits = 2;show transaction_isolation

 2019-01-20 09:08:04.264 CST|5c448ed4.18d01d0|10.40.25.243(49885)LOG: statement: select oid, typbasetype from pg_type where typname = 'lo'

 2019-01-20 09:08:04.268 CST|5c448ed4.18d01d0|10.40.25.243(49885)LOG: statement: set client_encoding to 'UTF8'

 2019-01-20 09:08:04.274 CST|5c448ed4.18d01d0|10.40.25.243(49885)LOG: statement: BEGIN;SET search_path TO vios

 2019-01-20 09:08:04.274 CST|5c448ed4.18d01d0|10.40.25.243(49885)LOG: statement: COMMIT

 2019-01-20 09:08:04.277 CST|5c448ed4.18d01d0|10.40.25.243(49885)LOG: statement: BEGIN;UPDATE vioshs.vios SET state=2, reason=64, stateRecovery=0, recoveryDbnInstance=0, recoveryTag=0 WHERE nodeid_1=-3230213171645967895 AND nodeid_2=-9197194794887020938

 2019-01-20 09:08:04.279 CST|5c448ed4.18d01d0|10.40.25.243(49885)LOG: statement: COMMIT

 2019-01-20 09:08:04.283 CST|5c448ed4.18d01d0|10.40.25.243(49885)LOG: disconnection: session time: 0:00:00.046 user=viosadmin database=vios host=10.40.25.243 port=49885

 2019-01-20 09:08:04.290 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: connection received: host=10.40.25.243 port=49886

 2019-01-20 09:08:04.293 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: connection authorized: user=viosadmin database=vios

 2019-01-20 09:08:04.295 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: statement: SET DateStyle = 'ISO';SET extra_float_digits = 2;show transaction_isolation

 2019-01-20 09:08:04.296 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: statement: select oid, typbasetype from pg_type where typname = 'lo'

 2019-01-20 09:08:04.297 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: statement: set client_encoding to 'UTF8'

 2019-01-20 09:08:04.298 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: statement: BEGIN;SET search_path TO vios

 2019-01-20 09:08:04.300 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: statement: COMMIT

 2019-01-20 09:08:04.301 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: statement: BEGIN;SELECT viosuuid,msid FROM vioshs.vios WHERE vioshs.vios.nodeid_1='-3230213171645967895' AND vioshs.vios.nodeid_2='-9197194794887020938'

 2019-01-20 09:08:04.303 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: statement: select n.nspname, c.relname, a.attname, a.atttypid, t.typname, a.attnum, a.attlen, a.atttypmod, a.attnotnull, c.relhasrules, c.relkind, c.oid, pg_get_expr(d.adbin, d.adrelid), case t.typtype when 'd' then t.typbasetype else 0 end, t.typtypmod, c.relhasoids, attidentity from (((pg_catalog.pg_class c inner join pg_catalog.pg_namespace n on n.oid = c.relnamespace and c.oid = 16916) inner join pg_catalog.pg_attribute a on (not a.attisdropped) and a.attnum > 0 and a.attrelid = c.oid) inner join pg_catalog.pg_type t on t.oid = a.atttypid) left outer join pg_attrdef d on a.atthasdef and d.adrelid = a.attrelid and d.adnum = a.attnum order by n.nspname, c.relname, attnum

 2019-01-20 09:08:04.312 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: statement: SAVEPOINT _EXEC_SVP_110868230;INSERT INTO vioshs.trans(vmuuid, viosuuid, msid, tag, opcode, state, data, integer, txstarted) VALUES('none','315ce56b-9ba0-46a1-b4bc-da6108574e7e', -3157136219997566938, 144264181326017407, 9, 1, 'BEGIN_EVENT_INFO

 TIME_tvsec=1547996884

 TIME_tvnsec=200198833

 SEQUENCE_NUM=4

 RC_FROM_EVPROD=0

 BEGIN_EVPROD_INFO

 EVENT_TYPE=NODE_DOWN

 REASON=NODE_SHUTDOWN

 NODE_NUMBER=4

 NODE_ID=0xD32BFA3C1B4111E9805D001018AFFE76

 CLUSTER_ID=0x43B050741B4111E9803E001018AFFE76

 END_EVPROD_INFO

 END_EVENT_INFO

 ', 64, NOW())

 2019-01-20 09:08:04.312 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: statement: COMMIT

 2019-01-20 09:08:04.313 CST|5c448ed4.13c0198|10.40.25.243(49886)LOG: disconnection: session time: 0:00:00.023 user=viosadmin database=vios host=10.40.25.243 port=49886

 2019-01-20 09:08:18.743 CST|5c448ee2.19b0118|10.40.25.242(34310)LOG: connection received: host=10.40.25.242 port=34310

 pg_sspdb-20-08-27.log (99%)

 #

 [image:]

 We see in Example 2-98 on page 134 that three subsequent database sessions opened from local IP 10.40.25.243 on ports 49884, 49886, and 49886. The session starting entry (containing the connection received string) for each of them is marked as bolded for easier orientation in this long excerpt. The %c escape in the log_line_prefix parameter prints a quasi-unique session identifier that consists of two 4-byte hexadecimal numbers (without leading zeros) that are separated by a dot. The numbers are the process start time and the process ID (PID), so %c can also be used for easier orientation.

 Comparing the time stamps of the actions that are performed on the database in the first session (5c448ed4.18d01ce on port 49884) with the time stamps and actions that are written by the vio_demon thread 0x2134 in viod.log from Example 2-96 on page 133, we see both log the same query, SELECT COUNT(schema_name) FROM information_schema.schemata WHERE schema_name='vioshs', performed at the same moment, 09:08:04.222.

 We now examine the actions of the second database session, 5c448ed4.18d01d0, initiated from the same DBN node, IP address 10.40.25.243 and port 49885. The same vio_daemon thread logs an _allocHandleDB entry at 09:08:04.226 in the health library (Example 2-97 on page 134) and then we see how this second database session starts at 09:08:04.237 and performs an update in the vioshs.vios table for the row that is identified by the WHERE nodeid_1=-3230213171645967895 AND nodeid_2=-9197194794887020938 clause.

 The nodeid_1 and nodeid_2 values in the WHERE clause are derived from the 128-bit CAA cluster node UUID that is delivered within the CAA event message itself. Here it shows up first in Example 2-95 on page 131 inside the syslog.caa excerpt, as NODE_ID=0xD32BFA3C1B4111E9805D001018AFFE76. The most 64 significant bits and the least 64 significant bits of the NODE_ID convert to the nodeid_1 and nodeid_2 field values of type bigint in the vios table (Example 2-99).

 Example 2-99 Database nodeid_1, nodeid_2, SSP cluster node_id, and CAA cluster node UUID

 [image:]

 vios=# select viosuuid, nodeid_1, nodeid_2 from vios;

 viosuuid | nodeid_1 | nodeid_2

 --------------------------------------+----------------------+----------------------

 166c89ef-57d8-4e75-815c-aa5b885560b1 | 4869651976704561641 | -9205920519165051274

 4e0f6f60-214b-4d2c-a436-0eac46f7f71f | 9220310481544221161 | -9201135444560970122

 5ac3e0dc-13fc-4221-9617-8ef61c4cdd83 | -6297861994804342295 | -9199165119723995530

 315ce56b-9ba0-46a1-b4bc-da6108574e7e | -3230213171645967895 | -9197194794887020938

 (4 rows)

 vios=# select to_hex(-3230213171645967895);

 to_hex

 d32bfa3c1b4111e9

 (1 row)

 vios=# select to_hex(-9197194794887020938);

 to_hex

 805d001018affe76

 (1 row)

 vios=#

 [image:]

 The reason=64 value in the UPDATE command appears to be taken from the CAA event message, which is Reason 0x40. state=2, and all the other values appear to be hardcoded for this type of event.

 Similarly, the third session (5c448ed4.13c0198) starts at 09:08:04.290, just after the vio_daemon thread logs the _allocHandleDB entry at 09:08:04.280 in the health library (Example 2-97 on page 134). The code inside this third session extracts the viosuuid and msid values from the vios table row that is identified by the same WHERE clause as in the previous session. Then, the code inserts a row with appropriate field values in the trans table. The vmmuuid is not relevant here (it is a constant string ‘none’ value), the viosuuid and msid values are the ones that were extracted previously from the vios table, and tag appears to be generated by code. Both opcode and state appear to be hardcoded, data and integer are taken from the event message itself, and txtstarted is computed by the NOW() function.

 Example 2-100 shows the resulting vios and trans tables in the database.

 Example 2-100 Updated vios and trans tables

 [image:]

 vios=# select viosuuid, state, reason from vios;

 viosuuid | state | reason

 --------------------------------------+-------+--------

 166c89ef-57d8-4e75-815c-aa5b885560b1 | 1 | 0

 4e0f6f60-214b-4d2c-a436-0eac46f7f71f | 1 | 0

 5ac3e0dc-13fc-4221-9617-8ef61c4cdd83 | 1 | 0

 315ce56b-9ba0-46a1-b4bc-da6108574e7e | 2 | 64

 (4 rows)

 vios=# select viosuuid, tag, opcode, state from trans;

 viosuuid | tag | opcode | state

 --------------------------------------+--------------------+--------+-------

 315ce56b-9ba0-46a1-b4bc-da6108574e7e | 144264181326017407 | 9 | 1

 (1 row)

 vios=# select data, integer, txstarted from trans;

 data | integer | txstarted

 ---+---------+------------------------

 BEGIN_EVENT_INFO +| 64 | 2019-01-20 09:08:04.301

 TIME_tvsec=1547996884 +| |

 TIME_tvnsec=200198833 +| |

 SEQUENCE_NUM=4 +| |

 RC_FROM_EVPROD=0 +| |

 BEGIN_EVPROD_INFO +| |

 EVENT_TYPE=NODE_DOWN +| |

 REASON=NODE_SHUTDOWN +| |

 NODE_NUMBER=4 +| |

 NODE_ID=0xD32BFA3C1B4111E9805D001018AFFE76 +| |

 CLUSTER_ID=0x43B050741B4111E9803E001018AFFE76+| |

 +| |

 END_EVPROD_INFO +| |

 END_EVENT_INFO +| |

 | |

 (1 row)

 vios=#

 [image:]

 Subsequent VIO_HS_QUICK_QUERY or VIO_HS_NEEDS_ATTENTION requests make KSYS aware of the event so that it can act. To get an idea of what KSYS might receive as response, we run manually these requests at the VIOS level as the next step of our exercise while KSYS is still down. Example 2-101 shows the returned response for our manual VIO_HS_QUICK_QUERY.

 Example 2-101 Manual VIO_HS_QUICK_QUERY request after the CAA event occurrence

 [image:]

 # cat qq.xml

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Quick Query">

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 </VIO>

 # /usr/ios/sbin/vioservice lib/libviopass/passthru <qq.xml

 <VIO><Response>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="5ac3e0dc-13fc-4221-9617-8ef61c4cdd83" state="UP" hmResponsive="0" hmResponseSec='206498' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="DOWN" hmResponsive="0" hmResponseSec='206498' hasData='1' reason='0x00000040' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="2100DEW">

 <viosStat uuid="166c89ef-57d8-4e75-815c-aa5b885560b1" state="UP" hmResponsive="0" hmResponseSec='206499' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="4e0f6f60-214b-4d2c-a436-0eac46f7f71f" state="UP" hmResponsive="0" hmResponseSec='206498' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 </Response></VIO>

 #

 [image:]

 Let us compare the response in Example 2-101 with a typical VIO_HS_QUICK_QUERY response of a normal steady state where all VIOSs and their HMs are in the OK state. As reference, we use the VIO_HS_QUICK_QUERY response in Example 2-210 on page 235, where we also detail the meaning of each viosStat element attribute of a VIOS. We see the normal expected values of the attributes as being state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000'. Here we have a series of abnormal values, state="DOWN" hmResponsive="0" hmResponseSec='206498' hasData='1' reason='0x00000040', for the VIOS we stopped. Each value is expected. The state, hasData, and reason attributes provide CAA status data. The node state is reported as DOWN and there are extra details in HSDB for this NODE_DOWN CAA event with reason code 0x40. Conversely, when we stopped HM daemons on all four VIOSs, they are reported as unresponsive (hmResponsive="0") with the last heartbeat received from them 206498 seconds before.

 Similarly, Example 2-102 shows a returned response of a manual VIO_HS_NEEDS_ATTENTION request. The same VIOS status data is returned as in the previous VIO_HS_QUICK_QUERY response, so we note that when an issue is present at the VIOS level that it is also reported in the VIO_HS_NEEDS_ATTENTION and VIO_HS_QUICK_QUERY replies. Also, we see no details about any VM probably because the HMs are stopped and the state of the VMs was OK at the moment when they stopped.

 Example 2-102 Manual VIO_HS_NEEDS_ATTENTION request after a CAA event occurrence

 [image:]

 # cat na.xml

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Needs Attention">

 <Request action_str="VIO_HS_NEEDS_ATTENTION" dataType="GLOBAL_DATA"/>

 </VIO>

 # /usr/ios/sbin/vioservice lib/libviopass/passthru <na.xml

 <VIO><Response>

 <needsAtt>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="5ac3e0dc-13fc-4221-9617-8ef61c4cdd83" state="UP" hmResponsive="0" hmResponseSec='207055' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="DOWN" hmResponsive="0" hmResponseSec='207055' hasData='1' reason='0x00000040' syncMsg="0" />

 </viosStatus></viosStatList>

 </needsAtt>

 <needsAtt>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="2100DEW">

 <viosStat uuid="166c89ef-57d8-4e75-815c-aa5b885560b1" state="UP" hmResponsive="0" hmResponseSec='207055' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="4e0f6f60-214b-4d2c-a436-0eac46f7f71f" state="UP" hmResponsive="0" hmResponseSec='207055' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </needsAtt>

 </Response></VIO>

 #

 [image:]

 The vioHADR2.00.xsd file mentions how KSYS retrieves this special CAA event data from HSDB by using the VIO_HS_QUERY_NODE_DATA query. Related data about the node and repository disk CAA events is sent to KSYS with a tag value. Then, KSYS must acknowledge the tag back to the VIOS side, which results in clearing that data from the HSDB. The question is when and how KSYS decides it is the correct moment to use the VIO_HS_QUERY_NODE_DATA request. We look for this course of action in the KSYS and VIOS logs after we restart the KSYS daemon, VIOS node, and all HMs that we stopped at the beginning of this exercise. We also check the database for the expected data clearing.

 Example 2-103 shows the trans table shortly after the VIOS node restart.

 Example 2-103 HSDB trans table shortly after the VIOS restart

 [image:]

 vios=# select data, integer, txstarted from trans order by txstarted;

 data | integer | txstarted

 ---+---------+------------------------

 BEGIN_EVENT_INFO +| 64 | 2019-01-20 09:08:04.301

 TIME_tvsec=1547996884 +| |

 TIME_tvnsec=200198833 +| |

 SEQUENCE_NUM=4 +| |

 RC_FROM_EVPROD=0 +| |

 BEGIN_EVPROD_INFO +| |

 EVENT_TYPE=NODE_DOWN +| |

 REASON=NODE_SHUTDOWN +| |

 NODE_NUMBER=4 +| |

 NODE_ID=0xD32BFA3C1B4111E9805D001018AFFE76 +| |

 CLUSTER_ID=0x43B050741B4111E9803E001018AFFE76+| |

 +| |

 END_EVPROD_INFO +| |

 END_EVENT_INFO +| |

 | |

 BEGIN_EVENT_INFO +| 0 | 2019-01-23 20:24:27.060

 TIME_tvsec=1548296666 +| |

 TIME_tvnsec=963038500 +| |

 SEQUENCE_NUM=9 +| |

 RC_FROM_EVPROD=0 +| |

 BEGIN_EVPROD_INFO +| |

 EVENT_TYPE=ADAPTER_UP +| |

 INTERFACE_NAME=en0 +| |

 NODE_NUMBER=4 +| |

 NODE_ID=0xD32BFA3C1B4111E9805D001018AFFE76 +| |

 CLUSTER_ID=0x43B050741B4111E9803E001018AFFE76+| |

 +| |

 END_EVPROD_INFO +| |

 END_EVENT_INFO +| |

 | |

 BEGIN_EVENT_INFO +| 0 | 2019-01-23 20:24:57.069

 TIME_tvsec=1548296696 +| |

 TIME_tvnsec=962989923 +| |

 SEQUENCE_NUM=5 +| |

 RC_FROM_EVPROD=0 +| |

 BEGIN_EVPROD_INFO +| |

 EVENT_TYPE=NODE_UP +| |

 NODE_NUMBER=4 +| |

 NODE_ID=0xD32BFA3C1B4111E9805D001018AFFE76 +| |

 CLUSTER_ID=0x43B050741B4111E9803E001018AFFE76+| |

 +| |

 END_EVPROD_INFO +| |

 END_EVENT_INFO +| |

 | |

 (3 rows)

 vios=#

 [image:]

 We notice that two extra CAA events were inserted into the trans table, one ADAPTER_UP event type and one NODE_UP event type, for the VIOS node we restarted. The occurrence of these events is expected, but we also expect that the VIO_HS_QUERY_NODE_DATA request will appear followed by VIO_HS_ACKNOWLEDGE, which clears the database. The correct places to look for their direct traces are the krestlong log on the KSYS side and viosvc.log on the VIOS side.

 We find the VIO_HS_QUERY_NODE_DATA request easily in krestlong, as shown in Example 2-104, at about 18 minutes after the registered KSYS start moment. We generated logs from KSYS trace files by running the rpttr command.

 Example 2-104 VIO_HS_QUERY_NODE_DATA request trace in the krestlong log

 [image:]

 # pwd

 /var/ct/rbRMHA/log/mc/IBM.VMR

 # ls 24jan*log*txt

 24jan_fde.log.nodeupcaaevttst.txt 24jan_krestlong.log.nodeupcaaevttst.txt

 24jan_fdelong.log.nodeupcaaevttst.txt 24jan_ksys.log.nodeupcaaevttst.txt

 24jan_krest.log.nodeupcaaevttst.txt 24jan_user.log.nodeupcaaevttst.txt

 # grep "Trace Started - Pid" 24jan_ksys.log.nodeupcaaevttst.txt

 [09] 01/23/19 T(1) ____ 21:46:11.501081 ******************* Trace Started - Pid = 10813744 **********************

 # grep "Trace Started - Pid" 24jan_krest.log.nodeupcaaevttst.txt

 [03] 01/23/19 T(1) ____ 21:46:11.479527 ******************* Trace Started - Pid = 10813744

 # more 24jan_krestlong.log.nodeupcaaevttst.txt

 ...

 [02] 01/23/19 T(397) _VMR 22:04:35.571016 DEBUG libkrest.c[521]: libkrest context initialization successful

 [02] 01/23/19 T(397) _VMR 22:04:35.571021 DEBUG libkrest.c[11502]: Using 2.00 as vio hadr version [Default]

 [02] 01/23/19 T(397) _VMR 22:04:35.571050 DEBUG <?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="VIO_HS_QUERY_NODE_DATA">

 <Request action_str="VIO_HS_QUERY_NODE_DATA"/>

 </VIO>

 ...

 #

 [image:]

 Checking the krest log file around the same moment, 22:04:35.57, we see the sequence of a few requests that are submitted by KSYS before and after the kriSubmitQueryNodeData specific call, which corresponds to the VIO_HS_QUERY_NODE_DATA request (Example 2-105).

 Example 2-105 Submitted requests in krest log around the VIO_HS_QUERY_NODE_DATA moment

 [image:]

 # grep kriSubmit 24jan_krest.log.nodeupcaaevttst.txt|more

 ...

 [04] 01/23/19 T(9192) _VMR 22:03:52.483187 DEBUG libkrest.c[9398]: kriSubmitQuickQuery:hmc->(9.3.207.78),vios->(166C89EF-57D8-4E75-815C-AA5B885560B1)

 [04] 01/23/19 T(9192) _VMR 22:03:52.602859 DEBUG libkrest.c[9514]: kriSubmitQuickQuery returning 0 with jobid->(1547106777613).

 [04] 01/23/19 T(9192) _VMR 22:04:12.705990 DEBUG libkrest.c[9398]: kriSubmitQuickQuery:hmc->(9.3.18.159),vios->(5AC3E0DC-13FC-4221-9617-8EF61C4CDD83)

 [04] 01/23/19 T(9192) _VMR 22:04:12.819585 DEBUG libkrest.c[9514]: kriSubmitQuickQuery returning 0 with jobid->(1547106660320).

 [04] 01/23/19 T(9192) _VMR 22:04:34.055212 DEBUG libkrest.c[6738]: kriSubmitNeedAttn:hmc->(9.3.18.159),vios->(5AC3E0DC-13FC-4221-9617-8EF61C4CDD83)

 [04] 01/23/19 T(9192) _VMR 22:04:34.188767 DEBUG libkrest.c[6854]: kriSubmitNeedAttn returning 0 with jobid->(1547106660325).

 [04] 01/23/19 T(9192) _VMR 22:04:35.374900 DEBUG libkrest.c[9541]: kriSubmitAck:hmc->(9.3.18.159),vios->(5AC3E0DC-13FC-4221-9617-8EF61C4CDD83)

 [04] 01/23/19 T(9192) _VMR 22:04:35.483532 DEBUG libkrest.c[9664]: kriSubmitAck returning 0 with jobid->(1547106660326).

 [04] 01/23/19 T(397) _VMR 22:04:35.571006 DEBUG libkrest.c[11438]: kriSubmitQueryNodeData:hmc->(9.3.18.159),vios->(5AC3E0DC-13FC-4221-9617-8EF61C4CDD83)

 [04] 01/23/19 T(397) _VMR 22:04:35.679673 DEBUG libkrest.c[11553]: kriSubmitQueryNodeData returning 0 with jobid->(1547106660327).

 [04] 01/23/19 T(397) _VMR 22:04:35.775820 DEBUG libkrest.c[9541]: kriSubmitAck:hmc->(9.3.18.159),vios->(5AC3E0DC-13FC-4221-9617-8EF61C4CDD83)

 [04] 01/23/19 T(397) _VMR 22:04:35.884611 DEBUG libkrest.c[9664]: kriSubmitAck returning 0 with jobid->(1547106660328).

 [04] 01/23/19 T(9192) _VMR 22:04:55.572948 DEBUG libkrest.c[9398]: kriSubmitQuickQuery:hmc->(9.3.18.159),vios->(5AC3E0DC-13FC-4221-9617-8EF61C4CDD83)

 [04] 01/23/19 T(9192) _VMR 22:04:55.695509 DEBUG libkrest.c[9514]: kriSubmitQuickQuery returning 0 with jobid->(1547106660331).

 [04] 01/23/19 T(9192) _VMR 22:05:16.922520 DEBUG libkrest.c[9398]: kriSubmitQuickQuery:hmc->(9.3.18.159),vios->(5AC3E0DC-13FC-4221-9617-8EF61C4CDD83)

 ...

 [image:]

 Subsequent to the identified kriSubmitQueryNodeData request, we see the expected acknowledgment kriSubmitAck message. Also, just before the kriSubmitQueryNodeData request, we see kriSubmitNeedAttn followed by a similar kriSubmitAck acknowledgment message.

 Up the stack at the ksys log level, we see in Example 2-106 the same sequence of actions in the time interval around 22:04:35.57: getNeedAttn, getAcknowledge, getCAAevent, and getAcknowledge. The condition for the sequence to happen appears to be the fact that all the HMs get responses back a bit earlier, which is suggested by the VIOS_HM_RESP_DETECTED events logged before the getNeedAttn call as an effect of processing the preceding getQuickQuery.

 Example 2-106 Sequencing of events and actions at the ksys log level

 [image:]

 # more 24jan_ksys.log.nodeupcaaevttst.txt

 ...

 [10] 01/23/19 T(9192) _VMR 22:03:52.694790 DEBUG VMR_HMC.C[6938]: getQuickQuery [166C89EF-57D8-4E75-815C-AA5B885560B1] JobStatus: COMPLETED_OK, ReturnCode: 0

 [10] 01/23/19 T(9192) _VMR 22:04:14.004125 DEBUG VMR_HMC.C[6938]: getQuickQuery [5AC3E0DC-13FC-4221-9617-8EF61C4CDD83] JobStatus: COMPLETED_OK, ReturnCode: 0

 [10] 01/23/19 T(9192) _VMR 22:04:14.019399 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_HM_RESP_DETECTED, event type:4, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 [10] 01/23/19 T(9192) _VMR 22:04:14.032162 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_HM_RESP_DETECTED, event type:4, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 [10] 01/23/19 T(9192) _VMR 22:04:14.044447 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_HM_RESP_DETECTED, event type:4, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 [10] 01/23/19 T(9192) _VMR 22:04:35.364432 DEBUG VMR_HMC.C[6827]: getNeedAttn [5AC3E0DC-13FC-4221-9617-8EF61C4CDD83] JobStatus: COMPLETED_OK, ReturnCode: 0

 [10] 01/23/19 T(9192) _VMR 22:04:35.374873 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 34(VMDR_ACK)

 [10] 01/23/19 T(9192) _VMR 22:04:35.374891 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 [10] 01/23/19 T(9192) _VMR 22:04:35.570806 DEBUG VMR_HMC.C[7050]: getAcknowledge [5AC3E0DC-13FC-4221-9617-8EF61C4CDD83] JobStatus: COMPLETED_OK, ReturnCode: 0

 [10] 01/23/19 T(9192) _VMR 22:04:35.570813 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 34(VMDR_ACK), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 [10] 01/23/19 T(397) _VMR 22:04:35.773250 DEBUG VMR_HMC.C[7157]: getCAAevent [5AC3E0DC-13FC-4221-9617-8EF61C4CDD83] JobStatus: COMPLETED_OK, ReturnCode: 0

 [10] 01/23/19 T(397) _VMR 22:04:35.773492 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_NODE_FAILURE, event type:1, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 [10] 01/23/19 T(397) _VMR 22:04:35.774708 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:NETWORK_INTERFACE_ACTIVE, event type:3, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 [10] 01/23/19 T(397) _VMR 22:04:35.775241 DEBUG VMR_SITE.C[6261]: INFO: eventNotify entering. event:VIOS_NODE_ACTIVE, event type:3, comp:VIOS, notificationLevel:low, dupEventProcess:yes

 [10] 01/23/19 T(397) _VMR 22:04:35.775796 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 34(VMDR_ACK)

 [10] 01/23/19 T(397) _VMR 22:04:35.775813 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 [10] 01/23/19 T(397) _VMR 22:04:37.062446 DEBUG VMR_HMC.C[7050]: getAcknowledge [5AC3E0DC-13FC-4221-9617-8EF61C4CDD83] JobStatus: COMPLETED_OK, ReturnCode: 0

 [10] 01/23/19 T(397) _VMR 22:04:37.062454 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 34(VMDR_ACK), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 [10] 01/23/19 T(9192) _VMR 22:04:56.872953 DEBUG VMR_HMC.C[6938]: getQuickQuery [5AC3E0DC-13FC-4221-9617-8EF61C4CDD83] JobStatus: COMPLETED_OK, ReturnCode: 0

 [10] 01/23/19 T(9192) _VMR 22:05:18.212575 DEBUG VMR_HMC.C[6938]: getQuickQuery [5AC3E0DC-13FC-4221-9617-8EF61C4CDD83] JobStatus: COMPLETED_OK, ReturnCode: 0

 24jan_ksys.log.nodeupcaaevttst.txt (99%)

 [image:]

 Example 2-106 on page 142 shows how internal events are conveyed toward the event notification subsystem of the KSYS itself. We see this mechanism acting in two distinct instances:

 •The first instance occurs after the getQuickQuery processing when the VIOS_HM_RESP_DETECTED events, corresponding to start of the HM daemons we performed manually, are passed by the eventNotify call to the KSYS event notification subsystem.

 •In the second instance, three other events, VIOS_NODE_FAILURE, NETWORK_INTERFACE_ACTIVE, and VIOS_NODE_ACTIVE, corresponding to the CAA events that are generated by our manual VIOS node shutdown and restart, are passed to the KSYS event notification subsystem by an eventNotify call, this time after a getCAAevent call.

 Coming back to the VIOS level, we first correlate the HM daemon start moment with the immediate preceding and subsequent VIO_HS_QUICK_QUERY requests entries in the vioservice logs on the involved VIOS (Example 2-107).

 Example 2-107 HM restart moment versus the preceding and subsequent VIO_HS_QUICK_QUERY requests

 [image:]

 # lsattr -El vios0|grep uuid

 vios_uuid 5ac3e0dc-13fc-4221-9617-8ef61c4cdd83 VIOS Unique Identifier False

 # more /home/ios/logs/health/host_monitor.log.24jan.nodeupcaaevttst.txt

 ...

 [2 13894106 64225577 01/20/19-09:12:28.187 main.C:main(int, char **) : 190] HostMonitor has been shutdown.

 [END 13894106 64225577 01/20/19-09:12:28.187 ViologWriter.C:ViologWriter::~ViologWriter() : 64] exited with rc=0

 [START 24379748 72876383 01/23/19-20:58:44.569 ViologWriter.C:ViologWriter::ViologWriter(s...: 50]

 [2 24379748 72876383 01/23/19-20:58:44.569 main.C:main(int, char **) : 165] Log level set to: 3

 host_monitor.log.24jan.nodeupcaaevttst.txt (99%)

 # more /home/ios/logs/viosvc.log.24jan.nodeupcaaevttst.txt

 ...

 [0 22610190 26214731 01/23/19-20:58:31.47 viosvc_res.c 1.26 464] vio_response.result=[<VIO><Response>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="5ac3e0dc-13fc-4221-9617-8ef61c4cdd83" state="UP" hmResponsive="0" hmResponseSec='301561' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="UP" hmResponsive="1" hmResponseSec='0' hasData='1' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="2100DEW">

 <viosStat uuid="166c89ef-57d8-4e75-815c-aa5b885560b1" state="UP" hmResponsive="0" hmResponseSec='301561' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="4e0f6f60-214b-4d2c-a436-0eac46f7f71f" state="UP" hmResponsive="0" hmResponseSec='301561' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 </Response></VIO>

]

 [END 22610190 26214731 01/23/19-20:58:31.47 vioservice.c 1.18 323] exited with rc=0

 [START 22610194 58130901 01/23/19-20:58:52.726 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 22610194 58130901 01/23/19-20:58:52.726 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Quick Query">

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 </VIO>

]

 [0 22610194 58130901 01/23/19-20:58:52.790 viosvc_res.c 1.26 464] vio_response.result=[<VIO><Response>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="UP" hmResponsive="1" hmResponseSec='1' hasData='1' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="5ac3e0dc-13fc-4221-9617-8ef61c4cdd83" state="UP" hmResponsive="1" hmResponseSec='0' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="2100DEW">

 <viosStat uuid="4e0f6f60-214b-4d2c-a436-0eac46f7f71f" state="UP" hmResponsive="1" hmResponseSec='0' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="166c89ef-57d8-4e75-815c-aa5b885560b1" state="UP" hmResponsive="1" hmResponseSec='0' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 </Response></VIO>

]

 [END 22610194 58130901 01/23/19-20:58:52.790 vioservice.c 1.18 323] exited with rc=0

 [START 22610200 60424487 01/23/19-20:59:14.95 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 viosvc.log.24jan.nodeupcaaevttst.txt (99%)

 #

 [image:]

 We notice in Example 2-107 on page 143 that all three HMs except the one on the VIOS node started. Earlier, they were reported in the reply that was returned before the HM restart as unresponsive since the same moment (hmResponsive="0" hmResponseSec='301561'), and as responsive immediately after (hmResponsive="1" hmResponseSec='0'). We stopped and started the HMs simultaneously by running the clcmd stopsrc -s ksys_hsmon (stop) and clcmd startsrc -s ksys_hsmon -a "-l2" (start) commands, so the observed behavior is consistent.

 In the last VIO_HS_QUICK_QUERY of Example 2-107 on page 143, it is the first time since the KSYS restart that the health library does not log any errors after retrieving the VIOS status data from the HSDB, as shown in Example 2-108, for the same instances of the vioservice command, 22610190 26214731 and 22610194 58130901, which were run before and after the HM restart.

 Example 2-108 Health library log around HM restart moment

 [image:]

 # more /home/ios/logs/health/viohs.log.24jan.nodeupcaaevttst.txt

 ...

 [START 22610190 26214731 01/23/19-20:58:30.984 ha_util.c 1.43 230]

 [3 22610190 26214731 01/23/19-20:58:30.984 hs_util.c hs_libvio_traces 1.66 60] HEALTH:26214731 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=43b050741b4111e9803e001018affe76

 [3 22610190 26214731 01/23/19-20:58:30.986 hs_util.c hs_libvio_traces 1.66 60] HEALTH:26214731 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 200176e8

 [3 22610190 26214731 01/23/19-20:58:31.7 hs_util.c hs_libvio_traces 1.66 60] HEALTH:26214731 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 200176e8

 [3 22610190 26214731 01/23/19-20:58:31.39 hs_atten.c hs_get_all_vioses_for_MS 1.107 875] Error: ALERT:hmState=0 missCnt=301561

 [3 22610190 26214731 01/23/19-20:58:31.43 hs_atten.c hs_get_all_vioses_for_MS 1.107 875] Error: ALERT:hmState=0 missCnt=301561

 [3 22610190 26214731 01/23/19-20:58:31.44 hs_atten.c hs_get_all_vioses_for_MS 1.107 875] Error: ALERT:hmState=0 missCnt=301561

 [3 22610190 26214731 01/23/19-20:58:31.46 hs_atten.c vioHsQuickQuery 1.107 4669] End, rc=0

 [END 22610190 26214731 01/23/19-20:58:31.46 ha_util.c 1.43 253] exited with rc=0

 [START 22610194 58130901 01/23/19-20:58:52.727 ha_util.c 1.43 230]

 [3 22610194 58130901 01/23/19-20:58:52.727 hs_util.c hs_libvio_traces 1.66 60] HEALTH:58130901 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=43b050741b4111e9803e001018affe76

 [3 22610194 58130901 01/23/19-20:58:52.729 hs_util.c hs_libvio_traces 1.66 60] HEALTH:58130901 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 200176e8

 [3 22610194 58130901 01/23/19-20:58:52.749 hs_util.c hs_libvio_traces 1.66 60] HEALTH:58130901 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 200176e8

 [3 22610194 58130901 01/23/19-20:58:52.788 hs_atten.c vioHsQuickQuery 1.107 4669] End, rc=0

 [END 22610194 58130901 01/23/19-20:58:52.789 ha_util.c 1.43 253] exited with rc=0

 [START 22610200 60424487 01/23/19-20:59:14.96 ha_util.c 1.43 230]

 viohs.log.24jan.nodeupcaaevttst.txt (99%)

 #

 [image:]

 The next VIO_HS_NEEDS_ATTENTION request is replied to by the health library with a tag attribute value and is followed by an acknowledgment request, VIO_HS_ACKNOWLEDGE, from the KSYS side with the same tag value, hsTag="-6630805255682309212" (Example 2-109). Then, the sequence continues, as shown in the KSYS side logs, by the acknowledged VIO_HS_QUERY_NODE_DATA request, with the hsTag="378617663756949861" (Example 2-110 on page 147).

 Example 2-109 Acknowledged VIO_HS_NEEDS_ATTENTION request

 [image:]

 # more /home/ios/logs/viosvc.log.24jan.nodeupcaaevttst.txt

 ...

 [START 22610200 60424487 01/23/19-20:59:14.95 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 22610200 60424487 01/23/19-20:59:14.95 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Needs Attention">

 <Request action_str="VIO_HS_NEEDS_ATTENTION" dataType="GLOBAL_DATA"/>

 </VIO>

]

 [0 22610200 60424487 01/23/19-20:59:14.173 viosvc_res.c 1.26 464] vio_response.result=[<VIO><Response>

 <needsAtt hsTag="-6630805255682309212">

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="UP" hmResponsive="1" hmResponseSec='0' hasData='1' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </needsAtt>

 <needsAtt hsTag="-6630805255682309212">

 <vmStatList>

 <vmList machine_type="8286" model="42A" serial="21E0B2V">

 </vmList>

 </vmStatList>

 </needsAtt>

 <needsAtt hsTag="-6630805255682309212">

 <vmStatList>

 <vmList machine_type="8286" model="42A" serial="2100DEW">

 <vmStat uuid="57275f1e-3680-4eef-945a-fe7670500310"><VM state="UNKNOWN">

 <discoveryInfo type='UNMANAGED'/>

 </VM></vmStat>

 <vmStat uuid="57275f1e-3680-4eef-945a-fe7670500310"><VM state="UNKNOWN">

 <discoveryInfo type='UNMANAGED'/>

 </VM></vmStat>

 <vmStat uuid="31603d8c-5a2f-437c-ba33-f25321415cc4"><VM state="UNKNOWN">

 <discoveryInfo type='UNMANAGED'/>

 </VM></vmStat>

 <vmStat uuid="31603d8c-5a2f-437c-ba33-f25321415cc4"><VM state="UNKNOWN">

 <discoveryInfo type='UNMANAGED'/>

 </VM></vmStat>

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

]

 [END 22610200 60424487 01/23/19-20:59:14.173 vioservice.c 1.18 323] exited with rc=0

 [START 22610202 60424489 01/23/19-20:59:15.390 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 22610202 60424489 01/23/19-20:59:15.390 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="acknowledgment to VIOS">

 <Request action_str="VIO_HS_ACKNOWLEDGE" hsTag="-6630805255682309212"/>

 </VIO>

]

 [0 22610202 60424489 01/23/19-20:59:15.441 viosvc_res.c 1.26 464] vio_response.result=[]

 [END 22610202 60424489 01/23/19-20:59:15.441 vioservice.c 1.18 323] exited with rc=0

 [START 22610204 60424491 01/23/19-20:59:15.585 vioservice.c 1.18 320]

 viosvc.log.24jan.nodeupcaaevttst.txt (99%)

 [image:]

 The VIO_HS_NEEDS_ATTENTION response in Example 2-109 on page 146 contains VM status elements and the element with the status for the VIOS node that underwent the CAA events (hasData='1'). But, the status of the other three VIOSs is normal, so this response does not contain any more status elements for them, as was the case in the previous VIO_HS_QUICK_QUERY responses (Example 2-107 on page 143) or even in the previous VIO_HS_NEEDS_ATTENTION response (Example 2-102 on page 139).

 We reached the moment when the details about the CAA events are retrieved from the HSDB and sent up the stack toward KSYS by the VIO_HS_QUERY_NODE_DATA request. The request is acknowledged (Example 2-110).

 Example 2-110 Acknowledged VIO_HS_QUERY_NODE_DATA request

 [image:]

 # more /home/ios/logs/viosvc.log.24jan.nodeupcaaevttst.txt

 ...

 [START 22610204 60424491 01/23/19-20:59:15.585 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 22610204 60424491 01/23/19-20:59:15.586 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="VIO_HS_QUERY_NODE_DATA">

 <Request action_str="VIO_HS_QUERY_NODE_DATA"/>

 </VIO>

]

 [0 22610204 60424491 01/23/19-20:59:15.643 viosvc_res.c 1.26 464] vio_response.result=[<VIO><Response>

 <nodeData hsTag="378617663756949861">

 <nodeList machine_type="8286" model="42A" serial="21E0B2V">

 <node uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" event="BEGIN_EVENT_INFO

 TIME_tvsec=1547996884

 TIME_tvnsec=200198833

 SEQUENCE_NUM=4

 RC_FROM_EVPROD=0

 BEGIN_EVPROD_INFO

 EVENT_TYPE=NODE_DOWN

 REASON=NODE_SHUTDOWN

 NODE_NUMBER=4

 NODE_ID=0xD32BFA3C1B4111E9805D001018AFFE76

 CLUSTER_ID=0x43B050741B4111E9803E001018AFFE76

 END_EVPROD_INFO

 END_EVENT_INFO

 "/>

 <node uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" event="BEGIN_EVENT_INFO

 TIME_tvsec=1548296666

 TIME_tvnsec=963038500

 SEQUENCE_NUM=9

 RC_FROM_EVPROD=0

 BEGIN_EVPROD_INFO

 EVENT_TYPE=ADAPTER_UP

 INTERFACE_NAME=en0

 NODE_NUMBER=4

 NODE_ID=0xD32BFA3C1B4111E9805D001018AFFE76

 CLUSTER_ID=0x43B050741B4111E9803E001018AFFE76

 END_EVPROD_INFO

 END_EVENT_INFO

 "/>

 <node uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" event="BEGIN_EVENT_INFO

 TIME_tvsec=1548296696

 TIME_tvnsec=962989923

 SEQUENCE_NUM=5

 RC_FROM_EVPROD=0

 BEGIN_EVPROD_INFO

 EVENT_TYPE=NODE_UP

 NODE_NUMBER=4

 NODE_ID=0xD32BFA3C1B4111E9805D001018AFFE76

 CLUSTER_ID=0x43B050741B4111E9803E001018AFFE76

 END_EVPROD_INFO

 END_EVENT_INFO

 "/>

 </nodeList>

 </nodeData>

 </Response></VIO>

]

 [END 22610204 60424491 01/23/19-20:59:15.643 vioservice.c 1.18 323] exited with rc=0

 [START 22610206 60424493 01/23/19-20:59:15.799 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 22610206 60424493 01/23/19-20:59:15.799 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="acknowledgment to VIOS">

 <Request action_str="VIO_HS_ACKNOWLEDGE" hsTag="378617663756949861"/>

 </VIO>

]

 [0 22610206 60424493 01/23/19-20:59:15.854 viosvc_res.c 1.26 464] vio_response.result=[]

 [END 22610206 60424493 01/23/19-20:59:15.854 vioservice.c 1.18 323] exited with rc=0

 viosvc.log.24jan.nodeupcaaevttst.txt (99%)

 [image:]

 Following the VIO_HS_QUERY_NODE_DATA acknowledgment, the vios and trans tables look “clean” like they did before this exercise. The last exercise output in Example 2-111 is identical to the output in Example 2-93 on page 131.

 Example 2-111 The vios and trans tables after VIO_HS_QUERY_NODE_DATA acknowledgment

 [image:]

 vios=# select viosuuid, state, reason from vios;

 viosuuid | state | reason

 --------------------------------------+-------+--------

 5ac3e0dc-13fc-4221-9617-8ef61c4cdd83 | 1 | 0

 4e0f6f60-214b-4d2c-a436-0eac46f7f71f | 1 | 0

 166c89ef-57d8-4e75-815c-aa5b885560b1 | 1 | 0

 315ce56b-9ba0-46a1-b4bc-da6108574e7e | 1 | 0

 (4 rows)

 vios=# select data, integer, txstarted from trans order by txstarted;

 data | integer | txstarted

 ------+---------+-----------

 (0 rows)

 vios=#

 [image:]

 This whole CAA event monitoring exercise presented the case where the event is happening on a non-DBN node and the HSDB remains operational. Things become even more complicated if the event affects the DBN node and the running SSP database crashes.

 We used throughout this section various CAA, SSP, and PostgreSQL concepts and commands. For extensive coverage of these topics, see the following resources:

 •AIX Event Infrastructure for AIX and AIX clusters-AHAFS

 •Cluster management

 •IBM PowerVM Enhancements What is New in 2013, SG24-8198

 •VIOS Shared Storage Pool 2.2.5 Enhancements

 •VIOS Shared Storage Pool phase 6 - New Features

 •PostgreSQL 10

 Host monitor daemon

 The last component in Figure 2-10 on page 115 we cover is the HM daemon. We mentioned it in multiple places in previous sections, but here we focus on its inner structure and functions:

 •HM activation

 •HM threads

 •HM startup sequence

 HM activation

 HM is configured as an SRC subsystem. Example 2-112 shows an already activated HM instance, its ksys_hsmon SRC subsystem configuration details, and the fileset of the daemon binary file.

 Example 2-112 The ksys_hsmon SRC subsystem

 [image:]

 # lssrc -a|grep ksys

 ksys_hsmon 15401234 active

 ksys_vmmon inoperative

 # lssrc -S -s ksys_hsmon

 #subsysname:synonym:cmdargs:path:uid:auditid:standin:standout:standerr:action:multi:contact:svrkey:svrmtype:priority:signorm:sigforce:display:waittime:grpname:

 ksys_hsmon:::/usr/sbin/ksys_hsmond:0:0:/dev/console:/dev/console:/dev/console:-R:-Q:-S:0:0:20:15:9:-d:10::

 # lslpp -w /usr/sbin/ksys_hsmond

 File Fileset Type

 --

 /usr/sbin/ksys_hsmond ksys.hsmon.rte File

 #

 [image:]

 The -R action attribute value restarts automatically the ksys_hsmon subsystem if it stops abnormally. The ksys_hsmon subsystem activates when the first discovery for the involved host group occurs. Example 2-113 shows some related excerpts from KSYS trace files that were collected shortly after discovery.

 Example 2-113 Host monitor in the host group discovery trace files

 [image:]

 # ksysmgr discover hg rbHG

 # ksysmgr trace log=ksys > ksys.log.HGdiscov; ksysmgr trace log=krest > krest.log.HGdiscov; ksysmgr trace log=krestlong > krestlong.log.HGdiscov

 # ls

 krest.log.HGdiscov krestlong.log.HGdiscov ksys.log.HGdiscov

 # grep hsmon *

 krestlong.log.HGdiscov: <ParameterValue kb="CUR" kxe="false">0513-059 The ksys_hsmon Subsystem has been started. Subsystem PID is 22086114.

 krestlong.log.HGdiscov:[04] 04/26/19 T(91b5) _VMR 18:32:33.015960 DEBUG libkrest.c[2558]: job_result->result : 0513-059 The ksys_hsmon Subsystem has been started. Subsystem PID is 22086114.

 krestlong.log.HGdiscov: <ParameterValue kb="CUR" kxe="false">0513-059 The ksys_hsmon Subsystem has been started. Subsystem PID is 16122210.

 krestlong.log.HGdiscov:[04] 04/26/19 T(91b5) _VMR 18:32:38.325017 DEBUG libkrest.c[2558]: job_result->result : 0513-059 The ksys_hsmon Subsystem has been started. Subsystem PID is 16122210.

 ksys.log.HGdiscov:[02] 04/26/19 T(91b5) _VMR 18:32:33.016320DEBUG VMR_HMC.C[7355]: jresultP->result: 0513-059 The ksys_hsmon Subsystem has been started. Subsystem PID is 22086114.

 ksys.log.HGdiscov:[02] 04/26/19 T(91b5) _VMR 18:32:38.325368DEBUG VMR_HMC.C[7355]: jresultP->result: 0513-059 The ksys_hsmon Subsystem has been started. Subsystem PID is 16122210.

 # grep -p 18:32:33.015960 krestlong.log.HGdiscov

 [04] 04/26/19 T(91b5) _VMR 18:32:33.015958 DEBUG libkrest.c[2476]: <StdOut>

 [04] 04/26/19 T(91b5) _VMR 18:32:33.015960 DEBUG libkrest.c[2558]: job_result->result : 0513-059 The ksys_hsmon Subsystem has been started. Subsystem PID is 22086114.

 <?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00"

 version="2.00"

 title="VIOS ADD_MS"

 published="2019-04-26T01:17:00Z"

 author="IBM Power Systems VIOS"

 >

 <Response>

 </Response>

 </VIO>

 #

 [image:]

 The host group that is used for this analysis consists of two frames, each of which has two VIOS LPARs. The trace files contain entries about the activation of only two ksys_hsmon subsystems even though there are four VIOSs. In the filtered krestlong trace file, the output of the last grep command (Example 2-113 on page 150) shows the activation as part of a VIOS ADD_MS pass-through API request. By checking the logged PIDs at the VIOS level, we see that the selected VIOSs that are used by KSYS for the ADD_MS requests are usaxvib053ccpx1 and usaxvib063ccpx1 (one is the designated VIOS for each host) (Example 2-114).

 Example 2-114 Activated ksys_hsmon subsystems

 [image:]

 # uname -uL

 IBM,0221282FW 2 usaxvia053ccpx1

 # /usr/ios/cli/ioscli cluster -status -fmt ',' -field node_name node_mtm

 usaxvib063ccpx1,8408-E8E02212424W

 usaxvia063ccpx1,8408-E8E02212424W

 usaxvib053ccpx1,8408-E8E0221282FW

 usaxvia053ccpx1,8408-E8E0221282FW

 # clcmd lssrc -s ksys_hsmon

 NODE usaxvia053ccpx1

 Subsystem Group PID Status

 ksys_hsmon 24445232 active

 NODE usaxvib053ccpx1

 Subsystem Group PID Status

 ksys_hsmon 22086114 active

 NODE usaxvia063ccpx1

 Subsystem Group PID Status

 ksys_hsmon 16974112 active

 NODE usaxvib063ccpx1

 Subsystem Group PID Status

 ksys_hsmon 16122210 active

 #

 [image:]

 Checking for the VIOS_ADD_MS request in the vioservice command log on usaxvib053ccpx1, we identify the involved PID to TID vioservice thread instance, as shown in Example 2-115.

 Example 2-115 VIOS_ADD_MS call in the vioservice log

 [image:]

 # uname -uL

 IBM,0221282FW 3 usaxvib053ccpx1

 # alog -f /home/ios/logs/viosvc.log -o > viosvc.log.postHGdiscovery

 # more viosvc.log.postHGdiscovery

 ...

 [0 30474542 72089921 04/26/19-18:32:27.829 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Add Managed System">

 <Request action_str="VIO_HS_ADD_MS" hsTag="0">

 <addMS>

 <viosList machine_type="8408" model="E8E" serial="21282FW">

 <vios uuid="72dee902-1210-4bd7-a35f-3a6c771c6453" isHM="true" partNum="3" macAddr="16DC6A23650F"/>

 <vios uuid="10875b47-d737-44f9-a745-554f4df4adf8" isHM="true" partNum="2" macAddr="16DC662CB90E"/>

 </viosList>

 </addMS>

 </Request>

 </VIO>

]

 [0 30474542 72089921 04/26/19-18:32:28.193 viosvc_res.c 1.26 464] vio_response.result=[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00"

 version="2.00"

 title="VIOS ADD_MS"

 published="2019-04-26T01:17:00Z"

 author="IBM Power Systems VIOS"

 >

 <Response>

 </Response>

 </VIO>

]

 [END 30474542 72089921 04/26/19-18:32:28.193 vioservice.c 1.17 309] exited with rc=0

 viosvc.log.postHGdiscovery (99%)

 [image:]

 Then, we filter the trace of this thread instance in the health library log, which contains the expected SRC subsystem activation command. Example 2-116 shows this trace with the vioHsAddMs health library API call.

 Example 2-116 The vioHsAddMs health library API call

 [image:]

 # alog -f /home/ios/logs/health/viohs.log -o > viohs.log.postHGdiscovery

 # grep "30474542 72089921" viohs.log.postHGdiscovery

 [START 30474542 72089921 04/26/19-18:32:27.830 ha_util.c 1.43 230]

 [3 30474542 72089921 04/26/19-18:32:27.830 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72089921 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=e4c3993266fd11e9801efa242424f21c

 [3 30474542 72089921 04/26/19-18:32:27.831 hs_ms.c vioHsAddMs 1.83 2254] Begin.

 [3 30474542 72089921 04/26/19-18:32:27.831 hs_ms.c hsParseAddMsInputs 1.83 1758] Found '1' elements for '/VIO/Request/addMS'.

 [3 30474542 72089921 04/26/19-18:32:27.831 hs_ms.c hsParseAddMsInputs 1.83 1772] Found '1' elements for '/VIO/Request/addMS/viosList'.

 [3 30474542 72089921 04/26/19-18:32:27.831 hs_ms.c hsParseSysProperties 1.83 1850] Input managed system machine_type is '8408'

 [3 30474542 72089921 04/26/19-18:32:27.831 hs_ms.c hsParseSysProperties 1.83 1881] Input managed system model is 'E8E'

 [3 30474542 72089921 04/26/19-18:32:27.831 hs_ms.c hsParseSysProperties 1.83 1912] Input managed system serial is '21282FW'

 [3 30474542 72089921 04/26/19-18:32:27.832 hs_ms.c hsParseAddMsInputs 1.83 1782] Found '2' elements for '/VIO/Request/addMS/viosList/vios'.

 [3 30474542 72089921 04/26/19-18:32:27.832 hs_ms.c hsParseViosList 1.83 1650] Found '2' elements for '/VIO/Request/addMS/viosList/vios'.

 [3 30474542 72089921 04/26/19-18:32:27.832 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72089921 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 2001a758

 [3 30474542 72089921 04/26/19-18:32:27.859 hs_ms.c hsCurMsPendop 1.83 1429] MS exists=0, pendop=0, type=8408, model=E8E, serial=21282FW

 [3 30474542 72089921 04/26/19-18:32:27.859 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72089921 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 2001a758

 [3 30474542 72089921 04/26/19-18:32:27.876 hs_ms.c doHsPreConfigurations 1.83 2094] sspMTM='8408-E8E0221282FW', ksysMTM='8408-E8E21282FW'

 [3 30474542 72089921 04/26/19-18:32:27.879 hs_ms.c handleHsSchema 1.83 2022] Health schema exists already.

 [3 30474542 72089921 04/26/19-18:32:28.23 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72089921 -- violibGetHmVer.c hmParseVerFile 1.3 264 Content: 2,0,2,0,5

 [3 30474542 72089921 04/26/19-18:32:28.84 hs_ms.c startHsmon 1.83 318] cmd=/usr/bin/startsrc -s ksys_hsmon -a '-l3', rc=0, errno=0

 [3 30474542 72089921 04/26/19-18:32:28.84 hs_ms.c startHsmon 1.83 374] ksys_hsmon daemon started.

 [3 30474542 72089921 04/26/19-18:32:28.192 hs_ms.c vioHsAddMs 1.83 2451] END.

 [END 30474542 72089921 04/26/19-18:32:28.192 ha_util.c 1.43 253] exited with rc=0

 #

 [image:]

 On the partner VIOS of the same host, usaxvib053ccpx1, we obtain a different health library sequence of records. As shown in Example 2-117, this time the action is performed by a vio_daemon thread.

 Example 2-117 The ksys_hsmon call started by vio_daemon on the partner VIOS

 [image:]

 # uname -uL

 IBM,0221282FW 2 usaxvia053ccpx1

 # alog -f /home/ios/logs/health/viohs.log -o > viohs.log.postHGdiscovery

 # grep ksys_hsmon viohs.log.postHGdiscovery

 [3 8323398 20971909 04/26/19-18:32:28.124 hs_ms.c startHsmon 1.83 318] cmd=/usr/bin/startsrc -s ksys_hsmon -a '-l3', rc=0, errno=0

 [3 8323398 20971909 04/26/19-18:32:28.124 hs_ms.c startHsmon 1.83 374] ksys_hsmon daemon started.

 # grep "8323398 20971909" viohs.log.postHGdiscovery

 [START 8323398 20971909 04/26/19-18:32:27.909 ha_util.c 1.43 230]

 [3 8323398 20971909 04/26/19-18:32:27.910 hs_util.c hs_libvio_traces 1.66 60] HEALTH:20971909 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=e4c3993266fd11e9801efa242424f21c

 [3 8323398 20971909 04/26/19-18:32:27.910 hs_msg.c vioHsMsg 1.46 84] Received ADD_HM message

 [3 8323398 20971909 04/26/19-18:32:27.910 hs_util.c hs_libvio_traces 1.66 60] HEALTH:20971909 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 110538fd0

 [3 8323398 20971909 04/26/19-18:32:28.48 hs_util.c hs_libvio_traces 1.66 60] HEALTH:20971909 -- violibGetHmVer.c hmParseVerFile 1.3 264 Content: 2,0,2,0,5

 [3 8323398 20971909 04/26/19-18:32:28.124 hs_ms.c startHsmon 1.83 318] cmd=/usr/bin/startsrc -s ksys_hsmon -a '-l3', rc=0, errno=0

 [3 8323398 20971909 04/26/19-18:32:28.124 hs_ms.c startHsmon 1.83 374] ksys_hsmon daemon started.

 [END 8323398 20971909 04/26/19-18:32:28.130 ha_util.c 1.43 253] exited with rc=0

 # ps 8323398

 PID TTY STAT TIME COMMAND

 8323398 - A 2:34 /usr/sbin/vio_daemon -d 4

 # procstack 8323398

 ...

 ---------- tid# 20971909 (pthread ID: 4884) ----------

 0x09000000005b4854 _event_sleep(??, ??, ??, ??, ??, ??) + 0x514

 0x09000000005b54f0 _event_wait(??, ??) + 0x350

 0x09000000005c485c _cond_wait_local(??, ??, ??) + 0x4fc

 0x09000000005c4df4 _cond_wait(??, ??, ??) + 0x34

 0x09000000005c5828 pthread_cond_wait(??, ??) + 0x1a8

 0x000000010004d274 viod_ke_prcs_thread(??) + 0x254

 0x090000000059ffe8 _pthread_body(??) + 0xe8

 ...

 #

 [image:]

 Looking at the vio_daemon log around 18:32:27.909 - 18:32:28.130 interval, we see specific messages that are logged by the thread with tid# 20971909 (Example 2-118).

 Example 2-118 ADD_HM message processing at the vSCSI kernel extension layer on the partner VIOS

 [image:]

 # cp /home/ios/logs/viod.log.bkp viod.log.postHGdiscovery.bkp

 # more viod.log.postHGdiscovery.bkp

 ...

 Apr 26 2019, 18:32:26.844 0x2124 viod_misc_handler.c viod_start_cache_timer 1.3 72 TRC -- Setting up the miscellaneous timers 11008abd0

 Apr 26 2019, 18:32:27.909 0xf10 viod_ke.c viod_ke_recv_thread 1.81 1085 TRC -- VIOKE Recvd pkt

 Apr 26 2019, 18:32:27.909 0xf10 viod_ke.c viod_ke_recv_thread 1.81 1111 TRC -- VIOKE Recvd pkt pyld 64

 Apr 26 2019, 18:32:27.909 0xf10 viod_ke.c viod_ke_recv_thread 1.81 1153 TRC -- VIODKE enqueue msg 110089e90

 Apr 26 2019, 18:32:27.909 0x1314 viod_ke.c viod_ke_prcs_thread 1.81 1270 TRC -- VIODKE condition is true

 Apr 26 2019, 18:32:27.909 0x1314 viod_ke.c viod_ke_prcs_thread 1.81 1284 TRC -- VIODKE dequeue msg 0x110089e90

 Apr 26 2019, 18:32:27.909 0x1314 viod_protocol.c viodDoReq 1.28 52 TRC -- viodDoReq: Enter

 Apr 26 2019, 18:32:27.909 0x1314 viod_protocol.c viodDoReq 1.28 53 INF -- opcode: 0x1002d length: 64 Req type =2

 Apr 26 2019, 18:32:27.909 0x1314 viod_protocol.c viodDoReq 1.28 57 INF -- Start: cluster_id: e4c3993266fd11e9801efa242424f21c collater: 48534d540000000

 1 trans_id: 0

 Apr 26 2019, 18:32:27.909 0x1314 viod_protocol.c viodDoReq 1.28 62 TRC -- 65581 Operation in VIOD_KE_HS_MSG event

 Apr 26 2019, 18:32:27.909 0x1314 viod_hs.c viod_dispatch_hs_msg 1.19 106 TRC -- BEGIN

 Apr 26 2019, 18:32:28.131 0x1314 viod_hs.c viod_dispatch_hs_msg 1.19 127 TRC -- END

 Apr 26 2019, 18:32:28.131 0x1314 viod_protocol.c viodDoReq 1.28 161 INF -- End: cluster_id: e4c3993266fd11e9801efa242424f21c collater: 48534d5400000001

 trans_id: 0

 Apr 26 2019, 18:32:28.131 0x1314 viod_ke.c viod_kefree_msg 1.81 224 TRC -- free msg ptr : 110089e90

 Apr 26 2019, 18:32:28.131 0x1314 viod_ke.c viod_ke_prcs_thread 1.81 1295 TRC -- Completed the VIOKE req

 viod.log.postHGdiscovery.bkp (82%)

 [image:]

 The user space pthread ID 4884 in decimal is 0x1314 in hexadecimal. So, we deduce that the partner VIOS receives the ADD_HM message at the health library layer from the designated VIOS on the same frame through the virtual Small Computer System Interface (vSCSI) kernel extension (VKE) cluster communication layer and local viod_daemon. Matching the time stamps, apparently the received message is processed inside the viod_dispatch_hs_msg call of the 0x1314 viod_daemon thread. For more information about the VIOS VKE and its related cluster communication protocol, see Communication protocol for virtual input/output server (VIOS) cluster communication.

 Now that we clarified the way that HM daemon activates on each VIOS, let us examine its thread structure after its activation.

 HM threads

 Example 2-119 shows the threads of the /usr/sbin/ksys_hsmond monitor daemon (PID 24445232). Each one is identified by a kernel TID value and a user space pTID value. We are interested in the pTID value because it shows up in various logs that we check for problem determination and other purposes.

 Example 2-119 Kernel threads of the ksys_hsmond daemon

 [image:]

 # proctree -t -p 24445232

 4063522 /usr/sbin/srcmstr

 TID : 14418391 (pTID : 1)

 24445232 /usr/sbin/ksys_hsmond -l3

 TID : 70189439 (pTID : 1)

 TID : 47186265 (pTID : 2057)

 TID : 67437005 (pTID : 1800)

 TID : 69140847 (pTID : 1543)

 TID : 70123875 (pTID : 1286)

 TID : 15204793 (pTID : 1029)

 TID : 65863959 (pTID : 772)

 TID : 57934171 (pTID : 515)

 TID : 20578667 (pTID : 258)

 #

 [image:]

 Examining the thread stacks might give us hints about the functions that are intended for each separate thread. In the process stack snapshot that is shown in Example 2-120, we removed some calls at the top of each thread stack to make the output a bit shorter and more readable.

 Example 2-120 Host monitor threads and associated stacks

 [image:]

 # procstack 24445232

 24445232: /usr/sbin/ksys_hsmond -l3

 ---------- tid# 70189439 (pthread ID: 1) ----------

 ...

 0x100013c8 main(0x2, 0x2ff22d60) + 0xc88

 0x100001b8 __start() + 0x68

 ---------- tid# 47186265 (pthread ID: 2057) ----------

 ...

 0x1012df3c UnixSocket::threadMain()(0x30029640) + 0x31c

 0x10129a60 Runnable::runThread(void*)(0x30029640) + 0x40

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 67437005 (pthread ID: 1800) ----------

 ...

 0x10111734 Processing::threadMain()(0x30025710) + 0x314

 0x10129a60 Runnable::runThread(void*)(0x30025710) + 0x40

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 69140847 (pthread ID: 1543) ----------

 ...

 0x100eb3d0 ProcessErrHandling::threadMain()(0x30025ab4) + 0x30

 0x10129a60 Runnable::runThread(void*)(0x30025ab4) + 0x40

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 70123875 (pthread ID: 1286) ----------

 ...

 0x100ec798 ProcessingDbHb::threadMain()(0x30025a3c) + 0x338

 0x10129a60 Runnable::runThread(void*)(0x30025a3c) + 0x40

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 15204793 (pthread ID: 1029) ----------

 ...

 0x10074f14 HvncpSender::threadMain()(0x30020d4c) + 0x2a54

 0x10129a60 Runnable::runThread(void*)(0x30020d4c) + 0x40

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 65863959 (pthread ID: 772) ----------

 ...

 0x10080a6c HvncpReceiver::threadMain()(0x30020b84) + 0x312c

 0x10129a60 Runnable::runThread(void*)(0x30020b84) + 0x40

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 57934171 (pthread ID: 515) ----------

 ...

 0x100f37bc VlanCommunication::threadMain()(0x30020b50) + 0x3c

 0x10129a60 Runnable::runThread(void*)(0x30020b50) + 0x40

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 20578667 (pthread ID: 258) ----------

 ...

 0x100b3928 ProcessingMsg::threadMain()(0x30025cec) + 0x1e8

 0x10129a60 Runnable::runThread(void*)(0x30025cec) + 0x40

 0xd0566f64 _pthread_body(??) + 0xe4

 #

 [image:]

 In Example 2-120 on page 156, you can easily identify the expected initial thread of the process (pthread ID 1) running the main() function. Then, you see that a specific class method, <class>::threadMain(), was launched for each of the remaining threads. The class names in the filtered list that is shown in Example 2-121 are suggestive of the purpose of each thread.

 Example 2-121 Main thread calls of ksys_hsmond daemon

 [image:]

 # procstack 24445232|grep -E "main|threadMain"

 0x100013c8 main(0x2, 0x2ff22d60) + 0xc88

 0x1012df3c UnixSocket::threadMain()(0x30029640) + 0x31c

 0x10111734 Processing::threadMain()(0x30025710) + 0x314

 0x100eb3d0 ProcessErrHandling::threadMain()(0x30025ab4) + 0x30

 0x100ec798 ProcessingDbHb::threadMain()(0x30025a3c) + 0x338

 0x10074f14 HvncpSender::threadMain()(0x30020d4c) + 0x2a54

 0x10080a6c HvncpReceiver::threadMain()(0x30020b84) + 0x312c

 0x100f37bc VlanCommunication::threadMain()(0x30020b50) + 0x3c

 0x100b3928 ProcessingMsg::threadMain()(0x30025cec) + 0x1e8

 #

 [image:]

 Table 2-4 describes each thread type that is observed. In the first column, there are some abbreviations for further use.

 Table 2-4 Threads of ksys_hsmond daemon

 	
 Thread type

 	
 Class name

 	
 Description

 	
 Initial process thread

 	
 N/A

 	
 Initial thread of the process, pTID=1, running main() function call.

 	
 UnixSocket

 	
 UnixSocket

 	
 Gets the commands from the VIOS side and does the related processing.

 	
 VM_HB

 	
 Processing

 	
 Processes the VM heartbeat time stamp and does the HSDB update in case there is a miss.

 	
 ErrorHandler

 	
 ProcessErrHandling

 	
 Does recovery from errors.

 	
 HM_HB

 	
 ProcessingDbHb

 	
 Handles heartbeats from HM to HSDB.

 	
 HvncpSender

 	
 HvncpSender

 	
 Sends messages over the HM VMM Network Communication Protocol (HVNCP) layer and over the trunk adapter to VM Agents.

 	
 HvncpReceiver

 	
 HvncpReceiver

 	
 Extracts HVNCP packets from the receiving queue and assembles messages from them (including VM heartbeat messages). Messages are passed to other threads for further processing.

 	
 VlanCommunication

 	
 VlanCommunication

 	
 Receives frames coming on the trunk adapter from VM Agents and queues them to the receiving queue.

 	
 ProcessingMsg

 	
 ProcessingMsg

 	
 Dedicated thread to handle AR messages.

 Figure 2-11 shows the HM threads mentioned so far with the components around the HM with which is interacts. Some communication flows are also suggested by the lines and arrows in the figure.

 [image:]

 Figure 2-11 Host monitor interaction with components

 The main job of the HM is to monitor the health of the VMs and to update their status in the HSDB. The Processing thread of the HM receives heartbeat messages that originated at the VM level, and updates the VM status in the HSDB. The VM heartbeat path is shown by the red arrows with “HB” labels coming from VM, through the HM, to the SSP HSDB. Another heartbeating mechanism is used to provide status updates about the HM itself, as shown by the red arrow from the ProcessingDbHb thread to the SSP HSDB.

 The HM also acts as a gateway between the VM and KSYS in the AR Messaging protocol. The protocol supports the transfer of the application status and configuration updates from VM to the KSYS side. The communication flow for this data transfer is represented by a green line with arrows at its ends in Figure 2-11. The flow is a sequence of subflows that are listed here in the order they occur:

 Door Bell (dbell) 	Short notification message from the VMM to the KSYS that signals that application changes happened.

 Put Message Request & Response (PMSG_REQ, PMSG_RSP)	

 	When DBELL is received at the KSYS side, a request message is sent by KSYS to the VMM asking for details. VMM replies with a response message containing the requested details.

 Get Message (GMSG)	

 	A confirmation is expected by VMM that the Put Message response reached the KSYS. After the confirmation is received, the sent payload information is discarded from the local AR cache on the VM side.

 Clear DB	A subflow of messages between the VMM on one side and HM and HSDB on the other side that ensures that any entry that is related to the pending AR Messaging cycle is cleared out from the HSDB. It closes the whole cycle that is initiated by dbell.

 For more information about the AR Messaging protocol, see 2.3.3, “Application Reporting flow” on page 262.

 On the VMM side, the HM exchanges the messages over the HVNCP layer. HVNCP packets are encapsulated in Ethernet frames that cross the hypervisor switch. The HVNCP packets are handled on the HM side by the communication threads - VlanCommunication, HvncpSender, and HvncpReceiver. For more information about the HVNCP protocol, see 2.2.9, “HVNCP protocol” on page 199.

 On the VIOS side, the HM updates the heartbeat and messaging details that are received from the VMs in the HSDB through the callback APIs that are described in “Health library” on page 115. HM handles its own heartbeat updates in a similar fashion. KSYS retrieves these updates from HSDB through periodic polling that is performed by the HMC and pass-through REST APIs. Communication from KSYS toward a target VM goes through the HMC and pass-through APIs to the VIOS RMC level. The VIOS hands commands from KSYS to the HM by using the UNIX socket of the UnixSocket thread. Based on the type of the received command, the UnixSocket thread cooperates with other HM threads, which perform related processing and forward specific messages to the target VM by using HVNCP.

 HM startup sequence

 Example 2-122 shows the initial 10 records that are logged by the HM daemon instance with PID 24445232 when it is activated on VIOS usaxvia053ccpx1.

 Example 2-122 HM daemon startup sequence: First 10 log entries

 [image:]

 # uname -uL

 IBM,0221282FW 2 usaxvia053ccpx1

 # lssrc -s ksys_hsmon

 Subsystem Group PID Status

 ksys_hsmon 24445232 active

 # alog -f /home/ios/logs/health/host_monitor.log -o > hm.log.postHGdiscovery

 # cat hm.log.postHGdiscovery|sed '/24445232/,$!d' > hm.24445232.log.postHGdiscovery

 # cat hm.24445232.log.postHGdiscovery|wc -l

 145

 # head hm.24445232.log.postHGdiscovery

 [START 24445232 70189439 04/26/19-18:32:28.106 ViologWriter.C:ViologWriter::ViologWriter(s...: 50]

 [2 24445232 70189439 04/26/19-18:32:28.106 main.C:main(int, char **) : 165] Log level set to: 3

 [2 24445232 70189439 04/26/19-18:32:28.106 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 68] INFO: getting a transaction handle...

 [3 24445232 70189439 04/26/19-18:32:28.318 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 74] Host Monitor MAC address=16DC662CB90E

 [3 24445232 70189439 04/26/19-18:32:28.318 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 79] After vioCreateHmTrans, Upper version: 2.0 Lower version: 2.0

 [2 24445232 70189439 04/26/19-18:32:28.318 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 84] Inside DBAccess: After vioCreateHmTrans(): Set Daemon log level to 3

 [3 24445232 70189439 04/26/19-18:32:28.318 HmUtils.C:hmutils::getNetIntf(string) : 29] BEGIN macAddressSearched=16DC662CB90E

 [3 24445232 70189439 04/26/19-18:32:28.318 HmUtils.C:hmutils::getNetIntf(string) : 44] Found 14 Network Device Drivers.

 [3 24445232 70189439 04/26/19-18:32:28.319 HmUtils.C:hmutils::getNetIntf(string) : 64] Found interface 'ent22' that matches mac address '16DC662CB90E'

 [2 24445232 70189439 04/26/19-18:32:28.319 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 106] +HostMonitor information

 #

 [image:]

 The HM daemon log file is host_monitor.log in the /home/ios/logs/health directory. We see that the typical log entry row has in its first three fields, from left to right, the current log level, the PID, and the kernel TID of the thread generating the entry. Then, the time stamp of the entry, the source code file name, and the function being run follow. Then, there might be a “:” separator, the source code line number of the executed instruction, and a detailed message describing the performed action and resulting output.

 Now that we have these syntax details, we can parse the log entries that are shown in Example 2-122 on page 159. The main thread, with TID 70189439, generates most of the log entries. After the main function call, the thread sets the log level to 3 and obtains a transaction handle for HSDB access. The MAC address 16DC662CB90E value of the VEPA trunk adapter is retrieved from the HSDB where it was stored during the previous host group discovery stage. This MAC address value is used to identify the trunk adapter logical device, which is ent22 here.

 Transaction handles are further obtained for the rest of HM daemon threads that are going to access the HSDB, which are Receiver thread calls, Processing thread calls, HM heartbeating, Error Handler, and messaging, as shown in Example 2-123.

 Example 2-123 HM daemon startup sequence: HM identifier generation

 [image:]

 # sed '11,$!d;=' hm.24445232.log.postHGdiscovery |sed 'N;s/\n/:/'|head -20

 11:[2 24445232 70189439 04/26/19-18:32:28.319 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 107] | UUID : 10875b47-d737-44f9-a745-554f4df4adf8

 12:[2 24445232 70189439 04/26/19-18:32:28.319 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 108] | Network Adapter : ent22

 13:[2 24445232 70189439 04/26/19-18:32:28.319 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 109] | MacAddr : 16DC662CB90E

 14:[2 24445232 70189439 04/26/19-18:32:28.319 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 110] +

 15:[2 24445232 70189439 04/26/19-18:32:28.319 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 112] INFO: getting a transaction handle for Receiver thread calls...

 16:[2 24445232 70189439 04/26/19-18:32:28.400 DatabaseAccess.C:DatabaseAccess::DatabaseAccess...: 118] INFO: getting a transaction handle for Processing thread calls...

 17:[2 24445232 70189439 04/26/19-18:32:28.480 ProcessingDbHb.C:ProcessingDbHb::ProcessingDbHb() : 43] INFO: getting a transaction handle for HM hearbeating ...

 18:[3 24445232 70189439 04/26/19-18:32:28.560 ProcessingDbHb.C:ProcessingDbHb::ProcessingDbHb() : 53] After vioCreateHmTrans, Upper version: 2.0 Lower version: 2.0

 19:[2 24445232 70189439 04/26/19-18:32:28.560 ProcessingDbHb.C:ProcessErrHandling::ProcessErr...: 150] INFO: getting a transaction handle for Error Handler ...

 20:[3 24445232 70189439 04/26/19-18:32:28.638 ProcessingDbHb.C:ProcessErrHandling::ProcessErr...: 162] After vioCreateHmTrans, Upper version: 2.0 Lower version: 2.0

 21:[2 24445232 70189439 04/26/19-18:32:28.638 DatabaseAccess.C:DatabaseAccess::DatabaseAccess() : 146] INFO: getting a transaction handle for messaging ...

 22:[2 24445232 70189439 04/26/19-18:32:28.719 Processing.C:ProcessingMsg::ProcessingMsg() : 1293] INFO: In ProcessingMsg class constructor.

 23:[2 24445232 70189439 04/26/19-18:32:28.719 Processing.C:Processing::Processing(string &) : 104] HM version range: 2.0 - 2.0

 24:[3 24445232 70189439 04/26/19-18:32:28.719 DatabaseAccess.C:DatabaseAccess::getNegotiatedR...: 196] Upper version: 2.0 Lower version: 2.0

 25:[2 24445232 70189439 04/26/19-18:32:28.719 VmHealthStatusMgr.C:VmHealthStatusMgr::setSuppo...: 690] Setting VM supported versions. 2.0 - 2.0

 26:[2 24445232 70189439 04/26/19-18:32:28.719 Processing.C:Processing::updateHmRange(bool) : 187] Operating HM version: 2.0

 27:[2 24445232 70189439 04/26/19-18:32:28.719 Processing.C:Processing::updateHmRange(bool) : 227] HostMonitor identifier updated to '1556303548.719328000.38', a 'Hello' message will be broadcasted every 30.00 seconds.

 28:[3 24445232 70189439 04/26/19-18:32:28.719 Processing.C:Processing::Processing(string &) : 109] updateHmRange(true) errorDetected=0

 29:[2 24445232 70189439 04/26/19-18:32:28.719 Processing.C:Processing::Processing(string &) : 133] INFO: In processing class constructor.

 30:[2 24445232 20578667 04/26/19-18:32:28.719 Processing.C:ProcessingMsg::threadMain() : 1368] INFO: Running thread ProcessingMsg.

 #

 [image:]

 Among the various initializations that are performed, note the update of the HM identifier in row 27 and the related message, HostMonitor identifier updated to '1556303548.719328000.38', a 'Hello' message will be broadcast every 30.00 seconds. A unique identifier for each HM daemon instance is generated based on the VIOS system clock. It changes at any subsequent HM restart so that the components around it become aware of the new HM instance incarnation and act.

 The last entry in Example 2-123 on page 160 is logged by the ProcessingMsg thread, TID 20578667, which announces that it created.

 A socket is further configured and bound to the trunk VEPA interface that was identified earlier by the MAC address, as shown in Example 2-124.

 Example 2-124 HM daemon startup sequence: HVNCP socket bind

 [image:]

 # sed '31,$!d;=' hm.24445232.log.postHGdiscovery |sed 'N;s/\n/:/'|head -20

 31:[3 24445232 70189439 04/26/19-18:32:28.719 ethernet.C:configureEthernetSocketAddr(socketHa...: 255] +Socket '3' parameters (SNDD_8022)

 32:[3 24445232 70189439 04/26/19-18:32:28.719 ethernet.C:configureEthernetSocketAddr(socketHa...: 256] | family : 23

 33:[3 24445232 70189439 04/26/19-18:32:28.719 ethernet.C:configureEthernetSocketAddr(socketHa...: 257] | len : 36

 34:[3 24445232 70189439 04/26/19-18:32:28.719 ethernet.C:configureEthernetSocketAddr(socketHa...: 258] | filtertype : 4

 35:[3 24445232 70189439 04/26/19-18:32:28.719 ethernet.C:configureEthernetSocketAddr(socketHa...: 259] | ethertype : 1536

 36:[3 24445232 70189439 04/26/19-18:32:28.719 ethernet.C:configureEthernetSocketAddr(socketHa...: 260] | filterlen : 12

 37:[3 24445232 70189439 04/26/19-18:32:28.720 ethernet.C:configureEthernetSocketAddr(socketHa...: 261] | nddname : ent22

 38:[3 24445232 70189439 04/26/19-18:32:28.720 ethernet.C:configureEthernetSocketAddr(socketHa...: 262] +

 39:[3 24445232 70189439 04/26/19-18:32:28.720 ethernet.C:configureEthernetSocketAddr(socketHa...: 304] Found interface 'ent22' : macAddr '16DC662CB90E'.

 40:[3 24445232 70189439 04/26/19-18:32:28.825 HostMonitor.C:HostMonitor::HostMonitor() : 68] Connected to the network interface 'ent22'.

 41:[3 24445232 70189439 04/26/19-18:32:28.826 HostMonitor.C:HostMonitor::HostMonitor() : 74] Network controller started.

 42:[3 24445232 70189439 04/26/19-18:32:28.826 HostMonitor.C:HostMonitor::HostMonitor() : 80] HostMonitor thread started.

 43:[2 24445232 67437005 04/26/19-18:32:28.856 DatabaseAccess.C:DatabaseAccess::restartVms(vec...: 753] vioHmRestartVMs: VMs to Restart=0, rc=0

 44:[3 24445232 67437005 04/26/19-18:32:28.856 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '1556303548.719328000.38'

 45:[3 24445232 67437005 04/26/19-18:32:28.856 HvncpSender.C:HvncpSender::addCommTableEntry(co...: 300] Sender opened communication table with macAddr 'FFFFFFFFFFFF'.

 46:[3 24445232 67437005 04/26/19-18:32:28.856 HvncpReceiver.C:HvncpReceiver::linkCommTables(c...: 271] Receiver opened communication table with macAddr 'FFFFFFFFFFFF'.

 47:[3 24445232 15204793 04/26/19-18:32:28.856 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: FFFFFFFFFFFF

 48:[3 24445232 15204793 04/26/19-18:32:28.857 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (23 bytes) 1556303548.719328000.38

 49:[3 24445232 67437005 04/26/19-18:32:29.334 Processing.C:Processing::cleanMsgBuffer(const s...: 833] Removing message to VmMon at macAddr 'FFFFFFFFFFFF' from send queue. Reason: Fully sent

 50:[3 24445232 67437005 04/26/19-18:32:58.835 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '1556303548.719328000.38'

 #

 [image:]

 The Processing thread (TID 67437005) that is handling VM heartbeats, and the HvncpSender thread (TID15204793) that is dedicated to sending HVNCP packets over the trunk interface, get ready to communicate with the VM Agents around them. The first Hello broadcast message is sent at this stage, as logged in rows 44-49 of the excerpt in Example 2-124 on page 161. Row 50 and the subsequent entries in the HM log file are mostly recording repeated Hello broadcast messages once every 30 seconds, as shown in Example 2-125.

 Example 2-125 HM daemon startup sequence: Repeated Hello broadcast messages

 [image:]

 # sed '51,$!d;=' hm.24445232.log.postHGdiscovery |sed 'N;s/\n/:/'|head -5

 51:[3 24445232 15204793 04/26/19-18:32:58.835 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: FFFFFFFFFFFF

 52:[3 24445232 15204793 04/26/19-18:32:58.835 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (23 bytes) 1556303548.719328000.38

 53:[3 24445232 70123875 04/26/19-18:32:59.77 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 54:[3 24445232 67437005 04/26/19-18:32:59.335 Processing.C:Processing::cleanMsgBuffer(const s...: 833] Removing message to VmMon at macAddr 'FFFFFFFFFFFF' from send queue. Reason: Fully sent

 55:[3 24445232 67437005 04/26/19-18:33:28.834 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '1556303548.719328000.38'

 # sed '51,$!d;=' hm.24445232.log.postHGdiscovery |sed 'N;s/\n/:/'|tail

 136:[3 24445232 70123875 04/26/19-18:41:18.386 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 137:[3 24445232 67437005 04/26/19-18:41:28.843 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '1556303548.719328000.38'

 138:[3 24445232 15204793 04/26/19-18:41:28.843 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: FFFFFFFFFFFF

 139:[3 24445232 15204793 04/26/19-18:41:28.843 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (23 bytes) 1556303548.719328000.38

 140:[3 24445232 67437005 04/26/19-18:41:29.339 Processing.C:Processing::cleanMsgBuffer(const s...: 833] Removing message to VmMon at macAddr 'FFFFFFFFFFFF' from send queue. Reason: Fully sent

 141:[3 24445232 70123875 04/26/19-18:41:49.600 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 142:[3 24445232 67437005 04/26/19-18:41:58.845 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '1556303548.719328000.38'

 143:[3 24445232 15204793 04/26/19-18:41:58.845 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: FFFFFFFFFFFF

 144:[3 24445232 15204793 04/26/19-18:41:58.845 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (23 bytes) 1556303548.719328000.38

 145:[3 24445232 67437005 04/26/19-18:41:59.345 Processing.C:Processing::cleanMsgBuffer(const s...: 833] Removing message to VmMon at macAddr 'FFFFFFFFFFFF' from send queue. Reason: Fully sent

 #

 [image:]

 For HM daemon startup sequence scenario, we did not install the VM Agent on any of the managed VMs, which explains why the HM does not receive any messages at from the VM side to its repeated broadcast. A complete HM to VMM communication establishment flow, where an active agent reacts on the VM side to a received Hello message, is described in “HM-VMM communication establishment” on page 215.

 Example 2-125 on page 162 also contains traces of the ProcessingDbHb thread (TID 70123875), which informs us about the HM heartbeat that was sent to HSDB. Checking for their occurrence, we see that they show up every 30 seconds, as shown in Example 2-126.

 Example 2-126 Host monitor heartbeat records

 [image:]

 # grep 70123875 hm.24445232.log.postHGdiscovery|head -3

 [3 24445232 70123875 04/26/19-18:32:59.77 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 [3 24445232 70123875 04/26/19-18:33:30.274 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 [3 24445232 70123875 04/26/19-18:34:01.442 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 # grep 70123875 hm.24445232.log.postHGdiscovery|tail -3

 [3 24445232 70123875 04/26/19-18:40:47.174 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 [3 24445232 70123875 04/26/19-18:41:18.386 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 [3 24445232 70123875 04/26/19-18:41:49.600 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 #

 [image:]

 2.2.8 VM Agent architecture

 The VM Agent plays a key role in two of the use cases that are described in 2.1.2, “Capabilities” on page 41. Here is a review of them:

 VM monitoring	The health of the VM is tracked by a heartbeating function that consists of sending a periodic short status update from the VM side to the HM on the VIOS side. HM passes this update to the VIOS HSDB, and KSYS puts it through periodic polling and processes it for a possible VM relocation decision.

 Application monitoring	The application monitoring framework provides basic application monitoring functions for a registered application. The application restarts locally if monitoring fails. After a limited number of failed restart cycles, the application remains in permanent failure state. If the application is registered as critical to the framework, then the recovery action continues.

After the application reaches a permanent failure state, the KSYS controller is notified and takes control. It tries to restart locally the VM running the application, and then lets application monitoring act on its own. If a permanent failure state is reached again, the local VM restart cycle is repeated for a limited number of times. When the VM local restart limit is reached, the KSYS controller considers the relocation of the VM on a neighbor host on the host group according to enabled policies.

 We describe the structure and functions of the VM Agent in two parts:

 •VM Agent activation

 •Application Management Engine

 Section “VM Agent activation” describes basic common aspects like VMM daemon initialization, threads and other local components, and VMM to HM communication establishment. It also details the activation of the VMM subsystem that is responsible for the heartbeat with the HMs.

 Section “Application Management Engine” on page 176 describes the specific aspects of the Application Management Framework subsystem.

 VM Agent activation

 The initial installation of the VM Agent fileset creates the ksys_vmm SRC subsystem so that a VMM daemon starts automatically at any subsequent AIX restart. Example 2-127 shows some details about the VMM configuration as an SRC subsystem. We also mention the location of the related binary, configuration, and log files that were the result of the fileset installation.

 Example 2-127 The ksys_vmm SRC subsystem

 [image:]

 # oslevel -s

 7200-03-02-1845

 # lssrc -a|grep ksys

 # ls /var/ksys

 ls: 0653-341 The file /var/ksys does not exist.

 # installp -acFXYd . ksys.vmmon.rte

 ...

 Installation Summary

 Name Level Part Event Result

 ksys.vmmon.rte 1.3.0.1 USR APPLY SUCCESS

 ksys.vmmon.rte 1.3.0.1 ROOT APPLY SUCCESS

 # lssrc -a|grep ksys

 ksys_vmm 14549402 active

 # lssrc -S -s ksys_vmm

 #subsysname:synonym:cmdargs:path:uid:auditid:standin:standout:standerr:action:multi:contact:svrkey:svrmtype:priority:signorm:sigforce:display:waittime:grpname:

 ksys_vmm:::/usr/sbin/ksys_vmmd:0:0:/dev/console:/dev/console:/dev/console:-R:-Q:-S:0:0:20:15:9:-d:10::

 # lslpp -w /usr/sbin/ksys_vmmd

 File Fileset Type

 --

 /usr/sbin/ksys_vmmd ksys.vmmon.rte File

 # ls /var/ksys

 config log tmp

 # ls /var/ksys/config

 HAMonitoring.xml

 # ls /var/ksys/log

 aix_vmmke.log ksys_vmm.debug ksys_vmm_vmH.debug

 errpt.log ksys_vmm.log ksys_vmm_vmH.log

 interfaceList.txt ksys_vmm_ame.debug ksysvmmgr.critlog

 ksys_vmm.critlog ksys_vmm_ame.log ksysvmmgr.log

 #

 [image:]

 To get insights about the daemon’s thread structure, we examine a simpler case where the AIX VM has monitoring disabled at the KSYS level, as shown in Example 2-128.

 Example 2-128 VM with monitoring disabled at the KSYS level

 [image:]

 # ksysmgr q vm vmraix2|grep -E "^Host|HA_monitor"

 Host: Server-8408-E8E-SN21282FW

 HA_monitor: disable

 [image:]

 Example 2-129 shows that the VMM daemon starts with six threads.

 Example 2-129 Kernel threads of the ksys_vmm daemon: VM monitoring not enabled yet

 [image:]

 # uname -uL

 IBM,0221282FW 4 vmraix2

 # proctree -t -p 14549402

 590204 /usr/sbin/srcmstr

 TID : 8257809 (pTID : 1)

 14549402 /usr/sbin/ksys_vmmd

 TID : 24641969 (pTID : 1)

 TID : 21234107 (pTID : 1286)

 TID : 28967291 (pTID : 1029)

 TID : 26870267 (pTID : 772)

 TID : 22872321 (pTID : 515)

 TID : 15860149 (pTID : 258)

 #

 [image:]

 Each thread has both a kernel TID value and a user space pTID value. We are interested in the pTID value because it is used to identify the thread at the origin of each log record in VMM log files. The thread stacks at this incipient stage, as shown in Example 2-130.

 Example 2-130 VMM thread stacks at startup

 [image:]

 # procstack 14549402

 14549402: /usr/sbin/ksys_vmmd

 ---------- tid# 24641969 (pthread ID: 1) ----------

 ...

 0x10007e9c main(??, ??) + 0xf1c

 0x100001e0 __start() + 0x68

 ---------- tid# 21234107 (pthread ID: 1286) ----------

 ...

 0x100e6110 UnixSocket::threadMain()(??) + 0x50

 0x102d02d0 Runnable::runThread(void*)(??) + 0x30

 0xd0565f64 _pthread_body(??) + 0xe4

 ---------- tid# 28967291 (pthread ID: 1029) ----------

 ...

 0x102cc564 VmMonitor::threadMain()(??) + 0x3c4

 0x102d02d0 Runnable::runThread(void*)(??) + 0x30

 0xd0565f64 _pthread_body(??) + 0xe4

 ---------- tid# 26870267 (pthread ID: 772) ----------

 ...

 0x100bb870 VmNetIntfHandler::threadMain()(??) + 0x2b0

 0x102d02d0 Runnable::runThread(void*)(??) + 0x30

 0xd0565f64 _pthread_body(??) + 0xe4

 ---------- tid# 22872321 (pthread ID: 515) ----------

 ...

 0x10263d04 AppReport::threadMain()(??) + 0x1a4

 0x102d02d0 Runnable::runThread(void*)(??) + 0x30

 0xd0565f64 _pthread_body(??) + 0xe4

 ---------- tid# 15860149 (pthread ID: 258) ----------

 ...

 0x1021b910 AppsMngt::doXML()(??) + 0xd0

 0x10247424 AppsMngt::doMainLoop()(??) + 0x44

 0x100ed1ec AppsMngt::threadMain()(??) + 0x12c

 0x102d02d0 Runnable::runThread(void*)(??) + 0x30

 0xd0565f64 _pthread_body(??) + 0xe4

 #

 [image:]

 The symbolic names of the functions in the thread stacks provide valuable hints about the purpose and function of each thread. We removed the most recent calls in each thread stack to make the output shorter. Let us see how these threads create at the daemon start.

 The excerpts in Example 2-131 on page 167 show us some initial entries that are logged at the daemon start in both the ksys_vmm.log and ksys_vmm.debug files. They are all logged by the main thread (pTID 1). The first entry begins in both places with the distinctive START string as the value of the leftmost field in the row, followed by the daemon PID value and the main thread pTID value, and then followed by the daemon start time stamp.

 Example 2-131 Initial entries in VMM log files

 [image:]

 # cd /var/ksys/log; head -10 ksys_vmm.log

 [START 14549402 1 05/19/19-02:16:43]

 [2 14549402 1 05/19/19-02:16:43 main.C:main(int, char **) : 191] VmMonitor main

 [2 14549402 1 05/19/19-02:16:43 VmUtils.C:vmutils::runSystemCommand(string) : 561] Command: uptime> /var/ksys/log/cmdop_14549402_1 2>&1,

 Command output:

 02:16AM up 26 days, 12:38, 1 user, load average: 0.04, 0.04, 0.03

 , returnCode: 0

 [2 14549402 1 05/19/19-02:16:43 VmUtils.C:vmutils::runSystemCommand(string) : 561] Command: who -b> /var/ksys/log/cmdop_14549402_1 2>&1,

 Command output:

 . system boot Apr 22 13:38

 , returnCode: 0

 # head -16 ksys_vmm.debug

 [START 14549402 1 05/19/19-02:16:43]

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::setLogLevel() : 366]

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::XMLMonitor(string) : 441] /var/ksys/config/HAMonitoring.xml

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::confExist(const string &): 120] Checking /var/ksys/config/HAMonitoring.xml XML file exist

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::confExist(const string &): 142] /var/ksys/config/HAMonitoring.xml XML file exists

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::query(XMLVmmMonitoring...: 536] Querying all attributes of VMM

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::query(vector<std::basi...: 553] Querying VMM

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::query(vector<std::basi...: 556] Querying VMM m_cur!=NULL

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::query(vector<std::basi...: 559] Monitoring

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::query(vector<std::basi...: 579] key=log, sValue=2

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::query(vector<std::basi...: 579] key=period, sValue=1

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::query(vector<std::basi...: 579] key=version, sValue=1.0

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::query(vector<std::basi...: 579] key=comment, sValue=2019-05-19 02:16:43

 [3 14549402 1 05/19/19-02:16:43 XMLMonitor.C:XMLMonitor::query(vector<std::basi...: 579] key=rebootappstarttype, sValue=VMM

 [2 14549402 1 05/19/19-02:16:43 main.C:main(int, char **) : 191] VmMonitor main

 [2 14549402 1 05/19/19-02:16:43 VmUtils.C:vmutils::runSystemCommand(string) : 561] Command: uptime> /var/ksys/log/cmdop_14549402_1 2>&1,

 # cat /var/ksys/config/HAMonitoring.xml

 <?xml version="1.0" encoding="UTF-8"?>

 <Monitoring logfile="1" log="2" period="1" version="1.0" comment="2019-05-14 01:50:26" upperminorver="0" uppermajorver="2" rebootappstarttype="VMM"/>

 #

 [image:]

 All the other entries display in their first three fields the current log level followed by the process PID and the user level pTID of the thread generating the entry. Then, the time stamp of the entry, the source code file name, and the function being run follow. Then, after a “:” separator, the source code line number of the executed instruction follows. Finally, the detailed message describing the performed action and resulted output appears. The ksys_vmm.debug file has more details than ksys_vmm.log.

 The ksys_vmm.debug excerpt in Example 2-131 on page 167 shows that the first action that is performed by the main thread is to check for the parameters in the /var/ksys/config/HAMonitoring.xml configuration file. Then, the uptime and who -b system commands ran, as logged in both the ksys_vmm.log and ksys_vmm.debug files.

 Checking further both log files, you can see an entry about a kernel extension and then how the AppsMngt (pTID 258), AppReport (pTID 515), and VmNetIntfHandler (pTID 772) threads are started in that order. Example 2-132 shows the related entries in ksys_vmm.log, which are bolded rows 11, 13, 14, and 24.

 Example 2-132 Initial entries in the VMM log file (continued)

 [image:]

 # sed '11,$!d;=' ksys_vmm.log|sed 'N;s/\n/:/'|head -20

 11:[2 14549402 1 05/19/19-02:16:43 main.C:main(int, char **) : 240] KE logs will be redirected to /var/ksys/log/aix_vmmke.log

 12:[2 14549402 1 05/19/19-02:16:43 AppsMngt.C:AppsMngt::AppsMngt() : 157] Daemon restart.

 13:[2 14549402 1 05/19/19-02:16:43 AppsMngt.C:AppsMngt::AppsMngt() : 171] Applications Management Engine (AME) thread launched.

 14:[2 14549402 515 05/19/19-02:16:43 AppReport.C:AppReport::threadMain() : 196] Starting thread of Application Reporting.

 15:[2 14549402 1 05/19/19-02:16:43 VmMonitor.C:VmMonitor::setVmUuid() : 1221] VmUUID: 1950678c-18bf-4c87-860c-f9e6ec24b513

 16:[2 14549402 1 05/19/19-02:16:43 VmUtils.C:vmutils::runSystemCommand(string) : 561] Command: mkdev -l vio0> /var/ksys/log/cmdop_14549402_1 2>&1,

 17: Command output:

 18: vio0 Available

 19:, returnCode: 0

 20:[2 14549402 1 05/19/19-02:16:43 VmUtils.C:vmutils::runSystemCommand(string) : 561] Command: lsdev -c adapter | grep '^ent'> /var/ksys/log/cmdop_14549402_1 2>&1,

 21: Command output:

 22: ent0 Available Virtual I/O Ethernet Adapter (l-lan)

 23:, returnCode: 0

 24:[2 14549402 1 05/19/19-02:16:43 VmNetIntfHandler.C:VmNetIntfHandler::startThread(): 75] Starting VmNetIntfHandler thread.

 25:[1 14549402 772 05/19/19-02:16:43 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 133] Unable to find a valid interface to listen for 'Hello' messages.

 26:[2 14549402 1 05/19/19-02:16:43 VmUtils.C:vmutils::runSystemCommand(string) : 561] Command: /usr/sbin/chvg -r y rootvg > /var/ksys/log/cmdop_14549402_1 2>&1,

 27: Command output:

 28: , returnCode: 0

 29:[2 14549402 1 05/19/19-02:16:43 VmMonitor.C:VmMonitor::check_and_set_crit_VG_at...: 1697] We successfully set critvg attr for 'rootvg'

 30:

 #

 [image:]

 The Ethernet adapters are scanned by the newly started thread VmNetIntfHandler (pTID 772), which logs as its initial entry that it cannot find a valid interface to listen for 'Hello' messages from the HM. This entry is expected for our case because the VM is not enabled for monitoring by KSYS, so the virtual Ethernet adapters connecting the VM to the HMs are not created. The next step sets rootvg to Critical by using the chvg system command. In Example 2-133, we see how the vmmke kernel extension is loaded and then the VmMonitor thread (pTID 1029) is started.

 Example 2-133 VMM steady state: Listening for the Hello message

 [image:]

 sed '31,$!d;=' ksys_vmm.log|sed 'N;s/\n/:/'|head -20

 31:[2 14549402 1 05/19/19-02:16:43 VmMonitor.C:VmMonitor::VmMonitor() : 213] Critical VG was set for rootvg

 32:

 33:[2 14549402 1 05/19/19-02:16:43 VmMonitor.C:VmMonitor::VmMonitor() : 226] Kernel Extension vmmke loaded successfully

 34:

 35:[2 14549402 1 05/19/19-02:16:43 VmMonitor.C:VmMonitor::VmMonitor() : 276] VmMonitor thread successfully started.

 36:[2 14549402 1 05/19/19-02:16:43 VmMonitor.C:VmMonitor::VmMonitor() : 286] List of network interfaces created

 37:[2 14549402 1 05/19/19-02:16:43 VmUtils.C:vmutils::runSystemCommand(string) : 561] Command: lscfg -vl ent* > /var/ksys/log/cmdop_14549402_1 2>&1,

 38: Command output:

 39: ent0 U8408.E8E.21282FW-V4-C32-T1 Virtual I/O Ethernet Adapter (l-lan)

 40:

 41: Network Address.............FA858F9A8C20

 42: Displayable Message.........Virtual I/O Ethernet Adapter (l-lan)

 43: Hardware Location Code......U8408.E8E.21282FW-V4-C32-T1

 44:

 45:, returnCode: 0

 46:[1 14549402 772 05/19/19-02:16:48 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 133] Unable to find a valid interface to listen for 'Hello' messages.

 47:[1 14549402 772 05/19/19-02:16:53 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 133] Unable to find a valid interface to listen for 'Hello' messages.

 48:[1 14549402 772 05/19/19-02:16:58 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 133] Unable to find a valid interface to listen for 'Hello' messages.

 49:[1 14549402 772 05/19/19-02:17:03 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 133] Unable to find a valid interface to listen for 'Hello' messages.

 50:[1 14549402 772 05/19/19-02:17:08 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 133] Unable to find a valid interface to listen for 'Hello' messages.

 #

 [image:]

 Finally, we see in Example 2-133 how VMM enters a steady state loop where the VmNetIntfHandler thread is looking repeatedly for interfaces on which to listen for Hello messages, at every 5 seconds.

 Because VMM kernel extension-related records appeared twice already, we take a quick look at its log, as shown in Example 2-134.

 Example 2-134 VMM kernel extension initial log entries

 [image:]

 # head -25 aix_vmmke.log

 May 19 02:16:43 vmraix2 kern:debug unix: Enter vmmke_entry_point:: command = 0x1

 May 19 02:16:43 vmraix2 kern:debug unix: Initializing vmmke_entry_point KernExt

 May 19 02:16:43 vmraix2 kern:debug unix: Creating a kernel process..

 Sun May 19 02:16:43 2019 [LIB_WRAPPER] : Kernel module '/usr/lib/drivers/vmmke' Successfully loaded with id '2686439424'

 May 19 02:16:43 vmraix2 kern:debug unix: Waiting for the main process:15860098 to initialize the modules..

 May 19 02:16:43 vmraix2 kern:debug unix: Entered into main process.

 May 19 02:16:43 vmraix2 kern:debug unix: Initializing communication and monitor control blocks ...

 May 19 02:16:43 vmraix2 kern:debug unix: Initializing Communication Control Block @ '0xF1000000C040E528'

 May 19 02:16:43 vmraix2 kern:debug unix: Successfully created the communication kernel thread. tid=16449985

 May 19 02:16:43 vmraix2 kern:debug unix: Initializing monitor control block @ '0xF1000000C040E548'

 May 19 02:16:43 vmraix2 kern:debug unix: Successfully created the monitor kernel thread. tid=24576269

 May 19 02:16:43 vmraix2 kern:debug unix: Successfully created the kernel thread. pid=15860098 ppid=1

 May 19 02:16:43 vmraix2 kern:debug unix: Signaling main process for successful initialization of modules

 May 19 02:16:43 vmraix2 kern:debug unix: 'shutdown_notify_reg' registered successfully. sn:F1000000C040E648

 May 19 02:16:43 vmraix2 kern:debug unix: Main thread going to sleep till Termination requested...

 May 19 02:16:43 vmraix2 kern:debug unix: In commuication_func....

 May 19 02:16:43 vmraix2 kern:debug unix: In monitor_func....

 May 19 02:16:43 vmraix2 kern:debug unix: woken up by main thread mcbP->mcb_flags=0x3

 May 19 02:16:43 vmraix2 kern:debug unix: Successfully created and initialized main process. pid=15860098

 May 19 02:16:43 vmraix2 kern:debug unix: Initialization completed with rc: 0

 May 19 02:16:43 vmraix2 kern:debug unix: vmmkeHB_syscall invoked by pid:14549402

 May 19 02:21:41 vmraix2 kern:debug unix: vmmkeHB_syscall invoked. Received Heartbeat from pid : 14549402.

 May 19 02:26:41 vmraix2 kern:debug unix: vmmkeHB_syscall invoked. Received Heartbeat from pid : 14549402.

 May 19 02:31:41 vmraix2 kern:debug unix: vmmkeHB_syscall invoked. Received Heartbeat from pid : 14549402.

 May 19 02:36:41 vmraix2 kern:debug unix: vmmkeHB_syscall invoked. Received Heartbeat from pid : 14549402.

 #

 [image:]

 After the initialization steps, the kernel extension enters a steady state in which it monitors the VMM daemon by using a local heartbeat mechanism and is ready to take appropriate actions if the daemon fails unexpectedly.

 Let us now look at the complete thread structure of a fully functional VM Agent case where communication with the underlying HMs is established. In Example 2-135, we see that our agent daemon, with PID 6029594 and running the /usr/sbin/ksys_vmmd, has more threads than in Example 2-129 on page 165.

 Example 2-135 Kernel threads of the ksys_vmm daemon

 [image:]

 # proctree -t -p 6029594

 5702074 /usr/sbin/srcmstr

 TID : 7995671 (pTID : 1)

 6029594 /usr/sbin/ksys_vmmd

 TID : 15925555 (pTID : 1)

 TID : 14025205 (pTID : 1286)

 TID : 22741497 (pTID : 1029)

 TID : 30671139 (pTID : 2828)

 TID : 11862375 (pTID : 2571)

 TID : 21954873 (pTID : 2314)

 TID : 16187685 (pTID : 2057)

 TID : 17236301 (pTID : 1800)

 TID : 17039663 (pTID : 1543)

 TID : 16253349 (pTID : 772)

 TID : 23593327 (pTID : 515)

 TID : 16122169 (pTID : 258)

 #

 [image:]

 In the process stack snapshot that is taken in Example 2-136, we again removed the most recent calls in each thread stack and even the whole stack for some threads to make the output shorter and more readable.

 Example 2-136 VM Agent threads and associated stacks

 [image:]

 # procstack 6029594

 6029594: /usr/sbin/ksys_vmmd

 ---------- tid# 15925555 (pthread ID: 1) ----------

 ...

 0x10007eac main(??, ??) + 0xf2c

 0x100001e0 __start() + 0x68

 ---------- tid# 14025205 (pthread ID: 1286) ----------

 ...

 0x100e74a8 UnixSocket::waitForClient()(??) + 0x28

 0x100e5f40 UnixSocket::threadMain()(??) + 0x160

 0x102d0f90 Runnable::runThread(void*)(??) + 0x30

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 22741497 (pthread ID: 1029) ----------

 ...

 0x102cd2d0 VmMonitor::threadMain()(??) + 0x3d0

 0x102d0f90 Runnable::runThread(void*)(??) + 0x30

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 30671139 (pthread ID: 2828) ----------

 ...

 0x1007180c HvncpSender::threadMain()(??) + 0x90c

 0x102d0f90 Runnable::runThread(void*)(??) + 0x30

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 11862375 (pthread ID: 2571) ----------

 ...

 0x100855ac HvncpReceiver::threadMain()(??) + 0x1fec

 0x102d0f90 Runnable::runThread(void*)(??) + 0x30

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 21954873 (pthread ID: 2314) ----------

 ...

 0x100a99cc readEthernetPacket(void*)(??) + 0x8c

 0x1008efa4 VlanCommunication::threadMain()(??) + 0x44

 0x102d0f90 Runnable::runThread(void*)(??) + 0x30

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 16187685 (pthread ID: 2057) ----------

 ...

 0x100bb56c VmNetIntfHandler::threadMain()(??) + 0x2cc

 0x102d0f90 Runnable::runThread(void*)(??) + 0x30

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 23593327 (pthread ID: 515) ----------

 ...

 0x102643e4 AppReport::threadMain()(??) + 0x1a4

 0x102d0f90 Runnable::runThread(void*)(??) + 0x30

 0xd0566f64 _pthread_body(??) + 0xe4

 ---------- tid# 16122169 (pthread ID: 258) ----------

 ...

 0x102639ac AppsMngt::doSleep(timespec&)(??, ??) + 0x6c

 0x1024751c AppsMngt::doMainLoop()(??) + 0x7c

 0x100ece08 AppsMngt::threadMain()(??) + 0x88

 0x102d0f90 Runnable::runThread(void*)(??) + 0x30

 0xd0566f64 _pthread_body(??) + 0xe4

 #

 [image:]

 You can easily identify in the output of Example 2-136 on page 171 all the expected initial threads of the process (pTID 1) by running the main() function. Then, you see that a specific class method, <class>::threadMain(), was started for each of the remaining threads. The class names in the filtered list are suggestions for each thread, as shown in Example 2-137.

 Example 2-137 Main thread calls of the ksys_vmmd daemon

 [image:]

 # procstack 6029594|grep -E "main|threadMain"

 0x10007eac main(??, ??) + 0xf2c

 0x100e5f40 UnixSocket::threadMain()(??) + 0x160

 0x102cd2d0 VmMonitor::threadMain()(??) + 0x3d0

 0x1007180c HvncpSender::threadMain()(??) + 0x90c

 0x100855ac HvncpReceiver::threadMain()(??) + 0x1fec

 0x1008efa4 VlanCommunication::threadMain()(??) + 0x44

 0x1007180c HvncpSender::threadMain()(??) + 0x90c

 0x100855ac HvncpReceiver::threadMain()(??) + 0x1fec

 0x1008efa4 VlanCommunication::threadMain()(??) + 0x44

 0x100bb56c VmNetIntfHandler::threadMain()(??) + 0x2cc

 0x102643e4 AppReport::threadMain()(??) + 0x1a4

 0x100ece08 AppsMngt::threadMain()(??) + 0x88

 #

 [image:]

 Comparing with the threads in Example 2-130 on page 166 where VM monitoring is not enabled, we notice here two extra triplets of communication threads: HvncpSender, HvncpReceiver, and VlanCommunication. These triplets are created when the communication with the underlying HMs is established, with one triplet per HM counterpart, as described in “HM-VMM communication establishment” on page 215.

 We now organize a bit of the bulk of information that is acquired by examining the daemon logs and thread structure. Table 2-5 describes each listed thread type.

 Table 2-5 Threads of the ksys_vmmd daemon

 	
 Thread type

 	
 Thread class name

 	
 Description

 	
 Initial process thread

 	
 N/A

 	
 Initial thread of the process, pTID=1, running the main() function call.

 	
 VmMonitor

 	
 VmMonitor

 	
 Thread mainly sending heartbeats with HMs and coordinating with the kernel extension.

 	
 UnixSocket

 	
 UnixSocket

 	
 Communicates with the CLI.

 	
 InterfaceHandler

 	
 VmNetIntfHandler

 	
 Searches for interfaces to look for Hello packets.

 	
 VlanCommunication

 	
 VlanCommunication

 	
 Thread reading from an interface.

 	
 HvncpSender

 	
 HvncpSender

 	
 Sends packets to the interface connected to the corresponding HM.

 	
 HvncpReceiver

 	
 HvncpReceiver

 	
 Receives packets from that interface connected to the corresponding HM.

 	
 Application Management Engine (AME)

 	
 AppsMngt

 	
 Manages application star, stop, and monitoring.

 	
 AR

 	
 AppReport

 	
 Informs the KSYS controller about local application details.

 We also identified the kernel extension component and the HAMonitoring.xml configuration file. To better understand the way these VMM daemon threads interact with each other and with related components, we placed them all in the diagram in Figure 2-12.

 [image:]

 Figure 2-12 VM Agent interaction with related components

 Threads responsible for communication with the HMs are grouped to simplify the diagram. Let us first summarize what we know at this moment about the setup of communication with the HMs.

 The VmMonitor and VmNetIntfHandler threads are created among others at agent daemon start. The VmNetIntfHandler thread scans for newly created or already available Virtual Ethernet adapters and selects those with no IP addresses that are configured on their child interfaces. The thread opens a raw socket per each selected interface, binds to it, and listens for the Hello packets that are broadcast by the HMs on the VIOS side. We also see in “HM startup sequence” on page 159 how the HM starts broadcasting these Hello packets. We set up the scene this way to elaborate further on the communication topic.

 Two scenarios are possible for the adapter detection happening during the VmNetIntfHandler scan:

 •KSYS discovery creates the adapters before VM Agent is installed.

 Virtual Ethernet adapters that are created at the LPAR container level are discovered by the first subsequent operating system device scan. During the VM Agent fileset installation, the VMM daemon starts and detects the adapters, which are either already discovered by the operating system or first discovered by its own device scan.

 •VM Agent is installed first, and then KSYS discovery creates the adapters.

 VMM scans repeatedly until the adapters are created. When host group discovery creates the adapters at the LPAR container level, they show up at the OS level and are detected by the first subsequent VM Agent scan.

 In both scenarios, the Hello packets that are broadcast by an HM eventually reach an interface on the VMM side. This situation is described in “HM-VMM communication establishment” on page 215. We summarize it here.

 If a Hello packet from the HM side arrives at an interface on the VMM side, then VlanCommunication, HvncpSender, and HvncpReceiver created threads take over the communication through that interface and a communication session is established with the HM by a handshake protocol. VMM uses this session to send heartbeat messages to KSYS and exchange application management-related messages with the KSYS side.

 The VMM heartbeats are sent once every 10 seconds and coordinated by the VmMonitor thread. The kernel extension stays in sync with the VmMonitor thread and takes over this heartbeating task with the HM in case the VMM daemon hangs or fails. We delimit the VMM subsystems that are responsible for the heartbeats: the VmMonitor thread and the kernel extension. The kernel extension does not cover the application management messaging.

 VMM and HM must use for this communication a protocol stack on top of the physical link Ethernet layer that is similar to the TCP/IP stack. Because the communication volume requirements are not that high and the media is reliable (hypervisor switch), we use a simplified proprietary protocol stack that is called the HVNCP protocol. For more information about this stack, see 2.2.9, “HVNCP protocol” on page 199.

 In the upper left area of Figure 2-12 on page 173, we placed the ksysvmmgr command and the HAMonitoring.xml configuration file. The ksysvmmgr command and VMM daemon communicate directly, when needed, by UNIX sockets. On the VMM side, this communication is the responsibility of the UnixSocket thread. Example 2-138 shows some samples for the ksysvmmgr command that are used for VMM daemon management.

 Example 2-138 Some ksysvmmgr usage samples

 [image:]

 [vmraix1:root:/home/root:] ksysvmmgr status vmm

 Subsystem Group PID Status

 ksys_vmm 6095308 active

 [vmraix1:root:/home/root:] ksysvmmgr stop vmm

 0513-044 The ksys_vmm Subsystem was requested to stop.

 [vmraix1:root:/home/root:] ksysvmmgr status

 Subsystem Group PID Status

 ksys_vmm inoperative

 [vmraix1:root:/home/root:]

 # ksysmgr -v q vm vmraix1|grep HA_monitor_state

 HA_monitor_state: SUSPENDED

 root:vmrksys: /home/root >

 [image:]

 We also notice in Example 2-138 on page 174 that the VMM status change that is performed at the VM level is propagated to KSYS.

 Example 2-139 lists the last records of the VMM daemon (PID 6095308), which stopped its threads before exiting.

 Example 2-139 The VMM log during graceful shutdown

 [image:]

 [vmraix1:root:/var/ksys/log:] more ksys_vmm.debug

 ...

 [3 6095308 2057 08/30/19-10:20:19 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A01581F11

 [3 6095308 2057 08/30/19-10:20:19 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 [3 6095308 2828 08/30/19-10:20:19 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 6095308 2828 08/30/19-10:20:19 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 ...

 [2 6095308 1 08/30/19-10:20:28 main.C:main(int, char **) : 300] VmMonitor daemon has been requested to SHUTDOWN

 [3 6095308 1 08/30/19-10:20:28 VmMonitor.C:VmMonitor::~VmMonitor() : 351] Entering destructor.

 ...

 [3 6095308 1 08/30/19-10:20:28 UnixSocket.C:UnixSocket::disconnectClient() : 93] Unix Socket: Closing connnection to client

 [3 6095308 1 08/30/19-10:20:28 UnixSocket.C:UnixSocket::disconnectSocket() : 86] Unix Socket: Closing connnection.

 ...

 [2 6095308 1 08/30/19-10:20:30 VmMonitor.C:VmMonitor::~VmMonitor() : 402] Kernel Extension vmmke unloaded successfully

 [3 6095308 1 08/30/19-10:20:30 VmMonitor.C:VmMonitor::~VmMonitor() : 430] Send SHUTDOWN notification to HsMon '6A6A01581F11'

 [3 6095308 1 08/30/19-10:20:30 VmMonitor.C:VmMonitor::~VmMonitor() : 430] Send SHUTDOWN notification to HsMon '6A6A0884EE11'

 [3 6095308 1 08/30/19-10:20:30 AppsMngt.C:AppsMngt::stopThread() : 3132]

 [3 6095308 1 08/30/19-10:20:30 AppsMngt.C:AppsMngt::finish() : 3058] AME doing finish.

 [3 6095308 2057 08/30/19-10:20:30 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A01581F11

 [3 6095308 2057 08/30/19-10:20:30 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (11 bytes) SHDN:DAEMON

 [3 6095308 2828 08/30/19-10:20:30 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 6095308 2828 08/30/19-10:20:30 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (11 bytes) SHDN:DAEMON

 [3 6095308 1 08/30/19-10:20:30 AppsMngt.C:AppsMngt::stopThread() : 3148] Stopping thread result is 0.

 [2 6095308 1 08/30/19-10:20:32 NetworkController.C:NetworkController::stop() : 72] Stopping the vLan thread = 1543 !!!

 [ERROR 6095308 1543 08/30/19-10:20:32 HvncpPacket.C:HvncpPacket::checkVersion(con...: 319] Received an invalid packet (incomplete headers). Packet dropped.

 [2 6095308 1 08/30/19-10:20:32 NetworkController.C:NetworkController::stop() : 80] Stopping the receiver thread = 1800 !!!

 [2 6095308 1 08/30/19-10:20:33 NetworkController.C:NetworkController::stop() : 89] Stopping the sender thread= 2057 !!!

 [2 6095308 1 08/30/19-10:20:33 VmMonitor.C:VmMonitor::~VmMonitor() : 484] Interface ent1 : disconnected from VmMonitor.

 ...

 [2 6095308 1 08/30/19-10:20:35 main.C:main(int, char **) : 302] VmMonitor has been shutdown

 ksys_vmm.debug (69%)

 [image:]

 We also notice how the last heartbeats ((3 bytes) HB) that were sent to the HMs before entering the shutdown sequence are followed by the SHDN:DAEMON packets ((11 bytes), which eventually cause the VM status to become SUSPENDED.

 In terms of configuration updates, the ksysvmmgr command applies the changes that are entered by the user to the HAMonitoring.xml configuration file and can send a notification to the VMM daemon only through the UNIX socket interface (seethe -s flag or sync option for ksysvmmgr). The VMM daemon reloads the XML configuration when it receives such a notification.

 For more information about the ksysvmmgr command, see 3.7, “Setting up the VM Agent” on page 309.

 To conclude, we covered in this section the default functions that are obtained by a blind installation of the VM Agent on a managed VM. When the VM is enabled for monitoring at the KSYS level, heartbeat-based VM monitoring is activated after the HM to VMM communication is established. We also introduced the thread structure and some other involved components. The group of communication threads handles the low-level communication housekeeping, which supports higher-level heartbeats and exchange of application-related messages with the neighboring HMs. The ksysvmmgr command that was demonstrated earlier in Example 2-138 on page 174 can also be used for application-level management.

 We are now ready to approach the other core functions of the VM Agent, which are application monitoring and management.

 Application Management Engine

 The remaining VMM daemon threads in Figure 2-12 on page 173 are the AppsMngt and AppReport threads, which are also known as the AME and AR threads if we use the identifiers that are introduced in Table 2-5 on page 172.

 AME normally refers to the thread that is the core component that handles the application management and monitoring.

 The AR thread is the VMM-side entity that is responsible for the exchange of application status and configuration updates with the KSYS side. The information exchange uses the AR Messaging protocol. An AR communication flow consists of a specific sequence of packets, messages, and requests, which is denoted by dbell, PMSG_REQ, PMSG_RSP, GMSG, and Clear_DB on the green line in Figure 2-12 on page 173. The flow is generated or conveyed by AME threads, communication threads, HMs, HSDB, and KSYS. For more information about the AR Messaging protocol, see 2.3.3, “Application Reporting flow” on page 262.

 During the initial VM Agent installation, the VMM daemon starts with some default parameter values and with no application configured, as shown in Example 2-140.

 Example 2-140 VMM and application status just after the agent installation

 [image:]

 [vmraix2:root:/home/root:] ksysvmmgr q

 VmMonitor

 log=2

 period=1

 version=1.0

 comment=2019-05-19 02:16:43

 rebootappstarttype=VMM

 VmUUID=1950678c-18bf-4c87-860c-f9e6ec24b513

 [vmraix2:root:/home/root:] ksysvmmgr q app

 [vmraix2:root:/home/root:] ksysvmmgr status

 Subsystem Group PID Status

 ksys_vmm 6881590 active

 [vmraix2:root:/home/root:] tail -3 /var/ksys/log/ksys_vmm_ame.log

 [START 6881590 1 07/22/19-14:26:17]

 [1 6881590 258 07/22/19-14:26:17 AppsMngt.C:AppsMngt::doXML() : 1322] No application to monitor into configuration (into "/var/ksys/config/HAMonitoring.xml" file). This is not an error. You can add application into configuration using "ksysvmmgr add" command, and synchronize configuration with "ksysvmmgr sync" command.

 [2 6881590 258 07/22/19-14:26:17 AppsMngt.C:AppsMngt::doXML() : 1350] No app at startup : AME thread going to sleep.

 [vmraix2:root:/home/root:] procstack 6881590|sed '/(pthread ID: 258) ----------/,$!d'

 ---------- tid# 9568555 (pthread ID: 258) ----------

 0xd057a534 _event_sleep(??, ??, ??, ??, ??, ??) + 0x4f4

 0xd057b21c _event_wait(??, ??) + 0x35c

 0xd058a8bc _cond_wait_local(??, ??, ??) + 0x19c

 0xd058b1d4 _cond_wait(??, ??, ??) + 0x34

 0xd058bc2c pthread_cond_wait(??, ??) + 0x1ac

 0x1021b910 AppsMngt::doXML()(??) + 0xd0

 0x10247424 AppsMngt::doMainLoop()(??) + 0x44

 0x100ed1ec AppsMngt::threadMain()(??) + 0x12c

 0x102d02d0 Runnable::runThread(void*)(??) + 0x30

 0xd0565f64 _pthread_body(??) + 0xe4

 [vmraix2:root:/home/root:]

 [image:]

 In Example 2-140, the AME thread (pTID 258) goes to sleep in the doXML() call, which is inside the doMainLoop() main call.

 The relevant VMM parameters for our purpose here are log and period, which are the log verbosity level and the interval between two consecutive AME checks. They are documented by the ksysvmmgr man command, as shown in Example 2-141.

 Example 2-141 Raising the VMM log level

 [image:]

 [vmraix1:root:/home/root:] man ksysvmmgr

 ...

 log

 Specifies the log level of the VM monitor

 daemon. This attribute can have the following

 values:

 * 0: Only errors are logged. It is the

 default value.

 * 1: Warnings are also logged.

 * 2: Informational messages are also

 logged.

 * 3: Details of the operation are logged.

 This information is used for debugging.

 period

 Specifies the time duration in seconds between

 two consecutive occurrences of checks that are

 performed by the Application Management Engine

 (AME). By default, the value of this attribute

 is 1 second. The value of this attribute must

 be in the range 0 - 6. For best monitoring

 performance, do not modify the default value.

 ...

 [image:]

 Our purpose here is to come up with a simple application setup and obtain an AME thread log that is detailed enough to capture relevant insights about the AME internal operation. A pattern of records is expected to show up repeatedly in the AME log at each second for the AME checks because of the period parameter default value of 1. So, we opt for in Example 2-142 a close monitor_period value of our test application to limit the length of the log section that we must examine. Also, the log level is raised to 3 at this moment to capture all possible details.

 Example 2-142 Registering the app1 test application

 [image:]

 [vmraix1:root:/tmp/HA:] ksysvmmgr stop vmm

 0513-044 The ksys_vmm Subsystem was requested to stop.

 [vmraix1:root:/tmp/HA:] ksysvmmgr add app app1 start_script=/tmp/HA/app1_start.sh stop_script=/tmp/HA/app1_stop.sh monitor_script=/tmp/HA/app1_mon.sh

 [vmraix1:root:/tmp/HA:] ksysvmmgr mod app app1 monitor_period=5

 KSYSVMMGR-057(ERROR): monitor_period value must be greater than monitor_timeout value(monitor_period > monitor_timeout).

 Check cmdline or existing app monitor_period,monitor_timeout values then retry your "ksysvmmgr modify app" operation with proper values

 [vmraix1:root:/tmp/HA:] ksysvmmgr mod app app1 monitor_timeout=3

 [vmraix1:root:/tmp/HA:] ksysvmmgr mod app app1 monitor_period=5

 [vmraix1:root:/home/root:] ksysvmmgr modify log=3

 [vmraix1:root:/tmp/HA:]

 [image:]

 The ksysvmmgr command syntax and utilization for application management are covered in 3.7.2, “Application Management Engine” on page 312. Here, we register a simple dummy test application with a monitoring script, as show in Example 2-142 on page 178, and play a bit with its attributes.

 Example 2-143 Monitoring script for the app1 test application

 [image:]

 [vmraix1:root:/tmp/HA:] cat app1_mon.sh

 #!/usr/bin/ksh

 dt=`date`; echo "$dt:$$:$0 \c" >>/data/mon.log

 echo "Entering Monitor..." >>/data/mon.log

 sleep 1

 dt=`date`; echo "$dt:$$:$0: \c" >>/data/mon.log

 if [-f /data/FAILAPP1MON]; then

 echo "Leaving Monitor, RC=1" >> /data/mon.log

 exit 1

 fi

 echo "Leaving Monitor, RC=0">>/data/mon.log

 exit 0

 [vmraix1:root:/tmp/HA:]

 [image:]

 We ignore for the moment the start and stopped scripts. This test monitoring script returns after a sleep of 1 second, either a 0 value, if the /data/FAILAPP1MON file exists, or 1 otherwise. In a normal steady state for the application, the script returns 0. If the application is in a normal state and we want to simulate a failure, we can create manually the FAILAPP1MON file by running the >/data/FAILAPP1MON command. To simulate a recovery, we remove the file by running a rm /data/FAILAPP1MON command.

 At one moment in time after it was started, the script can be found in four possible states:

 •Still running before its monitor_timeout timeout interval

 •Already returned OK

 •Already returned with an error

 •Not returned after a timeout

 We can force manually this last timeout state by editing online the script and increasing the sleep interval. For our monitor_timeout=3 case, a value of 7 for the sleep parameter enforces the timeout state.

 Normal steady state application monitoring scenario

 The output that is logged by the monitoring script at startup is shown in Example 2-144.

 Example 2-144 Output that is logged by the monitoring script

 [image:]

 [vmraix1:root:/tmp/HA:] >/data/mon.log

 [vmraix1:root:/tmp/HA:] date;ksysvmmgr start vmm

 Sat Aug 31 16:22:01 CUT 2019

 0513-059 The ksys_vmm Subsystem has been started. Subsystem PID is 5570942.

 [vmraix1:root:/tmp/HA:] tail -f /data/mon.log

 Sat Aug 31 16:22:01 CUT 2019:6291810:/tmp/HA/app1_mon.sh Entering Monitor...

 Sat Aug 31 16:22:02 CUT 2019:6291810:/tmp/HA/app1_mon.sh: Leaving Monitor, RC=0

 Sat Aug 31 16:22:06 CUT 2019:6291812:/tmp/HA/app1_mon.sh Entering Monitor...

 Sat Aug 31 16:22:07 CUT 2019:6291812:/tmp/HA/app1_mon.sh: Leaving Monitor, RC=0

 Sat Aug 31 16:22:11 CUT 2019:6291814:/tmp/HA/app1_mon.sh Entering Monitor...

 Sat Aug 31 16:22:12 CUT 2019:6291814:/tmp/HA/app1_mon.sh: Leaving Monitor, RC=0

 ^C[vmraix1:root:/tmp/HA:]

 [image:]

 We see that the monitoring script starts at 16:22:01 and returns after 1 second. Then, 5 seconds later it is called again and returns again in 1 second, and so on. So, the AME log records in the first 5 or 6 seconds after start reveal enough information for the AME internal operation in this normal steady state scenario.

 Example 2-145 shows how the application configuration is loaded from the .xml file at the thread startup.

 Example 2-145 Loading the configuration from the .xml file

 [image:]

 [vmraix1:root:/home/root:] more /var/ksys/log/ksys_vmm_ame.log

 [3 7995782 258 08/31/19-08:26:26 AppsMngt.C:AppsMngt::threadMain() : 1182] Going out of AME thread.

 [START 5570942 1 08/31/19-16:22:01]

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::threadMain() : 1167] Starting thread of AME.

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doXML() : 1240] m_bInitPhase "1", m_bNotificationReceived "0"

 [3 5570942 258 08/31/19-16:22:01 XMLMonitor.C:XMLMonitor::confExist(const string &): 120] Checking /var/ksys/config/HAMonitoring.xml XML file exist

 [3 5570942 258 08/31/19-16:22:01 XMLMonitor.C:XMLMonitor::confExist(const string &): 142] /var/ksys/config/HAMonitoring.xml XML file exists

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doXML() : 1288] Loading XML configuration.

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::loadFromXML() : 672]

 [3 5570942 258 08/31/19-16:22:01 XMLMonitor.C:XMLMonitor::XMLMonitor(string) : 441] /var/ksys/config/HAMonitoring.xml

 [3 5570942 258 08/31/19-16:22:01 XMLMonitor.C:XMLMonitor::confExist(const string &): 120] Checking /var/ksys/config/HAMonitoring.xml XML file exist

 [3 5570942 258 08/31/19-16:22:01 XMLMonitor.C:XMLMonitor::confExist(const string &): 142] /var/ksys/config/HAMonitoring.xml XML file exists

 [3 5570942 258 08/31/19-16:22:01 XMLMonitor.C:XMLMonitor::query(map<std::basic_s...: 609] Querying all applications

 ...

 [2 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::loadFromXML() : 761] For app "1567267349133928000": adding from XML configuration.

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::loadFromXML() : 793] Application : '1567267349133928000' has added

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::loadFromXML() : 856] Populating map of applications.

 ...

 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doXML() : 1328] Valid configuration (into "/var/ksys/config/HAMonitoring.xml" file): normally starting or continuing AME.

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doLaunch(int &) : 1405] AME counter is 0 (at 3624862.469372535). List of 1 app uuid managed is "1567267349133928000".

 ...

 [image:]

 You can see that all records are logged in the same second and that we skipped most of the parsing and processing that the loaded XML configuration file logged further in the doXML() method until the first occurrence of the doLaunch() method. Note the Populating map of applications entry logged about our application with the 1567267349133928000 unique identifier.

 Examining the AME log further and looking for a 1-second basis repeating pattern of subsequent method calls, we can delimit, by the time stamp field, blocks of entries that are logged in the same second. Example 2-146 presents the first five of these blocks, with one block for each of the first five consecutive seconds, from the start moment. The blocks of records are marked in alternative bolding and normal typeset for easier identification. We filtered the line code details on the right side for easier reading.

 Example 2-146 Repeating pattern at each second

 [image:]

 [vmraix1:root:/var/ksys/log:] cat ksys_vmm_ame.log|cut -c 1-85|more

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doXML() :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doLaunch(int &) :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doLaunch(int &) :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::dependencyCheck(AppEntry &) :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doLaunch(int &) :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doLaunch(int &) :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doLaunch(int &) :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:01 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:02 AppsMngt.C:AppsMngt::doSendNotification2Ar() :

 [2 5570942 258 08/31/19-16:22:02 AppReport.C:AppReport::notify(string, HvncpMess...:

 [3 5570942 258 08/31/19-16:22:02 AppsMngt.C:AppsMngt::doSendNotification2Ar() :

 [3 5570942 258 08/31/19-16:22:02 AppsMngt.C:AppsMngt::doLaunch(int &) :

 [3 5570942 258 08/31/19-16:22:02 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:02 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:02 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:02 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:02 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doLaunch(int &) :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [2 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:03 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:04 AppsMngt.C:AppsMngt::doSendNotification2Ar() :

 [2 5570942 258 08/31/19-16:22:04 AppReport.C:AppReport::notify(string, HvncpMess...:

 [3 5570942 258 08/31/19-16:22:04 AppsMngt.C:AppsMngt::doSendNotification2Ar() :

 [3 5570942 258 08/31/19-16:22:04 AppsMngt.C:AppsMngt::doLaunch(int &) :

 [3 5570942 258 08/31/19-16:22:04 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:04 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:04 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:04 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:05 AppsMngt.C:AppsMngt::doLaunch(int &) :

 [3 5570942 258 08/31/19-16:22:05 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 [3 5570942 258 08/31/19-16:22:05 AppsMngt.C:AppsMngt::doNonBlockingWait() :

 Standard input

 [image:]

 In the function calls in Example 2-146 on page 181, the doLaunch() and doNonBlockingWait() methods are the dominant occurrences in each block. The doLaunch() call shows up first, and then follows the doNonBlockingWait() call. This sequence pattern of log records is noticed repeatedly in the steady state normal operation of the test application app1.

 With app1 application monitoring that is activated in this way, we examined repeatedly the AME thread stack that is shown in Example 2-147. In all our captures, the thread showed up in the doSleep() call under the doMainLoop() call, which suggests that the AME thread stays most of the time in this sleep mode, and the other method calls showing up as logging records in the AME log show up in the stack for such short periods that we can hardly capture them.

 Example 2-147 Checking repeatedly the AME thread stack

 [image:]

 [vmraix1:root:/home/root:] while true; do procstack 5964236|sed '/(pthread ID: 258) ----------/,$!d'; sleep 2; done

 ---------- tid# 10289421 (pthread ID: 258) ----------

 0xd057a534 _event_sleep(??, ??, ??, ??, ??, ??) + 0x4f4

 0xd057b21c _event_wait(??, ??) + 0x35c

 0xd058abd8 _cond_wait_local(??, ??, ??) + 0x4b8

 0xd058b1d4 _cond_wait(??, ??, ??) + 0x34

 0xd058b860 pthread_cond_timedwait(??, ??, ??) + 0x200

 0x102632cc AppsMngt::doSleep(timespec&)(??, ??) + 0x6c

 0x1024745c AppsMngt::doMainLoop()(??) + 0x7c

 0x100ed1ec AppsMngt::threadMain()(??) + 0x12c

 0x102d02d0 Runnable::runThread(void*)(??) + 0x30

 0xd0565f64 _pthread_body(??) + 0xe4

 ^C[vmraix1:root:/home/root:]

 [image:]

 In Example 2-148 through Example 2-154 on page 185, we extracted excerpts from the AME log by using the called method and the line code details fields only for the first
7 seconds from the start of our normal steady state scenario. AME uses its own counter for these rounds, starting from a 0 value, and is logging this counter value each time as a first action when entering the doLaunch() method. The doLaunch() method also logs a high precision decimal time stamp at this moment. The round counter is initialized to zero at each VMM start.

 Example 2-148 Round 0: One application normal steady state scenario

 [image:]

 [vmraix1:root:/var/ksys/log:] grep "08/31/19-16:22:01" ksys_vmm_ame.log|sed '/doLaunch/,$!d'|while read lglvl pid tid ts method rest; do a=${method##*:}; b=${a%%\(*}; echo "${b}() :${rest#*\]}"; done

 doLaunch() : AME counter is 0 (at 3624862.469372535). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567267349133928000": application script "/tmp/HA/app1_mon.sh" being forked ! pidParent(5570942) forks pidChild(6291810).

 doLaunch() : For app "1567267349133928000": computing time of timeout by adding xmlAppTimeout(3) to appEntry.m_timeScriptTimeoutAt => 3624865.469372535.

 doLaunch() : Synthesis: list of 1 processes forked during this loop is "(uuid=1567267349133928000;monitor;/tmp/HA/app1_mon.sh) ".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3624862.470544447).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 1(UNSET) 99(NOTSET) 1 1 0 0/ 5 0/ 3 0/ 3 0/3

 doNonBlockingWait() : +

 [vmraix1:root:/var/ksys/log:]

 [image:]

 In Example 2-148 on page 182, we see how the doLaunch() call does its core job, which is to check the internal application status in memory (various maps like the application map that is mentioned in Example 2-145 on page 180) and start the appropriate script. It might be one of the monitoring, stop, or start scripts, depending on the retrieved application status from memory structures. The expected timeout moment for the started script is also computed and saved for later use by adding the monitor_timeout value (here 3) to the call entering time, 3624865.469372535=3+3624862.469372535. The doNonBlockingWait() method is called after a return from doLaunch(), here at 3624862.470544447, which means doLaunch() was short (around 0.00117191 seconds). The doNonBlockingWait() checks the started children processes and whether they returned; if so, then the application status is updated. The last records print the status of the applications in the synthetic form of a table with 11 columns and one row per monitored application.

 In the next round, 1 second later, as shown in Example 2-149, doLaunch() and doNonBlockingWait() are called but leave no relevant trace because there is no script to start or a returned script to update afterward. The status remains unchanged.

 Example 2-149 Round 1: One application normal steady state scenario

 [image:]

 [vmraix1:root:/var/ksys/log:] grep "08/31/19-16:22:02" ksys_vmm_ame.log|while read lglvl pid tid ts method rest; do a=${method##*:}; b=${a%%\(*}; echo "${b}() :${rest#*\]}"; done

 doSendNotification2Ar() : AME Notificaton Vector : '001000'

 notify() : Received notification from AME : '001000'

 doSendNotification2Ar() : ShortMessage vector reinitialized to : '00'

 doLaunch() : AME counter is 1 (at 3624863.474574658). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3624863.474605890).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 1(UNSET) 99(NOTSET) 1 1 0 0/ 5 0/ 3 0/ 3 0/3

 doNonBlockingWait() : +

 [vmraix1:root:/var/ksys/log:]

 [image:]

 In the next round, which is shown in Example 2-150, doLaunch() does nothing again but doNonBlockingWait() must update the status because the monitoring script returned OK. It updates the status of the single running application, state to 2(NORMAL) from 1(UNSET), and result to 0(NORMAL) from 99(NOTSET), with their counterpart fields also updated in the table, STATE and RESULT. In the table, the RUN field is 0, which means that no script is running at this moment.

 Example 2-150 Round 2: One application normal steady state scenario

 [image:]

 [vmraix1:root:/var/ksys/log:] grep "08/31/19-16:22:03" ksys_vmm_ame.log|while read lglvl pid tid ts method rest; do a=${method##*:}; b=${a%%\(*}; echo "${b}() :${rest#*\]}"; done

 doLaunch() : AME counter is 2 (at 3624864.476162001). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3624864.476204261).

 doNonBlockingWait() : For app "1567267349133928000": rc is "0", result set to "NORMAL"

 doNonBlockingWait() : For app "1567267349133928000": app state is "1(UNSET)", previous result was "99(NOTSET)", current result is "0(NORMAL)".

 doNonBlockingWait() : For app "1567267349133928000": monitoring is ok, result set to "NORMAL".

 doNonBlockingWait() : Application : '1567267349133928000' status changed

 doNonBlockingWait() : app '1567267349133928000' restartcount '0' appEntry.m_statsCollectionDone : 'false'

 doNonBlockingWait() : appEntry.m_lastStatsCollectedAt : '0' currentTime : '3624864'

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 2(NORMAL) 0(NORMAL) 0 1 0 0/ 5 0/ 3 0/ 3 0/3

 doNonBlockingWait() : +

 [vmraix1:root:/var/ksys/log:]

 [image:]

 In the next two rounds, as shown in Example 2-151 and Example 2-152 on page 185, doLaunch() and doNonBlockingWait() return without performing any relevant actions.

 Example 2-151 Round 3: One application normal steady state scenario

 [image:]

 [vmraix1:root:/var/ksys/log:] grep "08/31/19-16:22:04" ksys_vmm_ame.log|while read lglvl pid tid ts method rest; do a=${method##*:}; b=${a%%\(*}; echo "${b}() :${rest#*\]}"; done

 doSendNotification2Ar() : AME Notificaton Vector : '00100000'

 notify() : Received notification from AME : '00100000'

 doSendNotification2Ar() : ShortMessage vector reinitialized to : '00'

 doLaunch() : AME counter is 3 (at 3624865.467961703). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 2(NORMAL) 0(NORMAL) 0 1 0 0/ 5 0/ 3 0/ 3 0/3

 doNonBlockingWait() : +

 [vmraix1:root:/var/ksys/log:]

 [image:]

 Example 2-152 Round 4: One application normal steady state scenario

 [image:]

 [vmraix1:root:/var/ksys/log:] grep "08/31/19-16:22:05" ksys_vmm_ame.log|while read lglvl pid tid ts method rest; do a=${method##*:}; b=${a%%\(*}; echo "${b}() :${rest#*\]}"; done

 doLaunch() : AME counter is 4 (at 3624866.469566548). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 2(NORMAL) 0(NORMAL) 0 1 0 0/ 5 0/ 3 0/ 3 0/3

 doNonBlockingWait() : +

 [vmraix1:root:/var/ksys/log:]

 [image:]

 In round 5, as shown in Example 2-153, doLaunch() discovers that it is time for the monitoring script to start again and starts it. It also computes and saves the related timeout moment. The doNonBlockingWait() method notices that the script is running, so we see that the RUN field changed to 1. At this moment, we are in the same status as at the end of round 0, so we enter a new similar cycle.

 Example 2-153 Round 5: One application normal steady state scenario

 [image:]

 [vmraix1:root:/var/ksys/log:] grep "08/31/19-16:22:06" ksys_vmm_ame.log|while read lglvl pid tid ts method rest; do a=${method##*:}; b=${a%%\(*}; echo "${b}() :${rest#*\]}"; done

 doLaunch() : AME counter is 5 (at 3624867.470038304). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567267349133928000": application script "/tmp/HA/app1_mon.sh" being forked ! pidParent(5570942) forks pidChild(6291812).

 doLaunch() : For app "1567267349133928000": computing time of timeout by adding xmlAppTimeout(3) to appEntry.m_timeScriptTimeoutAt => 3624870.470038304.

 doLaunch() : Synthesis: list of 1 processes forked during this loop is "(uuid=1567267349133928000;monitor;/tmp/HA/app1_mon.sh) ".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3624867.473210564).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 2(NORMAL) 0(NORMAL) 1 1 0 0/ 5 0/ 3 0/ 3 0/3

 doNonBlockingWait() : +

 [vmraix1:root:/var/ksys/log:]

 [image:]

 The last round, round 6 in Example 2-154, is identical to round 1 in terms of the doLaunch() and doNonBlockingWait() actions and resulting status.

 Example 2-154 Round 6: One application normal steady state scenario

 [image:]

 [vmraix1:root:/var/ksys/log:] grep "08/31/19-16:22:07" ksys_vmm_ame.log|while read lglvl pid tid ts method rest; do a=${method##*:}; b=${a%%\(*}; echo "${b}() :${rest#*\]}"; done

 doLaunch() : AME counter is 6 (at 3624868.476207406). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3624868.476257531).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 2(NORMAL) 0(NORMAL) 1 1 0 0/ 5 0/ 3 0/ 3 0/3

 doNonBlockingWait() : +

 [vmraix1:root:/var/ksys/log:]

 [image:]

 There is one more observation we make here that is related to the records about the AME notifying the AR. They show up logged at the beginning of the next immediate round following a round with configuration or status changes.

 Example 2-155 lists the script files also for a second application, app2, and the content of its monitoring script. You notice the similarity of the monitoring scripts.

 Example 2-155 Monitoring scripts for dummy test applications

 [image:]

 [vmraix1:root:/tmp/HA:] ls app1* app2*

 app1_mon.sh app1_start.sh app1_stop.sh app2_mon.sh app2_start.sh app2_stop.sh

 [vmraix1:root:/tmp/HA:] cat app2_mon.sh

 #!/usr/bin/ksh

 dt=`date`; echo "$dt:$$:$0 \c" >>/data/mon.log

 echo "Entering Monitor..." >>/data/mon.log

 sleep 2

 dt=`date`; echo "$dt:$$:$0: \c" >>/data/mon.log

 if [-f /data/FAILAPP2MON]; then

 echo "Leaving Monitor, RC=1" >> /data/mon.log

 exit 1

 fi

 echo "Leaving Monitor, RC=0">>/data/mon.log

 exit 0

 [vmraix1:root:/tmp/HA:]

 [image:]

 In Example 2-156, we show how app2 is also registered in the AME.

 Example 2-156 Registering the second test application

 [image:]

 [vmraix1:root:/tmp/HA:] ksysvmmgr stop vmm

 0513-044 The ksys_vmm Subsystem was requested to stop.

 [vmraix1:root:/tmp/HA:] ksysvmmgr add app app2 start_script=/tmp/HA/app2_start.sh stop_script=/tmp/HA/app2_stop.sh monitor_script=/tmp/HA/app2_mon.sh

 [vmraix1:root:/tmp/HA:] ksysvmmgr mod app app1 monitor_period=20 monitor_timeout=10

 [vmraix1:root:/tmp/HA:] ksysvmmgr mod app app2 monitor_period=10 monitor_timeout=5

 [vmraix1:root:/tmp/HA:] >/data/mon.log

 [vmraix1:root:/tmp/HA:] date;ksysvmmgr start vmm

 Sat Aug 31 08:25:34 CUT 2019

 0513-059 The ksys_vmm Subsystem has been started. Subsystem PID is 7995782.

 [vmraix1:root:/tmp/HA:]

 [image:]

 The output is logged by both monitoring scripts in the same file, as shown in Example 2-157.

 Example 2-157 Output that is logged by the monitoring scripts

 [image:]

 [vmraix1:root:/home/root:] tail -f /data/mon.log

 Sat Aug 31 08:25:34 CUT 2019:8454448:/tmp/HA/app1_mon.sh Entering Monitor...

 Sat Aug 31 08:25:34 CUT 2019:6095140:/tmp/HA/app2_mon.sh Entering Monitor...

 Sat Aug 31 08:25:35 CUT 2019:8454448:/tmp/HA/app1_mon.sh: Leaving Monitor, RC=0

 Sat Aug 31 08:25:36 CUT 2019:6095140:/tmp/HA/app2_mon.sh: Leaving Monitor, RC=0

 Sat Aug 31 08:25:44 CUT 2019:6095142:/tmp/HA/app2_mon.sh Entering Monitor...

 Sat Aug 31 08:25:46 CUT 2019:6095142:/tmp/HA/app2_mon.sh: Leaving Monitor, RC=0

 Sat Aug 31 08:25:54 CUT 2019:4063648:/tmp/HA/app2_mon.sh Entering Monitor...

 Sat Aug 31 08:25:54 CUT 2019:6095146:/tmp/HA/app1_mon.sh Entering Monitor...

 Sat Aug 31 08:25:55 CUT 2019:6095146:/tmp/HA/app1_mon.sh: Leaving Monitor, RC=0

 Sat Aug 31 08:25:56 CUT 2019:4063648:/tmp/HA/app2_mon.sh: Leaving Monitor, RC=0

 Sat Aug 31 08:26:04 CUT 2019:4063650:/tmp/HA/app2_mon.sh Entering Monitor...

 Sat Aug 31 08:26:06 CUT 2019:4063650:/tmp/HA/app2_mon.sh: Leaving Monitor, RC=0

 Sat Aug 31 08:26:14 CUT 2019:4063652:/tmp/HA/app1_mon.sh Entering Monitor...

 Sat Aug 31 08:26:14 CUT 2019:6095148:/tmp/HA/app2_mon.sh Entering Monitor...

 ^C[vmraix1:root:/home/root:]

 [image:]

 We see that both monitoring scripts start at 08:25:34, with app1_mon.sh returning after
1 second and app2_mon.sh after 2 seconds. Then, 10 seconds later, app2_mon.sh is called again and returns in 2 seconds, as expected. After another 10-second interval, everything repeats, which is consistent with our monitor_period settings and sleep intervals that are inside the scripts.

 Example 2-158 shows the records of the first round for this new scenario with two applications that are configured and started simultaneously by VMM start after a prior VMM stop.

 Example 2-158 First round: AME counter 0 for a scenario with two applications

 [image:]

 [vmraix1:root:/home/root:] grep "08/31/19-08:25:34" /var/ksys/log/ksys_vmm_ame.log|sed '/doLaunch/,$!d'|while read lglvl pid tid ts method rest; do a=${method##*:}; b=${a%%\(*}; echo ">

 doLaunch() : AME counter is 0 (at 3596275.926736902). List of 2 app uuid managed is "1567235918072992000 1567235971589285000".

 doLaunch() : For app "1567235918072992000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567235918072992000": application script "/tmp/HA/app1_mon.sh" being forked ! pidParent(7995782) forks pidChild(8454448).

 doLaunch() : For app "1567235918072992000": computing time of timeout by adding xmlAppTimeout(10) to appEntry.m_timeScriptTimeoutAt => 3596285.926736902.

 doLaunch() : For app "1567235971589285000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567235971589285000": application script "/tmp/HA/app2_mon.sh" being forked ! pidParent(7995782) forks pidChild(6095140).

 doLaunch() : For app "1567235971589285000": computing time of timeout by adding xmlAppTimeout(5) to appEntry.m_timeScriptTimeoutAt => 3596280.926736902.

 doLaunch() : Synthesis: list of 2 processes forked during this loop is "(uuid=1567235918072992000;monitor;/tmp/HA/app1_mon.sh) (uuid=1567235971589285000;monitor;/tmp/HA/app2_mon.sh) ".

 doNonBlockingWait() : AME waiting for 2 script(s) (at 3596275.946924373).

 doNonBlockingWait() : +Synthesis of all (2) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567235918072992000 1(UNSET) 99(NOTSET) 1 1 0 0/ 5 0/ 3 0/ 3 0/3

 doNonBlockingWait() : | 1567235971589285000 1(UNSET) 99(NOTSET) 1 1 0 0/ 5 0/ 3 0/ 3 0/3

 doNonBlockingWait() : +

 [vmraix1:root:/home/root:]

 [image:]

 In Example 2-158 on page 187, doLaunch() and doNonBlockingWait() now do their jobs for two applications, and the synthetic table at the end has a row for each application.

 Up to 16 application can be configured, as shown in Example 2-159.

 Example 2-159 Reaching the maximum number of allowed applications

 [image:]

 [vmraix1:root:/home/root:] i=2; while true; do ksysvmmgr add app app$i start_script=/tmp/HA/app2_start.sh stop_script=/tmp/HA/app2_stop.sh monitor_script=/tmp/HA/app2_mon.sh; if [[$? != 0]]; then break; fi; ((i=i+1)); done

 Adding application "app2" into configuration successfully performed.

 '-s' option is not provided.Please execute 'ksysvmmgr sync' to update VMM Daemon.

 Adding application "app3" into configuration successfully performed.

 '-s' option is not provided.Please execute 'ksysvmmgr sync' to update VMM Daemon.

 ...

 Adding application "app16" into configuration successfully performed.

 '-s' option is not provided.Please execute 'ksysvmmgr sync' to update VMM Daemon.

 Application ADD failed, Maximum count of "16" applications reached.

 [vmraix1:root:/home/root:]

 [image:]

 Monitoring script failure scenario

 Let us examine a monitoring script failure case that is enforced for our test app1, as shown in Example 2-160.

 Example 2-160 Enforcing a monitoring script failure for the app1 application

 [image:]

 [vmraix1:root:/home/root:] ksysvmmgr mod app app1 monitor_failure_threshold=2 max_restart=1

 [vmraix1:root:/home/root:] date;ksysvmmgr start vmm

 Sun Sep 1 17:28:49 CUT 2019

 0513-059 The ksys_vmm Subsystem has been started. Subsystem PID is 11469174.

 [vmraix1:root:/home/root:] date; > /data/FAILAPP1MON

 Sun Sep 1 17:28:57 CUT 2019

 [vmraix1:root:/home/root:] ksysvmmgr stop vmm

 0513-044 The ksys_vmm Subsystem was requested to stop.

 [vmraix1:root:/home/root:]

 [image:]

 In Example 2-161, we probed the application status from ksysvmmgr on a
1-second basis and kept only the captures before and after the state transitions.

 Example 2-161 State changes during the monitoring script failure scenario for the app1 application

 [image:]

 [vmraix1:root:/home/root:] while true; do dt=`date`; echo "$dt :\c"; ksysvmmgr -a status q app app1|grep status; sleep 1; done

 Sun Sep 1 17:28:49 CUT 2019 : status=NOT_MONITORED

 Sun Sep 1 17:28:50 CUT 2019 : status=UNSET (YELLOW)

 Sun Sep 1 17:28:51 CUT 2019 : status=UNSET (YELLOW)

 Sun Sep 1 17:28:52 CUT 2019 : status=NORMAL (GREEN)

 ...

 Sun Sep 1 17:29:00 CUT 2019 : status=NORMAL (GREEN)

 Sun Sep 1 17:29:01 CUT 2019 : status=FAILING (YELLOW)

 ...

 Sun Sep 1 17:29:06 CUT 2019 : status=FAILING (YELLOW)

 Sun Sep 1 17:29:07 CUT 2019 : status=TO_STOP (YELLOW

 ...

 Sun Sep 1 17:29:11 CUT 2019 : status=TO_STOP (YELLOW)

 Sun Sep 1 17:29:12 CUT 2019 : status=TO_START (YELLOW)

 ...

 Sun Sep 1 17:29:16 CUT 2019 : status=TO_START (YELLOW)

 Sun Sep 1 17:29:17 CUT 2019 : status=FAILURE (RED)

 ^C[vmraix1:root:/home/root:]

 [image:]

 From the AME log, we extracted only the relevant rounds, as shown in Example 2-162 through Example 2-165 on page 191. In round 12, as shown in Example 2-162, the monitoring script is found to have failed the first time, so some status fields are updated from normal as follows: applicate state (STATE) to 3(FAILING), last script return code (RESULT) to 1(ABNORM), RUN to 0 because we have no script running, and the current number of failures counter (FAIL) to 1/2. Then, the next launch of the monitoring script, second here, happens in round 16. Only the RUN field changes to 1 because we now have a script running.

 Example 2-162 First two relevant AME log rounds: 12 and 16

 [image:]

 09/01/19-17:29:01

 doLaunch() : AME counter is 12 (at 3715282.705392757). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3715282.705432251).

 doNonBlockingWait() : For app "1567267349133928000": rc is "1", result set to "ABNORM"

 doNonBlockingWait() : For app "1567267349133928000": app state is "2(NORMAL)", previous result was "0(NORMAL)", current result is "1(ABNORM)".

 doNonBlockingWait() : For app "1567267349133928000": monitor failures(1)/max(2).

 doNonBlockingWait() : app '1567267349133928000' restartcount '0' appEntry.m_statsCollectionDone : 'false'

 doNonBlockingWait() : appEntry.m_lastStatsCollectedAt : '0' currentTime : '3715282'

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 3(FAILING) 1(ABNORM) 0 1 0 1/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 ...

 09/01/19-17:29:05

 doLaunch() : AME counter is 16 (at 3715286.703399070). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567267349133928000": application script "/tmp/HA/app1_mon.sh" being forked ! pidParent(11469174) forks pidChild(11600136).

 doLaunch() : For app "1567267349133928000": computing time of timeout by adding xmlAppTimeout(3) to appEntry.m_timeScriptTimeoutAt => 3715289.703399070.

 doLaunch() : Synthesis: list of 1 processes forked during this loop is "(uuid=1567267349133928000;monitor;/tmp/HA/app1_mon.sh) ".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3715286.707119603).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 3(FAILING) 1(ABNORM) 1 1 0 1/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 [image:]

 In Example 2-163, we see the monitoring script failing the second time in round 18. The monitor_failure_threshold is reached, so a first restart is initiated. STATE changes to 4(TO_STOP), RUN to 0, and FAIL to 2/2.

 Example 2-163 The next relevant AME log rounds for the monitoring script failure scenario: 18 and 19

 [image:]

 09/01/19-17:29:07

 doLaunch() : AME counter is 18 (at 3715288.700335582). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3715288.700378443).

 doNonBlockingWait() : For app "1567267349133928000": rc is "1", result set to "ABNORM"

 doNonBlockingWait() : For app "1567267349133928000": app state is "3(FAILING)", previous result was "1(ABNORM)", current result is "1(ABNORM)".

 doNonBlockingWait() : For app "1567267349133928000": monitor failures(2)/max(2). Needs to be stopped.

 doNonBlockingWait() : app '1567267349133928000' restartcount '0' appEntry.m_statsCollectionDone : 'false'

 doNonBlockingWait() : appEntry.m_lastStatsCollectedAt : '0' currentTime : '3715288'

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 4(TO_STOP) 1(ABNORM) 0 1 0 2/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 09/01/19-17:29:08

 doLaunch() : AME counter is 19 (at 3715289.708493896). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567267349133928000": application script "/tmp/HA/app1_stop.sh" being forked ! pidParent(11469174) forks pidChild(12059062).

 doLaunch() : Synthesis: list of 1 processes forked during this loop is "(uuid=1567267349133928000;stop;/tmp/HA/app1_stop.sh) ".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3715289.710508228).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 4(TO_STOP) 1(ABNORM) 1 1 0 2/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 [image:]

 In the next round (19), as shown in Example 2-163, the stop script is started and RUN is changed to 1.

 The next relevant round, 23, is shown in Example 2-164. It finds the stop script returned OK, and then updates STATE to 6(TO_START) because we are in a restart stage, RESULT to 0(NORMAL), and RUN to 0. So the next round, 24, starts the start script and updates RUN to 1.

 Example 2-164 The next two relevant AME log rounds for a monitoring script failure scenario: 23 and 24

 [image:]

 09/01/19-17:29:12

 doLaunch() : AME counter is 23 (at 3715293.704649728). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": script running.

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3715293.704713107).

 doNonBlockingWait() : For app "1567267349133928000": rc is "0", result set to "NORMAL"

 doNonBlockingWait() : For app "1567267349133928000": app state is "4(TO_STOP)", previous result was "1(ABNORM)", current result is "0(NORMAL)".

 doNonBlockingWait() : For app "1567267349133928000": stop ok, needs now to be started.

 doNonBlockingWait() : app '1567267349133928000' restartcount '0' appEntry.m_statsCollectionDone : 'false'

 doNonBlockingWait() : appEntry.m_lastStatsCollectedAt : '0' currentTime : '3715293'

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 6(TO_START) 0(NORMAL) 0 1 0 2/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 09/01/19-17:29:13

 doLaunch() : AME counter is 24 (at 3715294.706332714). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567267349133928000": application script "/tmp/HA/app1_start.sh" being forked ! pidParent(11469174) forks pidChild(11534808).

 doLaunch() : Synthesis: list of 1 processes forked during this loop is "(uuid=1567267349133928000;start;/tmp/HA/app1_start.sh) ".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3715294.711230501).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 6(TO_START) 0(NORMAL) 1 1 0 2/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 [image:]

 The start script returned OK in round 28, as shown in Example 2-165. As max_restart, 1 here, is reached, the STATE goes to 9(FAILURE), RUN goes to 0, and RESTART to 1/1. This is the final state for our failure scenario.

 Example 2-165 The last relevant AME log round for the monitoring script failure scenario: 28

 [image:]

 09/01/19-17:29:17

 doLaunch() : AME counter is 28 (at 3715298.700496138). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": script running.

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3715298.700559031).

 doNonBlockingWait() : For app "1567267349133928000": rc is "0", result set to "NORMAL"

 doNonBlockingWait() : For app "1567267349133928000": app state is "6(TO_START)", previous result was "0(NORMAL)", current result is "0(NORMAL)".

 doNonBlockingWait() : For app "1567267349133928000": start ok

 ...

 doNonBlockingWait() : Application : '1567267349133928000' status changed

 doNonBlockingWait() : For app "1567267349133928000": cycles(1)/max(1). State is now FAILURE.

 doNonBlockingWait() : app '1567267349133928000' restartcount '1' appEntry.m_statsCollectionDone : 'false'

 doNonBlockingWait() : appEntry.m_lastStatsCollectedAt : '0' currentTime : '3715298'

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 9(FAILURE) 0(NORMAL) 0 1 0 2/ 2 0/ 3 0/ 3 1/1

 doNonBlockingWait() : +

 [image:]

 Monitoring script timeout scenario

 We enforce the timeout by increasing the sleep interval value from 1 to 7 in our test monitoring script. The script change is made online while the application is in the normal steady state, as shown in Example 2-166.

 Example 2-166 Enforcing the timeout for the monitoring script while in the normal steady state

 [image:]

 [vmraix1:root:/home/root:] date;ksysvmmgr start vmm

 Sun Sep 1 20:15:47 CUT 2019

 0513-059 The ksys_vmm Subsystem has been started. Subsystem PID is 12648876.

 [vmraix1:root:/home/root:] ksysvmmgr q app app1|grep status

 status=NORMAL (GREEN)

 [vmraix1:root:/home/root:] vi /tmp/HA/app1_mon.sh

 [vmraix1:root:/home/root:] date

 Sun Sep 1 20:16:07 CUT 2019

 [vmraix1:root:/home/root:] grep sleep /tmp/HA/app1_mon.sh

 sleep 7

 [vmraix1:root:/home/root:]

 [image:]

 In Example 2-167, we probed the application state by using ksysvmmgr on a 1-second basis and kept only the captures before and after the state transitions.

 Example 2-167 State transitions during the monitoring script timeout scenario for the app1 application

 [image:]

 [vmraix1:root:/home/root:] while true; do dt=`date`; echo "$dt :\c"; ksysvmmgr -a status q app app1|grep status; sleep 1; done

 Sun Sep 1 20:15:47 CUT 2019 : status=NOT_MONITORED

 Sun Sep 1 20:15:48 CUT 2019 : status=UNSET (YELLOW)

 Sun Sep 1 20:15:49 CUT 2019 : status=UNSET (YELLOW)

 Sun Sep 1 20:15:50 CUT 2019 : status=NORMAL (GREEN)

 ...

 Sun Sep 1 20:16:10 CUT 2019 : status=NORMAL (GREEN)

 Sun Sep 1 20:16:11 CUT 2019 : status=FAILING (YELLOW)

 ...

 Sun Sep 1 20:16:16 CUT 2019 : status=FAILING (YELLOW)

 Sun Sep 1 20:16:17 CUT 2019 : status=TO_STOP (YELLOW)

 ...

 Sun Sep 1 20:16:21 CUT 2019 : status=TO_STOP (YELLOW)

 Sun Sep 1 20:16:22 CUT 2019 : status=TO_START (YELLOW)

 ...

 Sun Sep 1 20:16:27 CUT 2019 : status=TO_START (YELLOW)

 Sun Sep 1 20:16:28 CUT 2019 : status=FAILURE (RED)

 ^C[vmraix1:root:/home/root:]

 [image:]

 From the AME log, we extracted only the relevant rounds, as shown in Example 2-168, Example 2-169 on page 193, and Example 2-170 on page 194. In round 20, as shown in Example 2-168, the monitoring script is started after a prior normal return and the time of timeout is computed and saved.

 Example 2-168 The first two relevant AME log rounds for the monitoring script timeout scenario: 20 and 23

 [image:]

 09/01/19-20:16:07

 doLaunch() : AME counter is 20 (at 3725309.045299853). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567267349133928000": application script "/tmp/HA/app1_mon.sh" being forked ! pidParent(12648876) forks pidChild(11075936).

 doLaunch() : For app "1567267349133928000": computing time of timeout by adding xmlAppTimeout(3) to appEntry.m_timeScriptTimeoutAt => 3725312.045299853.

 doLaunch() : Synthesis: list of 1 processes forked during this loop is "(uuid=1567267349133928000;monitor;/tmp/HA/app1_mon.sh) ".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3725309.051685980).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 2(NORMAL) 0(NORMAL) 1 1 0 0/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 ...

 09/01/19-20:16:10

 doLaunch() : AME counter is 23 (at 3725312.050023705). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3725312.050064394).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 2(NORMAL) 0(NORMAL) 1 1 0 0/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 doInspectForTimeout() : For app "1567267349133928000": timeout was set to 3725312.045299853.

 doInspectForTimeout() : For app "1567267349133928000": script was in timeout, killing now script process (pid "11075936").

 [image:]

 The next relevant round, which is shown in Example 2-168 on page 192, is 23, where a new method, doInspectForTimeout(), shows up with two records mentioning that the script is found in timeout and that it kills the script process.

 The next round, 24, shown in Example 2-169, finds the script that is killed and updates the application status fields. STATE is changed to 3(FAILING), RESULT to 2(TIMOUT), RUN to 0, and FAIL to 1/ 2.

 Example 2-169 The next two relevant AME log rounds for the monitoring script timeout scenario: 24 and 25

 [image:]

 09/01/19-20:16:11

 doLaunch() : AME counter is 24 (at 3725313.044644154). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3725313.044686074).

 doNonBlockingWait() : For app "1567267349133928000": pid "11075936" killed, result set to "TIMOUT"

 doNonBlockingWait() : For app "1567267349133928000": app state is "2(NORMAL)", previous result was "0(NORMAL)", current result is "2(TIMOUT)".

 doNonBlockingWait() : For app "1567267349133928000": monitor failures(1)/max(2).

 doNonBlockingWait() : app '1567267349133928000' restartcount '0' appEntry.m_statsCollectionDone : 'false'

 doNonBlockingWait() : appEntry.m_lastStatsCollectedAt : '0' currentTime : '3725313'

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 3(FAILING) 2(TIMOUT) 0 1 0 1/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 09/01/19-20:16:12

 doLaunch() : AME counter is 25 (at 3725314.046365310). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567267349133928000": application script "/tmp/HA/app1_mon.sh" being forked ! pidParent(12648876) forks pidChild(11731218).

 doLaunch() : For app "1567267349133928000": computing time of timeout by adding xmlAppTimeout(3) to appEntry.m_timeScriptTimeoutAt => 3725317.046365310.

 doLaunch() : Synthesis: list of 1 processes forked during this loop is "(uuid=1567267349133928000;monitor;/tmp/HA/app1_mon.sh) ".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3725314.050309701).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 3(FAILING) 2(TIMOUT) 1 1 0 1/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 [image:]

 The next round in Example 2-169 on page 193, 25, starts the monitoring script after the first failure, computes its timeout time, and updates the status, which is RUN set to 1.

 Example 2-170 shows the next relevant rounds, 29, 30, and 31. In round 29, the monitoring script that restarted earlier in round 25 is found again in timeout by doInspectForTimeout(), so its process is killed again.

 Example 2-170 The next three relevant AME log rounds for the monitoring script timeout scenario: 29, 30, and 31

 [image:]

 09/01/19-20:16:16

 doLaunch() : AME counter is 29 (at 3725318.043083808). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3725318.043125326).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 3(FAILING) 2(TIMOUT) 1 1 0 1/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 doInspectForTimeout() : For app "1567267349133928000": timeout was set to 3725317.046365310.

 doInspectForTimeout() : For app "1567267349133928000": script was in timeout, killing now script process (pid "11731218").

 09/01/19-20:16:17

 doLaunch() : AME counter is 30 (at 3725319.044798625). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": script was killed because of timeout.

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3725319.044863876).

 doNonBlockingWait() : For app "1567267349133928000": pid "11731218" killed, result set to "TIMOUT"

 doNonBlockingWait() : For app "1567267349133928000": app state is "3(FAILING)", previous result was "2(TIMOUT)", current result is "2(TIMOUT)".

 doNonBlockingWait() : For app "1567267349133928000": monitor failures(2)/max(2). Needs to be stopped.

 doNonBlockingWait() : app '1567267349133928000' restartcount '0' appEntry.m_statsCollectionDone : 'false'

 doNonBlockingWait() : appEntry.m_lastStatsCollectedAt : '0' currentTime : '3725319'

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 4(TO_STOP) 2(TIMOUT) 0 1 0 2/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 09/01/19-20:16:18

 doLaunch() : AME counter is 31 (at 3725320.046433847). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567267349133928000": application script "/tmp/HA/app1_stop.sh" being forked ! pidParent(12648876) forks pidChild(11600220).

 doLaunch() : Synthesis: list of 1 processes forked during this loop is "(uuid=1567267349133928000;stop;/tmp/HA/app1_stop.sh) ".

 doNonBlockingWait() : AME waiting for 1 script(s) (at 3725320.052828527).

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 4(TO_STOP) 2(TIMOUT) 1 1 0 2/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 [image:]

 In the next round of Example 2-170 on page 194, 30, the script is discovered as killed while running, so it fails a second time. The monitor_failure_threshold is reached, so a first restart must be initiated. STATE changes to 4(TO_STOP), RUN to 0, FAIL to 2/2. The subsequent round, 31, starts the stop script as the first restart step and sets RUN to 1. We do not continue here with the subsequent rounds evolving toward the final FAILURE state because they are similar to the rounds following to round 19 of the scenario in “Monitoring script timeout scenario” on page 192.

 Monitor script not usable scenario

 We enforce this scenario by changing the name of the monitoring script while the application is in the normal steady state, as shown in Example 2-171.

 Example 2-171 Enforcing a script not usable case for the monitoring script while in the normal steady state

 [image:]

 [vmraix1:root:/home/root:] date;ksysvmmgr start vmm

 Mon Sep 2 03:22:29 CUT 2019

 0513-059 The ksys_vmm Subsystem has been started. Subsystem PID is 8585668.

 [vmraix1:root:/home/root:] ksysvmmgr q app app1|grep status; mv /tmp/HA/app1_mon.sh /tmp/HA/app1_mon.shh; date

 status=NORMAL (GREEN)

 Mon Sep 2 03:22:39 CUT 2019

 [vmraix1:root:/home/root:]

 [image:]

 In Example 2-172, we probed the application state by using ksysvmmgr on a 1-second basis and captured the sequence of state transitions similar to the way we did in previous scenarios.

 Example 2-172 State transitions during the monitoring script not usable scenario for the app1 application

 [image:]

 [vmraix1:root:/home/root:] while true; do dt=`date`; echo "$dt :\c"; ksysvmmgr -a status q app app1|grep status; sleep 1; done

 Mon Sep 2 03:22:29 CUT 2019 : status=NOT_MONITORED

 Mon Sep 2 03:22:30 CUT 2019 : status=UNSET (YELLOW)

 Mon Sep 2 03:22:31 CUT 2019 : status=UNSET (YELLOW)

 Mon Sep 2 03:22:32 CUT 2019 : status=NORMAL (GREEN)

 ...

 Mon Sep 2 03:22:39 CUT 2019 : status=NORMAL (GREEN)

 Mon Sep 2 03:22:40 CUT 2019 : status=ABNORMAL (RED)

 ^C[vmraix1:root:/home/root:]

 [image:]

 You must check for AME log rounds around 03:22:39. Example 2-173 shows the first round, 9, logged at 03:22:39, which shows a normal application state and a prior successful return.

 Example 2-173 Checking the AME log

 [image:]

 09/02/19-03:22:38

 doLaunch() : AME counter is 9 (at 3750899.823271515). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 2(NORMAL) 0(NORMAL) 0 1 0 0/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 09/02/19-03:22:39

 doLaunch() : AME counter is 10 (at 3750900.824921394). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567267349133928000": this application script "/tmp/HA/app1_mon.sh" is not executable. Needs repair !

 doLaunch() : Application : '1567267349133928000' status changed

 doLaunch() : For app "1567267349133928000": this application gets E_ABNORMAL_STATE.

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 8(ABNORMAL) 0(NORMAL) 0 1 0 0/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 09/02/19-03:22:40

 doLaunch() : AME counter is 11 (at 3750901.826702046). List of 1 app uuid managed is "1567267349133928000".

 doLaunch() : For app "1567267349133928000": this application monitoring was already active.

 dependencyCheck() : Dependency list is empty

 doLaunch() : For app "1567267349133928000": app state is "ABNORMAL". Needs repair !

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 8(ABNORMAL) 0(NORMAL) 0 1 0 0/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 09/02/19-03:22:41

 doLaunch() : AME counter is 12 (at 3750902.828265177). List of 1 app uuid managed is "1567267349133928000".

 doNonBlockingWait() : +Synthesis of all (1) applications:

 doNonBlockingWait() : | UUID STATE RESULT RUN MON DEL FAIL STOP START RESTART DESCRIPTION

 doNonBlockingWait() : | 1567267349133928000 8(ABNORMAL) 0(NORMAL) 0 1 0 0/ 2 0/ 3 0/ 3 0/1

 doNonBlockingWait() : +

 [image:]

 The next round in Example 2-173 on page 196, 10, shows how the script that will be started is not found in an appropriate state and how the application state is set to 8(ABNORMAL). This is a final state, as shown in the next rounds.

 Similar findings can be easily obtained for the start and stop script not usable scenarios.

 Application state machine diagram

 Considering all the findings so far in this section about the AME thread internal operation, we aggregate the examined rounds into a pseudocode sketch for its doMainLoop() main call, as shown in Figure 2-13.

 [image:]

 Figure 2-13 AME thread main loop

 We describe some of the methods inside the AME main loop that is shown in Figure 2-13 on page 197:

 •doXML()

 At startup, the AME thread runs the doXML() method. The .xml config file is parsed for defined applications. If no applications are defined, the thread goes to sleep from which it can return by receiving a sync notification from ksysvmmgr. In such a situation, it parses the .xml file again and looks for defined applications.

 If defined applications are found in the .xml file, then some memory data structures, which are called maps, are populated or updated with configuration and status details about each found application as follows:

  –	If no entries exist in the memory maps for an application, then they are created.

  –	If entries exist, then they are updated as derived from the counterpart attributes that are retrieved from the .xml file in case they are different.

 After reaching this point, the thread returns from doXML() and calls doLaunch().

 •doLaunch()

 For each app in the app map, check the state and decide whether the mon, stop, or start script must be started. If yes, start it and update the maps. Compute the time of the timeout and update map entries. After reaching this point, the thread returns from doLaunch() and calls doNonBlockingWait().

 •doNonBlockingWait()

 For each app, look for children processes (started scripts that are not marked as returned yet) and check whether they exited or not. For those that returned, update the states.

 •doInspectForTimeout()

 For each app, if a timeout condition is ascertained on the current running script, the blocking script is killed and the application status updates.

 Similarly, putting together all noticed state transitions of our test application in the presented scenarios, we come up with the state machine diagram in Figure 2-14.

 [image:]

 Figure 2-14 Application state machine diagram

 The abnormal and failure final states in the left side of the diagram must be resolved by manual remediation of the root cause for the errors. To restart the application monitoring for the affected application, the repair must be followed by an XML configuration reload.

 2.2.9 HVNCP protocol

 HM and VMM use the HVNCP proprietary protocol to communicate over the hypervisor switch and the Ethernet layer in between. HVNCP implements a limited set of the capabilities that are found in TCP/IP:

 Pairing	A point-to-point communication is established between the HM and each VMM.

 Communication closure	Communications remain active unless a new communication is opened between the same HM and VMM or an error occurs.

 Flow control 	There is no flow control, so you avoid the processing impact of communication for each message. We do not expect high packet rates between the VMMs and the HM to justify the need for a flow control that itself reduces the maximum packet rate that is supported.

 Message fragmentation	If a message is too long to be encapsulated in a single packet, it can be divided into several ones.

 Message building	A message is composed of one or more packets. The first and last packets are identified so that messages can be separated.

 Packet ordering	Packets have a packet number, which is increased at each packet sent, so that the receiver can restore the correct packet order if needed.

 Acknowledgment	A command or response packet can request an acknowledgment so that you can detect lost packets if an acknowledgment was required but not received.

 Checksum	If there is a checksum error when receiving a packet, the packet is discarded.

 Error management	If a packet that did not require an acknowledgment is lost, then it is not retransmitted. If an acknowledgment was required and was not received, then after reaching a timeout value the packet is resent.

 Figure 2-15 presents the HVNCP packet structure with the two 32-bit word header and remaining payload.

 [image:]

 Figure 2-15 HVNCP packet structure

 Here are the details of the header fields:

 Protocol version, major and minor (8 bits each)	The first fields of the packet header contain the protocol version and might be used for future HVNCP extensions. The minor number is increased in case of modifications that do not break compatibility. Otherwise, the major number is increased.

 Packet/Ack number (8 bits)	A packet number field is used to identify the packets of a message. The number is increased at each packet sent. When 0xFF is reached, the next packet number is 0x00. If the ACK flag is set to 1, it indicates the number of the acknowledged packet. If the SYN flag is set to 1, it indicates the number of the first packet that is sent.

 ACKR (1 bit) - acknowledgment request	ACKR is set to 1 if the sent packet requires an acknowledgment. A packet that does not need to be acknowledged cannot be linked to another packet. Its corresponding message must be only one packet long. Otherwise, we have no way to rebuild the message in case of an error.

 ACK (1 bit) – acknowledgment	When set to 1, the packet number is now an acknowledgment number.

 BEG (1 bit) – Begin of message	If BEG is set to 1, the packet is the first packet of a message. If SYN is also set, this flag has a special meaning. See the SYN description.

 END (1 bit) – End of message	If END is set to 1, the packet is the last packet of a message. If both BEG and END are set to 1, the complete message is in the frame. If SYN is also set, this flag has a special meaning. See the SYN description.

 PRI (1 bit) – Priority of the packet		0: Normal

 	1: Urgent

 	An urgent packet suspends the sending of normal packets such that it is sent itself immediately.

Acknowledgements have the same PRI value as their corresponding message and have higher priority than other packets with the same PRI value.

When a multi-packets message is suspended in the middle of its packets transmission, it is the receiver’s responsibility to correctly reconstruct the message.

 SYN (1 bit) – Synchronization packet	A packet with the SYN flag set to 1 is a special synchronization packet. It is used to establish a communication or to refresh a closed one. To establish a communication, a Hello message must be received first. If the communication is not opened, a synchronization packet is sent with the ACKR flag set to 1. The receiver of the packet must then acknowledge the synchronization packet.

The BEG and END flags have a special meaning if the SYN flag is set. In that case, the BEG flag requires the receiver to also ask its local sender to establish communication in the opposite direction by using the same mechanism (with END instead of BEG to avoid infinite recursions), but END does not. The packet number of a synchronization packet is the packet number of the first packet that is sent after the synchronization packet. A synchronization packet cannot be sent in parallel with other packets. When the ACKR flag is set, several properties of the local partition and of the daemon are given in the frame.

 HEL (1 bit) – Hello packet	When HEL is set to 1, all other fields except Checksum are ignored. This special packet describes a Hello message that is periodically broadcast by HM to VMMs to signal that HM to VMM communication can be established.

 Checksum (8 bits)	The checksum is obtained by calculating the sum of all bytes of the header and the frame except for the checksum field itself. Any packet with an invalid checksum is automatically discarded.

 The HVNCP protocol provides the low-level communication means so that on top of the Ethernet layer, the HM and VMM exchange messages for the following three main types of communication flows:

 •Communication session establishment

 •Heartbeat messages from VMM toward KSYS

 •Application management messages between the VMM and KSYS sides

 2.3 Communication flows

 This section shows the communication flows between various components of a VM Recovery Manager HA deployment.

 Example 2-65 on page 103 shows the complete list of possible KSYS to VIOS requests, as documented in the /usr/lib/vioHADR2.00.xsd file at the VIOS level. Some of them are used by KSYS to trigger communication flows by itself. Others are used in intermediate stages of the flows that are initiated by other components. If the stages of different flows are similar, we describe the first occurrence in detail and refer to it later. Section “CAA event monitoring” on page 128 shows an example of a communication flow that is initiated outside of KSYS at the VIOS CAA subsystem level underneath the host group SSP cluster.

 From the KSYS subsystem perspective, first we consider all the flows running periodically during the normal steady state operation of the cluster.

 As described in “Quick Discovery and Deep Discovery scheduling records” on page 72, periodic discovery actions are scheduled to identify configuration changes that might have occurred in the whole infrastructure. A Quick Discovery action is performed hourly and a Deep Discovery action every 24 hours. Detailed flow examples for each of these actions are shown in 2.3.1, “Discovery of a VM that is enabled for monitoring” on page 203. To shorten the explanations, we use the simplest possible environment of a host group with two hosts and two VMs, one on each host. VMs themselves are configured in the simplest possible way, which still allows us to capture the aspects of interest for the scenario under study.

 Conversely, as described in “Failure Detection Engine” on page 94, two QuickQuery requests and one NeedsAttention request are submitted at 20 seconds, one after the other, by the host group FDE thread. The flows of these requests are described in 2.3.2, “Failure Detection Engine: QuickQuery and NeedsAttention flows” on page 234.

 2.3.1 Discovery of a VM that is enabled for monitoring

 Let us now examine the flow of actions on the KSYS and VIOS sides for a VM enabled for monitoring during a host group discovery that is performed immediately after the enablement. To simplify the presentation, first we cover the case when the VM Agent is not installed on the VM itself. Then, we examine the specifics of the case when the VM Agent is installed after the monitoring enablement and the discovery of the VM in “HM-VMM communication establishment” on page 215.

 The status of the ms, vm, map, and trans tables in the HSDB before we start this exercise is shown in Example 2-174.

 Example 2-174 The ms, vm, map, and trans tables in HSDB just before the discovery command

 [image:]

 vios=# select * from ms;

 msid | clusterid | mtm | machinetype | model | serial

 ----------------------+-----------+-----------------+-------------+-------+---------

 7926057748306591969 | 1 | 8408-E8E21282FW | 8408 | E8E | 21282FW

 -5878939440565042805 | 1 | 8408-E8E212424W | 8408 | E8E | 212424W

 (2 rows)

 vios=# select * from vm;

 vmuuid | name | msid | misshistory | state | up_major | up_minor | lo_major | lo_minor | shortmsg | msgsync | msgsdeleted | misshistoryts | suspendts

 --------+------------+------+-------------+-------+----------+----------+----------+----------+----------+---------+-------------+---------------+-----------

 | default_vm | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |

 (1 row)

 vios=# select * from map;

 vmuuid | viosuuid | misshistory | hmrecovery | viosrecovery | vmhbmissed

 --------+----------+-------------+------------+--------------+------------

 (0 rows)

 vios=# select * from trans;

 vmuuid | viosuuid | msid | tag | opcode | state | data | integer | txstarted

 --------+----------+------+-----+--------+-------+------+---------+-----------

 (0 rows)

 vios=#

 [image:]

 The ms table is already populated with host entries, and the other tables are empty.

 Example 2-175 shows the output of the manual discovery that is performed shortly after the VM monitoring enablement command.

 Example 2-175 Host group discovery after enabling monitoring for the vmraix1 VM

 [image:]

 # ksysmgr q vm vmraix1|grep -e UUID -e HA_monitor

 UUID: 61BE20F0-09A8-4753-B5E5-564F8A545ED5

 HA_monitor: disable

 # date; ksysmgr mod vm vmraix1 ha_monitor=enable

 Tue Apr 30 08:58:25 CUT 2019

 For VM vmraix1 attribute(s) 'ha_monitor' was successfully modified.

 # date;ksysmgr -t discover hg rbHG

 Tue Apr 30 08:59:54 CUT 2019

 09:00:01 Running discovery on Host_group rbHG, this may take few minutes...

 09:00:32 Existing HA trunk adapter found for VIOS usaxvib063ccpx1

 09:00:37 Existing HA trunk adapter found for VIOS usaxvia063ccpx1

 09:00:51 Existing HA trunk adapter found for VIOS usaxvia053ccpx1

 09:00:51 Existing HA trunk adapter found for VIOS usaxvib053ccpx1

 09:01:15 Preparing VIOS in Server-8408-E8E-SN21282FW for HA management

 09:01:15 VIOS in Server-8408-E8E-SN21282FW prepared for HA management

 09:01:15 Preparing VIOS in Server-8408-E8E-SN212424W for HA management

 09:01:15 VIOS in Server-8408-E8E-SN212424W prepared for HA management

 09:01:15 Preparing VM vmraix1 in Host Server-8408-E8E-SN212424W for HA management

 09:01:15 VM vmraix1 in Host Server-8408-E8E-SN212424W Prepared for HA management

 09:01:20 Creating first HA client adapter for VM vmraix1

 09:01:25 Finished creating first HA client adapter for VM vmraix1

 09:01:25 Creating second HA trunk client for VM vmraix1

 09:01:44 Finished creating second HA client adapter for VM vmraix1

 09:01:44 Starting HA monitoring for VM vmraix1

 09:01:48 Discovery has started for VM vmraix2

 09:01:48 Configuration information retrieval started for VM vmraix2

 09:01:48 Discovery has started for VM vmraix1

 09:01:48 Configuration information retrieval started for VM vmraix1

 09:01:48 HA monitoring for VM vmraix1 started successfully

 09:01:53 Configuration information retrieval completed for VM vmraix2

 09:01:53 Discovery for VM vmraix2 is complete

 09:01:53 Configuration information retrieval completed for VM vmraix1

 09:01:53 Discovery for VM vmraix1 is complete

 09:03:56 VM monitor state is not 'STARTED' for VM vmraix1

 ERROR: Discovery has encountered an error for Host_group rbHG please investigate

 09:03:57 Discovery has finished for rbHG

 1 out of 2 managed VMs have been successfully discovered

 Following error is returned for VM vmraix1:

 VM [vmraix1] state is not moved to started

 Please review errors. The "ksysmgr query system status" command may provide additional details.

 #

 [image:]

 From the time stamps, we see that the whole discovery took about 4 minutes. We are interested in the VM-related actions (the underlying infrastructure-related actions are covered in 2.3.1, “Discovery of a VM that is enabled for monitoring” on page 203). The test environment consists of a simple dual-VIOS configuration on two hosts with one managed VM on each host. At least one previous discovery was performed since the rbHG host group was added, so the SSP cluster is already created at the VIOS level and the hypervisor switch on each component host. The presence of the hypervisor switches on each host is confirmed in the output of Example 2-175 on page 203 by the virtual Ethernet trunk adapter found messages for each VIOS apart.

 The vmraix1 VM on the first host was enabled for monitoring before the current discovery, but the vmraix2 VM remained disabled. You can see in the output of the discovery command how vmraix1 is Prepared for HA management by the creation of two HA client adapters followed by the action of Starting HA monitoring for VM vmraix1. Also, we see that VIOS HA trunk adapters are found as existing from previous host group discovery. The final message that vmraix1 VMM state is not moved to started shows up because the VM Agent is not yet installed on the VM.

 The KSYS trace files that we intend to examine are collected and shown in Example 2-176.

 Example 2-176 Collecting trace files after the VM discovery

 [image:]

 # ksysmgr trace log=krestlong > krestlong.log.posthamonitorenable

 # ksysmgr trace log=krest > krest.log.posthamonitorenable

 # ksysmgr trace log=ksys > ksys.log.posthamonitorenable

 # ksysmgr trace log=fde > fde.log.posthamonitorenable

 # ksysmgr trace log=fdelong > fdelong.log.posthamonitorenable

 # ksysmgr trace log=user > user.log.posthamonitorenable

 # ls

 fde.log.posthamonitorenable krestlong.log.posthamonitorenable

 fdelong.log.posthamonitorenable ksys.log.posthamonitorenable

 krest.log.posthamonitorenable user.log.posthamonitorenable

 #

 [image:]

 Checking the entries in the user trace file that are logged after the discovery command start moment, Tue Apr 30 08:59:54 CUT 2019, we see a first trace of the discovery flow in an abridged form that is more detailed than the command output in Example 2-141 on page 178. We divide this user trace file content, as shown in Example 2-177 and Example 2-178 on page 206. In Example 2-177, we see that the host group discovery starts with a successful verification block for the HMC, followed by a first CEC verification block, inside which VIOS and trunk adapter verifications are passed successfully.

 Example 2-177 The user trace file records for VM monitoring enable discovery

 [image:]

 # more user.log.posthamonitorenable

 [09] 04/30/19 T(203) _VMR 08:59:13.165979 [INFO]: SCHEDULER initiated QUICK discoverVerify Completed

 [09] 04/30/19 T(9113) _VMR 08:59:57.241032 DEBUG VMR_HG.C[4919]: ------------- HG Verification process START for HG : rbHG ------------

 [09] 04/30/19 T(9113) _VMR 08:59:57.324091 [INFO,VMR_HMCRccp,] Starting verify_HMCRccp

 [09] 04/30/19 T(9113) _VMR 08:59:57.324110 [INFO,VMR_HMCRcp,usaxhmc013ccpf1] Verify_HMCRcp for HMC = usaxhmc013ccpf1, IP = 129.41.127.3

 [09] 04/30/19 T(9113) _VMR 08:59:57.324116 [INFO,VMR_HMCRcp,usaxhmc013ccpf1] Start discover_HMC usaxhmc013ccpf1

 [09] 04/30/19 T(9113) _VMR 08:59:57.636845 [INFO,VMR_HMCRcp,usaxhmc013ccpf1] End discover_HMC usaxhmc013ccpf1

 [09] 04/30/19 T(9113) _VMR 08:59:57.636887 [INFO,VMR_HMCRcp,usaxhmc013ccpf1] CEC List & SessionID is same. So no update is required.

 [09] 04/30/19 T(9113) _VMR 08:59:57.636894 [INFO,VMR_HMCRcp,usaxhmc013ccpf1] Verify_HMCRcp for HMC = usaxhmc013ccpf1 completed

 [09] 04/30/19 T(9113) _VMR 08:59:57.636901 [INFO,VMR_HMCRccp,] Completed verify_HMCRccp

 [09] 04/30/19 T(9113) _VMR 09:00:13.643946 [INFO,VMR_CECRcp,3a53a6fc-8dcb-3671-a853-70526651f83d] verify_CECRcp CEC:Server-8408-E8E-SN212424W(3a53a6fc-8dcb-3671-a853-70526651f83d), cluster_type:HA

 [09] 04/30/19 T(9113) _VMR 09:00:30.660046 [INFO,VMR_VIOSRcp,5C3196A3-C41F-4B5C-9861-DEE6077081C6] Performing verify_VIOSRcp on VIOS usaxvib063ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:31.654865 DEBUG VMR_VIOS.C[5751]: verifyTrunkAdapter passed on usaxvib063ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:31.664472 [INFO,VMR_VIOSRcp,5C3196A3-C41F-4B5C-9861-DEE6077081C6] verify_VIOSRcp done for VIOS usaxvib063ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:31.664495 [INFO,VMR_VIOSRcp,0AB5001F-2C3E-4FBB-97EA-41D3F8C4F898] Performing verify_VIOSRcp on VIOS usaxvia063ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:33.430476 DEBUG VMR_VIOS.C[5751]: verifyTrunkAdapter passed on usaxvia063ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:33.433325 [INFO,VMR_VIOSRcp,0AB5001F-2C3E-4FBB-97EA-41D3F8C4F898] verify_VIOSRcp done for VIOS usaxvia063ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:35.406103 [INFO,VMR_CECRcp,3a53a6fc-8dcb-3671-a853-70526651f83d] Leaving verify_CECRcp CEC:Server-8408-E8E-SN212424W

 user.log.posthamonitorenable (99%)

 [image:]

 The sequence of actions continues with a similar CEC verification block for the second host in the configuration, as shown in Example 2-178.

 Example 2-178 The user trace file records for VM monitoring enable discovery (continued)

 [image:]

 # more user.log.posthamonitorenable

 [09] 04/30/19 T(9113) _VMR 09:00:35.406256 [INFO,VMR_CECRcp,33613bcd-7ca1-3558-874a-c1e1d3ceee32] verify_CECRcp CEC:Server-8408-E8E-SN21282FW(33613bcd-7ca1-3558-874a-c1e1d3ceee32), cluster_type:HA

 [09] 04/30/19 T(9113) _VMR 09:00:48.562443 [INFO,VMR_VIOSRcp,72DEE902-1210-4BD7-A35F-3A6C771C6453] Performing verify_VIOSRcp on VIOS usaxvib053ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:49.824186 DEBUG VMR_VIOS.C[5751]: verifyTrunkAdapter passed on usaxvib053ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:49.826664 [INFO,VMR_VIOSRcp,72DEE902-1210-4BD7-A35F-3A6C771C6453] verify_VIOSRcp done for VIOS usaxvib053ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:49.826680 [INFO,VMR_VIOSRcp,10875B47-D737-44F9-A745-554F4DF4ADF8] Performing verify_VIOSRcp on VIOS usaxvia053ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:51.204494 DEBUG VMR_VIOS.C[5751]: verifyTrunkAdapter passed on usaxvia053ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:51.207185 [INFO,VMR_VIOSRcp,10875B47-D737-44F9-A745-554F4DF4ADF8] verify_VIOSRcp done for VIOS usaxvia053ccpx1

 [09] 04/30/19 T(9113) _VMR 09:00:53.173723 [INFO,VMR_CECRcp,33613bcd-7ca1-3558-874a-c1e1d3ceee32] Leaving verify_CECRcp CEC:Server-8408-E8E-SN21282FW

 [09] 04/30/19 T(9113) _VMR 09:01:14.254966 DEBUG VMR_HG.C[12360]: Add managed system success for CEC Server-8408-E8E-SN21282FW(33613bcd-7ca1-3558-874a-c1e1d3ceee32)

 [09] 04/30/19 T(9113) _VMR 09:01:14.523511 DEBUG VMR_HG.C[12360]: Add managed system success for CEC Server-8408-E8E-SN212424W(3a53a6fc-8dcb-3671-a853-70526651f83d)

 [09] 04/30/19 T(9113) _VMR 09:01:14.785362 DEBUG VMR_CEC.C[13243]: add_VM() passed for host Server-8408-E8E-SN212424W so now setting the status to VIOs managed for VM vmraix1

 [09] 04/30/19 T(9113) _VMR 09:01:38.928457 DEBUG VMR_CEC.C[14972]: ClientEthernetAdapter state:OK for VM:vmraix1(61BE20F0-09A8-4753-B5E5-564F8A545ED5)

 [09] 04/30/19 T(9113) _VMR 09:01:44.801030 DEBUG VMR_CEC.C[14588]: StartVM() passed for host Server-8408-E8E-SN212424W, VM vmraix1 so Moving VMMonitor state to starting

 [09] 04/30/19 T(9113) _VMR 09:03:54.849762 DEBUG VMR_HG.C[5741]: ------------- HG Verification process END for HG : rbHG ------------

 user.log.posthamonitorenable: END

 [image:]

 Both hosts are recorded as managed systems added successfully after these CEC verifications. We expect that these hosts were already added after some previous discovery and this CEC verification is just a reconfirmation. The discovery sequence continues with two actions, which are add_VM() and StartVM() function calls for the vmraix1 VM, so we continue to check the log files for more details.

 The krest trace file reveals counterpart pass-through API requests to involve VIOSs, as shown in Example 2-179, so we know what to look for at the VIOS level.

 Example 2-179 The krest trace file records for VM monitoring enabled discovery

 [image:]

 # egrep -i "addms|addvm|startvm" krest.log.posthamonitorenable

 ...

 [00] 04/30/19 T(9113) _VMR 09:01:13.826110 DEBUG libkrest.c[6561]: kriSubmitaddMS:hmc->(129.41.127.3),

 [00] 04/30/19 T(9113) _VMR 09:01:14.119470 DEBUG libkrest.c[6712]: kriSubmitaddMS returning 0 with jobid->(1555954664653).

 [00] 04/30/19 T(9113) _VMR 09:01:14.259633 DEBUG libkrest.c[6561]: kriSubmitaddMS:hmc->(129.41.127.3),

 [00] 04/30/19 T(9113) _VMR 09:01:14.395984 DEBUG libkrest.c[6712]: kriSubmitaddMS returning 0 with jobid->(1555954664654).

 [00] 04/30/19 T(9113) _VMR 09:01:14.537656 DEBUG libkrest.c[6884]: kriSubmitaddVM:hmc->(129.41.127.3),

 [00] 04/30/19 T(9113) _VMR 09:01:14.670640 DEBUG libkrest.c[7036]: kriSubmitaddVM returning 0 with jobid->(1555954664655).

 [00] 04/30/19 T(9113) _VMR 09:01:39.437633 DEBUG libkrest.c[10006]: kriSubmitstartVM:hmc->(129.41.127.3),

 [00] 04/30/19 T(9113) _VMR 09:01:39.612644 DEBUG libkrest.c[10158]: kriSubmitstartVM returning 0 with jobid->(1555954664660).

 #

 [image:]

 In Example 2-180, we select only krest API requests that are submitted during the discovery interval and then filter the less relevant of them for our purposes. To shorten the output, we also remove the beginning fields.

 Example 2-180 The krest requests during VM monitoring enabled discovery

 [image:]

 # grep " 04/30/19 T(" krest.log.posthamonitorenable|sed '/_VMR\ 08:59:5/,/_VMR\ 09:04:/!d'>krest.log.posthamonitorenable.discovery

 # grep -c " kri" krest.log.posthamonitorenable.discovery

 251

 # grep " kri" krest.log.posthamonitorenable.discovery|grep -Ev "krigetJobResult|kriSubmitQuickQuery|kriSubmitNeedAttn|kriSubmitExchange|krigetHmc|krigetCec|krigetVios|krigetLpar|kriSubmitQueryNodeData|kriSubmitAck|returning"|awk '{$1=$2=$3=$4=$5=$6=$7=""; sub(" ",""); print}'

 kriSwitchExists: START

 kriTrunkAdapterExists on VIOS with UUID 5C3196A3-C41F-4B5C-9861-DEE6077081C6

 kriTrunkAdapterExists: Calling getTrunkAdapterFromRawxml

 kriTrunkAdapterExists on VIOS with UUID 0AB5001F-2C3E-4FBB-97EA-41D3F8C4F898

 kriTrunkAdapterExists: Calling getTrunkAdapterFromRawxml

 kriModifySwitch: START

 kriSwitchExists: START

 kriTrunkAdapterExists on VIOS with UUID 72DEE902-1210-4BD7-A35F-3A6C771C6453

 kriTrunkAdapterExists: Calling getTrunkAdapterFromRawxml

 kriTrunkAdapterExists on VIOS with UUID 10875B47-D737-44F9-A745-554F4DF4ADF8

 kriTrunkAdapterExists: Calling getTrunkAdapterFromRawxml

 kriModifySwitch: START

 krigetSSPInfo:hmc->(129.41.127.3),sspid->(33dd9c03-6899-349c-901a-7b178bfc742e)

 krisetComHMversion:hmc->(129.41.127.3),

 kriSubmitaddMS:hmc->(129.41.127.3),

 kriSubmitaddMS:hmc->(129.41.127.3),

 kriSubmitaddVM:hmc->(129.41.127.3),

 kriAdapterExists: START

 kriAdapterExists: Checking Adapter with vlan:101,on switchid:2,for vm 61BE20F0-09A8-4753-B5E5-564F8A545ED5(cecuuid:3a53a6fc-8dcb-3671-a853-70526651f83d)

 kriCreateAdapter: START

 kriAdapterExists: START

 kriAdapterExists: Checking Adapter with vlan:102,on switchid:2,for vm 61BE20F0-09A8-4753-B5E5-564F8A545ED5(cecuuid:3a53a6fc-8dcb-3671-a853-70526651f83d)

 kriCreateAdapter: START

 kriSubmitqueryVM:hmc->(129.41.127.3),

 kriSubmitstartVM:hmc->(129.41.127.3),

 kriSubmitGetLCB:hmc->(129.41.127.3),vm->(61BE20F0-09A8-4753-B5E5-564F8A545ED5)

 kriSubmitGetLCB:hmc->(129.41.127.3),vm->(1950678C-18BF-4C87-860C-F9E6EC24B513)

 kriSubmitqueryVM:hmc->(129.41.127.3),

 #

 [image:]

 For the first kriSubmitaddMS call (the Server-8408-E8E-SN21282FW host), we identify the counterpart VIO_HS_ADD_MS pass-through API request at the VIOS level, as shown in Example 2-181.

 Example 2-181 VIO_HS_ADD_MS request trace in viosvc.log

 [image:]

 # uname -uL

 IBM,0221282FW 3 usaxvib053ccpx1

 # alog -f /home/ios/logs/viosvc.log -o > viosvc.log.posthamonitorenable

 #more viosvc.log.posthamonitorenable

 [START 25756024 59834737 04/30/19-09:01:14.128 vioservice.c 1.17 306] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 25756024 59834737 04/30/19-09:01:14.128 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Add Managed System">

 <Request action_str="VIO_HS_ADD_MS" hsTag="0">

 <addMS>

 <viosList machine_type="8408" model="E8E" serial="21282FW">

 <vios uuid="72dee902-1210-4bd7-a35f-3a6c771c6453" isHM="true" partNum="3" macAddr="16DC6A23650F"/>

 <vios uuid="10875b47-d737-44f9-a745-554f4df4adf8" isHM="true" partNum="2" macAddr="16DC662CB90E"/>

 </viosList>

 </addMS>

 </Request>

 </VIO>

]

 [0 25756024 59834737 04/30/19-09:01:14.161 viosvc_res.c 1.26 464] vio_response.result=[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00"

 version="2.00"

 title="VIOS ADD_MS"

 published="2019-04-30T01:17:00Z"

 author="IBM Power Systems VIOS"

 >

 <Response>

 </Response>

 </VIO>

]

 [END 25756024 59834737 04/30/19-09:01:14.161 vioservice.c 1.17 309] exited with rc=0

 viosvc.log.posthamonitorenable (92%)

 #

 [image:]

 Here is an excerpt from the /usr/lib/vioHADR2.00.xsd file on VIOS detailing the VIO_HS_ADD_MS request:

 - VIO_HS_ADD_MS: KSYS sends to a VIOS on the managed system in an SSP cluster that is to be added to the list of managed systems in the cluster participating in the HA solution. The XML document includes the list of VIOS on the system 2 of which must be designated as HMs.

 Using the vioservice thread PID to TID combination, we identify the health library log trace, as shown in Example 2-182.

 Example 2-182 The VIO_HS_ADD_MS trace in the health library log

 [image:]

 # alog -f /home/ios/logs/health/viohs.log -o > viohs.log.posthamonitorenable

 # grep "25756024 59834737" viohs.log.posthamonitorenable

 [START 25756024 59834737 04/30/19-09:01:14.129 ha_util.c 1.43 230]

 [3 25756024 59834737 04/30/19-09:01:14.129 hs_util.c hs_libvio_traces 1.66 60] HEALTH:59834737 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=e4c3993266fd11e9801efa242424f21c

 [3 25756024 59834737 04/30/19-09:01:14.130 hs_ms.c vioHsAddMs 1.83 2254] Begin.

 [3 25756024 59834737 04/30/19-09:01:14.130 hs_ms.c hsParseAddMsInputs 1.83 1758] Found '1' elements for '/VIO/Request/addMS'.

 [3 25756024 59834737 04/30/19-09:01:14.130 hs_ms.c hsParseAddMsInputs 1.83 1772] Found '1' elements for '/VIO/Request/addMS/viosList'.

 [3 25756024 59834737 04/30/19-09:01:14.130 hs_ms.c hsParseSysProperties 1.83 1850] Input managed system machine_type is '8408'

 [3 25756024 59834737 04/30/19-09:01:14.130 hs_ms.c hsParseSysProperties 1.83 1881] Input managed system model is 'E8E'

 [3 25756024 59834737 04/30/19-09:01:14.130 hs_ms.c hsParseSysProperties 1.83 1912] Input managed system serial is '21282FW'

 [3 25756024 59834737 04/30/19-09:01:14.130 hs_ms.c hsParseAddMsInputs 1.83 1782] Found '2' elements for '/VIO/Request/addMS/viosList/vios'.

 [3 25756024 59834737 04/30/19-09:01:14.130 hs_ms.c hsParseViosList 1.83 1650] Found '2' elements for '/VIO/Request/addMS/viosList/vios'.

 [3 25756024 59834737 04/30/19-09:01:14.131 hs_util.c hs_libvio_traces 1.66 60] HEALTH:59834737 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 2001a758

 [3 25756024 59834737 04/30/19-09:01:14.160 hs_ms.c hsCurMsPendop 1.83 1429] MS exists=1, pendop=0, type=8408, model=E8E, serial=21282FW

 [3 25756024 59834737 04/30/19-09:01:14.160 hs_ms.c vioHsAddMs 1.83 2274] Managed system is already existing.

 [3 25756024 59834737 04/30/19-09:01:14.160 hs_ms.c vioHsAddMs 1.83 2451] END.

 [END 25756024 59834737 04/30/19-09:01:14.160 ha_util.c 1.43 253] exited with rc=0

 #

 [image:]

 The result of the vioHsAddMs call is the Managed system is already existing message in the HSDB, which is an expected result. A similar sequence occurs for the second host, so we skip it and examine the VIOS logs for the kriSubmitaddVM call. Example 2-183 shows the VIO_HS_ADD_VM request for the vmraix1 VM as received at VIOS level.

 Example 2-183 VIO_HS_ADD_VM request for the vmraix1 VM as received at the VIOS level

 [image:]

 [START 20644150 79626541 04/30/19-09:01:14.675 vioservice.c 1.17 306] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 20644150 79626541 04/30/19-09:01:14.675 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Add VM">

 <Request action_str="VIO_HS_ADD_VM" hsTag="0">

 <addVM>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 <vm uuid="61be20f0-09a8-4753-b5e5-564f8a545ed5"/>

 </vmList>

 </addVM>

 </Request>

 </VIO>

]

 [0 20644150 79626541 04/30/19-09:01:14.714 viosvc_res.c 1.26 464] vio_response.result=[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00"

 version="2.00"

 title="VIOS ADD_VM"

 published="2019-04-30T01:17:00Z"

 author="IBM Power Systems VIOS"

 >

 <Response>

 </Response>

 </VIO>

]

 [END 20644150 79626541 04/30/19-09:01:14.714 vioservice.c 1.17 309] exited with rc=0

 [image:]

 Using the vioservice thread PID - TID combination, we identify the health library log trace, as shown in Example 2-184.

 Example 2-184 VIO_HS_ADD_VM trace in health library log

 [image:]

 # grep "20644150 79626541" viohs.log.posthamonitorenable

 [START 20644150 79626541 04/30/19-09:01:14.675 ha_util.c 1.43 230]

 [3 20644150 79626541 04/30/19-09:01:14.675 hs_util.c hs_libvio_traces 1.66 60] HEALTH:79626541 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=e4c3993266fd11e9801efa242424f21c

 [3 20644150 79626541 04/30/19-09:01:14.676 hs_vm.c vioHsAddVm 1.26 324] Begin.

 [3 20644150 79626541 04/30/19-09:01:14.676 hs_util.c hs_libvio_traces 1.66 60] HEALTH:79626541 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20018f18

 [3 20644150 79626541 04/30/19-09:01:14.691 hs_util.c hs_libvio_traces 1.66 60] HEALTH:79626541 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20018f18

 [3 20644150 79626541 04/30/19-09:01:14.709 hs_vm.c hsParseMsVmInputs 1.26 181] Found '1' elements for '/VIO/Request/addVM/vmList'.

 [3 20644150 79626541 04/30/19-09:01:14.709 hs_ms.c hsParseSysProperties 1.83 1850] Input managed system machine_type is '8408'

 [3 20644150 79626541 04/30/19-09:01:14.709 hs_ms.c hsParseSysProperties 1.83 1881] Input managed system model is 'E8E'

 [3 20644150 79626541 04/30/19-09:01:14.709 hs_ms.c hsParseSysProperties 1.83 1912] Input managed system serial is '212424W'

 [3 20644150 79626541 04/30/19-09:01:14.709 hs_vm.c hsParseVmList 1.26 147] Found 61be20f0-09a8-4753-b5e5-564f8a545ed5 in addvm document

 [3 20644150 79626541 04/30/19-09:01:14.713 hs_vm.c vioHsAddVm 1.26 389] END: rc = 0.

 [END 20644150 79626541 04/30/19-09:01:14.713 ha_util.c 1.43 253] exited with rc=0

 #

 [image:]

 The hsParseVmList entry before vioHsAddVm successful return is rather vague: Found 61be20f0-09a8-4753-b5e5-564f8a545ed5 in addvm document. But, the PostgreSQL log entry around this return moment, as shown in Example 2-185, clarifies it.

 Example 2-185 SQL INSERT into the VM table for the vmraix1 VM

 [image:]

 # pwd

 /home/ios/logs/pg_sspdb

 # more pg_sspdb-30-08-40.log

 ...

 2019-04-30 09:01:14.712 CUT|5ccdbfa7.ed017a|LOG: statement: RELEASE _EXEC_SVP_20122d28;SAVEPOINT _EXEC_SVP_20122d28;INSERT INTO vioshs.vm(vmuuid, name, state) VALUES('61be20f0-09a8-4753-b5e5-564f8a545ed5', '', 1)

 ...

 [image:]

 So, an entry for the vmraix1 VM is inserted into the vm table as a result of the VIO_HS_ADD_VM request from KSYS. Note the value 1 for the state field at this insert moment. The vm table status at the end of this discovery command in shown in Example 2-188 on page 213, where the state field value is 2 at that moment.

 The next action that we investigate is the kriSubmitstartVM call with its counterpart VIO_HS_START_VM at the VIOS level, as shown in Example 2-186.

 Example 2-186 VIO_HS_START_VM request for the vmraix1 VM as received at the VIOS level

 [image:]

 [START 22282714 72745423 04/30/19-09:01:39.618 vioservice.c 1.17 306] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 22282714 72745423 04/30/19-09:01:39.619 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Start VM">

 <Request action_str="VIO_HS_START_VM" hsTag="0">

 <startVM>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 <vm uuid="61be20f0-09a8-4753-b5e5-564f8a545ed5"/>

 </vmList>

 </startVM>

 </Request>

 </VIO>

]

 [0 22282714 72745423 04/30/19-09:01:39.761 viosvc_res.c 1.26 464] vio_response.result=[]

 [END 22282714 72745423 04/30/19-09:01:39.761 vioservice.c 1.17 309] exited with rc=0

 [image:]

 Using the vioservice thread PID - TID combination, we further identify the health library log trace, as shown in Example 2-187.

 Example 2-187 VIO_HS_START_VM trace in the health library log

 [image:]

 # grep "22282714 72745423" viohs.log.posthamonitorenable

 [START 22282714 72745423 04/30/19-09:01:39.619 ha_util.c 1.43 230]

 [3 22282714 72745423 04/30/19-09:01:39.619 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72745423 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=e4c3993266fd11e9801efa242424f21c

 [3 22282714 72745423 04/30/19-09:01:39.620 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72745423 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20018f18

 [3 22282714 72745423 04/30/19-09:01:39.644 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72745423 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20018f18

 [3 22282714 72745423 04/30/19-09:01:39.670 hs_start_vm.c derive_msid_from_request 1.79 340] request intended for managed system 8408-E8E-212424W

 [3 22282714 72745423 04/30/19-09:01:39.670 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72745423 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20016648

 [3 22282714 72745423 04/30/19-09:01:39.688 hs_start_vm.c vioHsStartVm 1.79 141] received StartVM request for managed system AE69CFBA0D16418B

 [3 22282714 72745423 04/30/19-09:01:39.688 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72745423 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20016648

 [3 22282714 72745423 04/30/19-09:01:39.707 hs_start_vm.c vioHsStartVm 1.79 173] StartVM request tag is D7E3D316D0D88C47

 [3 22282714 72745423 04/30/19-09:01:39.707 hs_start_vm.c vioHsStartVm 1.79 186] StartVM requested for (1) machines

 [3 22282714 72745423 04/30/19-09:01:39.707 hs_start_vm.c vioHsStartVm 1.79 190] StartVM requested for 61be20f0-09a8-4753-b5e5-564f8a545ed5

 [3 22282714 72745423 04/30/19-09:01:39.707 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72745423 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20018c88

 [3 22282714 72745423 04/30/19-09:01:39.733 hs_start_vm.c vioHsStartVm 1.79 204] StartVM registered for 61be20f0-09a8-4753-b5e5-564f8a545ed5

 [3 22282714 72745423 04/30/19-09:01:39.734 hs_start_vm.c vioHsStartVm 1.79 211] StartVM registered for (1/1) machines

 [3 22282714 72745423 04/30/19-09:01:39.734 hs_util.c hs_libvio_traces 1.66 60] HEALTH:72745423 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20018c88

 [3 22282714 72745423 04/30/19-09:01:39.748 hs_start_vm.c tell_monitors 1.79 838] Telling host monitors about StartVM tag D7E3D316D0D88C47

 [3 22282714 72745423 04/30/19-09:01:39.755 hs_start_vm.c tell_monitors 1.79 850] Told host monitor on VIOS 5c3196a3-c41f-4b5c-9861-dee6077081c6 about StartVM tag D7E3D316D0D88C47

 [3 22282714 72745423 04/30/19-09:01:39.760 hs_start_vm.c tell_monitors 1.79 850] Told host monitor on VIOS 0ab5001f-2c3e-4fbb-97ea-41d3f8c4f898 about StartVM tag D7E3D316D0D88C47

 [3 22282714 72745423 04/30/19-09:01:39.760 hs_start_vm.c tell_monitors 1.79 865] Told (2/2) host monitors about StartVM tag D7E3D316D0D88C47

 [END 22282714 72745423 04/30/19-09:01:39.760 ha_util.c 1.43 253] exited with rc=0

 #

 [image:]

 The sequence of health library records in Example 2-187 reveals that actions are performed at both the HSDB and HM levels.

 A tag with a D7E3D316D0D88C47 hexadecimal value is generated at the health library level for the StartVM request, and the HSDB is updated with details about this request, including this tag value. Example 2-188 on page 213 shows the ms, vm, map, and trans tables at the end of the discovery command.

 Example 2-188 ms, vm, map, and trans tables in HSDB just after the discovery command

 [image:]

 vios=# select * from ms;

 msid | clusterid | mtm | machinetype | model | serial

 ----------------------+-----------+-----------------+-------------+-------+---------

 7926057748306591969 | 1 | 8408-E8E21282FW | 8408 | E8E | 21282FW

 -5878939440565042805 | 1 | 8408-E8E212424W | 8408 | E8E | 212424W

 (2 rows)

 vios=# select * from vm;

 vmuuid | name | msid | misshistory | state | up_major | up_minor | lo_major | lo_minor | shortmsg | msgsync | msgsdeleted | misshistoryts | suspendts

 --------------------------------------+------------+----------------------+-------------+-------+----------+----------+----------+----------+----------+---------+-------------+---------------+-----------

 | default_vm | | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |

 61be20f0-09a8-4753-b5e5-564f8a545ed5 | | -5878939440565042805 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |

 (2 rows)

 vios=# select * from map;

 vmuuid | viosuuid | misshistory | hmrecovery | viosrecovery | vmhbmissed

 --------------------------------------+--------------------------------------+-------------+------------+--------------+------------

 61be20f0-09a8-4753-b5e5-564f8a545ed5 | 5c3196a3-c41f-4b5c-9861-dee6077081c6 | 0 | 0 | 0 |

 61be20f0-09a8-4753-b5e5-564f8a545ed5 | 0ab5001f-2c3e-4fbb-97ea-41d3f8c4f898 | 0 | 0 | 0 |

 (2 rows)

 vios=# select * from trans;

 vmuuid | viosuuid | msid | tag | opcode | state | data | integer | txstarted

 --------------------------------------+--------------------------------------+----------------------+-----------------------+--------+-------+------+---------+----------------------------

 61be20f0-09a8-4753-b5e5-564f8a545ed5 | 5c3196a3-c41f-4b5c-9861-dee6077081c6 | -5878939440565042805 | -2890234440895132601 | 1 | 9 | | 0 | 2019-04-30 09:01:39.712969

 61be20f0-09a8-4753-b5e5-564f8a545ed5 | 0ab5001f-2c3e-4fbb-97ea-41d3f8c4f898 | -5878939440565042805 | -2890234440895132601 | 1 | 9 | | 0 | 2019-04-30 09:01:39.739899

 (2 rows)

 vios=# select to_hex(-2890234440895132601);

 to_hex

 d7e3d316d0d88c47

 (1 row)

 vios=#

 [image:]

 The state value in the vm table changed from 1 to 2 because it was after the addVM flow (see Example 2-185 on page 211). We present in this context a relevant excerpt from the /usr/lib/vioHADR2.00.xsd file on VIOS that mentions the addVM flow and possible state values for a VM:

 ...
vmStateType
===========
ADDED: The VM has been added via the addVM flow.
STARTING: HM is attempting to start monitoring of the VM in response to a request from KSYS
STARTED: KSYS has requested that a particular VM is monitored on a managed system and both HMs on that system have received acknowledgements from the respective VMM. VIOS asserts need attention when VM moves from starting to started state. KSYS can choose to fail adding a VM after some reasonable time period if it has not moved to started state.
..

 In our case, the vmraix1 VM changed from the ADDED (1) state to the STARTING (2) state, where it remained after the completion of the discovery command. To understand why it remained in STARTING state, we look into the HM logs for traces that are related to the last entries in Example 2-187 on page 212. The HM log records around the same interval for the VIOS with the 5c3196a3-c41f-4b5c-9861-dee6077081c6 UUID are shown in Example 2-189.

 Example 2-189 UNIX Socket command that is received by an HM to start monitoring on the vmraix1 VM

 [image:]

 # uname -uL

 IBM,02212424W 3 usaxvib063ccpx1

 # lsattr -El vios0 -a vios_uuid

 vios_uuid 5c3196a3-c41f-4b5c-9861-dee6077081c6 VIOS Unique Identifier False

 # alog -f /home/ios/logs/health/host_monitor.log -o > host_monitor.log.posthamonitorenable

 # more host_monitor.log.posthamonitorenable

 [3 16122210 91554293 04/30/19-09:01:36.356 Processing.C:Processing::cleanMsgBuffer(const s...: 833] Removing message to VmMon at macAddr 'FFFFFFFFFFFF' from send queue. Reason: Fully sent

 [3 16122210 91095433 04/30/19-09:01:39.756 HostMonitor.C:HostMonitor::socketReceiveMessage...: 134] Unix Socket: Received command 0x00000101 (tag 0xD7E3D316D0D88C47)

 [3 16122210 91095433 04/30/19-09:01:39.758 HostMonitor.C:HostMonitor::socketReceiveMessage...: 137] Received Valid Request Payload.

 [2 16122210 91095433 04/30/19-09:01:40.798 DatabaseAccess.C:DatabaseAccess::getVmList(vect...: 219] vioHmStartVMs: VMs to Start=1, rc=0

 [2 16122210 91095433 04/30/19-09:01:40.798 Processing.C:Processing::controlVm(const string...: 505] HostMonitor is asked to START monitoring VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' (command from SSP Database)

 [3 16122210 91095433 04/30/19-09:01:40.798 VmHealthStatusMgr.C:VmHealthStatusMgr::monitorV...: 183] Start monitoring VM '61be20f0-09a8-4753-b5e5-564f8a545ed5'.

 [2 16122210 91095433 04/30/19-09:01:40.798 VmHealthStatusMgr.C:VmHealthStatusMgr::monitorV...: 209] Monitoring won't start for VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' : VmMonitor has not yet been discovered.

 [2 16122210 91095433 04/30/19-09:01:40.798 Processing.C:Processing::controlVm(const string...: 540] VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' has not yet been discovered. Cannot process action.

 [3 16122210 91095433 04/30/19-09:01:40.798 UnixSocket.C:UnixSocket::disconnectClient() : 93] Unix Socket: Closing connnection to client

 [3 16122210 91619721 04/30/19-09:02:05.303 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 host_monitor.log.posthamonitorenable (99%)

 [image:]

 This HM receives through a UNIX socket a command, here identified as 0x00000101 (tag 0xD7E3D316D0D88C47). This command results immediately in a vioHmStartVMs call, which in turn results in a tentative start monitoring action for the vmraix1 VM. We also note that the associated hexadecimal tag value is the same as in the related health library log records. But, even if the HA monitoring is enabled at KSYS, the actual VM monitoring does not start and remains marked as STARTING at the HSDB level because the VM Agent has not yet been discovered by our HM instance. This is expected because we did not install the VM Agent fileset on the vmraix1 VM, so there is no appropriate counterpart endpoint there to interact with the HM instance.

 Install the fileset and see what happens. As described “HM startup sequence” on page 159, the running HM instances are already broadcasting continuously Hello messages, waiting for the agents on the managed VMs to respond. A complete HM to VMM handshake flow is detailed in “HM-VMM communication establishment”.

 HM-VMM communication establishment

 We covered in “VM Agent activation” on page 164 the blind startup sequence of the VMM daemon for the case of an isolated VM when VM monitoring is not enabled at the KSYS level and the VM does not have the HA client adapters created. We saw in that case how VMM enters a steady state loop where it is looking continuously for the HA client adapters on which to listen for Hello messages.

 Here we present the case where the VMM agent is deployed on a VM enabled for monitoring and discovered by KSYS after enablement, as described in 2.3.1, “Discovery of a VM that is enabled for monitoring” on page 203. The focus here is on the handshake protocol between the VMM and the HMs, but we are also interested in the HSDB updates about the VM status. The running HMs on the VIOS side are broadcasting repeatedly Hello messages and waiting for the possible agents on the managed VMs to respond, as described in “HM activation” on page 150.

 In Example 2-190, we filter the output of the procstack command on our test VM, vmraix1, so that we can easily identify later the thread type for each TID.

 Example 2-190 VMM threads for the HM to VMM communication establishment scenario

 [image:]

 # uname -uL

 IBM,02212424W 5 vmraix1

 [vmraix1:root:/var/ksys/log/hmvmmhs:] lssrc -s ksys_vmm

 Subsystem Group PID Status

 ksys_vmm 10682746 active

 # procstack 10682746|egrep "tid|main|threadMain"

 ---------- tid# 17563989 (pthread ID: 1) ----------

 0x10007e9c main(??, ??) + 0xf1c

 ---------- tid# 19202453 (pthread ID: 1286) ----------

 0x100e6110 UnixSocket::threadMain()(??) + 0x50

 ---------- tid# 20513041 (pthread ID: 1029) ----------

 0x102cc564 VmMonitor::threadMain()(??) + 0x3c4

 ---------- tid# 27918627 (pthread ID: 2828) ----------

 0x1007185c HvncpSender::threadMain()(??) + 0x8fc

 ---------- tid# 23724513 (pthread ID: 2571) ----------

 0x10083e24 HvncpReceiver::threadMain()(??) + 0x6a4

 ---------- tid# 17826247 (pthread ID: 2314) ----------

 0x1008ee44 VlanCommunication::threadMain()(??) + 0x44

 ---------- tid# 17760557 (pthread ID: 2057) ----------

 0x1007185c HvncpSender::threadMain()(??) + 0x8fc

 ---------- tid# 24183173 (pthread ID: 1800) ----------

 0x10083e24 HvncpReceiver::threadMain()(??) + 0x6a4

 ---------- tid# 21168565 (pthread ID: 1543) ----------

 0x1008ee44 VlanCommunication::threadMain()(??) + 0x44

 ---------- tid# 18940395 (pthread ID: 772) ----------

 0x100bb870 VmNetIntfHandler::threadMain()(??) + 0x2b0

 ---------- tid# 22806881 (pthread ID: 515) ----------

 0x10263d04 AppReport::threadMain()(??) + 0x1a4

 ---------- tid# 19792237 (pthread ID: 258) ----------

 0x100ed1ec AppsMngt::threadMain()(??) + 0x12c

 #

 [image:]

 The initial steps of the VMM daemon startup sequence until the scan for the Virtual Ethernet adapters are omitted in Example 2-191 because the steps are similar the ones that are described in “VM Agent activation” on page 164. For the case we present here, the prior host group discovery created the HA client Virtual Ethernet adapters at the LPAR container level, as shown in Example 2-175 on page 203. So, the VmNetIntfHandler thread (pTID 772) can identify its counterpart logical devices at the operating system level, ent1 and ent2, among the other scanned adapters.

 Example 2-191 Discovery of the Virtual Ethernet adapters for HM to VMM communication

 [image:]

 # uname -uL; pwd

 IBM,02212424W 5 vmraix1

 /var/ksys/log

 # more ksys_vmm.debug

 [START 10682746 1 05/14/19-01:50:26

 ...

 [2 10682746 1 05/14/19-01:50:26 VmUtils.C:vmutils::runSystemCommand(string) : 561] Command: lsdev -c adapter | grep '^ent'> /var/ksys/log/cmdop_10682746_1 2>&1,

 Command output:

 ent0 Available Virtual I/O Ethernet Adapter (l-lan)

 ent1 Available Virtual I/O Ethernet Adapter (l-lan)

 ent2 Available Virtual I/O Ethernet Adapter (l-lan)

 , returnCode: 0

 [3 10682746 1 05/14/19-01:50:26 HACommon.C:hacommon::runSystemCommand(string) : 117] Execution of command 'lsdev -c adapter | grep '^ent' | grep -w Defined | awk '{print $1

 }' > /var/ksys/log/interfaceList.txt' succeeded (rc=0).

 [2 10682746 1 05/14/19-01:50:26 VmNetIntfHandler.C:VmNetIntfHandler::startThread(): 75] Starting VmNetIntfHandler thread.

 [3 10682746 1 05/14/19-01:50:26 VmMonitor.C:VmMonitor::check_and_set_crit_VG_at...: 1636] get CRITICAL VG value: LC_ALL=C /usr/sbin/lsvg rootvg | /usr/bin/grep "CRITICAL VG:" | /usr/bin/sed 's/.*CRITICAL VG:[]*//g' 2>/dev/null

 [3 10682746 772 05/14/19-01:50:26 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 125] Found 7 possible interfaces to listen (not filtered).

 [3 10682746 772 05/14/19-01:50:26 VmUtils.C:vmutils::getNetIntf(int, list<std::ba...: 253] intfAlias=en0

 [3 10682746 772 05/14/19-01:50:26 VmUtils.C:vmutils::getNetIntf(int, list<std::ba...: 254] intfName=ent0

 [3 10682746 772 05/14/19-01:50:26 VmUtils.C:vmutils::getNetIntf(int, list<std::ba...: 277] Interface en0 has IP address, discard it.

 [3 10682746 772 05/14/19-01:50:26 VmUtils.C:vmutils::getNetIntf(int, list<std::ba...: 253] intfAlias=en1

 [3 10682746 772 05/14/19-01:50:26 VmUtils.C:vmutils::getNetIntf(int, list<std::ba...: 254] intfName=ent1

 [3 10682746 772 05/14/19-01:50:26 VmUtils.C:vmutils::getNetIntf(int, list<std::ba...: 265] Interface en1 has no IP address, keep it.

 [3 10682746 772 05/14/19-01:50:26 VmUtils.C:vmutils::getNetIntf(int, list<std::ba...: 253] intfAlias=en2

 [3 10682746 772 05/14/19-01:50:26 VmUtils.C:vmutils::getNetIntf(int, list<std::ba...: 254] intfName=ent2

 [3 10682746 772 05/14/19-01:50:26 VmUtils.C:vmutils::getNetIntf(int, list<std::ba...: 265] Interface en2 has no IP address, keep it.

 [3 10682746 772 05/14/19-01:50:26 VmUtils.C:vmutils::bindNetIntfName(string) : 454] Successful bind on interface ent1 (fd returned 12)

 [2 10682746 772 05/14/19-01:50:26 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 175] Interface ent1 : Now listening to find a HostMonitor.

 [3 10682746 772 05/14/19-01:50:26 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 182] Successful bind on interface ent1 . Listening for 'Hello' message.

 ksys_vmm.debug (13%)

 #

 [image:]

 The child interfaces, en1 and en2, have no IP configured, so ent1 and ent2 are good candidates to be the wanted HA client adapters. On the contrary, en0 has an IP configured, so it is discarded.

 The last three records in Example 2-191 on page 216 show how the same thread (pTID 772) binds to the ent1 interface to listen for expected Hello packets coming from the counterpart HM on the VIOS side. Though not shown, the same happens for the identified ent2 interface and the other HM instance on the second VIOS of the host.

 In Example 2-192, we collected the Ethernet connectivity details for the HA client adapters of the considered VM, vmraix1, and also for their counterpart VIOS trunk adapters. These details are mentioned here to help with easier identification of the communication endpoints for the handshake protocol we present.

 Example 2-192 HA client adapters and counterpart VIOS trunk adapters

 [image:]

 # uname -uL

 IBM,02212424W 5 vmraix1

 # entstat -d ent1|egrep "^Hardware Address|^Switch ID|^Port VLAN ID"

 Hardware Address: 6a:6a:0f:fd:f7:07

 Port VLAN ID: 101

 Switch ID: rbRMHA_VSWITCH

 # entstat -d ent2|egrep "^Hardware Address|^Switch|^Port VLAN ID"

 Hardware Address: 6a:6a:0f:fd:f7:08

 Port VLAN ID: 102

 Switch ID: rbRMHA_VSWITCH

 #

 # uname -uL; entstat -d ent22|egrep "^Hardware Address|^Switch|^Port VLAN ID"

 IBM,02212424W 3 usaxvib063ccpx1

 Hardware Address: 6a:6a:08:84:ee:11

 Port VLAN ID: 101

 Switch ID: rbRMHA_VSWITCH

 Switch Mode: VEPA

 #

 # uname -uL; entstat -d ent22|egrep "^Hardware Address|^Switch|^Port VLAN ID"

 IBM,02212424W 2 usaxvia063ccpx1

 Hardware Address: 6a:6a:01:58:1f:11

 Port VLAN ID: 102

 Switch ID: rbRMHA_VSWITCH

 Switch Mode: VEPA

 #

 [image:]

 The VLAN ID of the ent1 interface on vmraix1 is 101, so the Hello packets that are expected on ent1 are sent from the VIOS that is connected to the same VLAN, that is, usaxvib063ccpx1. The excerpt that is shown in Example 2-193 from the HM log on the usaxvib063ccpx1 VIOS shows the Hello packets that are broadcast during the time interval of interest, once every 30 seconds. Clocks on the client VM and VIOSs are synced by the NTP protocol for easier examination of the sequencing of events.

 Each Hello packet contains as payload a specific identifier string that is generated randomly at the HM level based on the system clock. This string is used by the VMM to identify the originator HM of the received messages. If the HM restarts for any reason, then a new and unique identifier is generated for this identification purpose. In the case of an already established session, the VMM notices the new identity of the counterpart communication endpoint, drops the current session, and triggers a new protocol handshake sequence.

 Example 2-193 Hello broadcast records in the HM log on the VIOS side

 [image:]

 # uname -uL

 IBM,02212424W 3 usaxvib063ccpx1

 # lsattr -El vios0 -a vios_uuid

 vios_uuid 5c3196a3-c41f-4b5c-9861-dee6077081c6 VIOS Unique Identifier False

 # alog -f /home/ios/logs/health/host_monitor.log -o > host_monitor.log.hmvmmhandshake

 # more host_monitor.log.hmvmmhandshake

 ...

 [3 16122210 91554293 05/14/19-01:50:13.351 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '1556303553.811512000.38'

 [3 16122210 89719261 05/14/19-01:50:13.351 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: FFFFFFFFFFFF

 [3 16122210 89719261 05/14/19-01:50:13.351 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (23 bytes) 1556303553.811512000.38

 [3 16122210 91554293 05/14/19-01:50:13.844 Processing.C:Processing::cleanMsgBuffer(const s...: 833] Removing message to VmMon at macAddr 'FFFFFFFFFFFF' from send queue. Reason:

 Fully sent

 [3 16122210 91619721 05/14/19-01:50:34.353 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 [3 16122210 91554293 05/14/19-01:50:43.339 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '1556303553.811512000.38'

 [3 16122210 89719261 05/14/19-01:50:43.339 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: FFFFFFFFFFFF

 [3 16122210 89719261 05/14/19-01:50:43.339 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (23 bytes) 1556303553.811512000.38

 [3 16122210 91881983 05/14/19-01:50:43.796 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (84 bytes) uuid=61be20f0-09a8-4753-b5e5-564f8a545ed5:ostype=AI

 X:verVmmLower=2.0:verVmmUpper=2.0

 [3 16122210 77726013 05/14/19-01:50:43.796 HvncpReceiver.C:HvncpReceiver::threadMain() : 390] Received Packet from macAddr '6A6A0FFDF707'.

 [3 16122210 77726013 05/14/19-01:50:43.796 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (84 bytes) uuid=61be20f0-09a8-4753-b5e5-564f8a545ed5:ostype=AI

 X:verVmmLower=2.0:verVmmUpper=2.0

 [3 16122210 77726013 05/14/19-01:50:43.796 HvncpReceiver.C:HvncpReceiver::threadMain() : 411] Received SYN packet 1 from macAddr '6A6A0FFDF707'.

 host_monitor.log.hmvmmhandshake (99%)

 #

 [image:]

 Two Hello messages with the same 1556303553.811512000.38 identifier value (23-byte payload) are shown in Example 2-193 on page 218 as sent by the same HM daemon at 01:50:13.351 and 01:50:43.339. Note the 30-second interval. The VmNetIntfHandler thread (pTID 772) is created in between, around 01:50:26, as shown in Example 2-191 on page 216, and starts shortly afterward to look repeatedly for interfaces on which to listen for Hello messages every 5 seconds. So, the first Hello packet that is has a chance to receive is that one that is sent at 01:50:43.339. Around 01:50:43, after receiving this first Hello packet, the VmNetIntfHandler thread performs with the VmMonitor thread (pTID 1029) the whole sequence of actions that is shown in Example 2-194.

 Example 2-194 Receiving the Hello packet on the VMM side and sending back the SYN packet

 [image:]

 # more ksys_vmm.debug

 ...

 [3 10682746 772 05/14/19-01:50:43 VmNetIntfHandler.C:VmNetIntfHandler::checkMessa...: 387] Ethertype 1536

 [3 10682746 772 05/14/19-01:50:43 VmNetIntfHandler.C:VmNetIntfHandler::checkMessa...: 402] Received a 'Hello' packet from macAddr '6A6A0884EE11' with helloIdentifier '1556303553.811512000.38'.

 [3 10682746 772 05/14/19-01:50:43 VmNetIntf.C:VmNetIntf::getIntfName() const : 58] getIntfName()

 [2 10682746 772 05/14/19-01:50:43 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 300] Interface ent1 : Found a HostMonitor with MacAddr '6A6A0884EE11'

 [2 10682746 772 05/14/19-01:50:43 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 302] Interface ent1 : Now used by the VmMonitor and won't be listened anymore

 [3 10682746 772 05/14/19-01:50:43 VmNetIntf.C:VmNetIntf::~VmNetIntf() : 45] ~VmNetIntf()

 [3 10682746 772 05/14/19-01:50:43 VmNetIntf.C:VmNetIntf::~VmNetIntf() : 45] ~VmNetIntf()

 [3 10682746 772 05/14/19-01:50:43 VmNetIntfHandler.C:VmNetIntfHandler::threadMain() : 461] New HostMonitor '6A6A0884EE11' is found

 [3 10682746 772 05/14/19-01:50:43 VmNetIntfHandler.C:VmNetIntfHandler::threadMain() : 466] Pipe is being establshed between Interface 'ent1' and HostMonitor '6A6A0884EE11'

 [3 10682746 772 05/14/19-01:50:43 ethernet.C:configureEthernetSocketAddr(socketHa...: 255] +Socket '12' parameters (SNDD_8022)

 [3 10682746 772 05/14/19-01:50:43 ethernet.C:configureEthernetSocketAddr(socketHa...: 256] | family : 23

 [3 10682746 772 05/14/19-01:50:43 ethernet.C:configureEthernetSocketAddr(socketHa...: 257] | len : 36

 [3 10682746 772 05/14/19-01:50:43 ethernet.C:configureEthernetSocketAddr(socketHa...: 258] | filtertype : 4

 [3 10682746 772 05/14/19-01:50:43 ethernet.C:configureEthernetSocketAddr(socketHa...: 259] | ethertype : 1536

 [3 10682746 772 05/14/19-01:50:43 ethernet.C:configureEthernetSocketAddr(socketHa...: 260] | filterlen : 12

 [3 10682746 772 05/14/19-01:50:43 ethernet.C:configureEthernetSocketAddr(socketHa...: 261] | nddname : ent1

 [3 10682746 772 05/14/19-01:50:43 ethernet.C:configureEthernetSocketAddr(socketHa...: 262] +

 [3 10682746 772 05/14/19-01:50:43 ethernet.C:configureEthernetSocketAddr(socketHa...: 304] Found interface 'ent1' : macAddr '6A6A0FFDF707'.

 [3 10682746 772 05/14/19-01:50:43 VmMonitor.C:VmMonitor::addAdapter(string &, str...: 767] Interface ent1 : successfully connected to VmMonitor.

 [2 10682746 1029 05/14/19-01:50:43 VmMonitor.C:VmMonitor::threadMain() : 1289] Connect to the found HostMonitor at macAddr '6A6A0884EE11'.

 [3 10682746 1029 05/14/19-01:50:43 VmMonitor.C:VmMonitor::threadMain() : 1311] Network controller successfully started for macAddr '6A6A0884EE11'.

 [3 10682746 1029 05/14/19-01:50:43 HvncpSender.C:HvncpSender::addCommTableEntry(co...: 300] Sender opened communication table with macAddr '6A6A0884EE11'.

 [3 10682746 1029 05/14/19-01:50:43 HvncpReceiver.C:HvncpReceiver::linkCommTables(c...: 275] Receiver opened communication table with macAddr '6A6A0884EE11'.

 [2 10682746 2057 05/14/19-01:50:43 HvncpSender.C:HvncpSender::revokeSendSyn(const ...: 401] Delete any communication pending to 6A6A0884EE11 (except discovery)

 [3 10682746 2057 05/14/19-01:50:43 HvncpSender.C:HvncpSender::sendSyn(const string...: 523] Send SYN packet to 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:50:43 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:50:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (84 bytes) uuid=61be20f0-09a8-4753-b5e5-564f8a545ed5:ostype=AIX:verVmmLower=2.0:verVmmUpper=2.0

 ksys_vmm.debug (23%)

 [image:]

 A socket is configured on the ent1 interface that has the MAC address 6A6A0FFDF707 to establish a pipe with the originator HM of the received Hello message, and acts at the remote counterpart VIOS endpoint interface that is identified by the MAC address 6A6A0884EE11. A network controller starts for this pipe on the VMM side by creating three threads: HvncpSender, VlanCommunication, and HvncpReceiver with pTIDs 2057, 1543, and 1800. The pTID values are confirmed by the final log entries in Example 2-194 on page 219 and the subsequent entries in Example 2-197 on page 222.

 This triplet takes over the communication and an initial synchronization SYN packet is sent by the HvncpSender thread to the HM endpoint at the address 6A6A0884EE11 as a reaction to the received Hello packet. The payload of this initial SYN packet has 84 bytes and contains various VMM details, among which is the VM UUID with a value of 61be20f0-09a8-4753-b5e5-564f8a545ed5, as shown in Example 2-194 on page 219.

 On the HM side, we have a similar thread triplet setup handling the HM to VMM communication at the trunk adapter endpoint. In Example 2-195, note this triplet among all the HM daemon threads: the HvncpSender thread, the HvncpReceiverer thread, and the VlanCommunication thread, with kernel thread IDs (tid#) 89719261, 77726013, and 91881983.

 Example 2-195 HM threads for HM to VMM communication establishment scenario

 [image:]

 # uname -uL

 IBM,02212424W 3 usaxvib063ccpx1

 # lssrc -s ksys_hsmon

 Subsystem Group PID Status

 ksys_hsmon 16122210 active

 # procstack 16122210|egrep "tid|main|threadMain"

 ---------- tid# 91029851 (pthread ID: 1) ----------

 0x100013c8 main(0x2, 0x2ff22d60) + 0xc88

 ---------- tid# 91095433 (pthread ID: 2057) ----------

 0x1012df3c UnixSocket::threadMain()(0x30029640) + 0x31c

 ---------- tid# 91554293 (pthread ID: 1800) ----------

 0x10111734 Processing::threadMain()(0x30025710) + 0x314

 ---------- tid# 90243567 (pthread ID: 1543) ----------

 0x100eb3d0 ProcessErrHandling::threadMain()(0x30025ab4) + 0x30

 ---------- tid# 91619721 (pthread ID: 1286) ----------

 0x100ec798 ProcessingDbHb::threadMain()(0x30025a3c) + 0x338

 ---------- tid# 89719261 (pthread ID: 1029) ----------

 0x10074f14 HvncpSender::threadMain()(0x30020d4c) + 0x2a54

 ---------- tid# 77726013 (pthread ID: 772) ----------

 0x10080a6c HvncpReceiver::threadMain()(0x30020b84) + 0x312c

 ---------- tid# 91881983 (pthread ID: 515) ----------

 0x100f37bc VlanCommunication::threadMain()(0x30020b50) + 0x3c

 ---------- tid# 82969031 (pthread ID: 258) ----------

 0x100b3928 ProcessingMsg::threadMain()(0x30025cec) + 0x1e8

 #

 [image:]

 The SYN packet that is sent to the 6A6A0884EE11 MAC address from the vmraix1 VM MAC address 6A6A0FFDF707 is received as “SYN packet 1” by the HvncpReceiver thread on the usaxvib063ccpx1 VIOS HM side, as shown by the first record in Example 2-196.

 Example 2-196 Receiving the SYN packet on the HM side and replying with the SYN ACK and SYN packets

 [image:]

 # more host_monitor.log.hmvmmhandshake

 ...

 [3 16122210 77726013 05/14/19-01:50:43.796 HvncpReceiver.C:HvncpReceiver::threadMain() : 411] Received SYN packet 1 from macAddr '6A6A0FFDF707'.

 [3 16122210 77726013 05/14/19-01:50:43.796 HvncpReceiver.C:HvncpReceiver::threadMain() : 444] SYN begin, invalidate the previous communcaiton.On the sender. mac: 6A6A0FFDF707.

 [3 16122210 77726013 05/14/19-01:50:43.796 Processing.C:Processing::notify(string, HvncpMe...: 384] Received a SYN payload 'uuid=61be20f0-09a8-4753-b5e5-564f8a545ed5:ostype=AIX:verVmmLower=2.0:verVmmUpper=2.0'

 [2 16122210 77726013 05/14/19-01:50:43.796 Processing.C:Processing::notify(string, HvncpMe...: 398] VmMonitor '6A6A0FFDF707' connection> HostMonitor is now able to receive messages

 ...

 [2 16122210 77726013 05/14/19-01:50:43.797 Processing.C:Processing::notify(string, HvncpMe...: 425] +

 [2 16122210 89719261 05/14/19-01:50:43.797 HvncpSender.C:HvncpSender::revokeSendSyn(const ...: 401] Delete any communication pending to 6A6A0FFDF707 (except discovery)

 [3 16122210 89719261 05/14/19-01:50:43.797 HvncpSender.C:HvncpSender::sendSyn(const string...: 523] Send SYN packet to 6A6A0FFDF707

 [3 16122210 89719261 05/14/19-01:50:43.797 HvncpSender.C:HvncpSender::threadMain() : 726] Send SYN acknowledgment 1 to 6A6A0FFDF707

 [3 16122210 89719261 05/14/19-01:50:43.797 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0FFDF707

 [3 16122210 89719261 05/14/19-01:50:43.797 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (58 bytes) uuid=5c3196a3-c41f-4b5c-9861-dee6077081c6:verHmRunning=2.0

 [3 16122210 89719261 05/14/19-01:50:43.797 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0FFDF707

 [3 16122210 89719261 05/14/19-01:50:43.797 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (0 bytes)

 [3 16122210 91881983 05/14/19-01:50:43.798 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (0 bytes)

 host_monitor.log.hmvmmhandshake (99%)

 [image:]

 The HM replies with a SYN packet (58-byte payload with various HM details) that is sent by the HvncpSender thread (TID# 89719261) at 01:50:43.797 (Example 2-196 on page 221). It is followed by a 0-byte payload SYN acknowledgment 1 packet that is sent by the same HvncpSender thread, and both are received on the VMM side (pTIDs 1543 and 1800), as shown in Example 2-197.

 Example 2-197 Receiving SYN ACK and SYN packets on the VMM side and replying with SYN ACK

 [image:]

 # more ksys_vmm.debug

 ...

 [3 10682746 2057 05/14/19-01:50:43 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:50:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (84 bytes) uuid=61be20f0-09a8-4753-b5e5-564f8a545ed5:ostype=AIX:verVmmLower=2.0:verVmmUpper=2.0

 [3 10682746 1543 05/14/19-01:50:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (58 bytes) uuid=5c3196a3-c41f-4b5c-9861-dee6077081c6:verHmRunning=2.0

 [3 10682746 1543 05/14/19-01:50:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (0 bytes)

 [3 10682746 1800 05/14/19-01:50:43 HvncpReceiver.C:HvncpReceiver::threadMain() : 394] Received Packet from macAddr '6A6A0884EE11'.

 [3 10682746 1800 05/14/19-01:50:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (58 bytes) uuid=5c3196a3-c41f-4b5c-9861-dee6077081c6:verHmRunning=2.0

 [3 10682746 1800 05/14/19-01:50:43 HvncpReceiver.C:HvncpReceiver::threadMain() : 415] Received SYN packet 9 from macAddr '6A6A0884EE11'.

 [3 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1121] Received a SYN payload 'uuid=5c3196a3-c41f-4b5c-9861-dee6077081c6:verHmRunning=2.0'.

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1127] HostMonitor '6A6A0884EE11' connection> VmMonitor is now able to receive messages.

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1141] vmm major version '2' and HM major version '2' matches, ignoring vmm minor version '0' and

 HM minor version '0' processing packet

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1155] +Parameters of the HostMonitor being connected:

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1156] | MacAddr : 6A6A0884EE11

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1157] | UUID : 5c3196a3-c41f-4b5c-9861-dee6077081c6

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1158] | HsMon running version : 2.0

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1159] +VmMon <> HsMon new relation status :

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1160] | Version compatibility : YES

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1164] | VmMon running version : 2.0

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1166] +

 [3 10682746 1800 05/14/19-01:50:43 HvncpReceiver.C:HvncpReceiver::threadMain() : 394] Received Packet from macAddr '6A6A0884EE11'.

 [3 10682746 1800 05/14/19-01:50:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (0 bytes)

 [3 10682746 1800 05/14/19-01:50:43 HvncpReceiver.C:HvncpReceiver::threadMain() : 469] Received SYN acknowledgment from macAddr '6A6A0884EE11'.

 [3 10682746 1800 05/14/19-01:50:43 HvncpReceiver.C:HvncpReceiver::threadMain() : 470] Notify main thread when comm is fully established.

 [3 10682746 2057 05/14/19-01:50:43 HvncpSender.C:HvncpSender::threadMain() : 631] Communication pipe to 6A6A0884EE11 is now opened

 [3 10682746 2057 05/14/19-01:50:43 HvncpSender.C:HvncpSender::threadMain() : 676] Deleting the packet from commWindow. src: 6A6A0884EE11.

 [3 10682746 2057 05/14/19-01:50:43 HvncpSender.C:HvncpSender::threadMain() : 726] Send SYN acknowledgment 9 to 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:50:43 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:50:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (0 bytes)

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 815] HostMonitor '6A6A0884EE11' connection> VmMonitor is now able to send messages

 [3 10682746 1543 05/14/19-01:50:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (8 bytes) START_HB

 [3 10682746 1800 05/14/19-01:50:43 HvncpReceiver.C:HvncpReceiver::threadMain() : 394] Received Packet from macAddr '6A6A0884EE11'.

 [3 10682746 1800 05/14/19-01:50:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (8 bytes) START_HB

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 976] Received message 'START_HB' from HostMonitor '5c3196a3-c41f-4b5c-9861-dee6077081c6'.

 ksys_vmm.debug (29%)

 [image:]

 The VlanCommunication thread (pTID 1543) on the VMM side receives the frames and passes them to the HvncpReceiver thread (pTID 1800). The communication pipe with the HM is now opened from the VMM perspective, and a final SYN acknowledgment 9 is sent to the HM as a reply to the 0-byte payload SYN packet 9 received. At this moment, the VMM expects a START_HB message to start sending heartbeats to the HM at the other end of the pipe.

 In Example 2-198, the HM receives the SYN ACK packet and the communication pipe is now opened also from this HM perspective, so the HM further checks and updates the VM status in the HSDB by using a vioHmVmDiscover() call.

 Example 2-198 Receiving SYN ACK on the HM side and replying with START_HB

 [image:]

 # more host_monitor.log.hmvmmhandshake

 ...

 [3 16122210 91881983 05/14/19-01:50:43.798 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (0 bytes)

 [3 16122210 77726013 05/14/19-01:50:43.798 HvncpReceiver.C:HvncpReceiver::threadMain() : 390] Received Packet from macAddr '6A6A0FFDF707'.

 [3 16122210 77726013 05/14/19-01:50:43.798 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (0 bytes)

 [3 16122210 77726013 05/14/19-01:50:43.799 HvncpReceiver.C:HvncpReceiver::threadMain() : 465] Received SYN acknowledgment from macAddr '6A6A0FFDF707'.

 [3 16122210 77726013 05/14/19-01:50:43.799 HvncpReceiver.C:HvncpReceiver::threadMain() : 466] Notify main thread when comm is fully established.

 [3 16122210 89719261 05/14/19-01:50:43.799 HvncpSender.C:HvncpSender::threadMain() : 631] Communication pipe to 6A6A0FFDF707 is now opened

 [3 16122210 89719261 05/14/19-01:50:43.799 HvncpSender.C:HvncpSender::threadMain() : 676] Deleting the packet from commWindow. src: 6A6A0FFDF707.

 [2 16122210 77726013 05/14/19-01:50:43.799 Processing.C:Processing::notify(string, HvncpMe...: 268] VmMonitor '6A6A0FFDF707' connection> HostMonitor is now able to send messages

 [2 16122210 77726013 05/14/19-01:50:43.799 Processing.C:Processing::notify(string, HvncpMe...: 271] HM Running version: 2.0

 VM Running version: 2.0

 [3 16122210 77726013 05/14/19-01:50:43.799 Processing.C:Processing::notify(string, HvncpMe...: 273] Pushing to the SYN queue for processing.

 [3 16122210 77726013 05/14/19-01:50:43.799 Processing.C:ProcessingMsg::pushMessageToQueue(...: 1345] INFO: Pushed SYN to queue. Waking up thread.

 [3 16122210 82969031 05/14/19-01:50:43.799 Processing.C:ProcessingMsg::threadMain() : 1395] INFO: Got a SYN packet!

 [2 16122210 82969031 05/14/19-01:50:43.799 DatabaseAccess.C:DatabaseAccess::vmDiscovered(s...: 304] Called vioHmVmDiscover interface for VM 61be20f0-09a8-4753-b5e5-564f8a545ed5 (vers

 ion matching)

 [2 16122210 82969031 05/14/19-01:50:43.799 DatabaseAccess.C:DatabaseAccess::vmDiscovered(s...: 305] VM OS Type : AIX

 [2 16122210 82969031 05/14/19-01:50:43.799 DatabaseAccess.C:DatabaseAccess::vmDiscovered(s...: 308] VmMon Version range : 2.0 - 0.0

 [2 16122210 82969031 05/14/19-01:50:43.799 DatabaseAccess.C:DatabaseAccess::vmDiscovered(s...: 310] VmMon Running version : 2.0

 [2 16122210 82969031 05/14/19-01:50:43.828 DatabaseAccess.C:DatabaseAccess::vmDiscovered(s...: 314] Called vioHmVmDiscover rc=0.

 [2 16122210 82969031 05/14/19-01:50:43.828 Processing.C:Processing::controlVm(const string...: 505] HostMonitor is asked to START monitoring VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' (command from SSP Database)

 [3 16122210 82969031 05/14/19-01:50:43.828 VmHealthStatusMgr.C:VmHealthStatusMgr::monitorV...: 183] Start monitoring VM '61be20f0-09a8-4753-b5e5-564f8a545ed5'.

 [3 16122210 82969031 05/14/19-01:50:43.828 VmHealthStatusMgr.C:VmHealthStatusMgr::monitorV...: 193] VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' is already tracked. Restart monitoring.

 [2 16122210 82969031 05/14/19-01:50:43.828 Processing.C:Processing::controlVm(const string...: 547] Monitoring of VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' requires sending a command to start Heartbeats to the VmMonitor

 [2 16122210 82969031 05/14/19-01:50:43.828 Processing.C:Processing::sendMessage(bool, stri...: 671] Sending message 'START_HB' to VmMonitor of VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' at MacAddr '6A6A0FFDF707'.

 host_monitor.log.hmvmmhandshake (99%)

 [image:]

 The vioHmVmDiscover() callback (performed by ProcessingMsg TID# 82969031) enters at 01:50:43.799 and returns successfully at 01:50:43.828. Its main input parameter must be the VM UUID received in the initial SYN packet from the VMM. To see what it is doing at the HSDB level, we isolated all the related actions that were performed during the callback as they were registered in the database log (Example 2-199).

 Example 2-199 Excerpt from HSDB ProgreSQL log for a vioHmVmDiscover callback

 [image:]

 2019-05-14 01:50:43.727 CUT|5cda1ef3.16801a2|LOG: duration: 0.018 ms

 2019-05-14 01:50:43.810 CUT|5cda1ef3.16801a4|LOG: statement: BEGIN;SET search_path TO vios

 2019-05-14 01:50:43.811 CUT|5cda1ef3.16801a4|LOG: statement: BEGIN;SELECT msid FROM vioshs.vios where viosuuid='5c3196a3-c41f-4b5c-9861-dee6077081c6'

 2019-05-14 01:50:43.818 CUT|5cda1ef3.16801a4|LOG: statement: SAVEPOINT _EXEC_SVP_31256208;BEGIN WORK; LOCK TABLE vioshs.locked IN EXCLUSIVE MODE NOWAIT

 2019-05-14 01:50:43.818 CUT|5cda1ef3.16801a4|WARNING: there is already a transaction in progress

 2019-05-14 01:50:43.818 CUT|5cda1ef3.16801a4|LOG: statement: RELEASE _EXEC_SVP_31256208;SAVEPOINT _EXEC_SVP_31256208;SELECT viosuuid, tid, count, CAST ((EXTRACT(epoch FROM CLOCK_TIMESTAMP()::timestamp) - EXTRACT(epoch FROM vioshs.locked.lockts::timestamp)) AS INT) FROM vioshs.locked

 2019-05-14 01:50:43.821 CUT|5cda1ef3.16801a4|LOG: statement: RELEASE _EXEC_SVP_31256208;SAVEPOINT _EXEC_SVP_31256208;UPDATE vioshs.locked SET viosuuid ='5c3196a3-c41f-4b5c-9861-dee6077081c6', tid=82969031, count=1, lockTs=NOW()

 2019-05-14 01:50:43.821 CUT|5cda1ef3.16801a4|LOG: statement: COMMIT

 2019-05-14 01:50:43.822 CUT|5cda1ef3.16801a4|LOG: statement: BEGIN;SELECT vmuuid, name, msid, missHistory, state, up_major, up_minor, lo_major, lo_minor, shortMsg, missHistoryTS, suspendTS FROM vioshs.vm where vmuuid='61be20f0-09a8-4753-b5e5-564f8a545ed5'

 2019-05-14 01:50:43.825 CUT|5cda1ef3.16801a4|LOG: statement: SAVEPOINT _EXEC_SVP_31256208;UPDATE vioshs.vm SET state=3 WHERE vmuuid='61be20f0-09a8-4753-b5e5-564f8a545ed5'

 2019-05-14 01:50:43.825 CUT|5cda1ef3.16801a4|LOG: statement: RELEASE _EXEC_SVP_31256208;SAVEPOINT _EXEC_SVP_31256208;INSERT INTO vioshs.trans(vmuuid, viosuuid, msid, tag, opcode, state, data, integer, txstarted) VALUES('61be20f0-09a8-4753-b5e5-564f8a545ed5','5c3196a3-c41f-4b5c-9861-dee6077081c6', -5878939440565042805, 0, 4, 1, 'old=8:new=3', 0, NOW())

 2019-05-14 01:50:43.826 CUT|5cda1ef3.16801a4|LOG: statement: RELEASE _EXEC_SVP_31256208;SAVEPOINT _EXEC_SVP_31256208;SELECT count(1) from vioshs.map where vmuuid='61be20f0-09a8-4753-b5e5-564f8a545ed5' AND viosuuid='5c3196a3-c41f-4b5c-9861-dee6077081c6'

 2019-05-14 01:50:43.826 CUT|5cda1ef3.16801a4|LOG: statement: RELEASE _EXEC_SVP_31256208;SAVEPOINT _EXEC_SVP_31256208;UPDATE vioshs.map SET vmHbMissed=NULL WHERE vmuuid='61be20f0-09a8-4753-b5e5-564f8a545ed5' AND viosuuid='5c3196a3-c41f-4b5c-9861-dee6077081c6'

 2019-05-14 01:50:43.827 CUT|5cda1ef3.16801a4|LOG: statement: COMMIT

 2019-05-14 01:50:43.827 CUT|5cda1ef3.16801a4|LOG: statement: BEGIN;BEGIN WORK; LOCK TABLE vioshs.locked IN EXCLUSIVE MODE NOWAIT

 2019-05-14 01:50:43.827 CUT|5cda1ef3.16801a4|WARNING: there is already a transaction in progress

 2019-05-14 01:50:43.827 CUT|5cda1ef3.16801a4|LOG: statement: SAVEPOINT _EXEC_SVP_31256208;SELECT viosuuid, tid, count FROM vioshs.locked

 2019-05-14 01:50:43.827 CUT|5cda1ef3.16801a4|LOG: statement: RELEASE _EXEC_SVP_31256208;SAVEPOINT _EXEC_SVP_31256208;UPDATE vioshs.locked SET tid=0, count=0, lockTs=NULL

 2019-05-14 01:50:43.827 CUT|5cda1ef3.16801a4|LOG: statement: COMMIT

 2019-05-14 01:50:43.831 CUT|5cda1ef3.14e01f2|LOG: statement: SET DateStyle = 'ISO';SET extra_float_digits = 2;show transaction_isolation

 [image:]

 Only the 5cda1ef3.16801a4 ProgreSQL session logged records during that interval, so we are sure that they were performed by our callback run. The relevant actions that we observe there are as follows:

 1.	Retrieve the entry in the vm table where the vmuuid field is equal to the VM UUID that was passed by the VMM in the initial SYN packet.

 2.	Update the state field of the row corresponding to the identified VM in the vm table to a value of 3 (STARTED).

 3.	Update the vmHbMissed field to NULL for the entry in the map table corresponding to our VM and involved VIOS (WHERE vmuuid='61be20f0-09a8-4753-b5e5-564f8a545ed5' AND viosuuid='5c3196a3-c41f-4b5c-9861-dee6077081c6').

 Immediately after the return from the vioHmVmDiscover callback, the same HM ProcessingMsg thread (TID# 82969031) sends a START_HB message to its VMM side through the established pipe (see the last five entries in Example 2-198 on page 223). This message is received on the VMM side, as shown in the last four entries of Example 2-197 on page 222, and we continue in Example 2-200 with the analysis of the VMM log.

 Example 2-200 Receiving the START_HB message on the VMM side

 [image:]

 # more ksys_vmm.debug

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 976] Received message 'START_HB' from HostMonitor '5c3196a3-c41f-4b5c-9861-dee6077081c6'.

 [3 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 985] ALL apps start stablization time : 0

 [3 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 986] Initial DBELL will be send after 4 HB cycle's

 [2 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 993] Will now send Heartbeats to HostMonitor '5c3196a3-c41f-4b5c-9861-dee6077081c6' every 10.00 seconds.

 [3 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1007] Ethname:ent1, vmAdr:6A6A0FFDF707, hmAdr:6A6A0884EE11

 [3 10682746 1800 05/14/19-01:50:43 VmMonitor.C:VmMonitor::notify(string, HvncpMess...: 1009] Sending Config data to vmmKE

 [3 10682746 2057 05/14/19-01:50:43 HvncpSender.C:HvncpSender::threadMain() : 726] Send acknowledgment 9 to 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:50:43 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:50:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (0 bytes)

 [3 10682746 772 05/14/19-01:50:44 VmNetIntfHandler.C:VmNetIntfHandler::selectFD() : 125] Found 7 possible interfaces to listen (not filtered).

 [image:]

 VMM reacts to the received START_HB message by setting up its scene for sending the heartbeat to the HM every 10 seconds. The kernel extension is also informed about this setup for the case that it must take over. We are also informed that an initial AR flow is going to be triggered by sending a DBELL frame, but this topic is covered in 2.3.3, “Application Reporting flow” on page 262, so we skip it for now. The cycle is closed by sending an acknowledgment (Packet Frame (0 bytes)) back to the HM, which is received and processed in turn by the HM communication thread triplet, as shown in Example 2-201.

 Example 2-201 Receiving the first VMM heartbeats on the HM side

 [image:]

 # more host_monitor.log.hmvmmhandshake

 [2 16122210 82969031 05/14/19-01:50:43.828 Processing.C:Processing::sendMessage(bool, stri...: 671] Sending message 'START_HB' to VmMonitor of VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' at MacAddr '6A6A0FFDF707'.

 [3 16122210 89719261 05/14/19-01:50:43.828 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0FFDF707

 [3 16122210 89719261 05/14/19-01:50:43.828 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (8 bytes) START_HB

 [3 16122210 91881983 05/14/19-01:50:43.829 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (0 bytes)

 [3 16122210 77726013 05/14/19-01:50:43.829 HvncpReceiver.C:HvncpReceiver::threadMain() : 390] Received Packet from macAddr '6A6A0FFDF707'.

 [3 16122210 77726013 05/14/19-01:50:43.829 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (0 bytes)

 [3 16122210 89719261 05/14/19-01:50:43.829 HvncpSender.C:HvncpSender::threadMain() : 676] Deleting the packet from commWindow. src: 6A6A0FFDF707.

 [3 16122210 77726013 05/14/19-01:50:43.829 Processing.C:Processing::notify(string, HvncpMe...: 296] An acknowledgment has been received. Check for sent messages status.

 [3 16122210 77726013 05/14/19-01:50:43.829 Processing.C:Processing::cleanMsgBuffer(const s...: 833] Removing message to VmMon at macAddr 'FFFFFFFFFFFF' from send queue. Reason: Fully sent

 [3 16122210 77726013 05/14/19-01:50:43.829 Processing.C:Processing::cleanMsgBuffer(const s...: 833] Removing message to VmMon at macAddr '6A6A0FFDF707' from send queue. Reason: Fully sent

 [3 16122210 91881983 05/14/19-01:50:46.580 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (3 bytes) HB:

 [2 16122210 77726013 05/14/19-01:50:46.580 VmHealthStatusMgr.C:VmHealthStatusMgr::setVmDat...: 424] VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' state changed to DETECTED.

 [2 16122210 91554293 05/14/19-01:50:48.855 DatabaseAccess.C:DatabaseAccess::writeToDatabase(): 603] VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' state updated in Database to : DETECTED

 [2 16122210 91554293 05/14/19-01:50:48.879 DatabaseAccess.C:DatabaseAccess::writeToDatabase(): 616] vioHmHbDetected returned with rc = 0

 [3 16122210 91881983 05/14/19-01:50:56.579 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (3 bytes) HB:

 [3 16122210 91619721 05/14/19-01:51:05.666 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 [3 16122210 91881983 05/14/19-01:51:06.569 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (3 bytes) HB:

 [3 16122210 91554293 05/14/19-01:51:13.340 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '1556303553.811512000.38'

 [3 16122210 89719261 05/14/19-01:51:13.340 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: FFFFFFFFFFFF

 [3 16122210 89719261 05/14/19-01:51:13.340 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (23 bytes) 1556303553.811512000.38

 [3 16122210 91554293 05/14/19-01:51:13.840 Processing.C:Processing::cleanMsgBuffer(const s...: 833] Removing message to VmMon at macAddr 'FFFFFFFFFFFF' from send queue. Reason: Fully sent

 [3 16122210 91881983 05/14/19-01:51:16.576 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (3 bytes) HB:

 [3 16122210 91881983 05/14/19-01:51:26.570 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (3 bytes) HB:

 [3 16122210 91881983 05/14/19-01:51:36.570 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (3 bytes) HB:

 [3 16122210 91619721 05/14/19-01:51:36.975 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 [3 16122210 91554293 05/14/19-01:51:43.340 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '1556303553.811512000.38'

 [image:]

 Shortly after receiving the SEND_HB acknowledgment, the HM also receives at 01:50:46.580 (Example 2-201 on page 226) the first VMM heartbeat (Packet Frame (3 bytes) HB) and updates the HSDB by using a vioHmHbDetected call. Subsequent VMM heartbeats are periodically received every 10 seconds and logged in an interlaced manner with already known entries of HM heartbeat updates to the HSDB and Hello broadcasts toward VMMs, both every 30 seconds, in a kind of a steady state pattern.

 On the VMM side, Example 2-202, we can see how these VM heartbeats are sent and logged interlaced with records about received Hello broadcasts in a similar steady state manner.

 Example 2-202 Sending the heartbeat on the VMM side

 [image:]

 # more ksys_vmm.debug

 [3 10682746 1029 05/14/19-01:50:46 VmMonitor.C:VmMonitor::doHeartbeatJobCycle() : 1395] Send Heartbeat to MacAddr '6A6A0884EE11'.

 [3 10682746 2057 05/14/19-01:50:46 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:50:46 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 [3 10682746 2057 05/14/19-01:50:56 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:50:56 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 [3 10682746 2057 05/14/19-01:51:06 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:51:06 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 [3 10682746 1543 05/14/19-01:51:13 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (23 bytes) 1556303553.811512000.38

 [3 10682746 1800 05/14/19-01:51:13 HvncpReceiver.C:HvncpReceiver::threadMain() : 394] Received Packet from macAddr '6A6A0884EE11'.

 [3 10682746 1800 05/14/19-01:51:13 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (23 bytes) 1556303553.811512000.38

 ...

 [3 10682746 1029 05/14/19-01:51:16 VmMonitor.C:VmMonitor::doHeartbeatJobCycle() : 1395] Send Heartbeat to MacAddr '6A6A01581F11'.

 [3 10682746 2828 05/14/19-01:51:16 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A01581F11

 [3 10682746 2828 05/14/19-01:51:16 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 [3 10682746 2057 05/14/19-01:51:16 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:51:16 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 ...

 [3 10682746 2828 05/14/19-01:51:26 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A01581F11

 [3 10682746 2828 05/14/19-01:51:26 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 [3 10682746 2057 05/14/19-01:51:26 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:51:26 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 ...

 [3 10682746 2828 05/14/19-01:51:36 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A01581F11

 [3 10682746 2828 05/14/19-01:51:36 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 [3 10682746 2057 05/14/19-01:51:36 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: 6A6A0884EE11

 [3 10682746 2057 05/14/19-01:51:36 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (3 bytes) HB:

 ...

 [3 10682746 1543 05/14/19-01:51:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (23 bytes) 1556303553.811512000.38

 [3 10682746 1800 05/14/19-01:51:43 HvncpReceiver.C:HvncpReceiver::threadMain() : 394] Received Packet from macAddr '6A6A0884EE11'.

 [3 10682746 1800 05/14/19-01:51:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (23 bytes) 1556303553.811512000.38

 [3 10682746 2314 05/14/19-01:51:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (23 bytes) 1556303553.832676000.38

 [3 10682746 2571 05/14/19-01:51:43 HvncpReceiver.C:HvncpReceiver::threadMain() : 394] Received Packet from macAddr '6A6A01581F11'.

 [3 10682746 2571 05/14/19-01:51:43 HvncpPacket.C:HvncpPacket::display() const : 294] +Packet Frame (23 bytes) 1556303553.832676000.38

 ...

 [image:]

 We removed records from the log excerpt in Example 2-202 on page 228 to shorten the output. The listing was still long because the VMM log contains the interlaced records about messages that are exchanged both with the HM instance listening at the 6A6A0884EE11 address (which we used so far in our analysis) and with the other HM instance listening at the 6A6A01581F11 address on the partner VIOS. The removed records were mainly traces of the similar handshake sequence that was performed by our VMM with this second HM on the partner VIOS. The VM heartbeat and Hello broadcast messages that were exchanged with our HM instance (listening at the 6A6A0884EE11 address) are marked in bold and italic typeset for easier identification.

 Example 2-203 shows the HSDB vm, map, and trans tables in this steady state situation after successful HM to VMM communication establishment.

 Example 2-203 The vm, map, and trans tables in HSDB after successful HM to VMM communication establishment

 [image:]

 vios=# select vmuuid,name,msid,state from vm;

 vmuuid | name | msid | state

 --------------------------------------+------------+----------------------+-------

 61be20f0-09a8-4753-b5e5-564f8a545ed5 | | -5878939440565042805 | 3

 | default_vm | | 1

 (2 rows)

 vios=# select * from map;

 vmuuid | viosuuid | misshistory | hmrecovery | viosrecovery | vmhbmissed

 --------------------------------------+--------------------------------------+-------------+------------+--------------+------------

 61be20f0-09a8-4753-b5e5-564f8a545ed5 | 5c3196a3-c41f-4b5c-9861-dee6077081c6 | 0 | 0 | 0 |

 61be20f0-09a8-4753-b5e5-564f8a545ed5 | 0ab5001f-2c3e-4fbb-97ea-41d3f8c4f898 | 0 | 0 | 0 |

 (2 rows)

 vios=# select * from trans;

 vmuuid | viosuuid | msid | tag | opcode | state | data | integer | txstarted

 --------+----------+------+-----+--------+-------+------+---------+-----------

 (0 rows)

 vios=#

 [image:]

 The state value for our VM is STARTED (3) and the vmhbmissed value is NULL, as expected. It is the happy case state in which a VM spends most of its lifecycle. It is retrieved from the HSDB by a typical steady state NeedsAttention request that originates on the KSYS side. Example 2-204 illustrates the request and reply payloads for a typical happy case steady state NeedsAttention request that is issued periodically by the FDE thread. We go to the VIOS that is designated by the FDE thread for polling and issue a manual request.

 Example 2-204 Happy case steady state NeedsAttention request and reply

 [image:]

 # ksysmgr trace log=fde | grep -i polling|tail -1

 [00] 08/25/19 T(34c) _VMR 18:16:37.891076 DEBUG FDEthread.C[208]: Use VIOS usaxvib063ccpx1: 5C3196A3-C41F-4B5C-9861-DEE6077081C6 for polling

 #

 # uname -uL

 IBM,02212424W 3 usaxvib063ccpx1

 # cat na.xml

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00"

 version="2.00" author="LIBKREST" title="Req Needs Attention">

 <Request action_str="VIO_HS_NEEDS_ATTENTION" dataType="GLOBAL_DATA"/>

 </VIO>

 # /usr/ios/sbin/vioservice lib/libviopass/passthru <na.xml

 <VIO><Response>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

 #

 [image:]

 Checking the KSYS requests that are logged on the designated VIOS around the session establishment moment, we notice two NeedsAttention requests followed by acknowledgment requests and also a VIO_HS_QUERY_MSG/VIO_HS_GET_MSG messaging sequence, as shown in Example 2-205.

 Example 2-205 KSYS requests for the session establishment moment

 [image:]

 # alog -f /home/ios/logs/viosvc.log -o > viosvc.log.VMstarted.txt

 # grep VIO_HS_ viosvc.log.VMstarted.txt|more

 <Request action_str="VIO_HS_NEEDS_ATTENTION" dataType="GLOBAL_DATA"/>

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 <Request action_str="VIO_HS_NEEDS_ATTENTION" dataType="GLOBAL_DATA"/>

 <Request action_str="VIO_HS_ACKNOWLEDGE" hsTag="-1234658345958918737"/>

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 <Request action_str="VIO_HS_NEEDS_ATTENTION" dataType="GLOBAL_DATA"/>

 <Request action_str="VIO_HS_ACKNOWLEDGE" hsTag="1735421413719889094"/>

 <Request action_str="VIO_HS_QUERY_MSG">

 <Request action_str="VIO_HS_QUERY_MSG">

 <Request action_str="VIO_HS_GET_MSG">

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 <Request action_str="VIO_HS_NEEDS_ATTENTION" dataType="GLOBAL_DATA"/>

 Standard input: END

 [image:]

 The reference /usr/lib/vioHADR2.00.xsd VIOS file provides the following details about the VIO_HS_NEEDS_ATTENTION and VIO_HS_ACKNOWLEDGE requests:

 - VIO_HS_NEEDS_ATTENTION: KSYS uses this request on a poll period. It returns a list VMs that have missed a heartbeat and or have an application request pending that has not been acknowledged by KSYS
- VIO_HS_ACKNOWLEDGE: This is sent by KSYS as an acknowledgment that it has received and successfully saved the information regarding a VM. VIOS will not return status for a VMs after the acknowledgment until there is a further change for that VM. VIO_HS_ACKNOWLEDGE is not applied to missed heartbeat however it is applied to the following:
state transitions
application requests
...

 We use these details to comment on the typical NeedsAttention request in Example 2-204 on page 230 and on those two acknowledged NeedsAttention requests showing up around the session establishment moment. Various other Need Attention request cases with their specific response payloads are covered in 2.3.2, “Failure Detection Engine: QuickQuery and NeedsAttention flows” on page 234.

 So, coming back to the typical happy case NeedsAttention request in Example 2-204 on page 230, VIOS returns continuously this kind of short payload with no VM status, which means that no heartbeat was missed and no VM status change happened since the last acknowledged NeedsAttention request. It happens periodically until there is a further change for that VM, such as a missed heartbeat, a VM state transition, or an application-related change.

 Example 2-206 and Example 2-207 on page 232 shows occurrences of the last two cases.

 Example 2-206 Acknowledged NeedsAttention request for VM state transition

 [image:]

 # more viosvc.log.VMstarted.txt

 ...

 [START 16712162 65274117 08/25/19-18:55:18.683 vioservice.c 1.17 306] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 16712162 65274117 08/25/19-18:55:18.683 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Needs Attention">

 <Request action_str="VIO_HS_NEEDS_ATTENTION" dataType="GLOBAL_DATA"/>

 </VIO>

]

 [0 16712162 65274117 08/25/19-18:55:18.742 viosvc_res.c 1.26 464] vio_response.result=[<VIO><Response>

 <needsAtt hsTag="-1234658345958918737">

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 <vmStat uuid="61be20f0-09a8-4753-b5e5-564f8a545ed5"><VM state="STARTED" stateChg='1' >

 </VM>

 </vmStat>

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

]

 [END 16712162 65274117 08/25/19-18:55:18.742 vioservice.c 1.17 309] exited with rc=0

 [START 16712164 65274119 08/25/19-18:55:20.17 vioservice.c 1.17 306] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 16712164 65274119 08/25/19-18:55:20.17 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="acknowledgment to VIOS">

 <Request action_str="VIO_HS_ACKNOWLEDGE" hsTag="-1234658345958918737"/>

 </VIO>

]

 [0 16712164 65274119 08/25/19-18:55:20.62 viosvc_res.c 1.26 464] vio_response.result=[]

 [END 16712164 65274119 08/25/19-18:55:20.62 vioservice.c 1.17 309] exited with rc=0

 [image:]

 The stateChg attribute in Example 2-206 on page 231 is documented in the same reference file, /usr/lib/vioHADR2.00.xsd:

 ...
stateChg: This attribute when present indicates that this VM is undergoing a state change and state field will indicate the current state. When this attribute is present, the payload may include a tag will need to be acknowledged. that has been discovered.
...

 Similarly in Example 2-207, we have the case of an application-related change. In such a situation, the VMM makes the KSYS aware through a so-called DBELL or short message notification that something happened at the application level. After the notification is received on the KSYS side, an AR flow is initiated to obtain more details about what has happened.

 The shortMsg attribute conveys the initial hardcoded DBELL in Example 2-200 on page 226 as generated after the first four heartbeats that are sent by VMM after a successful HM to VMM handshake. The VIO_HS_QUERY_MSG/VIO_HS_GET_MSG messaging sequence in Example 2-205 on page 230 is part of this AR flow. The AR topic is covered in 2.3.3, “Application Reporting flow” on page 262.

 Example 2-207 Acknowledged NeedsAttention request for VM application-related change

 [image:]

 # more viosvc.log.VMstarted.txt

 ...

 [START 16712178 65339731 08/25/19-18:56:23.360 vioservice.c 1.17 306] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 16712178 65339731 08/25/19-18:56:23.360 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Needs Attention">

 <Request action_str="VIO_HS_NEEDS_ATTENTION" dataType="GLOBAL_DATA"/>

 </VIO>

]

 [0 16712178 65339731 08/25/19-18:56:23.426 viosvc_res.c 1.26 464] vio_response.result=[<VIO><Response>

 <needsAtt hsTag="1735421413719889094">

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 <vmStat uuid="61be20f0-09a8-4753-b5e5-564f8a545ed5"><VM state="STARTED" shortMsg="0x2" >

 </VM>

 </vmStat>

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

]

 [END 16712178 65339731 08/25/19-18:56:23.426 vioservice.c 1.17 309] exited with rc=0

 [START 16712180 64946481 08/25/19-18:56:23.679 vioservice.c 1.17 306] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 16712180 64946481 08/25/19-18:56:23.679 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="acknowledgment to VIOS">

 <Request action_str="VIO_HS_ACKNOWLEDGE" hsTag="1735421413719889094"/>

 </VIO>

]

 [0 16712180 64946481 08/25/19-18:56:23.720 viosvc_res.c 1.26 464] vio_response.result=[]

 [END 16712180 64946481 08/25/19-18:56:23.720 vioservice.c 1.17 309] exited with rc=0

 [image:]

 Example 2-208 shows the case status of our VM at the KSYS level.

 Example 2-208 Case monitored VM status at the KSYS level

 [image:]

 # lsrsrc -s 'Name="vmraix1"' IBM.VMR_LPAR|grep -v LCB|egrep -i "state|hb"

 HMstate = "STARTED"

 HBmissed = 0

 HAState = 4

 VerifyState = {["33613bcd-7ca1-3558-874a-c1e1d3ceee32","PASS",""]}

 PartitionState = "running"

 RmcState = "active"

 MigrationState = ""

 RRestartState = ""

 HMstateHM1 = ""

 HBmissedHM1 = 0

 HMstateHM2 = ""

 HBmissedHM2 = 0

 root:vmrksys: /home/root >

 # ksysmgr -v q vm vmraix1

 Name: vmraix1

 UUID: 61BE20F0-09A8-4753-B5E5-564F8A545ED5

 State: READY

 Host: Server-8408-E8E-SN212424W

 Priority: Medium

 VM_failure_detection_speed: normal

 Heartbeating_with: usaxvib063ccpx1

 usaxvia063ccpx1

 HA_monitor: enable

 Homehost: Server-8408-E8E-SN212424W

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict: No

 Last_response: 0 seconds

 VM_restart_count: 0

 VM_max_restart_count: 3

 Restart_phase: none

 HA_monitor_state: STARTED

 RMC_state: active

 LPM Validation Status

 LPM validation was successful for Hosts:

 Server-8408-E8E-SN21282FW

 #

 [image:]

 VM is monitored for its heartbeat, as confirmed by the STARTED value of the HA_monitor_state VM attribute at the ksysmgr level, which is the same as the HMstate attribute value for the counterpart RMC resource instance of vmraix1. The Last_response VM attribute at the ksysmgr level and the HBmissed attribute at the RMC level are both 0, which means that the heartbeat is received normally. The heartbeat missed case is described in “NeedsAttention flow” on page 240.

 2.3.2 Failure Detection Engine: QuickQuery and NeedsAttention flows

 The first request that is logged by the KSYS daemon in the restart exercise in 2.2.5, “KSYS daemon restart exercise” on page 62 is a QQ request. It was used as an example to introduce the concepts in “HMC pass-through APIs” on page 101. The focus of that section is to present the generic HMC pass-through API that is used as communication means between the KSYS and VIOS sides. The HMC pass-through API is also used for NA requests and all the other types of requests that are initiated by KSYS threads to communicate with VIOS components, the HSDB and the HM, and with the VM Agent.

 In “Failure Detection Engine” on page 94, we saw that the main job of an FDE thread is to retrieve the health status of the hosts and VMs from the HSDB. Example 2-60 on page 94 reveals a normal steady state sequence of three polling requests repeated continuously by an FDE thread: two QQ requests followed by a NA request at 20-second intervals on average.

 We now examine an end-to-end QQ request flow. We then repeat the same analysis for an NA request flow.

 QuickQuery flow

 A QQ request is initiated by the FDE thread of a host group, so we start our check by looking at the fde log. Example 2-38 on page 76 shows the trace in the fde log that was left by the first QQ request at KSYS daemon startup. Comparing that first QQ trace with the trace of our current QQ in Example 2-209, we notice a similar pattern for the sequence of records.

 Example 2-209 Excerpt of a QuickQuery request trace from the fde log

 [image:]

 ...

 [05] 12/22/18 T(9192) _VMR 16:25:08.551636 DEBUG FDEthread.C[709]: Sleep for 20 sec. sleepCounter 37

 [05] 12/22/18 T(9192) _VMR 16:25:28.551712 DEBUG FDEthread.C[127]: Monitoring Enabled for HG rbHG.

 [05] 12/22/18 T(9192) _VMR 16:25:28.551752 DEBUG FDEthread.C[145]: CEC is 4462c37c-65c6-3614-b02a-aa09d752c2ee

 [05] 12/22/18 T(9192) _VMR 16:25:28.551764 DEBUG FDEthread.C[158]: VIOS 315CE56B-9BA0-46A1-B4BC-DA6108574E7E in CEC

 [05] 12/22/18 T(9192) _VMR 16:25:28.551773 DEBUG FDEthread.C[208]: Use VIOS rt13v2: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E for polling

 [05] 12/22/18 T(9192) _VMR 16:25:28.551777 DEBUG FDEthread.C[285]: Current scan [38]

 [05] 12/22/18 T(9192) _VMR 16:25:28.551796 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 [05] 12/22/18 T(9192) _VMR 16:25:28.551810 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 [05] 12/22/18 T(9192) _VMR 16:25:28.551820 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 [05] 12/22/18 T(9192) _VMR 16:25:28.551825 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 [05] 12/22/18 T(9192) _VMR 16:25:28.551829 DEBUG VMR_HG.C[11664]: FDE performing doQuickQuery to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [05] 12/22/18 T(9192) _VMR 16:25:28.551833 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 33(VMDR_QUICK_QUERY)

 [05] 12/22/18 T(9192) _VMR 16:25:28.551854 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 [05] 12/22/18 T(9192) _VMR 16:25:28.551863 DEBUG VMR_HMC.C[6905]: getQuickQuery: Calling kriSubmitQuickQuery!. HMC:9.3.18.159, viosUuid: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [05] 12/22/18 T(9192) _VMR 16:25:28.678215 DEBUG VMR_HMC.C[6925]: getQuickQuery: Job submitted. Now doing WaitTillJobCompletion() ..

 [05] 12/22/18 T(9192) _VMR 16:25:28.678218 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1543584834864, retCnt = 1

 [05] 12/22/18 T(9192) _VMR 16:25:29.771523 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1543584834864, retCnt = 2

 [05] 12/22/18 T(9192) _VMR 16:25:29.863552 DEBUG VMR_HMC.C[6938]: getQuickQuery [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 [05] 12/22/18 T(9192) _VMR 16:25:29.863562 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 33(VMDR_QUICK_QUERY), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 [05] 12/22/18 T(9192) _VMR 16:25:29.863572 DEBUG VMR_HG.C[11671]: FDE doQuickQuery success to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [05] 12/22/18 T(9192) _VMR 16:25:29.863587 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 [05] 12/22/18 T(9192) _VMR 16:25:29.863592 DEBUG needAttn.C[1566]: START handleVIOResponse scan [38].

 ...

 [image:]

 Note the entry marking the 20-second sleep interval between the previous request (sleepCounter 37) and current request (Current scan [38]). By comparison, there is no sleep interval before the first QQ request (Current scan [1]), as shown in Example 2-38 on page 76. The same VIOS, rt13v2, is used for polling in both cases. A doQuickQuery call is performed for this VIOS, and inside this call is the HMC REST API job request pattern that is handled at the krest library level by the kriSubmitQuickQuery and krigetJobResult() calls. This pattern is covered in “QuickQuery asynchronous job example” on page 105. Here, we focus on the actions at the FDE and VIOS levels and on the content of the request and response payloads they exchange with each other.

 A typical QQ request that originated at the FDE level on the KSYS side and delivered to the vioservice command at the VIOS level together with its immediate corresponding XML response that was obtained at the VIOS level from the HSDB are shown in Example 2-210.

 Example 2-210 QuickQuery request and response in the vioservice log on the VIOS side

 [image:]

 # alog -f /home/ios/logs/viosvc.log -o > viosvc.log.QQ.txt

 # more viosvc.log.QQ.txt

 ...

 [START 12058936 62259481 12/22/18-15:20:23.789 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 12058936 62259481 12/22/18-15:20:23.789 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Quick Query">

 <Request action_str="VIO_HS_QUICK_QUERY"/>

 </VIO>

]

 [0 12058936 62259481 12/22/18-15:20:23.862 viosvc_res.c 1.26 464] vio_response.result=[<VIO><Response>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="5ac3e0dc-13fc-4221-9617-8ef61c4cdd83" state="UP" hmResponsive="1" hmResponseSec='0' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="2100DEW">

 <viosStat uuid="4e0f6f60-214b-4d2c-a436-0eac46f7f71f" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="166c89ef-57d8-4e75-815c-aa5b885560b1" state="UP" hmResponsive="1" hmResponseSec='0' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 </Response></VIO>

]

 [END 12058936 62259481 12/22/18-15:20:23.862 vioservice.c 1.18 323] exited with rc=0

 ...

 [image:]

 Comparing the time stamps in the vioservice log excerpt in Example 2-210 on page 235 with the ones in the viohs.log log excerpt that is shown in Example 2-211, which were taken from the same vioservice command execution instance (same process and thread IDs), we discover that the HSDB was queried for the status details by the vioHsQuickQuery call.

 Example 2-211 vioHsQuickQuery call that is performed by the vioservice command to query the HSDB

 [image:]

 # alog -f /home/ios/logs/health/viohs.log -o > viohs.log.22dec.txt

 # grep "12058936 62259481" viohs.log.22dec.txt

 [START 12058936 62259481 12/22/18-15:20:23.790 ha_util.c 1.43 230]

 [3 12058936 62259481 12/22/18-15:20:23.790 hs_util.c hs_libvio_traces 1.66 60] HEALTH:62259481 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=730caed6da2211e8800498be9454b8e0

 [3 12058936 62259481 12/22/18-15:20:23.792 hs_util.c hs_libvio_traces 1.66 60] HEALTH:62259481 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 200176e8

 [3 12058936 62259481 12/22/18-15:20:23.812 hs_util.c hs_libvio_traces 1.66 60] HEALTH:62259481 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 200176e8

 [3 12058936 62259481 12/22/18-15:20:23.862 hs_atten.c vioHsQuickQuery 1.107 4669] End, rc=0

 [END 12058936 62259481 12/22/18-15:20:23.862 ha_util.c 1.43 253] exited with rc=0

 #

 [image:]

 The same VIOS response XML, now transferred on the KSYS side by the job request (jobid: 1543584834864), is shown as logged in the fdelong log file (Example 2-212 on page 237).

 Example 2-212 QuickQuery XML response in the fdelong log file on the KSYS side

 [image:]

 [07] 12/22/18 T(9192) _VMR 16:25:29.771526 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1543584834864, retCnt = 2

 [07] 12/22/18 T(9192) _VMR 16:25:29.863554 DEBUG VMR_HMC.C[6938]: getQuickQuery [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 [07] 12/22/18 T(9192) _VMR 16:25:29.863556 DEBUG VMR_HMC.C[6954]: JobOutput

 [07] 12/22/18 T(9192) _VMR 16:25:29.863557 DEBUG <VIO><Response>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="21E0B2V">

 <viosStat uuid="315ce56b-9ba0-46a1-b4bc-da6108574e7e" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="5ac3e0dc-13fc-4221-9617-8ef61c4cdd83" state="UP" hmResponsive="1" hmResponseSec='0' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 <quickQuery>

 <viosStatList><viosStatus machine_type="8286" model="42A" serial="2100DEW">

 <viosStat uuid="4e0f6f60-214b-4d2c-a436-0eac46f7f71f" state="UP" hmResponsive="1" hmResponseSec='1' hasData='0' reason='0x00000000' syncMsg="0" />

 <viosStat uuid="166c89ef-57d8-4e75-815c-aa5b885560b1" state="UP" hmResponsive="1" hmResponseSec='0' hasData='0' reason='0x00000000' syncMsg="0" />

 </viosStatus></viosStatList>

 </quickQuery>

 </Response></VIO>

 [07] 12/22/18 T(9192) _VMR 16:25:29.863563 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 33(VMDR_QUICK_QUERY), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 [07] 12/22/18 T(9192) _VMR 16:25:29.863573 DEBUG VMR_HG.C[11671]: FDE doQuickQuery success to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [07] 12/22/18 T(9192) _VMR 16:25:29.863588 DEBUG VMR_VIOS.C[6134]: setCAAtopology

 [07] 12/22/18 T(9192) _VMR 16:25:29.863592 DEBUG needAttn.C[1566]: START handleVIOResponse scan [38].

 ...

 [image:]

 Both Example 2-210 on page 235 and Example 2-212 show the same QQ request XML response. The response contains a quickQuery/viosStatList/viosStatus structure of nested subelements for each host in the host group. Inside the viosStatus element are more self-closing viosStat subelements, one for each VIOS on the host. We examine the attributes of the viosStat subelement. Each referred VIOS is identified by a uuid attribute. The rest of the attributes provide health status details for the referred VIOS as follows:

 state	State of the VIOS as a node in the CAA cluster underlying the SSP. Possible values are UP or DOWN.

 hmResponsive		A value of 1 indicates that the HM daemon on the VIOS is running and sending heartbeats periodically as expected; otherwise, the value is 0.

 hmResponseSec		Gives the time elapsed in seconds since the last moment the HM on the VIOS updated its heartbeat within the HSDB.

 hasData	A value of 1 indicates that HSDB was updated with some information about a CAA event that happened on the VIOS node; 0 is used otherwise.

 reason	A code from HSDB corresponding to the current CAA event reason, if any.

 syncMsg	Used internally.

 The values of these attributes in Example 2-212 on page 237 are for the typical happy case where the status is OK on all monitored VIOSs. Cases with VIOS issues are covered in “CAA event monitoring” on page 128.

 We continue with our typical happy case. The XML response that is received on the KSYS side is now parsed by the FDE thread in the handleVIOResponse call starting immediately after the doQuickQuery call return (scan [38]). Example 2-213 lists the XML parsing-related records of this handleVIOResponse section, which is also logged in the fdelong log. To shorten the output, we kept only the records for the first viosStat XML element, which corresponds to the rt13v2 VIOS.

 Example 2-213 Parsing the QuickQuery response from the VIOS

 [image:]

 [07] 12/22/18 T(9192) _VMR 16:25:29.863592 DEBUG needAttn.C[1566]: START handleVIOResponse scan [38].

 [07] 12/22/18 T(9192) _VMR 16:25:29.863710 DEBUG needAttn.C[1594]: Handling VIO

 [07] 12/22/18 T(9192) _VMR 16:25:29.863713 DEBUG needAttn.C[1533]: Handling Response

 ...

 [07] 12/22/18 T(9192) _VMR 16:25:29.863726 DEBUG needAttn.C[911]: Handling viosStat

 [07] 12/22/18 T(9192) _VMR 16:25:29.863730 DEBUG needAttn.C[714]: uuid = 315ce56b-9ba0-46a1-b4bc-da6108574e7e

 [07] 12/22/18 T(9192) _VMR 16:25:29.863739 DEBUG needAttn.C[741]: state = UP for 315ce56b-9ba0-46a1-b4bc-da6108574e7e

 [07] 12/22/18 T(9192) _VMR 16:25:29.866542 DEBUG needAttn.C[755]: hmResponsive = 1 for 315ce56b-9ba0-46a1-b4bc-da6108574e7e

 [07] 12/22/18 T(9192) _VMR 16:25:29.868871 DEBUG needAttn.C[772]: hmResponseSec = 1 for 315ce56b-9ba0-46a1-b4bc-da6108574e7e

 [07] 12/22/18 T(9192) _VMR 16:25:29.868875 DEBUG VMR_VIOS.C[4387]: setHMrespSec HMrespSec 1 for rt13v2: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [07] 12/22/18 T(9192) _VMR 16:25:29.871177 DEBUG needAttn.C[797]: hasData = 0

 [07] 12/22/18 T(9192) _VMR 16:25:29.871181 DEBUG needAttn.C[811]: reason = string (0x00000000) : 0x0

 [07] 12/22/18 T(9192) _VMR 16:25:29.871186 DEBUG VMR_VIOS.C[5802]: setCAAstateReason 0x0 () for rt13v2: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [07] 12/22/18 T(9192) _VMR 16:25:29.873535 DEBUG VMR_VIOS.C[6134]: setCAAtopology rt13v2 UP

 [07] 12/22/18 T(9192) _VMR 16:25:29.876316 DEBUG needAttn.C[829]: syncMsg = 0

 [07] 12/22/18 T(9192) _VMR 16:25:29.876657 DEBUG needAttn.C[911]: Handling viosStat

 [07] 12/22/18 T(9192) _VMR 16:25:29.876660 DEBUG needAttn.C[714]: uuid = 5ac3e0dc-13fc-4221-9617-8ef61c4cdd83

 ...

 [07] 12/22/18 T(9192) _VMR 16:25:29.913014 DEBUG needAttn.C[1605]: FINISH handleVIOResponse.

 [00] 12/22/18 T(9192) _VMR 16:25:29.913072 DEBUG VMR_HG.C[11696]: FDE handleVIOResponse success

 [00] 12/22/18 T(9192) _VMR 16:25:29.913187 DEBUG FDEthread.C[709]: Sleep for 20 sec. sleepCounter 38

 [image:]

 All viosStat element attributes are taken one by one and checked for relevant value changes. The corresponding attributes of the VIOS resources on the KSYS side are updated with the new values (Example 2-214). In our case, HMrespSec was changed to 1 in Example 2-213 on page 238 by the setHMrespSec call.

 Example 2-214 VIOS health state attributes on the KSYS side

 [image:]

 # lsrsrc -s 'Name="rt13v2"' IBM.VMR_VIOS|egrep -i "uuid|stat|hm|resp|data|reason|sync|msg"

 ViosUuid = "315CE56B-9BA0-46A1-B4BC-DA6108574E7E"

 CecUuid = "4462c37c-65c6-3614-b02a-aa09d752c2ee"

 State = "MANAGED"

 ActiveHM = 101

 CAAstate = "UP"

 PoolState = "UP"

 HMrespSec = 1

 HMresponsive = "Yes"

 WarnMsg = ""

 InfoMsg = ""

 HMVersions = {"2.00"}

 PartitionState = ""

 HMmode = "Active"

 CAAstateReason = ""

 CAAreposState = "UP"

 RMCState = "active"

 # ksysmgr -v q vios rt13v2|egrep -i "uuid|stat|hm|resp|data|reason|sync|msg"

 UUID: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 RMC_state: active

 State: MANAGED

 HMstate: Yes

 HMmode: Active

 Last_response: 1 seconds

 CAA_state: UP

 Pool_state: UP

 HM_versions: 2.00

 #

 [image:]

 Nothing abnormal is detected in this happy case example, so the flow finishes and the FDE thread enters a new 20-second sleep period before starting a new QQ or NA check. This happy case pattern repeats in a normal steady state operation.

 The same QQ flow pattern is followed when case events happen. An abnormal situation exercise is simulated in “CAA event monitoring” on page 128, where we simulate a VIOS failure by shutting down a VIOS node. Then, we restart the VIOS node. We describe the way that generated CAA events are conveyed to the HSD, the FDE, and up the stack to other KSYS components, such as the event notification subsystem.

 Fresh VIOS health state data that is obtained this way feeds continuously into the FDE thread. The FDE thread decides on the next action, which is to do nothing if all is OK or to notify the user and decide on host relocation if something abnormal is found, as described in “Host relocation decision” on page 95.

 NeedsAttention flow

 The /usr/lib/vioHADR2.00.xsd VIOS reference file defines various used types and for most of these types provides free text explanations in the preceding comment sections. We identified vmStateType, discoveryInfoType, VMattenType, VIOS_StatusType, and reqActionType as containing NA request related information. We cite selectively from their comment sections as follows:

 ...
vmStateType
===========
ADDED: The VM has been added via the addVM flow.
STARTING: HM is attempting to start monitoring of the VM in response to a request from KSYS
STARTED: KSYS has requested that a particular VM is monitored on a managed system and both HMs on that system have received acknowledgements from the respective VMM. VIOS asserts need attention when VM moves from starting to started state. KSYS can choose to fail adding a VM after some reasonable time period if it has not moved to started state.
STOPPING: HM is attempting to stop monitoring of the VM on a managed system
STOPPED: Moved from stopping to stopped is NeedsAttention case after acked KSYS can send removeMS
REMOVING: VM is being removed using the removeVM flow
SUSPENDED: HM received suspend me request from VMM
UNKNOWN: An unmanaged VM is discovered
==
...
This is a discoveryInfoType complex object used for capturing details regarding a newly discovered VM by HM and report it to KSYS via the NeedsAttention interface.
type: This attribute give info on the type of action/discovery and the details are as follows:
MOVED: A managed VM moved (likely LPM or LKU action) and the VM can potentially be associated with the same CEC after the move.
MANAGED: This was requested by KSYS, because of various VM & HM boot conditions that KSYS is aware of and these conditions are not known to VIOS. This will be returned always.
UNMANAGED: The discovered VM is currently not managed. Udid value is valid.
CANNOT_MANAGE: The discovered VM has an invalid udid (empty string) and hence cannot be managed.
versionConflict: This is a Boolean attribute that indicates that there is a version mismatch between the HM and the VMM.
==
...
This is object is returned for some number of VMs on a NeedsAttention poll if the VM meets the criteria that KSYS must be aware of some issue.
VM
missedHB: integer regarding number of Heartbeats missed by the VM
isFenced: the VM is fenced on one or more managed systems
state: The VM can be in multiple states, the state in and of itself is not the same as NeedsAttention.
...
stateChg: This attribute when present indicates that this VM is undergoing a state change and state field will indicate the current state. When this attribute is present, the payload may include a tag will need to be acknowledged.
...
==
VIOS-related info which can be returned with NeedsAttention poll if state is DOWN or REMOVED, it NeedsAttention
VIOS UDID,
State
UP: CAA definition of up, is joined to the cluster
DOWN: CAA definition of down, is not currently joined to the cluster
REMOVED: node was removed from the cluster.
KSYS convenience managed system information
If a VIOS is a health monitor, the VIOS maybe returned in NeedsAttention state if the HM daemon is not responsive. VIOS heartbeats the HM and may kill and restart the daemon based on the heartbeats. The VIOS may report this as hmResponsive == FALSE
==
...
- VIO_HS_NEEDS_ATTENTION: KSYS uses this request on a poll period. It returns a list VMs that have missed a heartbeat and or have an application request pending that has not been acknowledged by KSYS
- VIO_HS_ACKNOWLEDGE: This is sent by KSYS as an acknowledgment that it has received and successfully saved the information regarding a VM. VIOS will not return status for a VMs after the acknowledgment until there is a further change for that VM. VIO_HS_ACKNOWLEDGE is not applied to missed heartbeat however it is applied to the following:
state transitions
application requests
...

 This chapter has some examples of Need Attention requests:

 •The typical happy case steady state NA request in Example 2-204 on page 230

 •The acknowledged NA request with VM state change to STARTED in Example 2-206 on page 231

 •The acknowledged NA request with the initial DBELL sent during the HM to VMM handshake sequence in Example 2-207 on page 232

 •The NA request with VIOS-only health state after the CAA node DOWN event in Example 2-102 on page 139

 •The acknowledged NA request with both the VIOS health state and VM health state in Example 2-109 on page 146

 This section continues with the analysis of some relevant NA request cases. We start with the case in Example 2-204 on page 230, which has a short reply payload because we used the simple setup from “HM-VMM communication establishment” on page 215. The test environment that we used in that section consists of only two hosts in a host group, with one AIX VM on each host and only one of these two VMs enabled for monitoring. At the end of that exercise, the VMM was sending heartbeats every 10 seconds to HSDB by using its underlying HMs, and KSYS was retrieving continuously the VM consolidated status by sending NA requests every 60 seconds. Example 2-215 shows the NA reply payload.

 Example 2-215 Happy case NA reply for one VM sending heartbeats

 [image:]

 <VIO><Response>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

 [image:]

 The returned payload contains only one needsAtt/vmStatList/vmList structure of nested subelements for one of the hosts. It is the host where the one VM sending heartbeats is located. Migrating the VM to the neighboring host results in a similar NA request returned payload, as shown in Example 2-216.

 Example 2-216 Returned payload of the NA request after the migration of the VM

 [image:]

 # ksysmgr lpm vm vmraix1

 Running LPM on VM(S), this may take few minutes...

 LPM has started for vmraix1

 LPM has completed for vmraix1 on Target host Server-8408-E8E-SN21282FW

 Waiting for rediscovery.

 1 out of 1 VMs have been successfully performed LPM

 root:vmrksys: /home/root >

 # ksysmgr q vm state=manage|egrep "^Name|^Host|^HA_monitor"

 Name: vmraix1

 Host: Server-8408-E8E-SN21282FW

 HA_monitor: enable

 Name: vmraix2

 Host: Server-8408-E8E-SN21282FW

 HA_monitor: disable

 root:vmrksys: /home/root >

 # /usr/ios/sbin/vioservice lib/libviopass/passthru <na.xml

 <VIO><Response>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="21282FW">

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

 #

 [image:]

 From the serial attribute value, we see that the vmList element is now on the other host where the VM is after the LPM migration.

 We enable the second VM for monitoring, run a discovery, migrate the first VM back to its home host, and recheck the NA reply payload (Example 2-217).

 Example 2-217 Reply payload for NA request: Two heartbeat VMs each on distinct hosts

 [image:]

 # ksysmgr mod vm vmraix2 ha_monitor=enable

 For VM vmraix2 attribute(s) 'ha_monitor' was successfully modified.

 root:vmrksys: /home/root >

 # ksysmgr discover hg rbHG

 Running discovery on Host_group rbHG, this may take few minutes...

 ...

 Discovery has finished for rbHG

 2 out of 2 managed VMs have been successfully discovered

 root:vmrksys: /home/root >

 # ksysmgr lpm vm vmraix1

 Running LPM on VM(S), this may take few minutes...

 LPM has started for vmraix1

 LPM has completed for vmraix1 on Target host Server-8408-E8E-SN212424W

 Waiting for rediscovery.

 1 out of 1 VMs have been successfully performed LPM

 root:vmrksys: /home/root >

 #

 # /usr/ios/sbin/vioservice lib/libviopass/passthru <na.xml

 <VIO><Response>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="21282FW">

 </vmList>

 </vmStatList>

 </needsAtt>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

 #

 [image:]

 As expected, we get as the response payload a vmList element inside the nested needsAtt/vmStatList structure for each host with at least one heartbeat VM. The vmList elements contain nothing, which means that the heartbeats are received for both VMs.

 We analyze the case where the heartbeat from one VM is lost on both VMM to HM paths. We enforce this missed heartbeat event by disabling the HA client adapters for one of the heartbeat VMs, as shown in Example 2-218.

 Example 2-218 Enforcing a missed heartbeat event

 [image:]

 hscroot@usaxhmc013ccpf1:~> lshwres -r virtualio --rsubtype eth -m Server-8408-E8E-SN212424W --level lpar -F lpar_name,slot_num,port_vlan_id,vswitch,mac_addr --filter lpar_names=vmraix1

 vmraix1,7,101,rbRMHA_VSWITCH,6A6A0FFDF707

 vmraix1,8,102,rbRMHA_VSWITCH,6A6A0FFDF708

 vmraix1,32,2030,ETHERNET0,FA643EBA1D20

 hscroot@usaxhmc013ccpf1:~> date;chhwres -r virtualio -m Server-8408-E8E-SN212424W -o d --rsubtype eth -p vmraix1 -s 7;date

 Tue Aug 27 22:09:04 UTC 2019

 Tue Aug 27 22:09:07 UTC 2019

 hscroot@usaxhmc013ccpf1:~> date;chhwres -r virtualio -m Server-8408-E8E-SN212424W -o d --rsubtype eth -p vmraix1 -s 8;date

 Tue Aug 27 22:09:38 UTC 2019

 Tue Aug 27 22:09:41 UTC 2019

 hscroot@usaxhmc013ccpf1:~>

 [image:]

 Its effect at the HSDB level is shown in Example 2-219. The vmhbmissed field in the map table is updated with the time stamp of the moment when the HM concludes that the heartbeat from the VM is lost.

 Example 2-219 VM heartbeat missed time stamps in the HSDB map table

 [image:]

 vios=# select vmuuid,viosuuid,vmhbmissed from map where vmuuid='61be20f0-09a8-4753-b5e5-564f8a545ed5';

 vmuuid | viosuuid | vmhbmissed

 --------------------------------------+--------------------------------------+----------------------------

 61be20f0-09a8-4753-b5e5-564f8a545ed5 | 5c3196a3-c41f-4b5c-9861-dee6077081c6 | 2019-08-27 22:09:14.258417

 61be20f0-09a8-4753-b5e5-564f8a545ed5 | 0ab5001f-2c3e-4fbb-97ea-41d3f8c4f898 | 2019-08-27 22:09:54.292171

 (2 rows)

 vios=#

 [image:]

 The excerpts in Example 2-220 show the records that are logged by both HMs at the moment when each ibe notices that the missed heartbeat event happened, which is around 19 seconds after the last received VM heartbeat.

 Example 2-220 VM missed heartbeat event at the HM level

 [image:]

 # lsattr -El vios0 -a vios_uuid

 vios_uuid 5c3196a3-c41f-4b5c-9861-dee6077081c6 VIOS Unique Identifier False

 # alog -f /home/ios/logs/health/host_monitor.log -o > host_monitor.log.NeedsAttn

 # more host_monitor.log.NeedsAttn

 ...

 [3 13631804 31392029 08/27/19-22:08:54.891 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 [3 13631804 63373701 08/27/19-22:08:55.375 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (3 bytes) HB:

 [2 13631804 49873289 08/27/19-22:09:14.240 VmHealthStatusMgr.C:VmHealthStatusMgr::checkTim...: 819] VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' state changed to MISSING.

 [2 13631804 49873289 08/27/19-22:09:14.240 DatabaseAccess.C:DatabaseAccess::writeToDatabase(): 570] VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' state updated in Database to : MISSING

 [2 13631804 49873289 08/27/19-22:09:14.269 DatabaseAccess.C:DatabaseAccess::writeToDatabase(): 585] vioHmClientMissed returned with rc = 0

 [3 13631804 49873289 08/27/19-22:09:23.742 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '15667

 host_monitor.log.NeedsAttn (82%)

 # lsattr -El vios0 -a vios_uuid

 vios_uuid 0ab5001f-2c3e-4fbb-97ea-41d3f8c4f898 VIOS Unique Identifier False

 # alog -f /home/ios/logs/health/host_monitor.log -o > host_monitor.log.NeedsAttn

 # more host_monitor.log.NeedsAttn

 ...

 [3 14483764 63439325 08/27/19-22:09:35.374 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (3 bytes) HB:

 [3 14483764 50659589 08/27/19-22:09:52.404 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 [3 14483764 63177039 08/27/19-22:09:53.774 Processing.C:Processing::sendMessage(bool, stri...: 682] Broadcasting 'Hello' message with identifier '1566740872.441312000.38'

 [3 14483764 62980395 08/27/19-22:09:53.774 HvncpSender.C:HvncpSender::threadMain() : 814] Sending Packet to addr: FFFFFFFFFFFF

 [3 14483764 62980395 08/27/19-22:09:53.774 HvncpPacket.C:HvncpPacket::display() const : 292] +Packet Frame (23 bytes) 1566740872.441312000.38

 [3 14483764 63177039 08/27/19-22:09:54.274 Processing.C:Processing::cleanMsgBuffer(const s...: 833] Removing message to VmMon at macAddr 'FFFFFFFFFFFF' from send queue. Reason: Fully sent

 [2 14483764 63177039 08/27/19-22:09:54.274 VmHealthStatusMgr.C:VmHealthStatusMgr::checkTim...: 819] VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' state changed to MISSING.

 [2 14483764 63177039 08/27/19-22:09:54.274 DatabaseAccess.C:DatabaseAccess::writeToDatabase(): 570] VM '61be20f0-09a8-4753-b5e5-564f8a545ed5' state updated in Database to : MISSING

 [2 14483764 63177039 08/27/19-22:09:54.303 DatabaseAccess.C:DatabaseAccess::writeToDatabase(): 585] vioHmClientMissed returned with rc = 0

 [3 14483764 50659589 08/27/19-22:10:23.632 ProcessingDbHb.C:ProcessingDbHb::threadMain() : 86] HM: Sending HM heartbeats to health library

 host_monitor.log.NeedsAttn (82%)

 [image:]

 The effect at the NA request level is evaluated by probing 1 second at a time, as shown in Example 2-221.

 Example 2-221 Watching for the missed heartbeat event

 [image:]

 # while true; do sleep 1;date; /usr/ios/sbin/vioservice lib/libviopass/passthru <na.xml;done

 ...

 Tue Aug 27 22:09:54 CUT 2019

 <VIO><Response>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="21282FW">

 </vmList>

 </vmStatList>

 </needsAtt>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

 Tue Aug 27 22:09:55 CUT 2019

 <VIO><Response>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="21282FW">

 </vmList>

 </vmStatList>

 </needsAtt>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 <vmStat uuid="61be20f0-09a8-4753-b5e5-564f8a545ed5"><VM state="STARTED" missedHb='42' >

 </VM>

 </vmStat>

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

 Tue Aug 27 22:09:56 CUT 2019

 <VIO><Response>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="21282FW">

 </vmList>

 </vmStatList>

 </needsAtt>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 <vmStat uuid="61be20f0-09a8-4753-b5e5-564f8a545ed5"><VM state="STARTED" missedHb='43' >

 </VM>

 </vmStat>

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

 ...

 [image:]

 We observe that a new vmStat element shows up inside the vmList for our VM only when both the first and second HM update their missed heartbeat time stamps in the HSDB. Example 2-221 on page 245 shows that at 22:09:55, shortly after the missed heartbeat, a time stamp update was performed by the second HM at 22:09:54.303 (vioHmClientMissed return). Inside the new vmStat element, a VM subelement is now present with the state and missedHb attributes having values set as retrieved from the HSDB. The update of the VM state to the STARTED state is described in “HM-VMM communication establishment” on page 215. The VM state is now retrieved from the HSDB as it was set then.

 We also observe that the missedHb attribute value looks like an elapsed time in seconds value rather than an integer counter of missed heartbeats value. At 22:09:55, the value is 42,
1 second later is 43, and so on. The /usr/lib/vioHADR2.00.xsd VIOS reference file documents this attribute as missedHB: integer regarding number of Heartbeats missed by the VM. We check the health library and HSDB logs around 22:09:55 to get more insight into how the value of this missedHb attribute is computed.

 Example 2-222 shows the entries that are logged in vioshs.log by the NA request that is issued at 22:09:55, the first one that returns a missedHb value, and the final entries that are logged by the prior NA request issued a second earlier.

 Example 2-222 Health library log around the start of missedHb reporting

 [image:]

 # alog -f /home/ios/logs/health/viohs.log -o > viohs.log.NeedsAttn.missedHb

 # more viohs.log.NeedsAttn.missedHb

 [START 19333444 71762285 08/27/19-22:09:54.695 ha_util.c 1.43 230]

 ...

 [3 19333444 71762285 08/27/19-22:09:54.770 hs_atten.c hsGetHighest 1.108 429] ====>> 61be20f0-09a8-4753-b5e5-564f8a545ed5: count1:40 count2=0

 [3 19333444 71762285 08/27/19-22:09:54.770 hs_atten.c hsGetHighest 1.108 514] ====>> 61be20f0-09a8-4753-b5e5-564f8a545ed5: highCnt:40 whichVios=1

 [3 19333444 71762285 08/27/19-22:09:54.770 hs_atten.c hs_check_and_segregate_vms 1.108 3727] >>Missing HB from VIOS:1 cnt=40 noEntry=0

 [3 19333444 71762285 08/27/19-22:09:54.771 hs_atten.c hs_serialize_VM_for_Attn 1.108 2741] 61be20f0-09a8-4753-b5e5-564f8a545ed5 ## report=0 stateChg=0 vm->misc.shortMsg=0 shortMsg=0

 [3 19333444 71762285 08/27/19-22:09:54.771 hs_atten.c vioHsNeedsAttention 1.108 4593] End, rc=0

 [END 19333444 71762285 08/27/19-22:09:54.771 ha_util.c 1.43 253] exited with rc=0

 [START 19333450 71762291 08/27/19-22:09:55.787 ha_util.c 1.43 230]

 [3 19333450 71762291 08/27/19-22:09:55.788 hs_util.c hs_libvio_traces 1.66 60] HEALTH:71762291 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=1d1bbef6c72d11e98004fa2424246026

 [3 19333450 71762291 08/27/19-22:09:55.789 hs_util.c hs_libvio_traces 1.66 60] HEALTH:71762291 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20019248

 [3 19333450 71762291 08/27/19-22:09:55.811 hs_util.c hs_libvio_traces 1.66 60] HEALTH:71762291 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20019248

 [3 19333450 71762291 08/27/19-22:09:55.845 hs_atten.c hs_get_all_VM_short_msg 1.108 1245] Got zero short msg entries from trans!

 [3 19333450 71762291 08/27/19-22:09:55.845 hs_atten.c hs_handle_all_VM_short_msg 1.108 1056] No short msg entries found in trans table!

 [3 19333450 71762291 08/27/19-22:09:55.853 hs_atten.c hsGetMissCount 1.108 338] [1950678c-18bf-4c87-860c-f9e6ec24b513 72dee902-1210-4bd7-a35f-3a6c771c6453] - 0 sec

 [3 19333450 71762291 08/27/19-22:09:55.854 hs_atten.c hsGetMissCount 1.108 338] [1950678c-18bf-4c87-860c-f9e6ec24b513 10875b47-d737-44f9-a745-554f4df4adf8] - 0 sec

 [3 19333450 71762291 08/27/19-22:09:55.854 hs_atten.c hsGetHighest 1.108 429] ====>> 1950678c-18bf-4c87-860c-f9e6ec24b513: count1:0 count2=0

 [3 19333450 71762291 08/27/19-22:09:55.854 hs_atten.c hsGetHighest 1.108 514] ====>> 1950678c-18bf-4c87-860c-f9e6ec24b513: highCnt:0 whichVios=0

 [3 19333450 71762291 08/27/19-22:09:55.854 hs_atten.c hs_check_and_segregate_vms 1.108 3727] >>Missing HB from VIOS:0 cnt=0 noEntry=0

 [3 19333450 71762291 08/27/19-22:09:55.858 hs_atten.c hs_serialize_VM_for_Attn 1.108 2741] 1950678c-18bf-4c87-860c-f9e6ec24b513 ## report=0 stateChg=0 vm->misc.shortMsg=0 shortMsg=0

 [3 19333450 71762291 08/27/19-22:09:55.862 hs_atten.c hsGetMissCount 1.108 338] [61be20f0-09a8-4753-b5e5-564f8a545ed5 5c3196a3-c41f-4b5c-9861-dee6077081c6] - 2a sec

 [3 19333450 71762291 08/27/19-22:09:55.862 hs_atten.c hsGetMissCount 1.108 338] [61be20f0-09a8-4753-b5e5-564f8a545ed5 0ab5001f-2c3e-4fbb-97ea-41d3f8c4f898] - 2 sec

 [3 19333450 71762291 08/27/19-22:09:55.862 hs_atten.c hsGetHighest 1.108 429] ====>> 61be20f0-09a8-4753-b5e5-564f8a545ed5: count1:42 count2=2

 [3 19333450 71762291 08/27/19-22:09:55.863 hs_atten.c hsGetHighest 1.108 514] ====>> 61be20f0-09a8-4753-b5e5-564f8a545ed5: highCnt:42 whichVios=3

 [3 19333450 71762291 08/27/19-22:09:55.863 hs_atten.c hs_check_and_segregate_vms 1.108 3727] >>Missing HB from VIOS:3 cnt=42 noEntry=0

 [3 19333450 71762291 08/27/19-22:09:55.863 hs_atten.c hs_check_and_segregate_vms 1.108 3755] Missing HB from both vioses, max from :3

 [3 19333450 71762291 08/27/19-22:09:55.864 hs_atten.c hs_serialize_VM_for_Attn 1.108 2741] 61be20f0-09a8-4753-b5e5-564f8a545ed5 ## report=1 stateChg=0 vm->misc.shortMsg=0 shortMsg=0

 [3 19333450 71762291 08/27/19-22:09:55.864 hs_atten.c vioHsNeedsAttention 1.108 4593] End, rc=0

 [END 19333450 71762291 08/27/19-22:09:55.864 ha_util.c 1.43 253] exited with rc=0

 [START 19333456 71762297 08/27/19-22:09:56.880 ha_util.c 1.43 230]

 viohs.log.NeedsAttn.missedHb (92%)

 [image:]

 For the prior NA request, Example 2-222 on page 246 shows that one VIOS has a missed heartbeat counter of 40, but the other VIOS received fresh heartbeats (count1:40 count2=0), so no heartbeat missed event is returned. But for the NA request that is issued at 22:09:55, both VIOSs have positive missed heartbeat counters (count1:42 count2=2). So, this time the health library encounters a full missed heartbeat even reported by both HMs and returns with the new elements and a positive value of the missedHb attribute for the affected VM (61be20f0-09a8-4753-b5e5-564f8a545ed5). The value that is returned is selected as the maximum among those two, which is 42 for our sample here.

 You also notice in Example 2-222 on page 246 how the other VM (1950678c-18bf-4c87-860c-f9e6ec24b513) is sending heartbeats normally through both VIOSs (count1:0 count2=0).

 To understand how these missed heartbeat counters are computed, we go to the DBN node and look for database log entries that correspond to one of the hsGetMissCount calls. We look at the hsGetMissCount call that was issued around 22:09:55.862, and the findings are shown in Example 2-223.

 Example 2-223 Computing the missed heartbeat counters

 [image:]

 # /usr/ios/cli/ioscli cluster -status -verbose|grep -p DBN|egrep "Node Name|DBN"

 Node Name: usaxvia053ccpx1

 Node Roles: DBN

 #

 # uname -uL

 IBM,0221282FW 2 usaxvia053ccpx1

 # ls -latr /home/ios/logs/pg_sspdb/*.log

 ...

 -rw-r--r-- 1 vpgadmin bin 20971642 Aug 27 21:36 pg_sspdb-27-21-15.log

 -rw-r--r-- 1 vpgadmin bin 20971706 Aug 27 21:56 pg_sspdb-27-21-36.log

 -rw-r--r-- 1 vpgadmin bin 20971701 Aug 27 22:14 pg_sspdb-27-21-56.log

 -rw-r--r-- 1 vpgadmin bin 20971546 Aug 27 22:35 pg_sspdb-27-22-14.log

 ...

 -rw-r--r-- 1 vpgadmin bin 20971710 Aug 28 13:52 pg_sspdb-28-13-31.log

 drwxrwxr-x 8 bin bin 4096 Aug 28 14:00 ..

 -rw-r--r-- 1 vpgadmin bin 20971545 Aug 28 14:12 pg_sspdb-28-13-52.log

 drwx------ 2 vpgadmin bin 4096 Aug 28 14:30 .

 -rw-r--r-- 1 vpgadmin bin 17718556 Aug 28 14:30 pg_sspdb-28-14-12.log

 # cp /home/ios/logs/pg_sspdb/pg_sspdb-27-21-56.log pg_sspdb-27-21-56.log.missedHb

 # more pg_sspdb-27-21-56.log.missedHb

 ...

 2019-08-27 22:09:55.861 CUT|5d65aa33.19e0118|LOG: statement: RELEASE _EXEC_SVP_20122a88;SAVEPOINT _EXEC_SVP_20122a88;select DISTINCT vmuuid from vioshs.map where viosuuid='5c3196a3-c41f-4b5c-9861-dee6077081c6' OR viosuuid='0ab5001f-2c3e-4fbb-97ea-41d3f8c4f898'

 2019-08-27 22:09:55.862 CUT|5d65aa33.19e0118|LOG: statement: RELEASE _EXEC_SVP_20122a88;SAVEPOINT _EXEC_SVP_20122a88;SELECT CAST ((EXTRACT(epoch FROM NOW():

 :timestamp) - EXTRACT(epoch FROM vioshs.map.vmHbMissed::timestamp)) AS BIGINT) FROM vioshs.map WHERE vioshs.map.vmuuid='61be20f0-09a8-4753-b5e5-564f8a545ed5' AND vioshs.map.viosuuid='5c3196a3-c41f-4b5c-9861-dee6077081c6'

 2019-08-27 22:09:55.862 CUT|5d65aa33.19e0118|LOG: statement: RELEASE _EXEC_SVP_20122a88;SAVEPOINT _EXEC_SVP_20122a88;SELECT CAST ((EXTRACT(epoch FROM NOW():

 :timestamp) - EXTRACT(epoch FROM vioshs.map.vmHbMissed::timestamp)) AS BIGINT) FROM vioshs.map WHERE vioshs.map.vmuuid='61be20f0-09a8-4753-b5e5-564f8a545ed5' AND vioshs.map.viosuuid='0ab5001f-2c3e-4fbb-97ea-41d3f8c4f898'

 pg_sspdb-27-21-56.log.missedHb (74%)

 [image:]

 So, the missed heartbeat counters are computed as the difference between the current moment and the missed heartbeat time stamp that was reported by the HM in the HSDB map table ((EXTRACT(epoch FROM NOW()::timestamp) - EXTRACT(epoch FROM vioshs.map.vmHbMissed::timestamp)) AS BIGINT).

 We are done with the analysis of this enforced missed heartbeat event for our test VM and have a better understanding of how such an event is registered by the HMs in the HSDB and becomes available for NA request retrieval.

 Example 2-224 shows an NA reply payload that is captured by the probing shown in Example 2-221 on page 245 during an LPM operation that is performed by ksysmgr.

 Example 2-224 NA reply payload during a lpm operation that is performed by ksysmgr

 [image:]

 # ksysmgr lpm vm vmraix1

 Running LPM on VM(S), this may take few minutes...

 LPM has started for vmraix1

 LPM has completed for vmraix1 on Target host Server-8408-E8E-SN21282FW

 Waiting for rediscovery.

 1 out of 1 VMs have been successfully performed LPM

 root:vmrksys: /home/root >

 #

 # uname -uL

 IBM,02212424W 3 usaxvib063ccpx1

 # while true; do sleep 2;date; /usr/ios/sbin/vioservice lib/libviopass/passthru <na.xml;done

 ...

 Thu Aug 29 08:06:36 CUT 2019

 <VIO><Response>

 <needsAtt hsTag="-8403607219422560833">

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="21282FW">

 <vmStat uuid="61be20f0-09a8-4753-b5e5-564f8a545ed5"><VM state="STARTED" stateChg='1' missedHMEntry="10875b47-d737-44f9-a745-554f4df4adf8" >

 <discoveryInfo type='MOVED'/>

 </VM>

 </vmStat>

 </vmList>

 </vmStatList>

 </needsAtt>

 <needsAtt hsTag="-8403607219422560833">

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="21282FW">

 <vmStat uuid="61be20f0-09a8-4753-b5e5-564f8a545ed5"><VM state="STARTED" stateChg='1' >

 </VM>

 </vmStat>

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

 ...

 ^C#

 [image:]

 Inside the VM element in Example 2-224 on page 249, there is a discoveryInfo subelement with a type attribute set to a MOVED value. As defined in the /usr/lib/vioHADR2.00.xsd VIOS reference file, it is used for capturing details regarding a VM newly discovered by an HM and reporting it to KSYS through the NeedsAttention interface. We already saw an NA request case with multiple instances of this discoveryInfo subelement in a different context. The response payload in Example 2-109 on page 146 contains more subelements of this kind, with the type attribute value set to UNMANAGED and the state attribute of the enclosing VM elements set to UNKNOWN. They inform KSYS that some unmanaged VMs were discovered on the host that is mentioned in the enclosing vmList element by the serial attribute.

 The NA request in Example 2-224 on page 249 leaves a trace in the health library log, as shown in Example 2-225.

 Example 2-225 Health library log entries for an NA request that is issued during a ksysmgr lpm operation

 [image:]

 # alog -f /home/ios/logs/health/viohs.log -o > viohs.log.NeedsAttn.LPM

 # more viohs.log.NeedsAttn.LPM

 [START 17498526 83362155 08/29/19-08:06:36.346 ha_util.c 1.43 230]

 [3 17498526 83362155 08/29/19-08:06:36.347 hs_util.c hs_libvio_traces 1.66 60] HEALTH:83362155 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=1d1bbef6c72d11e98004fa2424246026

 [3 17498526 83362155 08/29/19-08:06:36.348 hs_util.c hs_libvio_traces 1.66 60] HEALTH:83362155 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20019248

 [3 17498526 83362155 08/29/19-08:06:36.364 hs_util.c hs_libvio_traces 1.66 60] HEALTH:83362155 -- violibDB.c _allocHandleDB 1.132.12.4 589 HDBC = 20019248

 [3 17498526 83362155 08/29/19-08:06:36.392 hs_atten.c hs_get_all_VM_short_msg 1.108 1245] Got zero short msg entries from trans!

 [3 17498526 83362155 08/29/19-08:06:36.392 hs_atten.c hs_handle_all_VM_short_msg 1.108 1056] No short msg entries found in trans table!

 [3 17498526 83362155 08/29/19-08:06:36.399 hs_atten.c hsGetMissCount 1.108 338] [1950678c-18bf-4c87-860c-f9e6ec24b513 72dee902-1210-4bd7-a35f-3a6c771c6453] - 0 sec

 [3 17498526 83362155 08/29/19-08:06:36.399 hs_atten.c hsGetMissCount 1.108 338] [1950678c-18bf-4c87-860c-f9e6ec24b513 10875b47-d737-44f9-a745-554f4df4adf8] - 0 sec

 [3 17498526 83362155 08/29/19-08:06:36.399 hs_atten.c hsGetHighest 1.108 429] ====>> 1950678c-18bf-4c87-860c-f9e6ec24b513: count1:0 count2=0

 [3 17498526 83362155 08/29/19-08:06:36.399 hs_atten.c hsGetHighest 1.108 514] ====>> 1950678c-18bf-4c87-860c-f9e6ec24b513: highCnt:0 whichVios=0

 [3 17498526 83362155 08/29/19-08:06:36.400 hs_atten.c hs_check_and_segregate_vms 1.108 3727] >>Missing HB from VIOS:0 cnt=0 noEntry=0

 [3 17498526 83362155 08/29/19-08:06:36.400 hs_atten.c hsGetMissCount 1.108 338] [61be20f0-09a8-4753-b5e5-564f8a545ed5 72dee902-1210-4bd7-a35f-3a6c771c6453] - 0 sec

 [3 17498526 83362155 08/29/19-08:06:36.400 hm_time.c tsDiff 1.39 240] Error: Query SELECT CAST ((EXTRACT(epoch FROM NOW()::timestamp) - EXTRACT(epoch FROM vios

 hs.map.vmHbMissed::timestamp)) AS BIGINT) FROM vioshs.map WHERE vioshs.map.vmuuid='61be20f0-09a8-4753-b5e5-564f8a545ed5' AND vioshs.map.viosuuid='10875b47-d737-44f9-a745-554f4df4adf8' found no entry in the DB table.

 [3 17498526 83362155 08/29/19-08:06:36.400 hs_atten.c hsGetMissCount 1.108 343] Error (rc=-2) getting miss HB info for 61be20f0-09a8-4753-b5e5-564f8a545ed5-10875b47-d737-44f9-a745-554f4df4adf8

 [3 17498526 83362155 08/29/19-08:06:36.400 hs_atten.c hsGetHighest 1.108 419] There is no map entry with vm 61be20f0-09a8-4753-b5e5-564f8a545ed5, vios 72dee902-1210-4bd7-a35f-3a6c771c6453 rc=-2

 [3 17498526 83362155 08/29/19-08:06:36.400 hs_atten.c hsGetHighest 1.108 429] ====>> 61be20f0-09a8-4753-b5e5-564f8a545ed5: count1:0 count2=0

 [3 17498526 83362155 08/29/19-08:06:36.400 hs_atten.c hsGetHighest 1.108 514] ====>> 61be20f0-09a8-4753-b5e5-564f8a545ed5: highCnt:9999 whichVios=2

 [3 17498526 83362155 08/29/19-08:06:36.400 hs_atten.c hs_check_and_segregate_vms 1.108 3727] >>Missing HB from VIOS:2 cnt=9999 noEntry=2

 [3 17498526 83362155 08/29/19-08:06:36.404 hs_atten.c hs_serialize_VM_for_Attn 1.108 2741] 1950678c-18bf-4c87-860c-f9e6ec24b513 ## report=0 stateChg=0 vm->misc.shortMsg=0 shortMsg=0

 [3 17498526 83362155 08/29/19-08:06:36.404 hs_atten.c hs_serialize_VM_for_Attn 1.108 2741] 61be20f0-09a8-4753-b5e5-564f8a545ed5 ## report=1 stateChg=1 vm->misc.shortMsg=0 shortMsg=0

 [3 17498526 83362155 08/29/19-08:06:36.405 hs_atten.c hs_serialize_VM_for_Attn 1.108 2741] 61be20f0-09a8-4753-b5e5-564f8a545ed5 ## report=1 stateChg=1 vm->misc.shortMsg=0 shortMsg=0

 [3 17498526 83362155 08/29/19-08:06:36.408 hs_atten.c hs_get_vms_for_HM_pair 1.108 3658] Got zero VMs with query=select DISTINCT vmuuid from vioshs.map where viosuuid='0ab5001f-2c3e-4fbb-97ea-41d3f8c4f898' OR viosuuid='5c3196a3-c41f-4b5c-9861-dee6077081c6'

 [3 17498526 83362155 08/29/19-08:06:36.408 hs_atten.c hs_handle_msys 1.108 4019] No VMs monitored from the CEC=-3133915808583905883

 [3 17498526 83362155 08/29/19-08:06:36.408 hs_atten.c hs_serialize_VM_list_for_discovery 1.108 3206] Error getting MS info for -6300057356714549736

 [3 17498526 83362155 08/29/19-08:06:36.408 hs_atten.c vioHsNeedsAttention 1.108 4593] End, rc=0

 [END 17498526 83362155 08/29/19-08:06:36.408 ha_util.c 1.43 253] exited with rc=0

 [START 17498532 83362161 08/29/19-08:06:38.420 ha_util.c 1.43 230]

 viohs.log.NeedsAttn.LPM (99%)

 [image:]

 Comparing to the similar trace in Example 2-222 on page 246, we observe that the same actions are performed inside the vioHsNeedsAttention with more actions in the following order:

 1.	Look for short message entries in trans table.

 2.	Check and report the VM missed heartbeats.

 3.	Look for VM state changes and report the state changes and short messages.

 4.	Look for VM discoveries.

 To conclude our findings so far, we list the attributes that were encountered in the NA reply payloads for the analyzed cases. These attributes describe either VM elements or adjacent elements.

 missedHb	Gives the time elapsed in seconds since the HMs reported missed heartbeats for the VM. It is returned only if both HMs report positive values and the maximum value is chosen.

 stateChg	Indicates that the VM is undergoing a state change. An accompanying state field indicates the current state. When this attribute is present, the payload may include a tag that must be acknowledged.

 shortMsg	A short message that is sent by the VM toward KSYS to notify it that a configuration or status change happened at the application level of our VM.

 state	The VM can be in one of the following states:

 ADDED	The VM was added by the addVM flow.

 STARTING	The HMs are attempting to start monitoring of the VM in response to a request from KSYS.

 STARTED	The KSYS has enabled the VM to be monitored, and both HMs on the host where the VM is located received heartbeats from the respective VMM.

 STOPPING	HM is attempting to stop monitoring of the VM on a managed system.

 STOPPED	Moved from stopping to stopped if it is a NeedsAttention case. After it is acknowledge, KSYS can send a removeMS call.

 REMOVING	VM is being removed by using the removeVM flow.

 SUSPENDED	HM received a suspend me request from the VMM.

 UNKNOWN	An unmanaged VM is discovered.

 uuid	The VM unique identifier that shows up as an attribute of the vmStat element.

 serial	Gives the serial number of the host where the VM is as an attribute of the enclosing vmList element.

 type	Attribute of an enclosed discoveryType element that is used for a newly discovered VM by an underlying HM. Gives details about the type of discovery by using the following values:

 MOVED	A managed VM is being moved by LPM. The VM can potentially be associated with the host after the move.

 MANAGED	Requested by KSYS because of various VM and HM boot conditions that KSYS is aware of. These conditions are not known to VIOS.

 UNMANAGED	The discovered VM is not managed.

 CANNOT_MANAGE	The discovered VM has an invalid ID (empty string) and cannot be managed.

 As shown in Example 2-102 on page 139, elements and attributes describing a VIOS heath state can appear also in NA reply payloads in special cases, like in QQ reply payload. The information that was stated about the QQ reply payload attributes describing the VIOS heath state in “QuickQuery flow” on page 234 applies also to this case, so we do not cover it again.

 Now, we look at the NA request flow. We expect it to be similar to the steady state QQ request flow in “QuickQuery flow” on page 234. The NA request flow starts with the request payload that is sent by the host group FDE thread on the KSYS side to the VIOS side. It continues with the response payload that is retrieved from HSDB and conveyed back to the FDE thread, where it is processed and, depending on results, either triggers appropriate actions or notifies users with appropriate messages. If nothing new or abnormal is detected in the reply payload about a VM, such as a VM state change or application-level change or a missed heartbeat, then we have a steady state happy case and the flow finishes without triggering any action. The FDE thread enters a new 20-second sleep period after which it starts the next QQ request.

 Let us now approach the VM missed heartbeat scenario and present in detail its NA request flow. Earlier in this section, we described how the missed heartbeat event is reported by the HMs to the HSDB and how a NA request retrieves the missedHb attribute values for such a case. Here, our focus is on the actions happening at the KSYS level. The event is enforced in the same way by disabling the HA client adapters of the VM at the HMC level. Then, through the probing in Example 2-226, we capture the effect at the ksysmgr level.

 Example 2-226 Capturing the effect of the missed heartbeat at the ksysmgr level

 [image:]

 hscroot@usaxhmc013ccpf1:~> chhwres -r virtualio -m Server-8408-E8E-SN212424W -o d --rsubtype eth -p vmraix1 -s 7

 hscroot@usaxhmc013ccpf1:~> chhwres -r virtualio -m Server-8408-E8E-SN212424W -o d --rsubtype eth -p vmraix1 -s 8;date

 Thu Aug 29 11:37:41 UTC 2019

 hscroot@usaxhmc013ccpf1:~>

 root:vmrksys: /home/root >

 # while true; do date;lsrsrc -s 'Name="vmraix1"' IBM.VMR_LPAR|egrep "HBmissed\ |RestartPhase"; ksysmgr -v q vm vmraix1|egrep "Last_response|Restart_phase"; sleep 60; done

 Thu Aug 29 11:37:48 CUT 2019

 HBmissed = 0

 RestartPhase = ""

 Last_response: 0 seconds

 Restart_phase: none

 Thu Aug 29 11:38:49 CUT 2019

 HBmissed = 50

 RestartPhase = "Missed HB count 50 for VM vmraix1 is less than its VMFDT 190"

 Last_response: 50 seconds

 Restart_phase: Missed HB count 50 for VM vmraix1 is less than its VMFDT 190

 Thu Aug 29 11:39:50 CUT 2019

 HBmissed = 111

 RestartPhase = "Missed HB count 111 for VM vmraix1 is less than its VMFDT 190"

 Last_response: 111 seconds

 Restart_phase: Missed HB count 111 for VM vmraix1 is less than its VMFDT 190

 Thu Aug 29 11:40:52 CUT 2019

 HBmissed = 171

 RestartPhase = "Missed HB count 171 for VM vmraix1 is less than its VMFDT 190"

 Last_response: 171 seconds

 Restart_phase: Missed HB count 171 for VM vmraix1 is less than its VMFDT 190

 Thu Aug 29 11:41:53 CUT 2019

 HBmissed = 232

 RestartPhase = "VM vmraix1 is pingable ignoring missed HB count 232"

 Last_response: 232 seconds

 Restart_phase: VM vmraix1 is pingable ignoring missed HB count 232

 ^Croot:vmrksys: /home/root >

 #

 [image:]

 To get more insights about the actions at the KSYS level, we chose to check directly the most recent NA request before 11:41:53 when our probing notified us that the VMFDT threshold was reached. So, we look in the fdelong trace file for the records of this NA request, as shown in Example 2-227.

 Example 2-227 The fdelong trace records for the NA request with VMFDT threshold passed

 [image:]

 # ksysmgr trace log=fdelong > fdelong.log.missedHb

 # more fdelong.log.missedHb

 [14] 08/29/19 T(34c) _VMR 11:41:15.477873 DEBUG FDEthread.C[709]: Sleep for 20 sec. sleepCounter 16343

 [14] 08/29/19 T(34c) _VMR 11:41:35.477911 DEBUG FDEthread.C[127]: Monitoring Enabled for HG rbHG.

 [14] 08/29/19 T(34c) _VMR 11:41:35.477929 DEBUG FDEthread.C[145]: CEC is 33613bcd-7ca1-3558-874a-c1e1d3ceee32

 [14] 08/29/19 T(34c) _VMR 11:41:35.477938 DEBUG FDEthread.C[158]: VIOS 72DEE902-1210-4BD7-A35F-3A6C771C6453 in CEC

 [14] 08/29/19 T(34c) _VMR 11:41:35.477946 DEBUG FDEthread.C[208]: Use VIOS usaxvib053ccpx1: 72DEE902-1210-4BD7-A35F-3A6C771C6453 for polling

 [14] 08/29/19 T(34c) _VMR 11:41:35.477967 DEBUG FDEthread.C[285]: Current scan [21522]

 [14] 08/29/19 T(34c) _VMR 11:41:35.477970 DEBUG VMR_HG.C[11824]: FDE performing doNeedAttn GLOBAL_DATA to 72DEE902-1210-4BD7-A35F-3A6C771C6453

 [14] 08/29/19 T(34c) _VMR 11:41:35.477979 DEBUG VMR_retry.C[1174]: Doing operation with opCode: 21(VMDR_NEED_ATTN)

 [14] 08/29/19 T(34c) _VMR 11:41:35.477996 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: usaxhmc013ccpf1.

 [14] 08/29/19 T(34c) _VMR 11:41:35.478001 DEBUG VMR_HMC.C[6852]: getNeedAttn: Calling kriSubmitNeedAttn!. HMC:129.41.127.3, viosUuid: 72DEE902-1210-4BD7-A35F-3A6C771C6453

 [14] 08/29/19 T(34c) _VMR 11:41:35.580081 DEBUG VMR_HMC.C[6872]: getNeedAttn: Job submitted. Now doing WaitTillJobCompletion() ..

 [14] 08/29/19 T(34c) _VMR 11:41:35.580083 DEBUG VMR_HMC.C[3468]: Calling krigetJobResult(). HMC: 129.41.127.3, jobid: 1563455810649, retCnt = 1

 [14] 08/29/19 T(34c) _VMR 11:41:35.671675 DEBUG VMR_HMC.C[6886]: getNeedAttn [72DEE902-1210-4BD7-A35F-3A6C771C6453] JobStatus: COMPLETED_OK, ReturnCode: 0

 [14] 08/29/19 T(34c) _VMR 11:41:35.671676 DEBUG VMR_HMC.C[6902]: JobOutput

 [image:]

 Notice in Example 2-227 on page 253 the prior 20-second sleep interval, how the VIOS that is used for polling is assigned, how the NA job request is submitted through the HMC to that VIOS, and how it completed. The reply payload is shown in Example 2-228.

 Example 2-228 Reply payload for the NA request as retrieved by the FDE thread

 [image:]

 [14] 08/29/19 T(34c) _VMR 11:41:35.671676 DEBUG VMR_HMC.C[6902]: JobOutput

 [14] 08/29/19 T(34c) _VMR 11:41:35.671676 DEBUG <VIO><Response>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="21282FW">

 </vmList>

 </vmStatList>

 </needsAtt>

 <needsAtt>

 <vmStatList>

 <vmList machine_type="8408" model="E8E" serial="212424W">

 <vmStat uuid="61be20f0-09a8-4753-b5e5-564f8a545ed5"><VM state="STARTED" missedHb='232' >

 </VM>

 </vmStat>

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

 [14] 08/29/19 T(34c) _VMR 11:41:35.671680 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 21(VMDR_NEED_ATTN), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 [14] 08/29/19 T(34c) _VMR 11:41:35.671687 DEBUG VMR_HG.C[11832]: FDE doNeedAttn success GLOBAL_DATA to 72DEE902-1210-4BD7-A35F-3A6C771C6453

 [14] 08/29/19 T(34c) _VMR 11:41:35.671690 DEBUG needAttn.C[1484]: START handleVIOResponse scan [21522].

 [image:]

 We see how the final processing stage of the reply payload is performed in the handleVIOResponse call, as shown in Example 2-229 on page 255.

 Example 2-229 Processing the NA reply payload: VMFDT threshold passed

 [image:]

 [14] 08/29/19 T(34c) _VMR 11:41:35.671690 DEBUG needAttn.C[1484]: START handleVIOResponse scan [21522].

 [14] 08/29/19 T(34c) _VMR 11:41:35.671798 DEBUG needAttn.C[341]: Working on VM vmraix1: 61BE20F0-09A8-4753-B5E5-564F8A545ED5

 [14] 08/29/19 T(34c) _VMR 11:41:35.671804 DEBUG VMR_LPAR.C[16228]: setHBmissed 232 for vmraix1: 61BE20F0-09A8-4753-B5E5-564F8A545ED5 vlanid 0 notAvail 0 scan [21522]

 [14] 08/29/19 T(34c) _VMR 11:41:35.674720 DEBUG VMR_LPAR.C[16336]: setHBmissed - Able to ping vmraix1, ignore HBmissed

 [14] 08/29/19 T(34c) _VMR 11:41:35.674720 DEBUG VMR_LPAR.C[16336]: setHBmissed - Able to ping vmraix1, ignore HBmissed

 [14] 08/29/19 T(34c) _VMR 11:41:35.680021 DEBUG needAttn.C[1521]: FINISH handleVIOResponse.

 [14] 08/29/19 T(34c) _VMR 11:41:35.680042 DEBUG VMR_HG.C[11848]: FDE handleVIOResponse success GLOBAL_DATA

 [14] 08/29/19 T(34c) _VMR 11:41:35.680047 DEBUG FDEthread.C[382]: Checking for LOCAL DATA

 [14] 08/29/19 T(34c) _VMR 11:41:35.680052 DEBUG FDEthread.C[775]: STARTING LOCAL DATA VERIFICATION

 [14] 08/29/19 T(34c) _VMR 11:41:35.680062 DEBUG FDEthread.C[790]: CEC is 33613bcd-7ca1-3558-874a-c1e1d3ceee32

 [14] 08/29/19 T(34c) _VMR 11:41:35.680067 DEBUG FDEthread.C[804]: VIOS 72DEE902-1210-4BD7-A35F-3A6C771C6453 in CEC

 [14] 08/29/19 T(34c) _VMR 11:41:35.680072 DEBUG FDEthread.C[827]: VIOS usaxvib053ccpx1: 72DEE902-1210-4BD7-A35F-3A6C771C6453 is capable of doing GLOBAL DATA. Skipping the CEC 33613bcd-7ca1-3558-874a-c1e1d3ceee32.

 [14] 08/29/19 T(34c) _VMR 11:41:35.680073 DEBUG FDEthread.C[790]: CEC is 3a53a6fc-8dcb-3671-a853-70526651f83d

 [14] 08/29/19 T(34c) _VMR 11:41:35.680080 DEBUG FDEthread.C[804]: VIOS 5C3196A3-C41F-4B5C-9861-DEE6077081C6 in CEC

 [14] 08/29/19 T(34c) _VMR 11:41:35.680085 DEBUG FDEthread.C[827]: VIOS usaxvib063ccpx1: 5C3196A3-C41F-4B5C-9861-DEE6077081C6 is capable of doing GLOBAL DATA. Skipping the CEC 3a53a6fc-8dcb-3671-a853-70526651f83d.

 [14] 08/29/19 T(34c) _VMR 11:41:35.680086 DEBUG FDEthread.C[922]: FINISH LOCAL DATA VERIFICATION

 [14] 08/29/19 T(34c) _VMR 11:41:35.680171 DEBUG FDEthread.C[677]: LPAR vmraix2 VM.scan 21519 < Current HG.scan 21522

 [14] 08/29/19 T(34c) _VMR 11:41:35.680190 DEBUG FDEthread.C[684]: LPAR vmraix2 VM.scanMEntry 21519 < Current HG.scan 21522

 [14] 08/29/19 T(34c) _VMR 11:41:35.680198 DEBUG FDEthread.C[677]: LPAR vmrksys VM.scan 21519 < Current HG.scan 21522

 [14] 08/29/19 T(34c) _VMR 11:41:35.680208 DEBUG FDEthread.C[684]: LPAR vmrksys VM.scanMEntry 21519 < Current HG.scan 21522

 [14] 08/29/19 T(34c) _VMR 11:41:35.680213 DEBUG FDEthread.C[684]: LPAR vmraix1 VM.scanMEntry 21519 < Current HG.scan 21522

 [14] 08/29/19 T(34c) _VMR 11:41:35.680215 DEBUG FDEthread.C[709]: Sleep for 20 sec. sleepCounter 16344

 [image:]

 The setHBmissed call inside the handleVIOResponse call evaluates the missed heartbeat counter against the threshold and further ascertains that the VM is reachable by ping, so the missed heartbeat is ignored, as logged before the handleVIOResponse call finish (setHBmissed - Able to ping vmraix1, ignore HBmissed). We ignore the last local data step in this final NA reply payload processing stage. No other action is performed afterward, and the NA request flow is finished as marked by the logged record for the subsequent 20-second sleep interval.

 For better understanding, we also mention in Example 2-230 the records that are logged inside the handleVIOResponse call in previous NA requests, which matches the probing output in Example 2-226 on page 252.

 Example 2-230 Final processing stage for the NA requests issued before passing the VMFDT threshold

 [image:]

 [14] 08/29/19 T(34c) _VMR 11:37:32.971597 DEBUG VMR_HG.C[11832]: FDE doNeedAttn success GLOBAL_DATA to 72DEE902-1210-4BD7-A35F-3A6C771C6453

 [14] 08/29/19 T(34c) _VMR 11:37:32.971600 DEBUG needAttn.C[1484]: START handleVIOResponse scan [21510].

 [14] 08/29/19 T(34c) _VMR 11:37:32.980301 DEBUG needAttn.C[1521]: FINISH handleVIOResponse.

 [14] 08/29/19 T(34c) _VMR 11:37:32.980326 DEBUG VMR_HG.C[11848]: FDE handleVIOResponse success GLOBAL_DATA

 ...

 [14] 08/29/19 T(34c) _VMR 11:38:33.639717 DEBUG VMR_HG.C[11832]: FDE doNeedAttn success GLOBAL_DATA to 72DEE902-1210-4BD7-A35F-3A6C771C6453

 [14] 08/29/19 T(34c) _VMR 11:38:33.639719 DEBUG needAttn.C[1484]: START handleVIOResponse scan [21513].

 [14] 08/29/19 T(34c) _VMR 11:38:33.639826 DEBUG needAttn.C[341]: Working on VM vmraix1: 61BE20F0-09A8-4753-B5E5-564F8A545ED5

 [14] 08/29/19 T(34c) _VMR 11:38:33.639832 DEBUG VMR_LPAR.C[16228]: setHBmissed 50 for vmraix1: 61BE20F0-09A8-4753-B5E5-564F8A545ED5 vlanid 0 notAvail 0 scan [21513]

 [14] 08/29/19 T(34c) _VMR 11:38:33.642482 DEBUG VMR_LPAR.C[16309]: setHBmissed HBmissed(50) < VM Monitoring interval(190) No Action

 [14] 08/29/19 T(34c) _VMR 11:38:33.647120 DEBUG needAttn.C[1521]: FINISH handleVIOResponse.

 [14] 08/29/19 T(34c) _VMR 11:38:33.647141 DEBUG VMR_HG.C[11848]: FDE handleVIOResponse success GLOBAL_DATA

 ...

 [14] 08/29/19 T(34c) _VMR 11:39:34.324399 DEBUG VMR_HG.C[11832]: FDE doNeedAttn success GLOBAL_DATA to 72DEE902-1210-4BD7-A35F-3A6C771C6453

 [14] 08/29/19 T(34c) _VMR 11:39:34.324401 DEBUG needAttn.C[1484]: START handleVIOResponse scan [21516].

 [14] 08/29/19 T(34c) _VMR 11:39:34.324538 DEBUG needAttn.C[341]: Working on VM vmraix1: 61BE20F0-09A8-4753-B5E5-564F8A545ED5

 [14] 08/29/19 T(34c) _VMR 11:39:34.324544 DEBUG VMR_LPAR.C[16228]: setHBmissed 111 for vmraix1: 61BE20F0-09A8-4753-B5E5-564F8A545ED5 vlanid 0 notAvail 0 scan [21516]

 [14] 08/29/19 T(34c) _VMR 11:39:34.327346 DEBUG VMR_LPAR.C[16309]: setHBmissed HBmissed(111) < VM Monitoring interval(190) No Action

 [14] 08/29/19 T(34c) _VMR 11:39:34.332367 DEBUG needAttn.C[1521]: FINISH handleVIOResponse.

 [14] 08/29/19 T(34c) _VMR 11:39:34.332387 DEBUG VMR_HG.C[11848]: FDE handleVIOResponse success GLOBAL_DATA

 ...

 [14] 08/29/19 T(34c) _VMR 11:40:35.002247 DEBUG VMR_HG.C[11832]: FDE doNeedAttn success GLOBAL_DATA to 72DEE902-1210-4BD7-A35F-3A6C771C6453

 [14] 08/29/19 T(34c) _VMR 11:40:35.002249 DEBUG needAttn.C[1484]: START handleVIOResponse scan [21519].

 [14] 08/29/19 T(34c) _VMR 11:40:35.002356 DEBUG needAttn.C[341]: Working on VM vmraix1: 61BE20F0-09A8-4753-B5E5-564F8A545ED5

 [14] 08/29/19 T(34c) _VMR 11:40:35.002362 DEBUG VMR_LPAR.C[16228]: setHBmissed 171 for vmraix1: 61BE20F0-09A8-4753-B5E5-564F8A545ED5 vlanid 0 notAvail 0 scan [21519]

 [14] 08/29/19 T(34c) _VMR 11:40:35.005031 DEBUG VMR_LPAR.C[16309]: setHBmissed HBmissed(171) < VM Monitoring interval(190) No Action

 [14] 08/29/19 T(34c) _VMR 11:40:35.009624 DEBUG needAttn.C[1521]: FINISH handleVIOResponse.

 [14] 08/29/19 T(34c) _VMR 11:40:35.009645 DEBUG VMR_HG.C[11848]: FDE handleVIOResponse success GLOBAL_DATA

 [image:]

 We see in the log excerpts Example 2-230 on page 256 that the setHBmissed function is called only when HBmissed (set from the reply missedHb attribute) has a positive value and that no action is performed if its value is less than VMFDT.

 For completeness, we also simulated the case when ping is not working so that VM relocation is decided, as shown in Example 2-231.

 Example 2-231 Final processing stage for the NA request triggering the relocation

 [image:]

 hscroot@usaxhmc013ccpf1:~> lshwres -r virtualio --rsubtype eth -m Server-8408-E8E-SN212424W --level lpar -F lpar_name,slot_num,port_vlan_id,vswitch,mac_addr --filter lpar_names=vmraix1

 vmraix1,7,101,rbRMHA_VSWITCH,6A6A0FFDF707

 vmraix1,8,102,rbRMHA_VSWITCH,6A6A0FFDF708

 vmraix1,32,2030,ETHERNET0,FA643EBA1D20

 hscroot@usaxhmc013ccpf1:~> chhwres -r virtualio -m Server-8408-E8E-SN212424W -o d --rsubtype eth -p vmraix1 -s 32

 hscroot@usaxhmc013ccpf1:~> chhwres -r virtualio -m Server-8408-E8E-SN212424W -o d --rsubtype eth -p vmraix1 -s 7

 hscroot@usaxhmc013ccpf1:~> chhwres -r virtualio -m Server-8408-E8E-SN212424W -o d --rsubtype eth -p vmraix1 -s 8;date

 Thu Aug 29 14:27:08 UTC 2019

 hscroot@usaxhmc013ccpf1:~>

 # while true; do date; lsrsrc -s 'Name="vmraix1"' IBM.VMR_LPAR |egrep "HBmissed\ |RestartPhase";ksysmgr -v q vm vmraix1|egrep "Last_response|Restart_phase"; >

 ...

 Thu Aug 29 14:31:28 CUT 2019

 HBmissed = 240

 RestartPhase = "VM failure detected. Initiating recovery for VM vmraix1 "

 Last_response: 240 seconds

 Restart_phase: VM failure detected. Initiating recovery for VM vmraix1

 ^Croot:vmrksys: /home/root >

 # ksysmgr trace log=fdelong > fdelong.log.missedHb.relocate

 root:vmrksys: /home/root >

 # more fdelong.log.missedHb.relocate

 ...

 [06] 08/29/19 T(34c) _VMR 14:31:13.984824 DEBUG VMR_HG.C[11832]: FDE doNeedAttn success GLOBAL_DATA to 72DEE902-1210-4BD7-A35F-3A6C771C6453

 [06] 08/29/19 T(34c) _VMR 14:31:13.984828 DEBUG needAttn.C[1484]: START handleVIOResponse scan [22023].

 [06] 08/29/19 T(34c) _VMR 14:31:13.985010 DEBUG needAttn.C[341]: Working on VM vmraix1: 61BE20F0-09A8-4753-B5E5-564F8A545ED5

 [06] 08/29/19 T(34c) _VMR 14:31:13.985019 DEBUG VMR_LPAR.C[16228]: setHBmissed 240 for vmraix1: 61BE20F0-09A8-4753-B5E5-564F8A545ED5 vlanid 0 notAvail 0 scan [22023]

 [06] 08/29/19 T(34c) _VMR 14:31:20.046111 DEBUG VMR_LPAR.C[16343]: setHBmissed - Limit reached for vmraix1:61BE20F0-09A8-4753-B5E5-564F8A545ED5 (state =STARTED)

 scan [22023]

 [06] 08/29/19 T(34c) _VMR 14:31:20.047743 DEBUG VMR_LPAR.C[16361]: VM_FAILURE_DETECTED Event notification failed.!!

 [06] 08/29/19 T(34c) _VMR 14:31:20.047747 DEBUG VMR_LPAR.C[16375]: setHBmissed - Not able to ping vmraix1

 [06] 08/29/19 T(34c) _VMR 14:31:20.323656 DEBUG VMR_LPAR.C[16393]: The state of VM vmraix1 as per HMC is "running"

 [06] 08/29/19 T(34c) _VMR 14:31:20.323667 DEBUG VMR_LPAR.C[16439]: Recovering LPAR vmraix1 state running HBmissed 240 HBoffset 0 refcode

 [06] 08/29/19 T(34c) _VMR 14:31:20.323672 DEBUG VMR_LPAR.C[16440]: RECOVERY TASK ADDED for LPAR [vmraix1-61BE20F0-09A8-4753-B5E5-564F8A545ED5]

 [06] 08/29/19 T(34c) _VMR 14:31:20.330915 DEBUG needAttn.C[1521]: FINISH handleVIOResponse.

 [06] 08/29/19 T(34c) _VMR 14:31:20.330949 DEBUG VMR_HG.C[11848]: FDE handleVIOResponse success GLOBAL_DATA

 fdelong.log.missedHb.relocate (99%)

 [image:]

 We further detail the flow for the NA request case when the shortMsg attribute in the reply payload is set. Such an NA request flow shows up as part of the AR flow, as described in 2.3.3, “Application Reporting flow” on page 262.

 Similar to the QQ request flow, we start our analysis by checking the start records in the fde log, as shown in Example 2-232. From the time stamp and the sleepCounter value of 38 in the first record, you see it is the immediate subsequent FDE polling request that is logged after the QQ request that we examined in Example 2-213 on page 238.

 Example 2-232 Excerpt of a NeedsAttention request trace from the fdelong log

 [image:]

 # ksysmgr trace log=fdelong > fdelong.log.NAshortMsg

 # more fdelong.log.NAshortMsg

 [05] 12/22/18 T(9192) _VMR 16:25:29.913186 DEBUG FDEthread.C[709]: Sleep for 20 sec. sleepCounter 38

 [05] 12/22/18 T(9192) _VMR 16:25:49.913226 DEBUG FDEthread.C[127]: Monitoring Enabled for HG rbHG.

 [05] 12/22/18 T(9192) _VMR 16:25:49.913280 DEBUG FDEthread.C[145]: CEC is 4462c37c-65c6-3614-b02a-aa09d752c2ee

 [05] 12/22/18 T(9192) _VMR 16:25:49.913292 DEBUG FDEthread.C[158]: VIOS 315CE56B-9BA0-46A1-B4BC-DA6108574E7E in CEC

 [05] 12/22/18 T(9192) _VMR 16:25:49.913304 DEBUG FDEthread.C[208]: Use VIOS rt13v2: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E for polling

 [05] 12/22/18 T(9192) _VMR 16:25:49.913307 DEBUG FDEthread.C[285]: Current scan [39]

 [05] 12/22/18 T(9192) _VMR 16:25:49.913311 DEBUG VMR_HG.C[11584]: FDE performing doNeedAttn GLOBAL_DATA to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [05] 12/22/18 T(9192) _VMR 16:25:49.913315 DEBUG VMR_retry.C[1151]: Doing operation with opCode: 21(VMDR_NEED_ATTN)

 [05] 12/22/18 T(9192) _VMR 16:25:49.913336 DEBUG VMR_retry.C[178]: INFO: Trying with HMC: rthmc3.

 [05] 12/22/18 T(9192) _VMR 16:25:49.913344 DEBUG VMR_HMC.C[6793]: getNeedAttn: Calling kriSubmitNeedAttn!. HMC:9.3.18.159, viosUuid: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [05] 12/22/18 T(9192) _VMR 16:25:50.034284 DEBUG VMR_HMC.C[6813]: getNeedAttn: Job submitted. Now doing WaitTillJobCompletion() ..

 [05] 12/22/18 T(9192) _VMR 16:25:50.034287 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1543584834865, retCnt = 1

 [05] 12/22/18 T(9192) _VMR 16:25:51.123733 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1543584834865, retCnt = 2

 [05] 12/22/18 T(9192) _VMR 16:25:51.220926 DEBUG VMR_HMC.C[6827]: getNeedAttn [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 [05] 12/22/18 T(9192) _VMR 16:25:51.220935 DEBUG VMR_retry.C[345]: In doRetry function, for opCode = 21(VMDR_NEED_ATTN), rc = 0, retCode is 0, errstr is: ,retry flag is 22

 [05] 12/22/18 T(9192) _VMR 16:25:51.220945 DEBUG VMR_HG.C[11592]: FDE doNeedAttn success GLOBAL_DATA to 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [05] 12/22/18 T(9192) _VMR 16:25:51.220948 DEBUG needAttn.C[1566]: START handleVIOResponse scan [39].

 [image:]

 Inside the doNeedAttn call, we recognize a krest HMC REST API job request pattern, which is handled by kriSubmitNeedAttn and krigetJobResult() calls. This pattern is similar to the case covered in “QuickQuery asynchronous job example” on page 105, so we do not need to get into details. The NA request, as it is delivered at the VIOS level, together with its corresponding response, obtained from the HSDB, are shown in Example 2-233.

 Example 2-233 NeedsAttention request and response in the vioservice log

 [image:]

 # alog -f /home/ios/logs/viosvc.log -o > viosvc.log.NAshortMsg.txt

 # more viosvc.log.NAshortMsg.txt

 ...

 START 12058942 62259487 12/22/18-15:20:45.144 vioservice.c 1.18 320] /usr/ios/sbin/vioservice lib/libviopass/passthru

 [0 12058942 62259487 12/22/18-15:20:45.145 viosvc_res.c 1.26 456] stdin pipe input:[<?xml version="1.0"?>

 <VIO xmlns="http://ausgsa.austin.ibm.com/projects/v/vios/schema/vioHADR2.00" version="2.00" author="LIBKREST" title="Req Needs Attention">

 <Request action_str="VIO_HS_NEEDS_ATTENTION" dataType="GLOBAL_DATA"/>

 </VIO>

]

 [0 12058942 62259487 12/22/18-15:20:45.240 viosvc_res.c 1.26 464] vio_response.result=[<VIO><Response>

 <needsAtt hsTag="-3026381694404356594">

 <vmStatList>

 <vmList machine_type="8286" model="42A" serial="21E0B2V">

 <vmStat uuid="4e395e99-fffb-4345-8067-2d5296ba7d91"><VM state="STARTED" shortMsg="0x28" >

 </VM>

 </vmStat>

 </vmList>

 </vmStatList>

 </needsAtt>

 <needsAtt hsTag="-3026381694404356594">

 <vmStatList>

 <vmList machine_type="8286" model="42A" serial="2100DEW">

 </vmList>

 </vmStatList>

 </needsAtt>

 </Response></VIO>

]

 [END 12058942 62259487 12/22/18-15:20:45.241 vioservice.c 1.18 323] exited with rc=0

 [image:]

 Though we have many managed VMs on the host group, we notice that the content in the XML response mentions only one VM. So, we can assume that the other VMs are sending heartbeats normally, they have no VM Agent that is installed, or are not enabled for monitoring. We also notice that this request comes with a tag value that is passed under the hsTag attribute, so we expect that an acknowledgment request will follow. Comparing the time stamps in the vioservice log excerpt as shown in Example 2-233 on page 259 and in the viohs.log log excerpt in Example 2-234, which are taken for the same vioservice command execution instance (same process and thread IDs), we see the way HSDB was queried for the status details by a vioHsNeedsAttention call.

 Example 2-234 The vioHsNeedsAttention call performed by the vioservice command to query the HSDB

 [image:]

 # alog -f /home/ios/logs/health/viohs.log -o > viohs.log.NAshortMsg.txt

 # grep "12058942 62259487" viohs.log.NAshortMsg.txt

 [START 12058942 62259487 12/22/18-15:20:45.146 ha_util.c 1.43 230]

 [3 12058942 62259487 12/22/18-15:20:45.146 hs_util.c hs_libvio_traces 1.66 60] HEALTH:62259487 -- violibExchange.c initTransaction 1.27 646 Got cluster info from vioGetClusterInfoFromODM! cluster name='KSYS_rbRMHA_1' id=730caed6da2211e8800498be9454b8e0

 [3 12058942 62259487 12/22/18-15:20:45.148 hs_util.c hs_libvio_traces 1.66 60] HEALTH:62259487 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 200176e8

 [3 12058942 62259487 12/22/18-15:20:45.168 hs_util.c hs_libvio_traces 1.66 60] HEALTH:62259487 -- violibDB.c _allocHandleDB 1.132.12.3 589 HDBC = 200176e8

 ...

 [3 12058942 62259487 12/22/18-15:20:45.240 hs_atten.c vioHsNeedsAttention 1.107 4587] End, rc=0

 [END 12058942 62259487 12/22/18-15:20:45.240 ha_util.c 1.43 253] exited with rc=0

 #

 [image:]

 The VIOS response payload that is retrieved on the KSYS side by the job request is then parsed by the FDE thread. The handleVIOResponse call section in Example 2-235 contains the XML parsing-related records that are logged in the fde log for our NA polling request (scan [39]). The shortMsg="0x28" attribute for the rt13001 VM makes the FDE thread add a SHORTMSG task for that VM.

 Example 2-235 Parsing the NeedsAttention response from the VIOS

 [image:]

 # more fdelong.log.NAshortMsg

 [05] 12/22/18 T(9192) _VMR 16:25:51.220948 DEBUG needAttn.C[1566]: START handleVIOResponse scan [39].

 [05] 12/22/18 T(9192) _VMR 16:25:51.221027 DEBUG needAttn.C[1168]: hsTag = string (-3026381694404356594) : longlong (-3026381694404356594)

 [05] 12/22/18 T(9192) _VMR 16:25:51.221034 DEBUG needAttn.C[167]: machine_type = 8286

 [05] 12/22/18 T(9192) _VMR 16:25:51.221040 DEBUG needAttn.C[176]: model = 42A

 [05] 12/22/18 T(9192) _VMR 16:25:51.221043 DEBUG needAttn.C[185]: serial = 21E0B2V

 [05] 12/22/18 T(9192) _VMR 16:25:51.221048 DEBUG needAttn.C[629]: uuid = 4e395e99-fffb-4345-8067-2d5296ba7d91

 [05] 12/22/18 T(9192) _VMR 16:25:51.221158 DEBUG needAttn.C[352]: Working on VM rt13001: 4E395E99-FFFB-4345-8067-2D5296BA7D91

 [05] 12/22/18 T(9192) _VMR 16:25:51.224155 DEBUG needAttn.C[490]: shortMsg = 0x28

 [05] 12/22/18 T(9192) _VMR 16:25:51.224160 DEBUG needAttn.C[507]: SHORTMSG TASK ADDED: LPAR rt13001: 4E395E99-FFFB-4345-8067-2D5296BA7D91, dbell 28

 [05] 12/22/18 T(9192) _VMR 16:25:51.224210 DEBUG needAttn.C[1168]: hsTag = string (-3026381694404356594) : longlong (-3026381694404356594)

 [05] 12/22/18 T(9192) _VMR 16:25:51.224216 DEBUG needAttn.C[167]: machine_type = 8286

 [05] 12/22/18 T(9192) _VMR 16:25:51.224219 DEBUG needAttn.C[176]: model = 42A

 [05] 12/22/18 T(9192) _VMR 16:25:51.224222 DEBUG needAttn.C[185]: serial = 2100DEW

 [05] 12/22/18 T(9192) _VMR 16:25:51.224225 DEBUG needAttn.C[1605]: FINISH handleVIOResponse.

 [05] 12/22/18 T(9192) _VMR 16:25:51.224252 DEBUG VMR_HG.C[11608]: FDE handleVIOResponse success GLOBAL_DATA

 [05] 12/22/18 T(9192) _VMR 16:25:51.224261 DEBUG VMR_HG.C[11865]: FDE performing doAcknowledge on hsTag -3026381694404356594

 [05] 12/22/18 T(9192) _VMR 16:25:51.224291 DEBUG VMR_HMC.C[7017]: getAcknowledge: Calling kriSubmitAck!. HMC:9.3.18.159, viosUuid: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E

 [05] 12/22/18 T(9192) _VMR 16:25:51.429664 DEBUG VMR_HMC.C[7037]: getAcknowledge: Job submitted. Now doing WaitTillJobCompletion() ..

 [05] 12/22/18 T(9192) _VMR 16:25:51.429669 DEBUG VMR_HMC.C[3426]: Calling krigetJobResult(). HMC: 9.3.18.159, jobid: 1543584834867, retCnt = 1

 [05] 12/22/18 T(9192) _VMR 16:25:51.519421 DEBUG VMR_HMC.C[7050]: getAcknowledge [315CE56B-9BA0-46A1-B4BC-DA6108574E7E] JobStatus: COMPLETED_OK, ReturnCode: 0

 [05] 12/22/18 T(9192) _VMR 16:25:51.519454 DEBUG VMR_HG.C[11871]: FDE doAcknowledge success

 [05] 12/22/18 T(9192) _VMR 16:25:51.519457 DEBUG FDEthread.C[382]: Checking for LOCAL DATA

 [05] 12/22/18 T(9192) _VMR 16:25:51.519464 DEBUG FDEthread.C[775]: STARTING LOCAL DATA VERIFICATION

 [05] 12/22/18 T(9192) _VMR 16:25:51.519481 DEBUG FDEthread.C[790]: CEC is 4462c37c-65c6-3614-b02a-aa09d752c2ee

 [05] 12/22/18 T(9192) _VMR 16:25:51.519489 DEBUG FDEthread.C[804]: VIOS 315CE56B-9BA0-46A1-B4BC-DA6108574E7E in CEC

 [05] 12/22/18 T(9192) _VMR 16:25:51.519496 DEBUG FDEthread.C[827]: VIOS rt13v2: 315CE56B-9BA0-46A1-B4BC-DA6108574E7E is capable of doing GLOBAL DATA. Skipping the CEC 4462c37c-65c6-3614-b02a-aa09d752c2ee.

 [05] 12/22/18 T(9192) _VMR 16:25:51.519499 DEBUG FDEthread.C[790]: CEC is 6e2f37f5-1824-347a-99fd-488f818086dd

 [05] 12/22/18 T(9192) _VMR 16:25:51.519507 DEBUG FDEthread.C[804]: VIOS 4E0F6F60-214B-4D2C-A436-0EAC46F7F71F in CEC

 [05] 12/22/18 T(9192) _VMR 16:25:51.519513 DEBUG FDEthread.C[827]: VIOS rt14v1: 4E0F6F60-214B-4D2C-A436-0EAC46F7F71F is capable of doing GLOBAL DATA. Skipping the CEC 6e2f37f5-1824-347a-99fd-488f818086dd.

 [05] 12/22/18 T(9192) _VMR 16:25:51.519515 DEBUG FDEthread.C[922]: FINISH LOCAL DATA VERIFICATION

 [05] 12/22/18 T(9192) _VMR 16:25:51.520705 DEBUG FDEthread.C[709]: Sleep for 20 sec. sleepCounter 39

 [image:]

 We handle the continuation by using the SHORTMSG task, as described in 2.3.3, “Application Reporting flow” on page 262. Here, we notice that immediately after the return from the handleVIOResponse call that an acknowledgment job is submitted and completes successfully for the tag that passed the NA request under the hsTag attribute.

 2.3.3 Application Reporting flow

 A mechanism is needed to make the KSYS subsystem aware of the status and configuration changes happening to the applications that are managed on each monitored VM by the local AME instance. This mechanism is implemented by the AR Messaging protocol.

 We review the application-related KSYS functions that are available at the time of writing. As shown in Example 2-236, the ksysmgr man page documents that a query command is available on the KSYS side to check the application status and that the application configuration can be done only by the ksysvmmgr command at the VM level.

 Example 2-236 The application status check command available from the KSYS side

 [image:]

 # man ksysmgr

 ...

 * To display the health status of the registered

 applications:

 ksysmgr query app

 You can use this command to check the status of the

 registered applications inside each virtual machine.

 The application status value GREEN indicates a

 stable application. The YELLOW value indicates an

 intermediate state of application in which the

 application is attempted to be restarted. The RED

 value indicates permanent failure of an application.

 The HA policies for an application can be configured

 in the VM only by using the ksysvmmgr command.

 ...

 # ksysmgr q app

 Name: app1

 Status: GREEN

 AppID: 1567267349133928000

 VM: vmraix1

 Critical: no

 MaxRestart: 1

 Monitoring: 1

 root:vmrksys: /home/root >

 #

 [image:]

 An application with the critical attribute set to yes makes the KSYS subsystem react even if the repeated application restart cycle at the VM level fails and the application reaches the FAILURE state, as documented by the ksysvmmgr man page shown in Example 2-237.

 Example 2-237 The critical application attribute as shown by ksysvmmgr man

 [image:]

 # man ksysvmmgr

 [vmraix1:root:/home/root:] man ksysvmmgr

 ...

 critical

 Marks the application as critical. The valid

 values are Yes and No (default). If you mark an

 application as critical, failure of the

 application is notified to the KSYS subsystem

 for further action.

 ...

 [image:]

 The KSYS subsystem reacts by notifying the user about the issue and restarting the VM on the same host. If the application reaches the FAILURE (RED) state again, the local restart repeats, but no more than a pre-determined counter value. Currently, this counter value is 3 and is hardcoded. If this counter value is reached, the KSYS subsystem restarts the VM on another host within the host group of the host currently hosting the VM.

 The application-related KSYS function is based on the AR Messaging protocol. As introduced in “VM Agent activation” on page 164, AR is handled on the VM side by the dedicated AppReport thread of the VMM daemon. We denote the thread interchangeably with the AR thread.

 An application configuration change that is performed by the ksysvmmgr command is considered by the VMM daemon, mainly by the AME thread, at the subsequent load of the XML configuration file (at the command execution if -s is specified, or at the next ksysvmmgr sync or next VMM restart). We described how ksysvmmgr and VMM interact for command execution at the end of “VM Agent activation” on page 164. An application state change originates at the AME level during an AME round execution, as described for some relevant cases in “Application Management Engine” on page 176.

 We encountered this kind of situation in Example 2-149 on page 183 and Example 2-151 on page 184. You see in those two examples the AME log entries about an AME Notification Vector being sent to AR by the doSendNotification2Ar() method.

[image:]
[image:]

Planning and deploying IBM VM Recovery Manager High Availability for IBM Power Systems

 This chapter describes the planning, installation, and configuration of IBM VM Recovery Manager High Availability (HA) for IBM Power Systems.

 To implement the VM Recovery Manager HA solution, you must review your current HA recovery plan and consider how the VM Recovery Manager HA solution can be integrated into your current environment.

 The following topics are described in this chapter:

 •VM Recovery Manager HA requirements

 •VM Recovery Manager HA coexistence with other products

 •VM Recovery Manager HA restrictions

 •Installing the VM Recovery Manager HA solution

 •Configuring VM Recovery Manager HA

 •Setting up HA policies

 •Setting up the VM Agent

 •Setting contacts for event notification

 •Uninstalling VM Recovery Manager HA

 3.1 VM Recovery Manager HA requirements

 Before you plan the implementation of the VM Recovery Manager HA solution, you must understand the other entities and resources that the VM Recovery Manager HA solution requires for disaster recovery (DR) operations.

 You must meet the following requirements before you can install the VM Recovery Manager HA solution:

 •Software requirements

 •Firmware (FW) requirements

 •Installation and configuration requirements

 •Hardware Management Console (HMC) requirements

 •Host group requirements

 •Networks requirements

 •GUI requirements

 3.1.1 Software requirements

 Table 3-1 shows the software requirements for the VM Recovery Manager HA.

 Table 3-1 VM Recovery Manager HA software component requirements

 	
 Component

 	
 Requirement

 	
 KSYS controller

 	
 IBM AIX 7.2 with Technology Level 2 Service Pack 1 (7200-02-01) or later

 	
 HMC

 	
 HMC Version 9 Release 9.1.0 or later

 	
 Virtual I/O Server (VIOS)

 	
 VIOS V3.1.0.1 or later

 	
 Logical partition (LPAR)

 	
 Each host must have one of the following operating systems:

 •AIX 6.1 or later

 •Red Hat Enterprise Linux (RHEL) (Little Endian) Version 7.4 or later (kernel version 3.10.0-693)

 •SUSE Linux Enterprise Server (Little Endian) Version 12.3 or later (kernel version 4.4.126-94.22)

 •Ubuntu Linux distribution Version 16.04

 •IBM i Version 7.2 or later

 	
 Virtual machine (VM) Agent

 	
 At the moment, the VM Agent to monitor the VM and applications can be installed only on the following operating systems:

 •AIX Version 6.1 and later

 •RHEL (Little Endian) Version 7.4 or later (kernel version 3.10.0-693)

 •SUSE Linux Enterprise Server (Little Endian) Version 12.3 or later (kernel version 4.4.126-94.22)

 	
 Note: You must install OpenSSL V1.0.1.516 or later for the AIX operating system. You can download the OpenSSL software from AIX Web Download Pack Programs.

 The latest version of the OpenSSL software is also included in the AIX base media.

 3.1.2 Firmware requirements

 The following section describes the FW requirements for the VM Recovery Manager HA:

 •The VM Recovery Manager HA solution requires that the PowerVM Enterprise edition is deployed in each of the hosts.

 •The VM Recovery Manager HA solution supports the following minimal levels of Power Systems servers:

  –	IBM POWER7+ systems that have the following FW levels:

  •	FW770.90 and later

  •	FW780.70 or later except for MMB systems (9117-MMB models)

  •	FW783.50 and later

  –	IBM POWER8 systems that have the following FW levels:

  •	FW840.60 and later

  •	FW860.30 and later

  –	IBM POWER9™ systems that have the following FW levels:

  •	FW910 and later

 3.1.3 Installation and configuration requirements

 The following section describes the installation and configuration requirements for the VM Recovery Manager HA:

 •You must have root authority to perform any installation tasks.

 •The KSYS LPAR must have at least one 1-core CPU and 8 GB of memory. These requirements can be higher if you have a large environment of more than 100 LPARs in the data center.

 •Ensure that you have enough space in the LPAR so that KSYS filesets can be installed successfully. You must have 30 MB of disk space in the /opt directory and 200 MB of disk space in the /var directory.

 •You must check whether a KSYS installation is already in progress by using the ksysmgr q cl command. If the KSYS software is installed, you must uninstall the KSYS software.

 •For the installation of VM Agent, ensure that each VM meets the following disk space requirements:

  –	At least 100 MB disk space in the /usr directory to install the VM Agent filesets.

  –	At least 1 GB disk space in the /var directory for log files.

 •For the VIOS, ensure that you have two VIOSs per host. You can have a maximum of 24 VIOSs in a single host group. If more than two VIOSs are in a host, you can exclude this requirement from the KSYS configuration settings.

 3.1.4 Host group requirements

 The following section describes the host group requirements for the VM Recovery Manager HA:

 •The host group can be named with a logical name that can be up to 64 characters long.

 •A single KSYS LPAR can manage up to four host groups. A host group can have up to 12 hosts.

 •All the hosts on the host group must be configured for network and storage such that any VM from any host can be migrated to any other host within the host group.

 •For each host group, the KSYS subsystem requires two disks for health cluster management. A disk of at least 10 GB, called the repository disk, is required for health monitoring of the hosts, and another disk of at least 10 GB, called the HA disk, is required for health data tracking for each host group. All these disks must be accessible to all the VIOSs on each of the hosts on the host group, as shown in Figure 3-1.

 [image:]

 Figure 3-1 KSYS disk health cluster management

 3.1.5 HMC requirements

 The following section describes the HMC requirements for the VM Recovery Manager HA:

 •The VM Recovery Manager HA solution requires HMC Version 9 Release 9.1.0 or later. It is a best practice to have each host managed by two HMCs.

 •Ensure that you can perform a Live Partition Mobility (LPM) operation on the VMs among the hosts that you want to be part of VM Recovery Manager HA management. You can use HMC-based LPM validation to ensure that the VMs can move from a host to any other host on the host group.

 •For POWER7+ systems and POWER8 systems in which the Simplified Remote Restart (SRR) attribute is not set for a VM in the HMC, when the VM is moved from a source host to a destination host, the time-of-day change might not be updated correctly. To retain the correct time-of-day clock for a VM across the hosts, you must set the VIOS partitions profile of both the source host and destination host as the time reference partition by enabling the Time Reference Partition option in the HMC, as shown in Figure 3-2.

 [image:]

 Figure 3-2 VIO partition properties: Checking the Enable TIme Reference

 •To migrate an IBM i VM from the source host to the destination host, verify that the Restricted I/O Partition check box for the IBM i LPAR is selected in the HMC. For more information about the steps to verify the restricted I/O mode, see IBM Knowledge Center.

 •Ensure that the automatic reboot attribute is not set for any VM in the HMC. The KSYS validates this attribute and notifies you to disable this attribute. If you set this attribute, it can lead to unpredictable results, such as a VM restart on two hosts simultaneously.

 •When you add a host or manage a VM that is co-managed by the HMC and PowerVM NovaLink, set the HMC to the master mode. Otherwise, the discovery operation fails, and the VMs on the host are not monitored for HA.

 3.1.6 Network requirements

 The following section describes the network requirements for the VM Recovery Manager HA:

 •All VMs that are managed by the VM Recovery Manager HA solution must use virtual I/O resources through VIOS. The VMs must not be connected to a physical network adapter or any dedicated devices.

 •Storage area network (SAN) connectivity and zoning must be configured so that VIOS can access the disks that are relevant to the hosts.

 •Ensure that the KSYS LPAR has HTTP Secure (HTTPS) connectivity to all the HMCs that can manage the hosts on the host group.

 •The same virtual LAN (VLAN) must be configured across the hosts.

 •Ensure that redundant connections are established from the KSYS to HMC and from HMC to VIOS LPARs, as shown in Figure 3-3. Any connectivity issues between KSYS, HMC, and VIOS LPARs can lead to disruption in the regular data collection activity and DR operations.

 [image:]

 Figure 3-3 VM Recovery Manager HA for network requirements

 3.1.7 GUI requirements

 The following section describes the GUI requirements for the VM Recovery Manager HA:

 •The LPAR in which you want to install the GUI filesets must be running IBM AIX 7.2 with Technology Level 2 Service Pack 1 (7200-02-01) or later. You can choose to install the GUI server fileset on one of the KSYS nodes.

 •The LPAR in which you are installing the GUI server must run in an Enhanced Korn shell that uses the /usr/bin/ksh93 shell script.

 •The LPAR in which you are installing the GUI server fileset must have at least one 1-core CPU and 8 GB of memory.

 3.2 VM Recovery Manager HA coexistence with other products

 The VM Recovery Manager HA solution and other products can coexist in the same environment with the following considerations.

 3.2.1 IBM Power Virtualization Center

 If you use the IBM Power Virtualization Center (IBM PowerVC) solution to perform the LPM operation of VMs, ensure that the VM remains within the host group that is defined in the KSYS configuration settings. Otherwise, the VM might be lost from the VM Recovery Manager HA configuration and cannot be monitored for failures.

 3.2.2 IBM PowerHA SystemMirror Software

 Even if you are using the PowerHA SystemMirror solution for application HA, you can use the VM Recovery Manager HA solution for hardware failures and automated VM restart operations. This type of deployment can bring the entire cluster back online by restarting the failed PowerHA node or VMs on other hosts.

 If you deployed the PowerHA SystemMirror and VM Recovery Manager HA solutions together, consider the following guidelines:

 •If the primary node of the PowerHA configuration fails, the PowerHA solution starts the workload on a secondary node of the PowerHA configuration. The VM Recovery Manager HA solution restarts the failed VM, which is the old primary LPAR of PowerHA, on another host. The restarted VM can rejoin the cluster and continue to provide a higher level of HA.

 •If you deploy the PowerHA solution and the VM Recovery Manager HA solution together, you must not configure the VM Agent in the PowerHA VMs because PowerHA application management is sufficient for application HA.

 •Ensure that you define the anticollocation policies for nodes or LPARs of the PowerHA cluster.

 The VM Recovery Manager HA solution can coexist with other cluster technologies, such as Oracle RAC and Veritas Cluster Server.

 3.2.3 PowerVM NovaLink

 Currently, the VM Recovery Manager HA solution works with the PowerVM environment that is configured with HMC. When NovaLink and HMCs are deployed together, the VM Recovery Manager HA solution can work only if HMCs are set to in the master mode. The VM Recovery Manager HA solution communicates to HMC for continuous monitoring and relocation operations.

 3.3 VM Recovery Manager HA restrictions

 This section describes some restrictions of the VM Recovery Manager HA solution to take into account.

 3.3.1 Migration restriction

 •You cannot run the LPM operation in parallel on multiple hosts by using the ksysmgr command. You must specify multiple VMs in a comma-separated list in the ksysmgr command. Also, you can perform the LPM operation on a list of VMs simultaneously only if all the VMs are present in the same host.

 •The flexible capacity policy applies only for VM failover operations. The flexible capacity function is not supported for VMs that are migrated by using the LPM operation.

 •The flexible capacity reduction rules are applied even if 100% of resources are available on the target host.

 •The flexible capacity policy applies only on CPU and memory resources. It is not applied on I/O resources. You must ensure enough I/O resources are available in the target host.

 3.3.2 VM Agent restrictions

 •The ksysvmmgr start|stop app command supports only one application concurrently.

 •The ksysvmmgr suspend|resume command does not support application dependencies.

 •For all applications that are installed on non-rootvg disks, you must enable the automatic varyon option for volume groups (VGs) and automount for file systems after the VM is restarted on the AIX operating system.

 •To get the correct version information for a SAPHANA type of application, you must have an instance name and database name when you add the application in the VM Agent configuration settings. Otherwise, you might not get the version information.

 •If the application is in any one of the failure states, for example, NOT_STOPPABLE, NOT_STARTABLE, ABNORMAL, or FAILURE, you must fix the issue, and then use the ksysvmmgr start|resume application command to start and monitor the application. You can also modify the XML configuration file and run the ksysvmmgr sync command.

 •If the KSYS cluster is deleted, or if a VM is unmanaged from the HA management, the VM Agent daemon becomes inoperative. In such cases, you must manually start the VM Agent daemon in the VM.

 •On a critical application failure, the KSYS subsystem continues to relocate the VM from one host to another host even if the VM reaches its home host. For example, a host group contains two hosts (host1 and host2) and a registered critical application in the vm1_host1 VM fails. In this case, the KSYS subsystem relocates the vm1_host1 VM to host2. If the application does not start properly with a NORMAL status, the KSYS subsystem again moves the vm1_host1 VM to host1, which is its home host. The KSYS subsystem continues this relocation process until the application status becomes NORMAL.

 3.3.3 GUI restrictions

 •The VM Recovery Manager HA GUI does not support multiple sessions on a single VM.

 •The VM Recovery Manager HA GUI does not support user and role management.

 •You cannot delete the KSYS cluster by using the VM Recovery Manager HA GUI.

 •The Activity window under each host group, host, and VM shows the activity log information for the current session. If you refresh the window or log in to the session again, the data in the Activity window might be lost.

 3.3.4 VM Recovery Manager HA filesets and structure

 The VM Recovery Manager HA package consists of filesets for the installation of KSYS, VM Agent, and GUI.

 The following sections describe the key components of the VM Recovery Manager HA solution.

 KSYS

 KSYS is base product software that must be installed on an AIX LPAR. It provides the technical foundation of VM Recovery Manager HA and command line-based administration by using the ksysmgr command.

 Here are the KSYS filesets:

 •ksys.hautils.rte

 •ksys.ha.license

 •ksys.main.cmds

 •ksys.main.msg.en_US.cmds

 •ksys.main.rte

 VM Agent

 The VM Agent is an optional fileset that can be installed on the guest VMs that are running either AIX or Linux operating systems. If you install the VM Agent, you can monitor the individual VMs and the applications that are running in the VM. Otherwise, only host level monitoring is supported.

 •AIX VM Agent fileset:

 ksys.vmmon.rte

 •RHEL VM Agent package:

 vmagent-1.3.0-1.0.el7.ppc64le

 •SUSE Linux Enterprise Server package:

 vmagent-1.3.0-1.0.suse123.ppc64le

 GUI

 An optional fileset that can be installed on an AIX LPAR for accessing the VM Recovery Manager HA solution by using a GUI. You can install the server on the KSYS LPAR also.

 •ksys.ui.agent: The GUI agent fileset that must be installed on the KSYS nodes.

 •ksys.ui.server: A GUI server fileset that must be installed on the system that manages the KSYS nodes. This fileset can be installed on one of the KSYS nodes.

 •ksys.ui.common: A GUI common fileset that must be installed along with both the ksys.ui.server (GUI server) fileset and the ksys.ui.agent (GUI agent) fileset.

 3.4 Installing the VM Recovery Manager HA solution

 The VM Recovery Manager HA solution provides HA management for IBM Power Systems servers with PowerVM virtualization. After you plan the implementation of the VM Recovery Manager HA solution, you can install the VM Recovery Manager HA software. The VM Recovery Manager HA solution uses other subsystems such as HMC and VIOSs that must exist in your production environment.

 The VM Recovery Manager HA software can be enabled when you have the following subsystems in your production environment:

 •VIOS Version 3.1.0.1 or later must be installed on all VIOS partitions that are part of the host group. Host Monitor (HM), which is a key component of the VM Recovery Manager HA solution, is installed on the VIOS by default. The HM component is enabled and used when you install the VM Recovery Manager HA filesets. The VM Recovery Manager HA solution requires two VIOS per host.

 •HMC V9 R 9.1.0 or later must be used to manage all hosts that are part of the cluster.

 Figure 3-4 shows the components of VM Recovery Manager HA.

 [image:]

 Figure 3-4 Components of VM Recover Manager HA

 To install the VM Recovery Manager HA solution, you must first install the KSYS filesets. After the KSYS software is installed, the KSYS subsystem automatically monitors the health of hosts by enabling the HMs in the VIOS partitions of each host that is part of the VM Recovery Manager HA management.

 You can optionally install the VM Agents in the VMs that run AIX or Linux operating systems to monitor the health of an individual VM and applications that run in the VMs. You can also install the GUI server for the VM Recovery Manager HA solution to use the GUI by using a browser.

 Complete the following procedures to install the VM Recovery Manager HA solution:

 1.	Install the VIOS interim fix.

 2.	Install the KSYS software.

 3.	Optional: Install VM Agents in the VMs.

 4.	Install the GUI server.

 3.4.1 Installing the VIOS interim fix

 You must install the VIOS interim fix IJ10896m2a.181101.epkg.Z on all VIOS instances that are included in the KSYS subsystem. This interim fix provides fixes to VIOSs that support VM Recovery Manager. The VIOS interim fix is in the vios_3.1.0.10_ifixes directory in the VM Recovery Manager HA package, as shown in Example 3-1.

 Example 3-1 Listing the VIOS interim fix directory in the VM Recovery Manager HA package

 [image:]

 # pwd

 /mnt/GDR_BUILDS/1844B_VMR

 # ls -la

 total 16

 drwxr-xr-x 5 root system 256 Nov 04 01:31 .

 drwxrwxrwx 143 root system 8192 Nov 04 01:32 ..

 drwxr-xr-x 3 root system 256 Nov 04 01:31 installp

 drwxr-xr-x 3 root system 256 Nov 04 01:31 usr

 drwxr-xr-x 2 root system 256 Nov 04 01:31 vios_3.1.0.10_ifixes

 [image:]

 	
 Important: Install the interim fix before you initialize the KSYS subsystem.

 If you already have a shared pool that is configured in your environment, ensure that any cluster services are not active. Stop any active cluster services by running the following command:

 clstartstop -stop -n clustername -m hostname

 Run the command in each of the managed VIOS instances, as shown in Example 3-2.

 Example 3-2 Installing the VIOS interim fix

 [image:]

 $ updateios -install -dev /tmp/fix -accept

 EFIX MANAGER PREVIEW START

 +---+

 Efix Manager Initialization

 +---+

 Initializing log /var/adm/ras/emgr.log ...

 +---+

 Processing Efix Package 1 of 1.

 +---+

 Efix package file is: /tmp/fix/IJ10896m2a.181102.epkg.Z

 MD5 generating command is /usr/bin/csum

 MD5 checksum is 961dcf33ab5bcbd2d8b0adefcbc57f10

 Accessing efix metadata ...

 Processing efix label "IJ10896m2a" ...

 Verifying efix control file ...

 [image:]

 Example 3-3 shows the continuation of the installation of the VIOS interim fix.

 Example 3-3 Accepting the installation of the VIOS interim fixes

 [image:]

 EFIX MANAGER PREVIEW END

 +---+

 Operation Summary

 +---+

 Log file is /var/adm/ras/emgr.log

 EPKG NUMBER LABEL OPERATION RESULT

 =========== ============== ================= ==============

 1 IJ10896m2a INSTALL PREVIEW SUCCESS

 ATTENTION: system reboot will be required by the actual (not preview) operation.

 Please see the "Reboot Processing" sections in the output above or in the

 /var/adm/ras/emgr.log file.

 Return Status = SUCCESS

 Continue the installation [y|n]?Y

 [image:]

 Example 3-4 shows the summary of the installation of the VIOS interim fix.

 Example 3-4 Summary of the installation of VIOS interim fix

 [image:]

 +---+

 Operation Summary

 +---+

 Log file is /var/adm/ras/emgr.log

 EPKG NUMBER LABEL OPERATION RESULT

 =========== ============== ================= ==============

 1 IJ10896m2a INSTALL SUCCESS

 ATTENTION: system reboot is required. Please see the "Reboot Processing"

 sections in the output above or in the /var/adm/ras/emgr.log file.

 Return Status = SUCCESS

 File /etc/inittab has been modified.

 One or more of the files listed in /etc/check_config.files have changed.

 See /var/adm/ras/config.diff for details.

 $

 [image:]

 	
 Note: The installation of the VIOS interim fix was cropped among these three examples.

 Verify whether the installation of the interim fix is successful by running lssw, as shown in Example 3-5.

 Example 3-5 Final output of the lssw command

 [image:]

 ID STATE LABEL INSTALL TIME UPDATED BY ABSTRACT

 === ===== ========== ================= ========== ===============================

 1 S IJ10896m2a 11/08/18 15:56:38 Fixes to support VM Recover Manager

 STATE codes:

 S = STABLE

 [image:]

 	
 Important: After the installation successfully completes, a system restart is required.

 If the cluster services were stopped, start the cluster services by running the following command:

 clstartstop -start -n clustername -m hostname

 3.4.2 Installing the KSYS software

 You can use the installp command in the AIX LPAR to install KSYS filesets that are included in the package. To install the KSYS software, complete the following steps:

 1.	Ensure all the prerequisites that are specified in 3.1, “VM Recovery Manager HA requirements” on page 266 are complete.

 2.	Go to the directory that contains the images that you want to install and run the command that is shown in Example 3-6.

 Example 3-6 Installing the KSYS software

 [image:]

 # installp -acFXYd . ksys.hautils.rte ksys.ha.license ksys.main.cmds ksys.main.msg.en_US.cmds ksys.main.rte ksys.ui.agent ksys.ui.common

 [image:]

 3.	Verify whether the installation of filesets is successful by running the command that is shown in Example 3-7.

 Example 3-7 Listing the filesets installed at the KSYS node

 [image:]

 # lslpp -l ksys.ha.license ksys.hautils.rte ksys.main.cmds ksys.main.msg.en_US.cmds ksys.main.rte

 Fileset Level State Description

 --

 Path: /usr/lib/objrepos

 ksys.ha.license 1.3.0.0 COMMITTED Base Server Runtime

 ksys.hautils.rte 1.3.0.0 COMMITTED Base Server Runtime

 ksys.main.cmds 1.3.0.0 COMMITTED Base Server Runtime

 ksys.main.msg.en_US.cmds 1.3.0.0 COMMITTED Base Server Runtime

 ksys.main.rte 1.3.0.0 COMMITTED Base Server Runtime

 Path: /etc/objrepos

 ksys.hautils.rte 1.3.0.0 COMMITTED Base Server Runtime

 ksys.main.cmds 1.3.0.0 COMMITTED Base Server Runtime

 ksys.main.rte 1.3.0.0 COMMITTED Base Server Runtime

 [image:]

 4.	To check the command-line utility of the KSYS subsystem, run the /opt/IBM/ksys/ksysmgr command, as shown in Example 3-8. The KSYS subsystem might take a few minutes to run the command for the first time. You can add the /opt/IBM/ksys directory to your PATH environment variable so that you can access the ksysmgr command easily.

 Example 3-8 Checking the ksysmgr command

 [image:]

 # /opt/IBM/ksys/ksysmgr

 No command arguments found

 Here is a list of available actions for ksysmgr:

 Available action

 add

 delete

 discover

 help

 manage

 unmanage

 modify

 move

 query

 recover

 restore

 restart

 resync

 report

 cleanup

 sync

 pair

 verify

 monitor

 lpm

 [image:]

 5.	After the successful installation of the KSYS filesets, check whether the class IDs are reserved by running the command that is shown in Example 3-9.

 Example 3-9 Checking the ID class

 [image:]

 # cat /usr/sbin/rsct/cfg/ct_class_ids | egrep "IBM.VMR_HMC|IBM.VMR_CEC|IBM.VMR_LPAR|IBM.VMR_VIOS|IBM.VMR_SSP|IBM.VMR_SITE|IBM.VMR_SA|IBM.VMR_DP|IBM.VMR_DG|IBM.VMR_KNODE|IBM.VMR_KCLUSTER|IBM.VMR_HG|IBM.VMR_APP"

 IBM.VMR_HMC 510

 IBM.VMR_CEC 511

 IBM.VMR_LPAR 512

 IBM.VMR_VIOS 513

 IBM.VMR_SSP 514

 IBM.VMR_SITE 515

 IBM.VMR_SA 516

 IBM.VMR_DP 517

 IBM.VMR_DG 518

 IBM.VMR_KNODE 519

 IBM.VMR_KCLUSTER 520

 IBM.VMR_HG 521

 IBM.VMR_APP 522

 [image:]

 6.	If the IBM.VMR_APP class is not available in the output, manually add the IBM.VMR_APP 522 entry into the /usr/sbin/rsct/cfg/ct_class_ids file and refresh the Reliable Scalable Cluster Technology (RSCT) subsystem by running the command that is shown in Example 3-10.

 Example 3-10 Refreshing the RSCT subsystem

 [image:]

 # rmcctrl -z

 #

 # rmcctrl -s

 0513-059 The ctrmc Subsystem has been started. Subsystem PID is 11534722.

 #

 [image:]

 3.4.3 Installing VM Agents

 VM Agents are components that are installed in VMs or LPARs. These optional agents offer robust monitoring of the VMs and applications that are running in VMs. You can manage HA applications in VMs by using a lightweight application monitoring framework.

 Installing a VM Agent in an AIX VM

 To install a VM Agent in an AIX VM, complete the following steps:

 1.	Ensure that all the prerequisites that are specified in 3.1, “VM Recovery Manager HA requirements” on page 266 are complete.

 2.	Run the following command in the AIX VM, as shown in Example 3-11.

 Example 3-11 Installing a VM Agent in an AIX VM

 [image:]

 # installp -acFXYd . ksys.vmmon.rte

 [image:]

 3.	To verify whether the installation of VM Agent is successful, run the lslpp command shown in Example 3-12.

 Example 3-12 Checking the VM Agent installation

 [image:]

 # lslpp -l ksys.vmmon.rte

 Fileset Level State Description

 --

 Path: /usr/lib/objrepos

 ksys.vmmon.rte 1.3.0.0 COMMITTED Base Server Runtime

 Path: /etc/objrepos

 ksys.vmmon.rte 1.3.0.0 COMMITTED Base Server Runtime

 [image:]

 4.	Ensure that the ksysvmmgr command that is shown in Example 3-13 and the binary file for the VM Agent daemon shown Example 3-14 both completed successfully.

 Example 3-13 Checking the ksysvmmgr

 [image:]

 # /usr/sbin/ksysvmmgr

 Usage: ksysvmmgr [<FLAGS>] <ACTION> [<CLASS>] [<NAME>] [<ATTRIBUTES>]

 KSYSVMMGR-002(ERROR): <ACTION> parameter is mandatory.

 For <ACTION> parameter, possible actions are : "add,query,modify,delete,status,resume,suspend,start,stop,help,start,stop,status,sync".

 Retry using one of the possible actions.

 Or refer to complete output of "ksysvmmgr -h"

 [image:]

 Example 3-14 Checking the binary file of the VM Agent daemon

 [image:]

 # /usr/sbin/ksys_vmmd

 0513-095 The request for subsystem refresh was completed successfully.

 [image:]

 5.	To verify whether the VM Agent daemon is enabled, run the lssrc -s ksys_vmm command. The status of the ksys_vmm subsystem must be Active in the output of this command, as shown in Example 3-15.

 Example 3-15 Checking the agent daemon

 [image:]

 # lssrc -s ksys_vmm

 Subsystem Group PID Status

 ksys_vmm 9699654 active

 [image:]

 Installing a VM Agent in a Linux VM

 To install the VM Agent Red Hat Package Manager (RPM) packages in a Linux VM, complete the following steps:

 1.	Ensure that the following RSCT packages are installed in the Linux VM, as shown Example 3-16:

  –	rsct.core

  –	rsct.opt.storagerm

  –	rsct.core.utils

  –	rsct.basic

  –	DynamicRM

 Example 3-16 Listing the RSCT packages

 [image:]

 # rpm -qa | egrep "rsct.core|rsct.opt.storagerm|rsct.core.utils|rsct.basic|DynamicRM"

 rsct.basic-3.2.2.3-17144.ppc64le

 rsct.core-3.2.2.3-17144.ppc64le

 rsct.core.utils-3.2.2.3-17144.ppc64le

 DynamicRM-2.0.5-1.ppc64le

 rsct.opt.storagerm-3.2.2.3-17144.ppc64le

 [image:]

 	
 Note: You can download the packages from Service and productivity tools.

 For more information about configuring the repository to easily install those packages, see IBM Knowledge Center.

 2.	Install the VM Agent RPM packages based on the following Linux distributions in the VM:

  –	In RHEL (Little Endian) VMs, run the command that is shown in Example 3-17.

 Example 3-17 Installing VM Agent in Red Hat Linux VM

 [image:]

 # rpm -ivh vmagent-1.3.0-1.0.el7.ppc64le.rpm

 Preparing... ################################# [100%]

 Updating / installing...

 1:vmagent-1.3.0-1.0.el7 ################################# [100%]

 Starting ksys_vmm daemon.

 [image:]

 Ensure that the Resource Monitoring and Control (RMC) connection between the VMs and HMC exists. If the firewall is enabled on the RHEL VM, the RMC connection might be broken. Modify the firewall on the VMs to allow the RMC connection with the HMC.

  –	In SUSE Linux Enterprise Server (Little Endian) VMs, run the command that is shown in Example 3-18.

 Example 3-18 Installing VM Agent in SUSE Linux Enterprise Server

 [image:]

 # rpm -ivh vmagent-1.3.0-1.0.suse123.ppc64le.rpm

 Preparing... ################################# [100%]

 Updating / installing...

 1:vmagent-1.3.0-1.0.suse123 ################################# [100%]

 Starting ksys_vmm daemon.

 ksys_vmm has been started.

 [image:]

 3.5 Configuring VM Recovery Manager HA

 After the VM Recovery Manager HA solution is installed, you must complete some mandatory configuration steps before you use the HA feature of the VM Recovery Manager HA solution.

 You can use the ksysmgr command or the VM Recovery Manager HA GUI (see Chapter 4, “IBM VM Recovery Manager High Availability GUI deployment” on page 323) to interact with the KSYS daemon to manage the entire environment for HA.

 The VM Recovery Manager HA solution monitors the hosts and the VMs when you add information about your environment to the KSYS configuration settings. Complete the following steps to set up the KSYS subsystem:

 1.	Initialize the KSYS cluster.

 2.	Add HMCs.

 3.	Add hosts.

 4.	Create host groups.

 5.	Configure VMs.

 6.	Configure VIOS.

 7.	Set contacts for event notification.

 8.	Enable the HA monitoring.

 9.	Discover and verify the KSYS configuration.

 10.	Optional: Back. up the configuration data.

 The ksysmgr command

 In the following sections, the ksysmgr command is used to start adding resources to the KSYS node configuration. You notice that the ksysmgr command accepts aliases, for example, using the ksysmgr create cluster command also has the same effect as using the ksysmgr add ksyscluster command:

 ksysmgr add ksyscluster

 [<ksysclustername>]

 type=<HA>

 ksysnodes=<ksysnode>

 [sync=<yes|no>]

 add => ad*, cr*, make, mk

 ksyscluster => ksyscl*, cl*

 To find the syntax and aliases of every action or parameter that is accepted by the ksysmgr command, use the -h option, as shown in Example 3-19.

 Example 3-19 Finding the syntax and aliases of every action or parameter that is accepted by ksysmgr

 [image:]

 # ksysmgr -h

 No command arguments found

 Here is a list of available actions for ksysmgr:

 Available action

 add

 delete

 discover

 help

 manage

 unmanage

 modify

 move

 query

 recover

 restore

 restart

 resync

 report

 cleanup

 sync

 pair

 verify

 monitor

 lpm

 [image:]

 3.5.1 Initializing the KSYS cluster

 The KSYS environment relies on RSCT to create its cluster on the KSYS LPAR. After you create the KSYS cluster, various daemons of RSCT and KSYS are activated. The KSYS node can then process the commands that you specify in the command line.

 To create and initialize a KSYS cluster, complete the following steps in each of the KSYS LPARs:

 1.	Configure a cluster and add the KSYS node to the cluster by running the command that is shown in Example 3-20.

 Example 3-20 Creating a cluster and adding a KYSYS node to the cluster

 [image:]

 # ksysmgr add ksyscluster ITSO_HA ksysnodes=ksys7005rbdr type=HA

 Adding node to current cluster configuration

 Ksyscluster has been created, please run: "ksysmgr verify ksyscluster <ksysclustername>"

 [image:]

 2.	Verify the KSYS cluster configuration by running the command that is shown in Example 3-21.

 Example 3-21 Verifying the cluster configuration

 [image:]

 # ksysmgr verify ksyscluster ITSO_HA

 Verified, Please run: "ksysmgr sync ksyscluster <ksysclustername>"

 [image:]

 3.	Deploy the KSYS cluster by running the command that is shown in Example 3-22.

 Example 3-22 Deploying the KSYS cluster

 [image:]

 # ksysmgr sync ksyscluster ITSO_HA

 Starting KSYS subsystem ...

 Waiting for KSYS subsystem to start ...

 KSYS subsystem has started, you can begin adding HMCs, Hosts, etc

 [image:]

 4.	You can perform steps 1 - 3 by running the command that is shown in Example 3-23.

 Example 3-23 Creating and deploying a KSYS cluster

 [image:]

 # ksysmgr add ksyscluster ITSO_HA ksysnodes=ksys7005rbdr sync=yes type=HA

 Adding node to current cluster configuration

 Ksyscluster has been created, running verify now

 Ksyscluster has been verified, running sync now

 Starting KSYS subsystem ...

 Waiting for KSYS subsystem to start ...

 KSYS subsystem has started, you can begin adding HMCs, Hosts, etc

 [image:]

 5.	Verify that the KSYS cluster is created successfully by running one of the commands that are shown in Example 3-24.

 Example 3-24 Verifying the KSYS cluster

 [image:]

 # ksysmgr query ksyscluster

 Name: ITSO_HA

 State: Online

 Type: HA

 # lsrpdomain

 Name OpState RSCTActiveVersion MixedVersions TSPort GSPort

 ITSO_HA Online 3.2.4.0 No 12347 12348

 # lssrc -s IBM.VMR

 Subsystem Group PID Status

 IBM.VMR rsct_rm 11731258 active

 [image:]

 	
 Important: The output message must display the state of the KSYS cluster as Online.

 3.5.2 Adding HMCs

 The KSYS interacts with the HMC for discovery, verification, monitoring, recovery, and cleanup operations. HMCs provide details about the hosts and VIOS partitions that are managed by the HMCs. The VM Recovery Manager HA solution cannot be implemented without configuring the HMCs.

 	
 Note: The HMC user, whose user name and password details are provided to the KSYS, must have at least hmcsuperadmin privileges and remote access. The KSYS subsystem uses the Representational State Transfer (REST) API to communicate with the HMCs in the environment. Therefore, ensure that your environment allows HTTPS communication between the KSYS and HMC subsystems.

 To add the HMCs to the KSYS configuration setting, complete the following steps in the KSYS LPAR:

 1.	Add the HMC with user name hscroot and password xyz123 by running the command that is shown in Example 3-25.

 Example 3-25 Adding the HMC

 [image:]

 # ksysmgr add hmc rthmc3 login=hscroot password=abc123 ip=9.3.18.159

 HMC rthmc3 added successfully

 # ksysmgr add hmc rthmc6 login=hscroot password=abc123 ip=9.3.207.78

 HMC rthmc6 added successfully

 [image:]

 2.	Repeat step 1 to add multiple HMCs.

 3.	Verify the HMCs that you added by running the command that is shown in Example 3-26.

 Example 3-26 Listing the HMC that is added to the KSYS

 [image:]

 # ksysmgr query hmc

 Name: rthmc6

 Ip: 9.3.207.78

 Login: hscroot

 Managed Host List:

 Host Name Uuid

 ========= ====

 rt12-8286-42A-2100E5W 4715697c-a486-3cbb-8b5a-2637fa4db054

 rt14-8286-42A-SN2100DEW 6e2f37f5-1824-347a-99fd-488f818086dd

 rt19-8286-42A-2100D5W d2038c84-8484-3f08-a608-6436e0f0f928

 e17m1 2b67b2b2-3eef-3047-8e9e-0c6d5f043201

 mbu 664989e6-b6c2-3bd3-b351-d49b08e7da94

 rose 3d26082d-7521-3d52-a27a-38aa78e4c314

 e9m1 224a76ad-7087-33ae-ad28-0202a14834c9

 ==

 Name: rthmc3

 Ip: 9.3.18.159

 Login: hscroot

 Managed Host List:

 Host Name Uuid

 ========= ====

 e52m3-8408-E8D-21DD71T e17e3ddc-71cc-327f-884b-4fa6a411bbb9

 e60m2-8408-E8D-21DD4DT 2d8b3d3a-ca43-3147-9d02-fd999bfc7ff4

 e46m4-8247-22L-2123D7A 5f322ea0-00dd-3615-acbb-a958add020b2

 rt13-8286-42A-21E0B2V 4462c37c-65c6-3614-b02a-aa09d752c2ee

 e52m2-8408-E8D-21DD44T ac43f075-3a03-3509-864a-cfd979139cb0

 rt11-8286-42A-0607585 d04d8a4a-99fa-3e4b-80bc-c9d9716bd8f8

 e46m5-8247-22L-212A71A c13ac0ed-f458-3b2e-be92-bf61b0e88933

 e60m3-8408-E8D-21DD4BT a71b1e42-4f08-360d-910a-7689b17eb09b

 ==

 [image:]

 This output shows all managed hosts for each HMC.

 3.5.3 Adding hosts

 After the HMCs are added to the KSYS subsystem, you can review the list of hosts that are managed by each HMC, as shown in Example 3-26 on page 284, and then identify the hosts that you want to add to the KSYS for HA.

 To add hosts to the KSYS configuration, complete the following steps in the KSYS LPAR:

 1.	Add the managed hosts rt11-8286-42A-0607585 and rt12-8286-42A-2100E5W to the KSYS by running the command that is shown in Example 3-27.

 Example 3-27 Adding hosts to the KSYS

 [image:]

 # ksysmgr add host rt11-8286-42A-0607585

 Host rt11-8286-42A-0607585 added successfully

 # ksysmgr add host rt12-8286-42A-2100E5W

 Host rt12-8286-42A-2100E5W added successfully

 [image:]

 	
 Tip: If the host is connected to more than one HMC, you must specify the universally unique identifier (UUID) of the host.

 2.	Repeat step 1 for all hosts that you want to add to the KSYS subsystem.

 3.	Verify the hosts that you added by running the command that is shown in Example 3-28.

 Example 3-28 Verifying hosts that are added to the KSYS

 [image:]

 # ksysmgr query host

 Name: rt12-8286-42A-2100E5W

 UUID: 4715697c-a486-3cbb-8b5a-2637fa4db054

 FspIp: Must run discovery first to populate

 Host_group: No host_group defined

 VIOS: rt12v2

 rt12v1

 HMCs: rthmc6

 HA_monitor: enable

 VM_failure_detection_speed: normal

 Name: rt11-8286-42A-0607585

 UUID: d04d8a4a-99fa-3e4b-80bc-c9d9716bd8f8

 FspIp: Must run discovery first to populate

 Host_group: No host_group defined

 VIOS: rt11v2

 rt11v1

 HMCs: rthmc3

 HA_monitor: enable

 VM_failure_detection_speed: normal

 [image:]

 3.5.4 Creating host groups

 You can group a set of hosts depending on your business requirements. Each host in the KSYS subsystem must be a part of a host group.

 The KSYS subsystem creates a health monitoring Shared Storage Pool (SSP) cluster across the VIOSs that are part of the host group. The health cluster monitors the health of all VIOSs across the cluster and retains the health data that is available to the KSYS subsystem by using a VIOS on the host group. The SSP cluster is used only by the KSYS. You must not use this SSP cluster for any other purpose. You can continue to use virtual Small Computer System Interface (vSCSI) or N_Port ID Virtualization (NPIV) modes of the cluster. However, if an SSP cluster exists in your environment, the KSYS subsystem does not deploy any new SSP clusters, but instead uses the existing SSP cluster for health management. However, if an existing SSP cluster is used, the KSYS subsystem might not support VIOS management.

 The KSYS subsystem requires two disks to create the health monitoring SSP cluster across the VIOSs on the host group. A disk of at least 10 GB is required to monitor health of the hosts, which called as repository disk, and another disk of at least 10 GB is required to track health data, which is called a HA disk, for each host group. These disks must be accessible to all the managed VIOSs on each of the hosts on the host group. You must specify the disk details when you create the host group or before you run the first discovery operation. You cannot modify the disks after the discovery operation is run successfully. If you want to modify the disks, you must delete the host group and re-create the host group with the disk details.

 To create host group in the KSYS subsystem, complete the following steps in the KSYS LPAR:

 1.	Identify all VIOSs that are managed by KSYS, as shown in Example 3-29.

 Example 3-29 Listing all VIOSs that are managed by KSYS

 [image:]

 # ksysmgr query vios

 Name: rt12v1

 UUID: 29798A5A-F115-4017-973F-0CF05FE26A97

 Host: rt12-8286-42A-2100E5W

 Version: VIOS 3.1.0.00

 State: MANAGED

 HM_versions: Unknown

 Name: rt12v2

 UUID: 124F4082-8307-4BF4-8DA2-5CC1E3F0DA7A

 Host: rt12-8286-42A-2100E5W

 Version: VIOS 3.1.0.00

 State: MANAGED

 HM_versions: Unknown

 Name: rt11v1

 UUID: 5F48ABC5-8188-4C70-8F9F-84403FB29DC3

 Host: rt11-8286-42A-0607585

 Version: VIOS 3.1.0.00

 State: MANAGED

 HM_versions: Unknown

 Name: rt11v2

 UUID: 55F05794-AF34-45E2-83DF-4DE40A7D6B7E

 Host: rt11-8286-42A-0607585

 Version: VIOS 3.1.0.00

 State: MANAGED

 HM_versions: Unknown

 [image:]

 2.	To identify all the available shared disks by VIOS so that you can designate the repository disk and the HA disk for the SSP cluster, run the commands that are shown in Example 3-30.

 Example 3-30 Identifying all available shared disks by VIOS

 [image:]

 # ksysmgr query viodisk vios=rt12v1,rt12v2,rt11v1,rt11v2

 Looking for free shared disks in these VIOSs:

 rt12v2

 rt12v1

 rt11v2

 rt11v1

 This can take a few minutes

 These are the shared free disks which appear on all VIOS in the list provided:

 DiskNames are as they appear on VIOS rt12v2

 DiskName Size ViodiskID

 hdisk0 20480 01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExMA==

 hdisk2 20480 01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExMQ==

 hdisk3 20480 01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExMg==

 hdisk4 20480 01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExRA==

 [image:]

 It is possible also identify all available shared disks by host, as shown in Example 3-31.

 Example 3-31 Identifying all available shared disks by hosts

 [image:]

 # ksysmgr query viodisk hosts=rt12-8286-42A-2100E5W,rt11-8286-42A-0607585

 Looking for free shared disks in these VIOSs:

 rt12v2

 rt12v1

 rt11v2

 rt11v1

 This can take a few minutes

 These are the shared free disks which appear on all VIOS in the list provided:

 DiskNames are as they appear on VIOS rt12v2

 DiskName Size ViodiskID

 hdisk0 20480 01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExMA==

 hdisk2 20480 01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExMQ==

 hdisk3 20480 01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExMg==

 hdisk4 20480 01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExRA==

 [image:]

 3.	Create a host group and add the hosts and disks (by using ViodiskID information) that you want in this host group by running the command that is shown in Example 3-32.

 Example 3-32 Creating a host group

 [image:]

 ksysmgr add host_group ITSO_HG hosts=rt11-8286-42A-0607585,rt12-8286-42A-2100E5W repo_disk=01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExMA== ha_disk=01M0lCTTIxNDUxMjQ2MDA1MDc2ODAyODEwNDI2ODgwMDAwMDAwMDAwMDExMQ==

 Host_group ITSO_HG added successfully

 Run discover command to proceed further

 [image:]

 4.	Repeat step 1 on page 286 for all host groups that you want to create in the KSYS subsystem.

 5.	Verify the host groups that you created by running the command shown in Example 3-33.

 Example 3-33 Listing host groups

 [image:]

 # ksysmgr query host_group

 Name: ITSO_HG

 Hosts: rt12-8286-42A-2100E5W

 rt11-8286-42A-0607585

 Memory_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 CPU_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 Skip_power_on: No

 HA_monitor: enable

 Restart_policy: auto

 [image:]

 You must enable HA monitoring for the KSYS subsystem to start monitoring the environment. To check the System-Wide Persistent Attributes, run the ksysmgr query system command, as shown in Example 3-34.

 Example 3-34 Listing System-Wide Persistent Attributes

 [image:]

 # ksysmgr query system

 System-Wide Persistent Attributes

 auto_discovery_time: 00:00 hours

 notification_level: low

 dup_event_processing: yes

 ha_monitor: disable

 host_failure_detection_time: 90 seconds

 vm_failure_detection_speed: normal

 User Scripts for Host Group:

 [image:]

 To enable HA monitoring, run the command that is shown in Example 3-35.

 Example 3-35 Enabling HA monitoring

 [image:]

 # ksysmgr modify system ha_monitor=enable

 KSYS ha_monitor has been updated

 [image:]

 It is possible to check whether the HA monitor is enabled, as shown in the Example 3-36.

 Example 3-36 Listing System-Wide Persistent Attributes after the HA monitor is enabled

 [image:]

 # ksysmgr query system

 System-Wide Persistent Attributes

 auto_discovery_time: 00:00 hours

 notification_level: low

 dup_event_processing: yes

 ha_monitor: enable

 host_failure_detection_time: 90 seconds

 vm_failure_detection_speed: normal

 [image:]

 3.5.5 Discovering and verifying the KSYS configuration

 After adding various resources (HMCs, hosts, and host groups) to the KSYS subsystem, you must run the discovery operation. During the initial discovery operation, the KSYS subsystem creates the required HA setup to monitor the VMs and hosts. The KSYS subsystem creates an SSP cluster based on the information that is specified in the configuration steps. During any subsequent discovery operations, the KSYS subsystem scans the environment for any changes to the environment and adapts to the modified environment.

 For example, when you add a host or when you run the LPM operation from one host to another host that is outside of the current KSYS subsystem, the KSYS configuration settings are updated in the next discovery operation.

 By default, the KSYS subsystem automatically rediscovers sites once every 24 hours at midnight. You can change this period by modifying the auto_discover_time system attribute.

 After the KSYS subsystem discovers the resources, a verification is required to ensure that the VMs can be restarted on another host without any errors during a failover operation. The first discovery operation can take a few minutes because the SSP health cluster is deployed during the first discovery operation.

 To discover and verify the configuration for a specific host group, complete the following steps:

 1.	Discover the resources by running the following command:

 ksysmgr discover host_group hg_name

 2.	Verify the resources by running the following command:

 ksysmgr verify host_group hg_name

 	
 Important: You must run the discovery and verification commands each time you modify the resources in the KSYS subsystem

 To perform both the discovery and verification operations, run the command that is shown in Example 3-37.

 Example 3-37 Running discovery and verification of the KSYS configuration

 [image:]

 # ksysmgr discover host_group ITSO_HG verify=yes

 Running discovery on Host_group ITSO_HG, this may take few minutes...

 Existing HA trunk adapter found for VIOS rt12v2

 Creating HA trunk adapter for VIOS rt12v1

 Finished creating HA trunk adapter for VIOS rt12v1

 Creating HA trunk adapter for VIOS rt11v2

 Finished creating HA trunk adapter for VIOS rt11v2

 Creating HA trunk adapter for VIOS rt11v1

 Finished creating HA trunk adapter for VIOS rt11v1

 SSP creation started for Host_group ITSO_HG

 SSP creation completed for Host_group ITSO_HG

 Preparing VIOS in rt12-8286-42A-2100E5W for HA management

 VIOS in rt12-8286-42A-2100E5W prepared for HA management

 Preparing VIOS in rt11-8286-42A-0607585 for HA management

 VIOS in rt11-8286-42A-0607585 prepared for HA management

 Discovery has started for VM rt11002

 Configuration information retrieval started for VM rt11002

 Discovery has started for VM rt12005

 Configuration information retrieval started for VM rt12005

 Discovery has started for VM rt11009

 Configuration information retrieval started for VM rt11009

 Discovery has started for VM rt11005

 Configuration information retrieval started for VM rt11005

 Discovery has started for VM rt11001

 Configuration information retrieval started for VM rt11001

 Discovery has started for VM rt12004

 Configuration information retrieval started for VM rt12004

 Discovery has started for VM rt12003

 Configuration information retrieval started for VM rt12003

 Discovery has started for VM rt12002

 Configuration information retrieval started for VM rt12002

 Discovery has started for VM rt12001

 Configuration information retrieval started for VM rt12001

 Discovery has started for VM rt11004

 Configuration information retrieval started for VM rt11004

 Discovery has started for VM rt11007

 Configuration information retrieval started for VM rt11007

 Discovery has started for VM rt11003

 Configuration information retrieval started for VM rt11003

 Discovery has started for VM rt11010

 Configuration information retrieval started for VM rt11010

 Discovery has started for VM rt11008

 Configuration information retrieval started for VM rt11008

 Discovery has started for VM rt11006

 Configuration information retrieval started for VM rt11006

 Configuration information retrieval completed for VM rt11002

 Discovery for VM rt11002 is complete

 Configuration information retrieval completed for VM rt12005

 Discovery for VM rt12005 is complete

 Configuration information retrieval completed for VM rt11009

 Discovery for VM rt11009 is complete

 Configuration information retrieval completed for VM rt11005

 Discovery for VM rt11005 is complete

 Configuration information retrieval completed for VM rt11001

 Discovery for VM rt11001 is complete

 Configuration information retrieval completed for VM rt12004

 Discovery for VM rt12004 is complete

 Configuration information retrieval completed for VM rt12003

 Discovery for VM rt12003 is complete

 Configuration information retrieval completed for VM rt12002

 Discovery for VM rt12002 is complete

 Configuration information retrieval completed for VM rt12001

 Discovery for VM rt12001 is complete

 Configuration information retrieval completed for VM rt11004

 Discovery for VM rt11004 is complete

 Configuration information retrieval completed for VM rt11007

 Discovery for VM rt11007 is complete

 Configuration information retrieval completed for VM rt11003

 Discovery for VM rt11003 is complete

 Configuration information retrieval completed for VM rt11010

 Discovery for VM rt11010 is complete

 Configuration information retrieval completed for VM rt11008

 Discovery for VM rt11008 is complete

 Configuration information retrieval completed for VM rt11006

 Discovery for VM rt11006 is complete

 Discovery has finished for ITSO_HG

 15 out of 15 managed VMs have been successfully discovered

 Host_group verification started for ITSO_HG

 rt11002 verification has started

 rt12005 verification has started

 rt11009 verification has started

 rt11005 verification has started

 rt11001 verification has started

 rt12004 verification has started

 rt12003 verification has started

 rt12002 verification has started

 rt12001 verification has started

 rt11004 verification has started

 rt11007 verification has started

 rt11003 verification has started

 rt11010 verification has started

 rt11008 verification has started

 rt11006 verification has started

 rt11002 verification has completed

 rt11010 verification has completed

 rt11009 verification has completed

 rt12001 verification has completed

 rt11008 verification has completed

 rt12005 verification has completed

 rt11004 verification has completed

 rt11003 verification has completed

 rt11005 verification has completed

 rt12002 verification has completed

 rt11001 verification has completed

 rt12003 verification has completed

 rt12004 verification has completed

 ERROR: Verify has encountered an error for VM rt11007

 ERROR: Verify has encountered an error for VM rt11006

 Verification has finished for ITSO_HG

 13 out of 15 VMs have been successfully verified

 Unverified VMs:

 rt11007

 rt11006

 Following error is returned for VM rt11007:

 Errors:\nHSCL2957 Either there is currently no RMC connection between the management console and the partition rt11007 (9*8286-42A*0607585) or the partition does not support dynamic partitioning operations. Verify the network setup on the management console and the partition and ensure that any firewall authentication between the management console and the partition has occurred. Run the management console diagrmc command to identify problems that might be causing no RMC connection.\n\nDetails:\nHSCL2957 Either there is currently no RMC connection between the management console and the partition rt11007 (9*8286-42A*0607585) or the partition does not support dynamic partitioning operations. Verify the network setup on the management console and the partition and ensure that any firewall authentication between the management console and the partition has occurred. Run the management console diagrmc command to identify problems that might be causing no RMC connection.\n\nJob execution on HMC failed with status <COMPLETED_WITH_ERROR>. Message: <Errors:\nHSCL2957 Either there is currently no RMC connection between the management console and the partition rt11007 (9*8286-42A*0607585) or the partition does not support dynamic partitioning operations. Verify the network setup on the management console and the partition and ensure that any firewall authentication between the management console and the partition has occurred. Run the management console diagrmc command to identify problems that might be causing no RMC connection.\n\nDetails:\nHSCL2957 Either there is currently no RMC connection between the management console and the partition rt11007 (9*8286-42A*0607585) or the partition does not support dynamic partitioning operations. Verify the network setup on the management console and the partition and ensure that any firewall authentication between the management console and the partition has occurred. Run the management console diagrmc command to identify problems that might be causing no RMC connection.\n>.

 Following error is returned for VM rt11006:

 Errors:\nHSCL2957 Either there is currently no RMC connection between the management console and the partition rt11006 (6*8286-42A*2100E5W) or the partition does not support dynamic partitioning operations. Verify the network setup on the management console and the partition and ensure that any firewall authentication between the management console and the partition has occurred. Run the management console diagrmc command to identify problems that might be causing no RMC connection.\n\nDetails:\nHSCL2957 Either there is currently no RMC connection between the management console and the partition rt11006 (6*8286-42A*2100E5W) or the partition does not support dynamic partitioning operations. Verify the network setup on the management console and the partition and ensure that any firewall authentication between the management console and the partition has occurred. Run the management console diagrmc command to identify problems that might be causing no RMC connection.\n\nJob execution on HMC failed with status <COMPLETED_WITH_ERROR>. Message: <Errors:\nHSCL2957 Either there is currently no RMC connection between the management console and the partition rt11006 (6*8286-42A*2100E5W) or the partition does not support dynamic partitioning operations. Verify the network setup on the management console and the partition and ensure that any firewall authentication between the management console and the partition has occurred. Run the management console diagrmc command to identify problems that might be causing no RMC connection.\n\nDetails:\nHSCL2957 Either there is currently no RMC connection between the management console and the partition rt11006 (6*8286-42A*2100E5W) or the partition does not support dynamic partitioning operations. Verify the network setup on the management console and the partition and ensure that any firewall authentication between the management console and the partition has occurred. Run the management console diagrmc command to identify problems that might be causing no RMC connection.\n>.

 Please review the error(s) and take any corrective actions

 [image:]

 Example 3-37 on page 290 shows that the VMs rt11006 and rt11007 have no RMC connection problems.

 Configuring VIOS

 When you add hosts to the KSYS subsystem, all the VIOSs in the hosts are also added to the KSYS subsystem. The VM Recovery Manager HA solution monitors the hosts and VMs by using VIOSs on the host.

 The VM Recovery Manager HA solution requires at least two VIOSs per host. You can have a maximum of 24 VIOSs across different hosts in a single host group. If a host has more than two VIOSs, you can exclude specific VIOS partitions from the HA management.

 To exclude specific VIOS partitions from HA management, run the following command:

 ksysmgr unmanage vios viosname

 Configuring virtual machines

 When a host is added to the KSYS subsystem, all the VMs on the host are included by default in the HA management. If you do not want HA for any of the VMs, you can exclude specific VMs from the HA management by running the following command with the appropriate flags:

 ksysmgr unmanage vm name=vmname host=hostname | uuid=lparuuid |

 ALL host=hostname | ALL host_group=hg_name

 In Example 3-38, the VMs rt11006, rt11007, rt11008, rt1009, and rt11010 were unmanaged.

 Example 3-38 Unmanaging VMs

 [image:]

 # ksysmgr unmanage vm name=rt11006,rt11007,rt11008,rt11009,rt11010

 VM rt11006 was successfully unmanaged. Please run discovery to apply changes

 VM rt11007 was successfully unmanaged. Please run discovery to apply changes

 VM rt11008 was successfully unmanaged. Please run discovery to apply changes

 VM rt11009 was successfully unmanaged. Please run discovery to apply changes

 VM rt11010 was successfully unmanaged. Please run discovery to apply changes

 [image:]

 To list all VMs and query all managed and unmanaged VMs, run the ksysmgr query vm command, as shown in Example 3-39.

 Example 3-39 Querying VMs

 [image:]

 # ksysmgr query vm

 Managed VMs:

 rt11002

 rt12005

 rt11005

 rt11001

 rt12004

 rt12003

 rt12002

 rt12001

 rt11004

 rt11003

 Unmanaged VMs:

 rt11009

 rt11007

 rt11010

 rt11008

 rt11006

 [image:]

 After you change the host group ITSO_HG, perform discovery and verification, as shown in Example 3-40.

 Example 3-40 Performing discovery and verification after unmanaging VMs

 [image:]

 # ksysmgr discover host_group ITSO_HG verify=yes

 Running discovery on Host_group ITSO_HG, this may take few minutes...

 .

 .

 .

 Discovery has finished for ITSO_HG

 10 out of 10 managed VMs have been successfully discovered

 .

 .

 .

 Verification has finished for ITSO_HG

 10 out of 10 VMs have been successfully verified

 [image:]

 Enabling HA monitoring at the VM and application level

 At this moment, you have HA monitoring only at the host level. To enable HA monitoring at the VM and application level, you must install the VM Agent for HA monitoring, which is described in 3.4.3, “Installing VM Agents” on page 279.

 After installing the VM Agent for HA monitoring, you start the daemon agent by running the ksysvmmgr start command in each VM.

 Example 3-41 on page 295 shows how to start VM monitor (VMM) on AIX VMs.

 Example 3-41 Starting VMM on AIX VMs

 [image:]

 # ksysvmmgr status

 Subsystem Group PID Status

 ksys_vmm inoperative

 (0) root @ rt11001: /

 # ksysvmmgr start

 0513-059 The ksys_vmm Subsystem has been started. Subsystem PID is 17957374.

 (0) root @ rt11001: /

 # ksysvmmgr status

 Subsystem Group PID Status

 ksys_vmm 17957374 active

 [image:]

 Example 3-42 shows how to start VMM on Red Hat VMs.

 Example 3-42 Starting VMM on Red Hat VMs

 [image:]

 # ksysvmmgr status

 ksys_vmm daemon is currently inoperative.

 (0) root @ rt11004: /root

 # ksysvmmgr start

 ksys_vmm has been started.

 (0) root @ rt11004: /root

 # ksysvmmgr status

 ksys_vmm daemon is active.

 [image:]

 Example 3-43 shows how to start VMM on SUSE VMs.

 Example 3-43 Starting VMM on SUSE VMs

 [image:]

 # ksysvmmgr status

 ksys_vmm daemon is currently inoperative.

 (0) root @ rt11005: /root

 # ksysvmmgr start

 ksys_vmm has been started.

 (0) root @ rt11005: /root

 # ksysvmmgr status

 ksys_vmm daemon is active.

 [image:]

 Now that VMM is enabled on the VMs, you must enable HA monitoring on KSYS on the VM level for each VM by running the following command:

 ksysmgr modify vm vm1[,vm2,...] ha_monitor=enable

 In Example 3-44, the VMs rt11001, rt11002, rt11003, rt11004, rt11005, rt12001, rt12002, rt12003, rt12004, and rt12005 were changed to enable the ha_monitor.

 Example 3-44 Enabling the HA VM monitoring level on KSYS

 [image:]

 # ksysmgr modify vm rt11001,rt11002,rt11003,rt11004,rt11005,rt12001,rt12002,rt12003,rt12004,rt12005 ha_monitor=enable

 For VM rt11002 attribute(s) 'ha_monitor' was successfully modified.

 For VM rt12005 attribute(s) 'ha_monitor' was successfully modified.

 For VM rt11005 attribute(s) 'ha_monitor' was successfully modified.

 For VM rt11001 attribute(s) 'ha_monitor' was successfully modified.

 For VM rt12004 attribute(s) 'ha_monitor' was successfully modified.

 For VM rt12003 attribute(s) 'ha_monitor' was successfully modified.

 For VM rt12002 attribute(s) 'ha_monitor' was successfully modified.

 For VM rt12001 attribute(s) 'ha_monitor' was successfully modified.

 For VM rt11004 attribute(s) 'ha_monitor' was successfully modified.

 For VM rt11003 attribute(s) 'ha_monitor' was successfully modified.

 [image:]

 In Example 3-45, discovery and verification run after VMM is enabled.

 Example 3-45 Performing discovery and verification after enabling VMM

 [image:]

 # ksysmgr discover host_group ITSO_HG verify=yes

 Running discovery on Host_group ITSO_HG, this may take few minutes...

 .

 .

 .

 Creating first HA client adapter for VM rt12001

 Finished creating first HA client adapter for VM rt12001

 Creating first HA client adapter for VM rt12005

 Creating second HA trunk client for VM rt12001

 Finished creating second HA client adapter for VM rt12001

 Finished creating first HA client adapter for VM rt12005

 Creating second HA trunk client for VM rt12005

 Finished creating second HA client adapter for VM rt12005

 Creating first HA client adapter for VM rt12003

 Finished creating first HA client adapter for VM rt12003

 Creating second HA trunk client for VM rt12003

 Finished creating second HA client adapter for VM rt12003

 .

 .

 .

 Starting HA monitoring for VM rt12001

 Starting HA monitoring for VM rt12005

 HA monitoring for VM rt12001 started successfully

 HA monitoring for VM rt12005 started successfully

 Starting HA monitoring for VM rt12003

 HA monitoring for VM rt12003 started successfully

 Starting HA monitoring for VM rt12002

 Starting HA monitoring for VM rt12004

 HA monitoring for VM rt12002 started successfully

 Starting HA monitoring for VM rt11001

 HA monitoring for VM rt12004 started successfully

 HA monitoring for VM rt11001 started successfully

 Starting HA monitoring for VM rt11004

 .

 .

 .

 VM monitor state has moved to 'STARTED' for VM rt11002

 VM monitor state has moved to 'STARTED' for VM rt12005

 VM monitor state has moved to 'STARTED' for VM rt11005

 VM monitor state has moved to 'STARTED' for VM rt11001

 VM monitor state has moved to 'STARTED' for VM rt12004

 VM monitor state has moved to 'STARTED' for VM rt12003

 VM monitor state has moved to 'STARTED' for VM rt12002

 VM monitor state has moved to 'STARTED' for VM rt12001

 VM monitor state has moved to 'STARTED' for VM rt11004

 VM monitor state has moved to 'STARTED' for VM rt11003

 .

 .

 .

 Verification has finished for ITSO_HG

 10 out of 10 VMs have been successfully verified

 [image:]

 3.6 Setting up HA policies

 After you set up the KSYS subsystem successfully, set up recovery policies to customize the default configuration settings to suit your HA preferences.

 This session describes the VM Recovery Manager HA solution options that you can customize.

 	
 Note: You must run the discovery and verification command after you set any policy.

 3.6.1 HA monitoring policies

 An HA monitoring policy turns on or off HA monitoring for the associated entity. The specified policy at the lowest resource level is considered first for HA monitoring. If you do not specify this policy for a resource, the policy of the parent resource is applied to the resource. For example, if you enable HA monitoring for the host group, HA monitoring is enabled for all the hosts within the host group unless you disable HA monitoring for specific hosts.

 You can enable HA monitoring for VMs only after you install the VM Agent on each VM and start the VM Agent successfully. If you do not set up the VM Agent, the KSYS subsystem might return error messages for HA monitoring at the VM level.

 To set the HA monitoring, run the following command:

 ksysmgr modify system|host_group|host|vm name ha_monitor=enable|disable

 Example 3-46 shows the ksysmgr query system command that checks the HA monitoring for the KSYS.

 Example 3-46 Checking HA monitoring for the KSYS

 [image:]

 # ksysmgr query system

 System-Wide Persistent Attributes

 auto_discovery_time: 00:00 hours

 notification_level: low

 dup_event_processing: yes

 ha_monitor: enable

 host_failure_detection_time: 90 seconds

 vm_failure_detection_speed: normal

 User Scripts for Host Group:

 [image:]

 To check HA monitoring for the host group, run the ksysmgr query host_group command that is shown in Example 3-47.

 Example 3-47 Checking HA monitoring for the host group

 [image:]

 # ksysmgr query host_group

 Name: ITSO_HG

 Hosts: rt12-8286-42A-2100E5W

 rt11-8286-42A-0607585

 Memory_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 CPU_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 Skip_power_on: No

 HA_monitor: enable

 Restart_policy: auto

 VM_failure_detection_speed: normal

 Host_failure_detection_time: 90

 [image:]

 To check the HA monitoring for the VM rt11001, run the ksysmgr query vm command that is shown in Example 3-48.

 Example 3-48 Checking the HA monitoring for the VM rt11001

 [image:]

 # ksysmgr query vm rt11001

 Name: rt11001

 UUID: 3BF44186-0679-4032-BF4C-95B24901822A

 State: READY_TO_MOVE

 Host: rt12-8286-42A-2100E5W

 Priority: Medium

 VM_failure_detection_speed: normal

 HA_monitor: enable

 Homehost: rt12-8286-42A-2100E5W

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict: No

 [image:]

 3.6.2 Environment-level policies

 This section describes the environment-level policies.

 Restart policy

 The restart policy notifies the KSYS subsystem to restart the VMs automatically during a failure. This attribute can have the following values:

 auto	If you set this attribute to auto, the KSYS subsystem automatically restarts the VMs on the destination hosts. The KSYS subsystem identifies the most suitable host based on free CPUs, memory, and other specified policies. In this case, the KSYS subsystem also notifies the registered contacts about the host or VM failure and the restart operations. This is the default value of the restart_policy attribute.

 advisory_mode	If you set this attribute to advisory_mode, the VMs are not restarted automatically after host or VM failures. In this case, the KSYS subsystem notifies the registered contacts about the host or VM failures. The administrator must review the failure and manually restart the VMs on other hosts by using the ksysmgr commands.

 To set the restart policy, run the following command syntax:

 ksysmgr modify host_group name restart_policy=auto|advisory_mode

 For example, to check the restart policy of the host group ITSO_HG, we run the command ksysmgr query host_group, as shown in Example 3-49.

 Example 3-49 Checking the restart_policy of the host group ITSO_HG

 [image:]

 # ksysmgr query host_group

 Name: ITSO_HG

 Hosts: rt12-8286-42A-2100E5W

 rt11-8286-42A-0607585

 Memory_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 CPU_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 Skip_power_on: No

 HA_monitor: enable

 Restart_policy: auto

 VM_failure_detection_speed: normal

 Host_failure_detection_time: 90

 [image:]

 Host failure detection time

 The host failure detection time policy indicates the time that the KSYS waits on a non-responsive host before the KSYS declares the host to be in an inactive state. This value is measured in seconds. The KSYS subsystem uses the specified time to ensure the health of the host and attempts to connect to the host before the KSYS declares the failure. After this duration, the VMs are restarted on another host that is located within the host group. The value of this attribute can be 90 – 600 seconds. The default value is 90 seconds.

 To set the host failure detection time, run the following command:

 ksysmgr modify system|host_group name host_failure_detection_time=time_in_seconds

 To check the KSYS host failure detection time, we run the command ksysmgr query system, as shown in Example 3-50.

 Example 3-50 Checking the KSYS host failure detection time

 [image:]

 # ksysmgr query system

 System-Wide Persistent Attributes

 auto_discovery_time: 00:00 hours

 notification_level: low

 dup_event_processing: yes

 ha_monitor: enable

 host_failure_detection_time: 90 seconds

 vm_failure_detection_speed: normal

 [image:]

 To check the host group failure detection time, we use the ksysmgr query host_group command, as shown in Example 3-51.

 Example 3-51 Checking the host group host failure detection time

 [image:]

 # ksysmgr query host_group

 Name: ITSO_HG

 Hosts: rt12-8286-42A-2100E5W

 rt11-8286-42A-0607585

 Memory_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 CPU_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 Skip_power_on: No

 HA_monitor: enable

 Restart_policy: auto

 VM_failure_detection_speed: normal

 Host_failure_detection_time: 90

 [image:]

 Flexible capacity policy

 The flexible capacity policy modifies the allocation of memory and CPU resources of a VM when a VM is moved from its home host to another host on the host group. You can set flexible capacity values based on the priority of a VM. You can set different flexible capacity values for various priorities of VMs: high, medium, and low. You must specify the flexible capacity values in percentage.

 For example, you can define the following flexible capacity values at the host group level: 100% CPU and 100% memory for high priority VMs; 70% CPU and 80% memory for medium priority VMs; and 60% CPU and 75% memory for low priority VMs. When a medium priority VM is migrated from its home host to another host on the host group, its capacity is adjusted to 70% CPU and 80% memory. If the VM is restored back to its home host, the VM is restored with 100% resources.

 The flexible capacity policy does not consider I/O slots, adapters, and resources that are available in the hosts. You must ensure that all the I/O virtualization requirements of the VMs are met within the host group environment. Also, the flexible capacity policy is applicable only to VM relocation that is based on restart operations. LPM operations do not follow the flexible capacity policy.

 To set the flexible capacity policy, run the following command:

 ksysmgr modify host_group

 [memory_capacity=(1-100) | minimum | current_desired | none] [priority=low|medium|high]

 [cpu_capacity=(1-100) | minimum | current_desired | none] [priority=low|medium|high]

 Example 3-52 on page 301 shows the default settings of the flexible capacity policy for the host group ITSO_HG.

 Example 3-52 Listing the flexible capacity policies of the host group ITSO_HG

 [image:]

 # ksysmgr query host_group

 Name: ITSO_HG

 Hosts: rt12-8286-42A-2100E5W

 rt11-8286-42A-0607585

 Memory_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 CPU_capacity: Priority Based Settings

 high:100

 medium:100

 low:100

 [image:]

 In Example 3-53, the flexible capacity policies were set as follows:

 •Memory capacity to 60% for medium-priority VMs

 •CPU capacity to 70% for medium-priority VMs

 •Memory capacity to 50% for low-priority VMs

 •CPU capacity to 50% for low-priority VMs

 Example 3-53 Changing the flexible capacity policies

 [image:]

 # ksysmgr modify host_group ITSO_HG options memory_capacity=60 priority=medium

 For Host_group ITSO_HG attribute(s) 'memory_capacity', 'priority' was successfully modified

 # ksysmgr modify host_group ITSO_HG options cpu_capacity=70 priority=medium

 For Host_group ITSO_HG attribute(s) 'cpu_capacity', 'priority' was successfully modified

 # ksysmgr modify host_group ITSO_HG options memory_capacity=50 priority=low

 For Host_group ITSO_HG attribute(s) 'memory_capacity', 'priority' was successfully modified.

 # ksysmgr modify host_group ITSO_HG options cpu_capacity=50 priority=low

 For Host_group ITSO_HG attribute(s) 'cpu_capacity', 'priority' was successfully modified

 [image:]

 Example 3-54 shows the host group ITSO_HG after changing its flexible capacity policies.

 Example 3-54 Checking the flexible capacity policies after changing them for ITSO_HG

 [image:]

 # ksysmgr query host_group

 Name: ITSO_HG

 Hosts: rt12-8286-42A-2100E5W

 rt11-8286-42A-0607585

 Memory_capacity: Priority Based Settings

 high:100

 medium:60

 low:50

 CPU_capacity: Priority Based Settings

 high:100

 medium:70

 low:50

 [image:]

 Affinity policies

 An affinity policy specifies affinity rules for a set of VMs that defines how the VMs must be placed within a host group during a relocation. The following affinity policies are supported if all VMs in an affinity group have the same priority.

 Collocation

 A collocation policy indicates that the set of VMs must always be placed on the same host after relocation, as shown in Figure 3-5.

 [image:]

 Figure 3-5 Collocation policy

 To set this policy, run the following commands:

 ksysmgr add collocation name vm=vmname1[,...]>

 ksysmgr modify collocation name policy=add|delete vm=vm1[,...]

 Example 3-55 shows the collocation policy policy_1 for the VMs rt12001, r12002, and 12003.

 Example 3-55 Creating a collocation policy

 [image:]

 # ksysmgr add collocation policy_1 vm=rt12001,rt12002,rt12003

 Collocation group policy_1 was created

 [image:]

 To list the collocation policies that are available, run the command ksysmgr query collocation, as shown in Example 3-56.

 Example 3-56 Listing the collocation policies

 [image:]

 # ksysmgr query collocation

 Name: policy_1

 Type: Collocation

 VMs: rt12003

 rt12002

 rt12001

 [image:]

 Example 3-57 shows how to delete a collocation policy.

 Example 3-57 Deleting a collocation policy

 [image:]

 # ksysmgr delete collocation policy_1

 Collocation group policy_1 was removed

 [image:]

 Anticollocation

 An anticollocation policy indicates that the set of VMs must never be placed on the same host after relocation, as shown in Figure 3-6.

 [image:]

 Figure 3-6 Anticollocation policy

 To set this policy, run the following commands:

 ksysmgr add collocation name vm=vmname1[,...]>

 ksysmgr modify collocation name policy=add|delete vm=vm1[,...]

 Example 3-58 shows the anticollocation policy policy_2 with the VMs rt12001 and rt12002.

 Example 3-58 Creating an anticollocation policy

 [image:]

 # ksysmgr add anticollocation policy_2 vm=rt12001,rt11001

 Anticollocation group policy_2 was created

 [image:]

 To list the anticollocation policies that are available, run the command ksysmgr query anticollocation, as shown in Example 3-59.

 Example 3-59 Listing the anticollocation policies

 [image:]

 # ksysmgr query anticollocation

 Name: policy_2

 Type: anticollocation

 VMs: rt11001

 rt12001

 [image:]

 Example 3-60 shows how to delete an anticollocation policy.

 Example 3-60 Deleting an anticollocation policy

 [image:]

 # ksysmgr delete anticollocation policy_2

 Anticollocation group policy_2 was removed

 [image:]

 Workgroup

 A workgroup policy indicates that the set of VMs must be prioritized based on the assigned priority.

 To set this option, run the following commands:

 ksysmgr add workgroup name vm=vmname1[,...]

 ksysmgr modify workgroup name policy=add|delete vm=vm1[,...]

 Example 3-61shows the creation of a workgroup policy with the VMs rt11001, rt11002, and rt11003.

 Example 3-61 Creating a workgroup policy

 [image:]

 # ksysmgr add workgroup dev_itso vm=rt11001,rt11002,rt11003

 Workgroup group dev_itso was created

 [image:]

 To list the workgroup policies that are available, run the ksysmgr query workgroup command, as shown in Example 3-62.

 Example 3-62 Listing the workgroup policies

 [image:]

 # ksysmgr query workgroup

 Name: dev_itso

 Type: workgroup

 VMs: rt11002

 rt11001

 rt11003

 [image:]

 Example 3-63 shows how to delete the workgroup policy.

 Example 3-63 Deleting the workgroup policy

 [image:]

 # ksysmgr delete workgroup dev_itso

 Workgroup group dev_itso was removed

 [image:]

 	
 Note: When you set affinity policies, ensure that the host group has sufficient capacity for the policies to be implemented during host failure, VM failure, or application failure. For example, if the host group contains only two hosts, you cannot set an anticollocation policy on VMs of a specific host because the host group does not contain multiple target hosts to restart the VMs.

 3.6.3 VM-level policies

 This section describes the VM-level policies for relocating VMs during failover operations.

 Host blacklist

 The host blacklist policy specifies the list of hosts that must not be used for relocating a specific VM during a failover operation. For a VM, you can add hosts within the host group to the blacklist based on performance and licensing preferences, as shown in the Figure 3-7.

 [image:]

 Figure 3-7 Host blacklist policy

 To set this option, run the following command:

 ksysmgr modify vm vmname

 blacklist_hosts=hostname[,...] policy=add|delete

 Example 3-64 shows that VM rt11004 do not have the blacklist policy.

 Example 3-64 Checking the blacklist policy

 [image:]

 # ksysmgr query vm rt11004

 Name: rt11004

 UUID: 4FCD724B-8407-4945-A973-C25C4CA69A94

 State: READY_TO_MOVE

 Host: rt11-8286-42A-0607585

 Priority: Medium

 VM_failure_detection_speed: normal

 HA_monitor: enable

 Homehost: rt11-8286-42A-0607585

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict: No

 [image:]

 Example 3-65 shows that host rt12-8286-42A-2100E5W in VM rt1004 was set as the host blacklist.

 Example 3-65 Setting the blacklist policy on VM rt11004

 [image:]

 # ksysmgr modify vm rt11004 blacklist_hosts=rt12-8286-42A-2100E5W

 WARNING: No backup host will be left for this VM rt11004.

 For VM rt11004 attribute(s) 'blacklist_hosts' was successfully modified.

 [image:]

 	
 Note: The warning appeared only because this test environment is composed only of two hosts on the host group.

 To list the blacklist host that is configured on VM rt11004, run the command ksysmgr query vm rt11004, as shown in Example 3-66.

 Example 3-66 Checking the blacklist policy on VM rt11004

 [image:]

 # ksysmgr query vm rt11004

 Name: rt11004

 UUID: 4FCD724B-8407-4945-A973-C25C4CA69A94

 State: INIT

 Host: rt11-8286-42A-0607585

 Priority: Medium

 VM_failure_detection_speed: normal

 HA_monitor: enable

 Homehost: rt11-8286-42A-0607585

 Blacklist_hosts: rt12-8286-42A-2100E5W

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict: No

 [image:]

 Example 3-67 shows how to delete the blacklist policy from VM rt11004.

 Example 3-67 Deleting the blacklist host from VM rt11004

 [image:]

 # ksysmgr modify vm rt11004 blacklist_hosts=rt12-8286-42A-2100E5W policy=delete

 For VM rt11004 attribute(s) 'blacklist_hosts', 'policy' was successfully modified.

 [image:]

 Failover priority

 The failover priority policy specifies the order of processing multiple VMs restart operations. For example, if a host fails and all the VMs must be relocated to other hosts on the host group, the priority of the VM determines which VM is processed first. The supported values for this attribute are High, Medium, or Low. You can set this attribute at the VM level only. You must specify the UUID of the VM if you have two or more VMs with the same name. By default, all VMs on the host group have a priority of Medium.

 To set the failover priority, run the following command:

 ksysmgr modify vm name1[,name2,...] | filepath=filepath priority=high|medium|low

 In Example 3-68, the VM rt11001 is set to High priority.

 Example 3-68 Setting the VM rt11001 to High priority

 [image:]

 # ksysmgr modify vm rt11001 priority=High

 For VM rt11001 attribute(s) 'priority' was successfully modified.

 [image:]

 To check the priority of the VM rt11001, run the command ksysmgr query vm rt11001, as shown n Example 3-69.

 Example 3-69 Checking the priority policy of the VM rt11001

 [image:]

 # ksysmgr query vm rt11001

 Name: rt11001

 UUID: 3BF44186-0679-4032-BF4C-95B24901822A

 State: READY_TO_MOVE

 Host: rt11-8286-42A-0607585

 Priority: High

 VM_failure_detection_speed: normal

 HA_monitor: enable

 Homehost: rt12-8286-42A-2100E5W

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict: No

 [image:]

 Example 3-70 shows that all VMs on the host rt12-8286-42A-2100E5W were set to High priority.

 Example 3-70 Setting all VMs on the host rt12-8286-42A-2100E5W to High priority

 [image:]

 # ksysmgr modify vm ALL host=rt12-8286-42A-2100E5W priority=High

 For VM rt12005 attribute(s) 'host', 'priority' was successfully modified.

 For VM rt12004 attribute(s) 'host', 'priority' was successfully modified.

 For VM rt12003 attribute(s) 'host', 'priority' was successfully modified.

 For VM rt12002 attribute(s) 'host', 'priority' was successfully modified.

 For VM rt12001 attribute(s) 'host', 'priority' was successfully modified.

 [image:]

 Home host

 The home host policy specifies the home host of the VM. By default, the KSYS subsystem sets this value initially to the host where the VM was first discovered. You can change the home host value of a VM even when the VM is running on another host. In such case, the specified home host is used for all future operations. This attribute is useful when you get a host repaired after failure and you want to restart the VMs in its home host.

 To set the home host value, run the following command:

 ksysmgr modify vm name1[,name2...] homehost=hostname

 To check that the VM rt11001 is with the home host rt12-8286-42A-2100E5W, run the ksysmgr query vm command, as shown in Example 3-71.

 Example 3-71 Checking the home host of the VM rt11001

 [image:]

 # ksysmgr query vm rt11001

 Name: rt11001

 UUID: 3BF44186-0679-4032-BF4C-95B24901822A

 State: READY_TO_MOVE

 Host: rt11-8286-42A-0607585

 Priority: High

 VM_failure_detection_speed: normal

 HA_monitor: enable

 Homehost: rt12-8286-42A-2100E5W

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict: No

 [image:]

 In Example 3-72, there is a request to change the home host of the VM rt11001 to rt11-8286-42A-0607585.

 Example 3-72 Changing the home host of the VM rt11001

 [image:]

 # ksysmgr modify vm rt11001 homehost=rt11-8286-42A-0607585

 [image:]

 In Example 3-73, you check that VM rt11001 has the home host rt11-8286-42A-0607585.

 Example 3-73 Checking the home host of the VM 11001

 [image:]

 # ksysmgr query vm rt11001

 Name: rt11001

 UUID: 3BF44186-0679-4032-BF4C-95B24901822A

 State: READY_TO_MOVE

 Host: rt11-8286-42A-0607585

 Priority: High

 VM_failure_detection_speed: normal

 HA_monitor: enable

 Homehost: rt11-8286-42A-0607585

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict: No

 [image:]

 Relocation mapper flow diagram

 Figure 3-8 on page 309 shows the relocation mapper flow diagram for the policies for VMs in the IBM Recovery Manager HA for IBM Power Systems.

 The steps in the diagram are as follows:

 1.	Create an empty map table.

 2.	Check the VM level priority: High, Medium, or Low.

 3.	Check the collocation priority.

 4.	Check the anticollocation priority.

 5.	Check for Best Fit: free CPU and memory.

 6.	Check the Priority List: Flex capacity.

 7.	Check for auto mode: Yes starts a recovery restart, and No sends a notification.

 [image:]

 Figure 3-8 Relocation Mapper Flow

 3.7 Setting up the VM Agent

 If you configure the HA function at the VM level or application level, you must set up the VMM and the application monitoring framework (AppMon) in each VM for which VM failure detection is required.

 You can install the VM Agent to monitor the VM and applications on the VMs that run only the following operating systems:

 •AIX Version 6.1 or later

 •PowerLinux:

  –	RHEL (Little Endian) Version 7.4 or later

  –	SUSE Linux Enterprise Server (Little Endian) Version 12.3 or later

 Currently, the HA feature at the VM level or application level is not supported for the IBM i operating system or other Linux distributions. However, you can enable these VMs for host-level health management. In addition, you can perform manual restart and LPM operations on these VMs.

 	
 Note: You can configure the VM Agent only by using the ksysvmmgr command. You cannot configure the VM Agent by using the VM Recovery Manager HA GUI.

 3.7.1 The ksysvmmgr command and utility

 The ksysvmmgr command (Figure 3-9) provides a consistent interface to manage the VMM and Applications. The ksysvmmgr command interacts with the VMM daemon over a UNIX socket.

 [image:]

 Figure 3-9 The ksysvmmgr command

 Example 3-74 shows the ksysvmmgr command syntax.

 Example 3-74 The ksysvmmgr command syntax

 [image:]

 # ksysvmmgr

 Usage: ksysvmmgr [<FLAGS>] <ACTION> [<CLASS>] [<NAME>] [<ATTRIBUTES>]

 KSYSVMMGR-002(ERROR): <ACTION> parameter is mandatory.

 For <ACTION> parameter, possible actions are : "add,query,modify,delete,status,resume,suspend,start,stop,help,start,stop,status,sync".

 Retry using one of the possible actions.

 Or refer to complete output of "ksysvmmgr -h"

 [image:]

 After you install the VM Agent filesets successfully, complete the procedures in the following sections to set up the VMM in each guest VM.

 VMM daemon

 The VMM daemon must be started in each VM in which that agent is installed. To start monitoring the VMs and applications, run the command that is shown in Example 3-75.

 Example 3-75 Starting the VMM daemon

 [image:]

 # ksysvmmgr start

 0513-059 The ksys_vmm Subsystem has been started. Subsystem PID is 6488526.

 # ksysvmmgr status

 Subsystem Group PID Status

 ksys_vmm 6488526 active

 [image:]

 Virtual machine monitor

 The ksysvmmgr command configures the following classes and attributes, as shown in Example 3-76.

 Example 3-76 Listing the VMM details

 [image:]

 # ksysvmmgr query vmm

 VmMonitor

 log=2

 period=1

 version=1.0

 comment=2018-10-26 16:02:11

 rebootappstarttype=VMM

 VmUUID=3bf44186-0679-4032-bf4c-95b24901822

 [image:]

 When you start the VMM, the VMM daemon sends heartbeats to the HM when requested by the HM so that the KSYS subsystem can monitor the VMs.

 The VMM can have the following attributes:

 version	Specifies the version of XML. This mandatory attribute is set to 1.0 for the current version of VMM and cannot be modified.

 log	Specifies the log level of the VMM daemon. This attribute can have the following values:

 0	Only errors are logged. It is the default value.

 1	Warnings are also logged.

 2	Informational messages are also logged.

 3	Details of the operation are logged. This information is used for debugging.

 period	Specifies the time duration in seconds between two consecutive occurrences of checks that are performed by the Application Management Engine (AME). By default, the value of this attribute is
1 second. The value of this attribute must be in the range 0 - 6. For best monitoring performance, do not modify the default value.

 rebootappstarttype	Specifies the method in which the applications must be started when the VM is restarted on a new host. This attribute can have the following values:

 VMM	Directs the VM Agent to start the applications immediately after the VM is restarted on the new host.

 OS	Specifies that the applications must be started by the operating system or by a user after the VM restarts on a new host. If the application is not started by the operation system or a user, the VM Agent starts the applications.

 To modify the VMM parameters, run the following commands:

 •# ksysvmmgr modify log=3

 •# ksysvmmgr modify period=2

 •# ksysvmmgr modify rebootappstarttype=OS

 3.7.2 Application Management Engine

 The AME validates the application monitoring configuration, starts and stops applications, monitors application health, restarts applications in case of failure, and informs the Application Reporting (AR) thread about the application configuration and status.

 To register applications in the VMM daemon so that they are monitored for HA, run the command that is shown in Example 3-77.

 Example 3-77 Adding an application to be monitored by AME

 [image:]

 # ksysvmmgr -s add app app1 monitor_script=/applic/mon1.sh start_script=/applic/start_app1.sh stop_script=/applic/stop_app1.sh

 Adding application "app1" into configuration successfully performed.

 [image:]

 To check the attributes of all applications, run the command ksysvmmgr query app, as shown in Example 3-78.

 Example 3-78 Checking the attributes of all applications

 [image:]

 # ksysvmmgr query app

 Application name=app1

 version=

 uuid=1542231184972777000

 desc=

 monitored=1

 monitor_script=/applic/mon1.sh

 monitor_period=30

 monitor_timeout=15

 monitor_failure_threshold=5

 stop_script=/applic/stop_app1.sh

 stop_stabilization_time=25

 stop_max_failures=3

 start_script=/applic/start_app1.sh

 start_stabilization_time=25

 start_max_failures=3

 max_restart=3

 nooftimes_restarted=0

 critical=no

 type=

 instancename=

 database=

 vendor_id=

 status=NORMAL (GREEN)

 [image:]

 After you add an application, if the application fails or stops working correctly, the VM Agent attempts to restart the application in the same VM for the number of times that are specified in the max_restart attribute for the VM, which is set to 3 by default. If the application is still not working correctly, the KSYS subsystem notifies you about the issue. You can manually review the problem and restart the application.

 Mark important applications as critical by running the command that is shown in Example 3-79.

 Example 3-79 Marking important applications as critical

 [image:]

 # ksysvmmgr -s modify app app1 critical=yes

 Modifying application "app1" into configuration successfully performed.

 [image:]

 When you mark an application as critical, if the application fails or stops working correctly, the VM Agent attempts to restart the application for the number of times that are specified in the max_restart attribute for the VM. If the application is still not working correctly, the KSYS subsystem notifies you about the issue and attempts to restart the VM on the same host. If the application is still not working correctly, that is, if the application status is displayed as RED when you run the ksysmgr query app command, the KSYS restarts the VM on another host within the host group based on the specified policies.

 Application class

 The application class contains the following mandatory attributes:

 •monitor_script: A mandatory script that is used by the VM Agent to verify application health. This script is run regularly (based on the monitor_period attribute value) and the result is checked for the following values:

  –	0: Application is working correctly.

  –	Any value other than 0: Application is not working correctly or failed.

 After several successive failures (based on the monitor_failure_threshold attribute value), the application is declared as failed. Based on the specified policies, the KSYS subsystem determines whether to restart the VM.

 •stop_script: A mandatory script that is used by the VM Agent to stop the application if the application must be restarted.

 •start_script: A mandatory script that is used by the VM Agent to start the application if the application must be restarted.

 The application class contains the following optional attributes:

 •monitored: Specifies whether the application is monitored by the KSYS subsystem. This attribute can have the following values:

  –	1 (default): The application monitoring is active.

  –	0: The application monitoring is suspended.

 •monitor_period: Specifies the time in seconds after which the application monitoring must occur. The default value of 30 seconds specifies that the monitor_script script is run by the VM Agent every 30 seconds.

 •monitor_timeout: Specifies the waiting time in seconds to receive a response from the monitor_script script. The default value is 10 seconds, which means that the VMM waits for 10 seconds to receive a response from the monitor_script script, after which the script is considered as failed.

 •monitor_failure_threshold: Specifies the number of successive failures of the monitor_script script that is necessary before the VMM restarts the application. A restart operation is performed by successively calling the stop_script and start_script scripts.

 •stop_stabilization_time: Specifies the waiting time in seconds to receive a response from the stop_script script. The default value is 25 seconds, which means that the VMM waits for 25 seconds to receive a response from the stop_script script, after which the script is considered as failed.

 •stop_max_failures: Specifies the number of successive failures of the stop_script script that is necessary before the VMM considers that it cannot stop the application. The default value is set to 3.

 •start_stabilization_time: Specifies the waiting time in seconds to receive a response from the start_script script. The default value is 25 seconds, which means the VMM waits for 25 seconds to receive a response from the start_script script, after which the script is considered as failed.

 •start_max_failures: Specifies the number of successive failures of the start_script script that is necessary before the VMM considers that it cannot start the application. The default value is set to 3.

 •max_restart: Specifies the number of cycles of successive VM restart operations that result in a monitoring failure before the daemon pronounces that restarting at VM level is insufficient. By default, this attribute is set to 3.

 •status: Specifies the dynamic status of application that is returned by AME. This attribute cannot be modified.

 •version: Specifies the application version. This attribute does not have a default value.

 •critical: Marks the application as critical. The valid values are Yes and No (default). If you mark an application as critical, the failure of the application is sent to the KSYS subsystem for further action.

 •type: Specifies the type of application. By default, the type attribute does not have any value that indicates general applications. Other supported values are ORACLE, IBM DB2, and SAPHANA. This attribute is case-sensitive and you must use uppercase characters. For these types of applications, if you do not specify start, stop, and monitor scripts, internal scripts of the VMM are used.

 •instancename: Specifies the instance name for applications. This attribute is applicable only for applications whose scripts need an instance name as an argument. For example:

  –	If the application type is ORACLE, the instancename attribute must be specified with the Oracle instance name.

  –	If the application type is DB2, the instancename attribute must be specified with the
IBM DB2® instance owner.

  –	If the application type is SAPHANA, the instancename attribute must be specified with the SAP HANA instance name.

 •database: Specifies the database that the applications must use. This attribute is applicable only for applications whose scripts require database as an argument. For example:

  –	If the application type is ORACLE, the database attribute must be specified with the Oracle system identifier (SID).

  –	If the application type is DB2, the database attribute is not required.

  –	If the application type is SAPHANA, the database attribute must be specified with the SAP HANA database.

 VM Recovery Manager HA in-built scripts

 Apart from any general application that you want the VM Agent to monitor, the VM Recovery Manager HA solution supports the type of applications that can be monitored by using the in-built scripts in the corresponding versions of operating systems, as shown in the Table 3-2.

 Table 3-2 Version support matrix for application types and operating systems

 	
 Application type

 	
 AIX operating system

 	
 Linux operating system (RHEL and SUSE Linux Enterprise Server)

 	
 Oracle

 	
 Oracle Database 12.1 or later

 	
 Not supported

 	
 DB2

 	
 IBM DB2 11.3 or later

 	
 IBM DB2 10.5 or later

 	
 SAPHANA

 	
 Not supported

 	
 SAP HANA 2.0 or later

 Specific parameters for built-in supported application agents are shown in Table 3-3.

 Table 3-3 Application agent-specific parameters

 	
 Attribute

 	
 Oracle

 	
 DB2

 	
 SAP HANA

 	
 type

 	
 Oracle

 	
 DB2

 	
 SAPHANA

 	
 version

 	
 Taken from application

 	
 Taken from application

 	
 Taken from application

 	
 database

 	
 Oracle SID

 	
 DB2 database

 	
 SAP HANA database

 	
 start_script

 	
 /usr/sbin/agents/oracle/startoracle

 	
 /usr/sbin/agents/db2/stopdb2

 	
 /usr/sbin/agents/sap/startsaphana

 	
 stop_script

 	
 /usr/sbin/agents/oraclestartoracle

 	
 /usr/sbin/agents/db2/stoporacle

 	
 /usr/sbin/agents/sap/stopsaphan

 Application dependencies

 If some applications have dependencies, for example, if you must specify a sequence of applications to start or stop, specify the dependencies as shown in Figure 3-10.

 [image:]

 Figure 3-10 Application dependencies

 The start_sequence application dependency

 This policy defines the order in which the applications start.

 The stop_sequence application dependency

 This policy defines the order in which the applications must be stopped.

 In Example 3-80, the dependencies type start_sequence and stop_sequence were added to applications app1, app2, and app3.

 Example 3-80 Adding start_sequence dependencies

 [image:]

 # ksysvmmgr -s add dependency dependency_list=app1,app2,app3 dependency_type=start_sequence

 Adding dependency "dependency_list=app1,app2,app3" into configuration successfully performed.

 # ksysvmmgr -s add dependency dependency_list=app1,app2,app3 dependency_type=stop_sequence

 Adding dependency "dependency_list=app1,app2,app3" into configuration successfully performed.

 [image:]

 Example 3-81 uses the command ksysvmmgr q dependency to list the dependencies.

 Example 3-81 Listing dependencies after the start_sequence and stop_sequence dependencies

 [image:]

 # ksysvmmgr q dependency

 Dependency depuuid=1542239347575681000

 dependency_type=start_sequence

 dependency_list=app1,app2,app3

 strict=YES

 Dependency depuuid=1542239435934976000

 dependency_type=stop_sequence

 dependency_list=app1,app2,app3

 strict=YES

 [image:]

 The parent_child application dependency

 This policy defines the parent_child dependency between the applications.

 Only one level of parent_child dependency is allowed:

 •In this policy, if App1 is the parent and App2 is the child, App1 starts first.

 •If App1 cannot start, App2 does not start.

 •If App1 and App2 start in order and App1 stops because of any reason, App2 stops. App1 must be restarted, and then App2 is restarted.

 In Example 3-82, the dependency parent_child was added between the applications app4 and app5.

 Example 3-82 Adding parent_child dependence

 [image:]

 # ksysvmmgr -s add dependency dependency_list=app4,app5 dependency_type=parent_child

 Adding dependency "dependency_list=app4,app5" into configuration successfully performed.

 [image:]

 To list the dependencies after adding the parent_child dependency, run the command ksysvmmgr q dependency, as shown in Example 3-83.

 Example 3-83 Listing dependencies after adding the parent_child dependency

 [image:]

 # ksysvmmgr q dependency

 Dependency depuuid=1542239347575681000

 dependency_type=start_sequence

 dependency_list=app1,app2,app3

 strict=YES

 Dependency depuuid=1542239435934976000

 dependency_type=stop_sequence

 dependency_list=app1,app2,app3

 strict=YES

 Dependency depuuid=1542239846084192000

 dependency_type=parent_child

 dependency_list=app4,app5

 strict=YES

 # ksysvmmgr q dependency 1542239846084192000

 Dependency depuuid=1542239846084192000

 dependency_type=parent_child

 dependency_list=app4,app5

 strict=YES

 [image:]

 Application dependency class

 The application dependency class contains the following mandatory attributes:

 •dependency_type: Specifies the type of dependency between applications. This attribute can have the following values:

  –	start_sequence: Specifies the order in which the applications must be started as mentioned in the dependency_list attribute. The dependency_list attribute must have more than one application for this dependency type.

  –	stop_sequence: Specifies the order in which the applications must be stopped as mentioned in the dependency_list attribute. The dependency_list attribute must have more than one application for this dependency type.

  –	parent_child: Specifies the parent-child relationship of the two specified applications in which one application is the parent and the other is the child. The parent application must start first and then the child application must start. You must stop the child application first and then stop the parent application. If the parent application fails, the child application stops automatically.

 •dependency_list: Specifies the list of applications that have a dependency among them. The dependency class also contains the following optional attributes:

  –	strict: Specifies whether to continue the script or command if the dependency policy cannot be followed. If the strict attribute is set to Yes, the next application is not started until the previous application starts and is in the normal state. If the strict attribute is set to No, the next application is started immediately after the first application is started regardless of the state of the first application. This attribute is applicable only for the start_sequence dependency.

 3.8 Setting contacts for event notification

 The KSYS subsystem tracks various events that occur in the environment, analyzes the situation, and notifies the registered contacts about any issues. You must add the contact information to the KSYS subsystem so that you can receive notifications about any situation that might need your action.

 You can add the following contact information for a specific user:

 •Email address

 •Phone number with the phone carrier email address

 •Pager email address

 	
 Note: The KSYS node must have a public IP address to send the event notifications successfully.

 To register contact details so that you can receive notification from KSYS, run the following commands in the KSYS LPAR:

 •To add the email address of a specific user to receive notifications, run the following command:

 ksysmgr add notify user=username contact=email_address

 Example 3-84 shows how to add and list an email address for a specific user.

 Example 3-84 Adding and listing an email address for a specific user

 [image:]

 # ksysmgr add notify user=Francisco contact=francisco.almeida@testamail.com

 successfully added user info

 # ksysmgr query notify contact

 User: Francisco

 Contact: francisco.almeida@testamail.com

 [image:]

 You can add multiple email addresses for a specific user. However, you cannot add multiple email addresses simultaneously. You must run the command multiple times to add multiple email addresses, as shown in Example 3-85.

 Example 3-85 Adding multiple email addresses

 [image:]

 # ksysmgr add notify user=Francisco contact=francisco.almeida@mailtes.com

 successfully added user info

 # ksysmgr query notify contact

 User: Francisco

 Contact: francisco.almeida@testamail.com

 User: Francisco

 Contact: francisco.almeida@mailtes.com

 [image:]

 •To add a specific user to receive a System Management Services (SMS) notification, run the following command:

 ksysmgr add notify user=username

 contact=10_digit_phone_number@phone_carrier_email_address

 Example 3-86 shows how to add a specific user to receive an SMS notification.

 Example 3-86 Adding a specific user to receive an SMS notification

 [image:]

 # ksysmgr add notify user=Beatriz contact=1234567890@tomymail.com

 successfully added user info

 # ksysmgr query notify contact

 User: Beatriz

 Contact: 1234567890@tomymail.com

 [image:]

 You must specify the phone number along with the email address of the phone carrier to receive an SMS notification. To determine the email address of your phone carrier, contact the phone service provider.

 •To add a specific user to receive a pager notification, run the following command:

 ksysmgr add notify user=username contact=pager_email_address

 Example 3-87 shows how to add a specific user to receive a pager notification.

 Example 3-87 Adding a specific user to receive a pager notification

 [image:]

 # ksysmgr add notify user=Dayana contact=1234567890@skytel.com

 successfully added user info

 # ksysmgr query notify contact

 User: Beatriz

 Contact: 1234567890@tomymail.com

 User: Dayana

 Contact: 1234567890@skytel.com

 [image:]

 •To remove a specific user, run the following command:

 ksysmgr delete notify user=username

 Example 3-88 shows how to remove a specific user notification.

 Example 3-88 Removing a user notification

 [image:]

 #ksysmgr query notify contact

 User: Beatriz

 Contact: 1234567890@tomymail.com

 # ksysmgr delete notify user=Beatriz

 successfully deleted user info

 #ksysmgr query notify contact

 [image:]

 3.9 Uninstalling VM Recovery Manager HA

 To uninstall the VM Recovery Manager HA solution, you can use the command-line interface (CLI) to uninstall all the installed VM Recovery Manager HA filesets by running the installp -u command.

 Complete the following procedures to uninstall the VM Recovery Manager HA solution:

 1.	Uninstalling the KSYS software.

 2.	Uninstalling VM Agents.

 	
 Note: You must have root authority to perform any uninstallation tasks.

 3.9.1 Uninstalling the KSYS software

 If for some reason you must uninstall the KSYS filesets from the KSYS node, remove the cluster before uninstalling the filesets. Otherwise, the RSCT Peer Domain remains in the node. Example 3-89 shows the command that is used to perform the cluster removal.

 Example 3-89 Removing the KSYS cluster before removing the KSYS filesets

 [image:]

 # ksysmgr remove ksyscluster ITSO_HA

 WARNING: This action will remove all configuration and destroy the KSYS setup, its recommended to create a backup "ksysmgr add snapshot -h"

 Do you want to a backup to be created now ? [y|n]

 y

 Created: /var/ksys/snapshots/oldclust_BASIC_2018-11-27_15:23:46.xml.tar.gz

 Successfully created a configuration snapshot: /var/ksys/snapshots/oldclust_BASIC_2018-11-27_15:23:46.xml.tar.gz

 Do you wish to proceed? [y|n]

 y

 This may take a few minutes to safely remove the ksyscluster

 Virtual client adapters have been deleted

 Host_groups have been deleted

 Trunk adapters have been deleted

 IBM.VMR process stopped successfully

 Peer domain stopped successfully

 Peer domain was removed successfully

 [image:]

 	
 Tip: If you reinstall the filesets and re-create the environment later, consider creating a snapshot before removing the cluster so that you can restore the snapshot after reinstalling the filesets.

 Example 3-90 shows how to uninstall the KSYS filesets.

 Example 3-90 Unistalling the KYS filesets

 [image:]

 # installp -ug ksys.*

 .

 .

 .

 Installation Summary

 Name Level Part Event Result

 ksys.ha.license 1.3.0.0 USR DEINSTALL SUCCESS

 ksys.hautils.rte 1.3.0.0 ROOT DEINSTALL SUCCESS

 ksys.hautils.rte 1.3.0.0 USR DEINSTALL SUCCESS

 ksys.main.msg.en_US.cmds 1.3.0.0 USR DEINSTALL SUCCESS

 ksys.ui.agent 1.3.0.0 ROOT DEINSTALL SUCCESS

 ksys.ui.agent 1.3.0.0 USR DEINSTALL SUCCESS

 ksys.ui.common 1.3.0.0 USR DEINSTALL SUCCESS

 ksys.main.cmds 1.3.0.0 ROOT DEINSTALL SUCCESS

 ksys.main.cmds 1.3.0.0 USR DEINSTALL SUCCESS

 ksys.main.rte 1.3.0.0 ROOT DEINSTALL SUCCESS

 ksys.main.rte 1.3.0.0 USR DEINSTALL SUCCESS

 [image:]

 3.9.2 Uninstalling VM Agents

 This section shows how to uninstall the VM Agents.

 Uninstalling a VM Agent in an AIX VM

 To uninstall a VM Agent in AIX, complete the following steps:

 1.	Stop the VM Agent module in the AIX VM, as shown in Example 3-91.

 Example 3-91 Stopping the AIX VM Agent

 [image:]

 # ksysvmmgr status

 Subsystem Group PID Status

 ksys_vmm 9568676 active

 (0) root @ rt11001: /

 # ksysvmmgr stop

 0513-044 The ksys_vmm Subsystem was requested to stop.

 (0) root @ rt11001: /

 # ksysvmmgr status

 Subsystem Group PID Status

 ksys_vmm inoperative

 [image:]

 2.	Uninstall the VM Agent filesets from the AIX VM by running the command that is shown in Example 3-92.

 Example 3-92 Unistalling the VM Agent filesets from AIX

 [image:]

 # installp -u ksys*

 .

 .

 .

 Installation Summary

 Name Level Part Event Result

 ksys.vmmon.rte 1.3.0.0 ROOT DEINSTALL SUCCESS

 ksys.vmmon.rte 1.3.0.0 USR DEINSTALL SUCCESS

 [image:]

 Uninstalling a VM Agent in a Linux VM

 To uninstall a VM Agent in a Linux VM, complete the following steps:

 1.	Stop the VM Agent module in the Linux VM, as shown in Example 3-93.

 Example 3-93 Stopping the VM Agent module in the Linux VM

 [image:]

 # ksysvmmgr status

 ksys_vmm daemon is active.

 # ksysvmmgr stop

 ksys_vmm has been requested to stop.

 # ksysvmmgr status

 ksys_vmm daemon is currently inoperative.

 [image:]

 2.	Uninstall the VM Agent package from the Linux VM, as shown in Example 3-94.

 Example 3-94 Uninstalling the VM Agent package from the Linux VM

 [image:]

 # rpm -e vmagent

 Stopping ksys_vmm daemon.

 ksys_vmm daemon is currently inoperative.

 [image:]

[image:]
[image:]

IBM VM Recovery Manager High Availability GUI deployment

 This chapter introduces the IBM VM Recovery Manager High Availability (HA) GUI for Power Systems deployment.

 The following topics are described in this chapter:

 •Installing the GUI filesets

 •Configuring and discovering the VM Recovery Manager HA infrastructure by using the GUI only

 •VM Recovery Manager HA dashboard

 •Relevant move tests

 4.1 Installing the GUI filesets

 To use the VM Recovery Manager HA by using the GUI, you must install the GUI server fileset on a system to manage KSYS nodes by using the GUI. The logical partition (LPAR) in which you want to install the GUI filesets must be running IBM AIX 7.2 with Technology Level 2 Service Pack 1 (7200-02-01) or later. You can choose to install the GUI server fileset on one of the KSYS nodes. You must install the following GUI server filesets before you start the GUI. The GUI agent filesets are automatically installed along with the KSYS filesets. To install the GUI server filesets, complete the following steps:

 1.	Install the GUI server fileset based on the following scenarios:

 If you are installing the GUI server filesets on one of the KSYS nodes, run the following command:

 installp -acFXYd fileset_location -V2 [-e filename.log] ksys.ui.server

 If you are installing the GUI server filesets on a separate system that manages all the KSYS nodes, run the following command:

 installp -acFXYd fileset_location -V2 [-e filename.log] ksys.ha.license ksys.ui.server ksys.ui.common

 Example 4-1 shows how to install the GUI server filesets on the KSYS node.

 Example 4-1 Installing the GUI server filesets on the KSYS node

 [image:]

 # installp -acFXYd . ksys.ui.server

 .

 .

 .

 ###

 ###

 ##

 ## The IBM VMRestart for AIX graphical user interface

 ## (GUI) server installation is starting. To complete the process,

 ## you must install additional files when the installation completes.

 ## These additional files were not included in the server fileset

 ## because they are licensed under the General Public License (GPL).

 ## However, you can automatically download the required files by

 ## running the following script:

 ##

 ## /opt/IBM/ksys/ui/server/dist/server/bin/vmruiinst.ksh

 ##

 ###

 ###

 .

 .

 .

 Installation Summary

 Name Level Part Event Result

 ksys.ui.server 1.3.0.1 USR APPLY SUCCESS

 ksys.ui.server 1.3.0.1 ROOT APPLY SUCCESS

 [image:]

 2.	Install the open source software packages, which are not included in the installed filesets, based on the following scenarios.

 If the GUI server LPAR is connected to the internet, run the command in the GUI server LPAR as shown in Example 4-2. The command downloads and installs the remaining files that are not included in the filesets because these files are licensed under the General Public License (GPL).

 Example 4-2 Installing open source software packages on LPAR to connect to the internet

 [image:]

 # /opt/IBM/ksys/ui/server/dist/server/bin/vmruiinst.ksh

 Warning: "/tmp/vmruiinst.downloads" does not exist. Creating...

 "/tmp/vmruiinst.downloads" has been created.

 Checking if the requisites have already been downloaded...

 ** "info-4.13-3.aix5.3.ppc.rpm" needs to be retrieved.

 ** "cpio-2.11-2.aix6.1.ppc.rpm" needs to be retrieved.

 ** "readline-6.2-2.aix5.3.ppc.rpm" needs to be retrieved.

 ** "libiconv-1.13.1-2.aix5.3.ppc.rpm" needs to be retrieved.

 ** "bash-4.2-5.aix5.3.ppc.rpm" needs to be retrieved.

 ** "gettext-0.17-6.aix5.3.ppc.rpm" needs to be retrieved.

 ** "libgcc-4.9.2-1.aix6.1.ppc.rpm" needs to be retrieved.

 ** "libgcc-4.9.2-1.aix7.1.ppc.rpm" needs to be retrieved.

 ** "libstdc++-4.9.2-1.aix6.1.ppc.rpm" needs to be retrieved.

 ** "libstdc++-4.9.2-1.aix7.1.ppc.rpm" needs to be retrieved

 Total number of requisite downloads needed: 10

 .

 .

 .

 To use the VM Restart for AIX graphical user interface (GUI), you

 must install third-party files. These third-party files were not included in

 the server filesets because they are licensed under the General Public License

 (GPL). This script downloads and installs the files that are required by

 SQLite and Node.js.

 SQLite dependencies: | Node.js dependencies:

 === | =======================

 bash info | libgcc

 libiconv readline | libstdc++

 gettext cpio |

 The files that are required for Node.js are used on the server, and are also

 installed on each cluster node automatically during the cluster discovery

 operation.

 IBM does not offer support for these files if the files are used outside the

 context of the VM Restart GUI.

 Do you want to download and install these files? (y/n)

 Y

 .

 .

 .

 Attempting to start the server...

 The server was successfully started.

 The installation completed successfully. To use the VM Restart GUI,

 open a web browser and enter the following URL:

 https://9.x.x.x:3000/login

 After you log in, you can add existing clusters in your environment to the

 VM Restart GUI.

 [image:]

 If the GUI server LPAR is configured to use an HTTP/HTTPS proxy to access the internet, run the following command in the GUI server LPAR to specify the proxy information:

 /opt/IBM/ksys/ui/server/dist/server/bin/vmruiinst.ksh [-p <HTTP_PROXY>] [-P <HTTPS_PROXY>]

 	
 Tip: You can also specify the proxy information by using the http_proxy environment variable.

 If the GUI server LPAR is not connected to the internet, complete the following steps:

 a.	Copy the vmruiinst.ksh file from the GUI server LPAR to a system that is running the AIX operating system and that has internet access.

 b.	Run the vmruiinst.ksh -d /directory command where /directory is the location where you want to download the remaining files. For example, /vmruiinst.ksh -d /tmp/vmrui_rpms.

 c.	Download the following prerequisite packages for the GUI server:

  •	info-4.13-3.aix5.3.ppc.rpm

  •	cpio-2.11-2.aix6.1.ppc.rpm

  •	readline-6.2-2.aix5.3.ppc.rpm

  •	libiconv-1.13.1-2.aix5.3.ppc.rpm

  •	bash-4.2-5.aix5.3.ppc.rpm

  •	gettext-0.17-6.aix5.3.ppc.rpm

  •	libgcc-4.9.2-1.aix6.1.ppc.rpm

  •	libgcc-4.9.2-1.aix7.1.ppc.rpm

  •	libstdc++-4.9.2-1.aix6.1.ppc.rpm

  •	libstdc++-4.9.2-1.aix7.1.ppc.rpm

 d.	Copy the downloaded files to a directory in the GUI server LPAR.

 e.	In the GUI server LPAR, run the vmruiinst.ksh -i /directory command where /directory is the location where you copied the downloaded files.

 f.	After the vmruiinst.ksh command completes, a message displays a URL for the VM Recovery Manager HA GUI server. Enter the specified URL in a web browser in the GUI server LPAR and start using the VM Recovery Manager HA GUI.

 4.2 Configuring and discovering the VM Recovery Manager HA infrastructure by using the GUI only

 This chapter demonstrates how to configure and discover the infrastructure of VM Recovery Manager HA from the start by using only the GUI.

 Complete the following steps:

 1.	After installing the VM Recovery Manager HA GUI, use the URL that is presented at the end of the installation to log in to the GUI, as shown in the Figure 4-1.

 [image:]

 Figure 4-1 VM Recovery Manager HA GUI login window

 After logging in to the VM Recovery Manager HA GUI, the window that is shown in Figure 4-2 opens.

 [image:]

 Figure 4-2 Welcome window for the VM Recovery Manager HA GUI

 The AIX LPAR the VM Recovery Manager HA GUI installed can manage one KSYS to multiple KSYS subsystems.

 2.	After clicking Add KYS, as shown in Figure 4-3, add the following KSYS login information:

  –	KSYS IP address

  –	Root user

  –	Password

  –	Cluster type

 [image:]

 Figure 4-3 Adding KSYS Login information

 3.	In the Host Group Details window, add the host group name, as shown in Figure 4-4.

 [image:]

 Figure 4-4 Host Group Details window

 4.	In the HCM Selection window, enter the Hardware Management Console (HMC) information, as shown in Figure 4-5.

 [image:]

 Figure 4-5 HMC Selection window

 5.	In the Host Selection window, there is a request to select the host that will be part of this host group. In this case, select host rt12, as shown in Figure 4-6.

 [image:]

 Figure 4-6 Host Selection window: Adding host rt12

 Figure 4-7 shows the selection of host rt11.

 [image:]

 Figure 4-7 Host Selection window: Adding host rt11

 6.	In the Virtual I/O Server (VIOS) Selection window, select a VIOS from the hosts, as shown in Figure 4-8.

 [image:]

 Figure 4-8 VIOS Selection window

 7.	In the Disk Section window, enter the disks to use as the Repository Disk and HA Pool Disk, as shown in Figure 4-9 on page 331.

 [image:]

 Figure 4-9 Disk Selection window

 8.	In the VM Selection window, you are requested to select the virtual machine (VM) that will be managed on this host group. Select the VM and click Policies to change the VM-specific policies, as shown in Figure 4-10.

 [image:]

 Figure 4-10 Changing the VM policies

 Figure 4-11 shows the VM that is selected from host rt11.

 [image:]

 Figure 4-11 Selecting a VM from host rt11

 Figure 4-12 shows the VM that is selected from host rt12.

 [image:]

 Figure 4-12 Selecting a VM from host rt12

 The summary shows details of the host group that is configured, as shown in Figure 4-13 on page 333.

 [image:]

 Figure 4-13 Summary Host Group configuration

 9.	Click Submit & Deploy. The deployment of the host group configuration starts, as shown in Figure 4-14.

 [image:]

 Figure 4-14 Deploying the host group configuration

 When the deployment finishes, the message that is shown in Figure 4-15 appears.

 [image:]

 Figure 4-15 Finishing the deployment of the host group

 10.	Click Go in the dashboard to access the management options, as shown in Figure 4-16.

 [image:]

 Figure 4-16 VM Recovery Manager HA dashboard

 4.3 VM Recovery Manager HA dashboard

 This section shows the different features in the dashboard.

 4.3.1 KSYS cluster features

 To check and change the KSYS cluster policies, click ksyscluster, as shown in Figure 4-17.

 [image:]

 Figure 4-17 The ksyscluster policies

 To unregister the KSYS and set the Notifications Preferences, go to the Settings window and click Notification Preferences, as shown in Figure 4-18.

 [image:]

 Figure 4-18 Setting the Notifications Preferences

 To add or remove an HMC, click Edit, as shown in Figure 4-19.

 [image:]

 Figure 4-19 Adding and removing an HMC

 To check the ITSO_HG host group components and policies, click the ITSO_HG host group, as shown in Figure 4-20.

 [image:]

 Figure 4-20 Host group policies

 To add or remove a host from the host group, click Edit, as shown in Figure 4-21.

 [image:]

 Figure 4-21 Adding or removing a host from the host group

 To configure the collocation policies for the VMs, click Other Policies for VM, as shown in Figure 4-22.

 [image:]

 Figure 4-22 Configuring collocation policies

 Figure 4-23 shows the configuration of the Anti-Collocation policy for the VMs rt11005 and rt12005.

 [image:]

 Figure 4-23 Configuring the Anti-Collocation policy

 Clicking Discovery & Verify shows three discovery and verify options: Discovery Host Group, Verify Host Group, and Discovery and Verify Host Group, as shown in Figure 4-24.

 [image:]

 Figure 4-24 Discover & Verify menu options

 When you click Discovery and Verify Host Group, a confirmation window opens, as shown in Figure 4-25.

 [image:]

 Figure 4-25 Confirming to run Discovery and Verify

 Click Discovery and Verify and all running activities are displayed, as shown in Figure 4-26.

 [image:]

 Figure 4-26 Running Discovery and Verify

 To filter the event logs by Critical, Warning, Maintenance, and Informational event, click Events, as shown in Figure 4-27.

 [image:]

 Figure 4-27 Filtering the Events log

 To show detailed information, click the event log, as shown in Figure 4-28.

 [image:]

 Figure 4-28 Information Event error detail

 As shown in Figure 4-20 on page 336 (left side), you can also check the host group, HMC, and hosts, as shown in Figure 4-29.

 [image:]

 Figure 4-29 Checking the host group components

 When you select the host rt11, an information summary opens, as shown in Figure 4-30.

 [image:]

 Figure 4-30 Host rt11 information summary

 Click Policies, and the policies information from host rt11 appear, as shown in Figure 4-31 on page 340.

 [image:]

 Figure 4-31 Policies information from host rt11

 You can check on all VMs that are related to host rt11, as shown in Figure 4-32.

 [image:]

 Figure 4-32 Checking the VMs that are related to host rt11

 When you select the host rt12 (Figure 4-29 on page 339), an information summary window opens, as shown in Figure 4-33.

 [image:]

 Figure 4-33 Host rt12 information summary

 Click Policies, and the policies information from host rt12 appear, as shown in Figure 4-34.

 [image:]

 Figure 4-34 Policies information about host rt12

 You can check all VMs that are related to host rt12, as shown in Figure 4-35.

 [image:]

 Figure 4-35 Checking VMs that are related to host rt12

 When you select the VIOS rt11v1, an informational summary appears, as shown in Figure 4-36.

 [image:]

 Figure 4-36 Checking the VIOS summary

 When you click SSP Cluster for the rt11v1 VIOS, the cluster name and status appear, as shown in Figure 4-37.

 [image:]

 Figure 4-37 Checking the SSP Cluster information from the VIO server

 Click Policies on the rt11v1 VIOS, and the information policies appear, as shown in Figure 4-38.

 [image:]

 Figure 4-38 Checking the policy information for VIOS

 Select the VM rt11001, as shown in Figure 4-32 on page 341. A summary opens, as shown in Figure 4-39.

 [image:]

 Figure 4-39 Checking the VM summary

 To check the application that is managed by the VM monitor (VMM) daemon, click Application, as shown in Figure 4-40.

 [image:]

 Figure 4-40 Checking the application monitor

 Click Policies for the rt1001 VM, and the policy information appears, as shown in Figure 4-41.

 [image:]

 Figure 4-41 Checking the VM policies

 4.4 Relevant move tests

 This section shows the relevant VM Recovery Manager HA move tests.

 4.4.1 VM Live Partition Mobility move test

 This test performs a Live Partition Mobility (LPM) move of VM rt11001.

 Select VM rt11001 and click Migrate → Migrate to New Host Using LPM, as shown in Figure 4-42.

 [image:]

 Figure 4-42 Migration to a new host by using LPM

 The available hosts and the option for KSYS to decide the best host are shown. In this case, we select the host that is shown in Figure 4-43.

 [image:]

 Figure 4-43 Selecting the host to migrate by LPM

 The LPM activity message appears, as shown in Figure 4-44.

 [image:]

 Figure 4-44 LPM activity

 During the LPM activity, a purple signal appears, as shown in Figure 4-45.

 [image:]

 Figure 4-45 Signal that is shown during LPM activity

 After the LPM operation finishes, the dashboard shows VM rt11001 at host rt12, as shown in Figure 4-46.

 [image:]

 Figure 4-46 Dashboard after LPM migration

 Now, we test the option to migrate back to the home host, as shown in Figure 4-47.

 [image:]

 Figure 4-47 Migrating back to the home host

 The same purple signal appears, as shown in Figure 4-48.

 [image:]

 Figure 4-48 Signal that is shown while migrating back to the home host

 After the LPM operation finishes, the dashboard shows VM rt11001 at host rt11, as shown in Figure 4-49.

 [image:]

 Figure 4-49 Dashboard after the LPM migration

 4.4.2 VM restart move test

 This test performs a VM restart to move VM rt12001.

 Select VM rt12001, and then select Restart → Restart & Bring to New Host, as shown in Figure 4-50.

 [image:]

 Figure 4-50 Migration to a new host by using restart

 The available hosts appear, as shown in Figure 4-51.

 [image:]

 Figure 4-51 Choosing the host to migrate due to a restart

 During the restart activity, a red signal appears, as shown in Figure 4-52.

 [image:]

 Figure 4-52 Signal shown during the VM restart activity

 After the restart operation finishes, the dashboard shows VM rt12001 at host rt11, as shown in Figure 4-53.

 [image:]

 Figure 4-53 Dashboard after the restart migration

 Now, we test the option to Restart at Home Host, as shown in Figure 4-54.

 [image:]

 Figure 4-54 Migrating back to the home host

 The same red signal is shown in Figure 4-55.

 [image:]

 Figure 4-55 Signal that is shown while migrating back to the home host

 After the restart operation finishes, the dashboard shows VM rt12001 at host rt12, as shown in Figure 4-56.

 [image:]

 Figure 4-56 Dashboard after the restart migration

 4.4.3 Host LPM move test

 In this test, the Host LPM moves all managed VMs from host rt12 to rt11.

 Select host rt12, and then click Migrate → Migrate to New host using LPM, as shown in Figure 4-57.

 [image:]

 Figure 4-57 Migrating all VMs for one host by using LPM

 The available hosts appear, as shown in Figure 4-58.

 [image:]

 Figure 4-58 Choosing the host to migrate due to LPM

 All VMs are now managed from host rt12 and a purple signal appears, as shown in Figure 4-59.

 [image:]

 Figure 4-59 Signal shown during host LPM activity

 After the LPM operation finishes, the dashboard shows that all VMs that are managed from host rt12 are migrated to host rt11, as shown in Figure 4-60.

 [image:]

 Figure 4-60 Dashboard after the Host LPM migration

 Now, we click Migrate Back to Home Host on all VMs from host rt12, as shown in Figure 4-61.

 [image:]

 Figure 4-61 Migrating back all VMs for one host by using LPM

 The message restore has started for vm appears, as shown in Figure 4-62.

 [image:]

 Figure 4-62 Restore messages for VMs

 A purple signal appears, as shown in Figure 4-63.

 [image:]

 Figure 4-63 Signal shown during host LPM activity

 After the LPM operation finishes, the dashboard shows that all VMs that are managed from host rt12 are migrated back from host rt11, as shown in Figure 4-64.

 [image:]

 Figure 4-64 Dashboard after the Host LPM migration

[image:]
[image:]

Test scenarios

 This chapter provides test scenarios that are performed in an example non-production environment.

 The following topics are described in this chapter:

 •Test environment

 •Linux virtual machine failures

 •AIX VM failures

 •Host failures

 5.1 Test environment

 Figure 5-1 shows the environment that is used for the test scenarios in this chapter.

 [image:]

 Figure 5-1 Environment that is used for the test scenarios

 The environment is composed of the following items:

 •One KSYS

 •Two IBM Power Systems S822 servers: S822-1 and S882-2

 •Two Hardware Management Consoles (HMCs): HMC1 and HMC2

 •One IBM Storwize V7000 that is used for shared storage

 Example 5-1 shows the KSYS cluster that is created.

 Example 5-1 Listing the KSYS cluster

 [image:]

 p18ksys:/ # ksysmgr query cluster

 Name: ksyscluster

 State: Online

 Type: HA

 [image:]

 The HMCs that are used in this environment are listed in Example 5-2.

 Example 5-2 Listing the HMCs

 [image:]

 p18ksys:/ # ksysmgr query hmc

 Name: hmc2

 Ip: 129.40.180.25

 Login: hscroot

 Managed Host List:

 Host Name Uuid

 ========= ====

 Server-8284-22A-SN10EE85P fc68b423-a590-3db7-86e9-a7b7d26a07f0

 ==

 Name: hmc1

 Ip: 129.40.180.24

 Login: hscroot

 Managed Host List:

 Host Name Uuid

 ========= ====

 Server-8284-22A-SN101AFDR 07e502a4-5051-3867-bd64-11adc2fe8e68

 ==

 [image:]

 The host group that is used in this scenario is shown in Example 5-3.

 Example 5-3 Listing the host group

 [image:]

 p18ksys:/ # ksysmgr query host_group

 Name: HG_TCHU

 Hosts: Server-8284-22A-SN101AFDR

 Server-8284-22A-SN10EE85P

 Memory_capacity: Priority Based Settings

 low:100

 medium:100

 high:100

 CPU_capacity: Priority Based Settings

 low:100

 medium:100

 high:100

 Skip_power_on: No

 HA_monitor: enable

 Restart_policy: auto

 VM_failure_detection_speed: normal

 Host_failure_detection_time: 90

 SSP Cluster Attributes

 Sspname: KSYS_ksyscluster_1

 Sspstate: UP

 Ssp_version: VIOS 3.1.0.11

 VIOS: p18v02

 p18v01

 p18v04

 p18v03

 [image:]

 5.2 Linux virtual machine failures

 This scenario simulates a Linux virtual machine (VM) failure that is managed by IBM VM Recovery Manager High Availability (HA).

 Complete the following steps:

 1.	Check where the VM that is used in the scenario is allocated. Example 5-4 shows VM p18lnx02 is on host Server-8284-22A-SN10EE85P before you start the Linux VM failure.

 Example 5-4 Listing the location of VM p818nx02

 [image:]

 p18ksys:/ # ksysmgr query vm p18lnx02

 Name: p18lnx02

 UUID: 495778C3-80DB-4FE3-989D-E38C905450E8

 State: VERIFY

 Host: Server-8284-22A-SN101AFDR

 Priority: High

 VM_failure_detection_speed: fast

 HA_monitor: enable

 Homehost: Server-8284-22A-SN10EE85P

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict: No

 [image:]

 2.	List all VMs that are allocated to host Server-8284-22A-SN101AFDR, as shown in Example 5-5.

 Example 5-5 Listing VMs that are allocated on host Server-8284-22A-SN101AFDR

 [image:]

 hscroot@p18vhmc1:~> lsrefcode -m Server-8284-22A-SN101AFDR -r lpar -F lpar_name

 p18v03

 p18ibmi01

 p18v04

 p18aix02

 p18aix03

 p18aix04

 p18aix05

 p18lnx02

 [image:]

 3.	List all VMs that are allocated to host Server-8284-22A-SN10EE85P, as shown in Example 5-6.

 Example 5-6 Listing VMs that are allocated to host Server-8284-22A-SN10EE85P

 [image:]

 hscroot@p18vhmc2:~> lsrefcode -m Server-8284-22A-SN10EE85P -r lpar -F lpar_name

 p18v01

 p18v02

 p18lnx01

 [image:]

 4.	Check the version of Linux in VM p18lnx02, as shown in Example 5-7.

 Example 5-7 Checking the Linux version on VM p18lnx02

 [image:]

 p18lnx02:/etc # cd ..

 p18lnx02:/ # cat /etc/os-release

 NAME="SLES"

 VERSION="15"

 VERSION_ID="15"

 PRETTY_NAME="SUSE Linux Enterprise Server 15"

 ID="sles"

 ID_LIKE="suse"

 ANSI_COLOR="0;32"

 CPE_NAME="cpe:/o:suse:sles:15"

 [image:]

 5.	Simulate a Linux kernel crash, as shown in Example 5-8.

 Example 5-8 Simulating a Linux crash

 [image:]

 p18lnx02:/ # sh -x system_crash.sh

 kernel.panic=0

 + echo c

 sysrq: SysRq : Trigger a crash

 Oops: Kernel access of bad area, sig: 11 [#1]

 SMP NR_CPUS=2048

 NUMA

 pSeries

 .

 .

 .

 Kernel panic - not syncing: Fatal exception

 ---[end Kernel panic - not syncing: Fatal exception

 [image:]

 On HMC p18vhmc1, VM p18lnx02 changed the reference code, as shown in Example 5-9.

 Example 5-9 VM p18lnx02 reference code after a Linux kernel crash

 [image:]

 p18lnx02:B200A101 LP=00009

 [image:]

 Example 5-10 shows that in HMC p18vhmc2 VM p18lnx02 restarted.

 Example 5-10 VM p18lnx02 initializing on Server-8284-22A-SN10EE85P

 [image:]

 p18lnx02:CA00E140

 [image:]

 6.	Monitor the KSYS to see the VM restart of p18lnx0, as shown in Example 5-11.

 Example 5-11 Monitoring the VM restart

 [image:]

 p18ksys:/ # ksysmgr query system status monitor=yes

 Host_group HG_TCHU is currently in Ready state

 Press Q to quit monitoring for activity

 Restart in progress for Host_group HG_TCHU

 Stopping HA monitoring for VM p18lnx02

 HA monitoring for VM p18lnx02 stopped

 Shutdown has started for VM p18lnx02

 Shutdown has completed for VM p18lnx02

 Restart has started for VM p18lnx02

 Starting HA monitoring for VM p18lnx02

 HA monitoring for VM p18lnx02 started

 Restart on Target host Server-8284-22A-SN10EE85P has completed for VM p18lnx02

 [image:]

 7.	Check the status of VM p18lnx02 on host Server-8284-22A-SN10EE85P, as shown in Example 5-12.

 Example 5-12 Listing VM s on host Server-8284-22A-SN10EE85P

 [image:]

 hscroot@p18vhmc2:~> lsrefcode -m Server-8284-22A-SN10EE85P -r lpar -F lpar_name

 p18v01

 p18v02

 p18lnx01

 p18lnx02

 [image:]

 After the final restart of VM p18lnx02, the reference on host Server-8284-22A-SN101ADFDR is cleared, as shown in Example 5-13.

 Example 5-13 Listing VMs on host Server-8284-22A-SN101AFDR

 [image:]

 scroot@p18vhmc1:~> lsrefcode -m Server-8284-22A-SN101AFDR -r lpar -F lpar_name

 p18v03

 p18ibmi01

 p18v04

 p18aix02

 p18aix03

 p18aix04

 p18aix05

 [image:]

 8.	Check the status of VM p18lnx02 by running the ksysmgr command, as shown in Example 5-14.

 Example 5-14 Listing VM p18lnx02

 [image:]

 p18ksys:/ # ksysmgr query vm p18lnx02

 Name: p18lnx02

 UUID: 495778C3-80DB-4FE3-989D-E38C905450E8

 State: READY

 Host: Server-8284-22A-SN10EE85P

 Priority: High

 VM_failure_detection_speed: fast

 HA_monitor: enable

 Homehost: Server-8284-22A-SN10EE85P

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict: No

 LPM Validation Status

 LPM validation was successful for Hosts:

 Server-8284-22A-SN10EE85P

 [image:]

 5.3 AIX VM failures

 This scenario simulates an AIX VM failure when managed by VM Recovery Manager HA.

 Complete the following steps:

 1.	Check where the VM that is used for this scenario is allocated. Example 5-15 shows that VM p18aix02 is on host Server-8284-22A-SN10EE85P before you start the VM failure.

 Example 5-15 Listing VM p18aix02

 [image:]

 p18ksys:/ # ksysmgr query vm p18aix02

 Name: p18aix02

 UUID: 52138D9D-034C-4114-AA45-4E2DA66D8761

 State: VERIFY

 Host: Server-8284-22A-SN101AFDR

 Priority: Medium

 VM_failure_detection_speed: normal

 HA_monitor: enable

 Homehost: Server-8284-22A-SN10EE85P

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict:

 [image:]

 2.	List all VMs that are allocated on host Server-8284-22A-SN101AFDR, as shown in Example 5-16.

 Example 5-16 Listing VMs that are allocated on host Server-8284-22A-SN101AFDR

 [image:]

 hscroot@p18vhmc1:~> lsrefcode -m Server-8284-22A-SN101AFDR -r lpar -F lpar_name

 p18v03

 p18ibmi01

 p18v04

 p18aix02

 p18aix03

 p18aix04

 p18aix05

 [image:]

 3.	List all VMs that are allocated on host Server-8284-22A-SN10EE85P, as shown in Example 5-17.

 Example 5-17 Listing VMs that are allocated on host Server-8284-22A-SN10EE85P

 [image:]

 hscroot@p18vhmc2:~> lsrefcode -m Server-8284-22A-SN10EE85P -r lpar -F lpar_name

 p18v01:

 p18v02:

 p18lnx01:Linux ppc64le

 p18lnx02:Linux ppc64le

 [image:]

 4.	Check the version of AIX from VM p18aix02, as shown in Example 5-18.

 Example 5-18 Checking the AIX version on VM p18aix02

 [image:]

 p18aix02:/ # oslevel -s

 7200-03-02-1846

 [image:]

 5.	Simulate the AIX kernel crash, as shown in Example 5-19.

 Example 5-19 Simulating an AIX kernel crash

 [image:]

 p18aix02:/vm_crash # sh -x aix_crash.sh

 + + hostname -s

 shost=p18aix02

 + PS1=p18aix02:$PWD #

 + alias __A=

 + alias __B=

 + alias __C=

 + alias __D=

 + alias __H=

 .

 .

 .

 + ./crash_vm -c

 Crash ..

 Uhh.. I am crashing

 crash

 Illegal Trap Instruction Interrupt in Kernel

 .panic_trap+000000 tweq r14,r14 r14=0000000000000002

 KDB(0)> PuTTY

 [image:]

 On HMC p18vhmc1, VM p18lnx02 changed the reference code, as shown in Example 5-20.

 Example 5-20 VM p18aix02 reference code after a kernel crash

 [image:]

 p18aix02:0c20

 [image:]

 On HMC p18vhmc2, VM p18lnx02 restarted, as shown in Example 5-21.

 Example 5-21 VM p18aix02 initializing on Server-8284-22A-SN10EE85P

 [image:]

 p18aix02:CA00E140

 [image:]

 6.	Monitor the KSYS to see the restart of VM p18lnx02, as shown in Example 5-22.

 Example 5-22 Monitoring the VM restart

 [image:]

 p18ksys:/ # ksysmgr query system status monitor=yes

 Host_group HG_TCHU is currently in Ready state

 Press Q to quit monitoring for activity

 Restart in progress for Host_group HG_TCHU

 Stopping HA monitoring for VM p18aix02

 HA monitoring for VM p18aix02 stopped

 Shutdown has started for VM p18aix02

 Shutdown has completed for VM p18aix02

 Restart has started for VM p18aix02

 Starting HA monitoring for VM p18aix02

 HA monitoring for VM p18aix02 started

 Restart on Target host Server-8284-22A-SN10EE85P has completed for VM p18aix02

 Configuration cleanup started for VM p18aix02

 VM monitoring for VM p18aix02 started

 Configuration cleanup completed for VM p18aix02

 1 out of 1 VMs have been successfully restarted

 [image:]

 After the final restart of VM p18aix02, the reference code on host Server-8284-22A-SN101ADFDR is cleared, as shown in Example 5-23.

 Example 5-23 Listing the VMs on host Server-8284-22A-SN101AFDR

 [image:]

 scroot@p18vhmc1:~> lsrefcode -m Server-8284-22A-SN101AFDR -r lpar -F lpar_name

 p18v03

 p18ibmi01

 p18v04

 p18aix03

 p18aix04

 p18aix05

 [image:]

 7.	Check the home host of VM p18lnx02, as shown in Example 5-24.

 Example 5-24 Listing VM s on host Server-8284-22A-SN10EE85P

 [image:]

 scroot@p18vhmc2:~> lsrefcode -m Server-8284-22A-SN10EE85P -r lpar -F lpar_name

 p18v01:

 p18v02:

 p18aix02:

 p18lnx01:Linux ppc64le

 p18lnx02:Linux ppc64le

 [image:]

 8.	Check the home host of VM p18lnx02 by running the ksysmgr command, as shown in Example 5-25.

 Example 5-25 Listing VM p18aix02

 [image:]

 p18ksys:/ # ksysmgr query vm p18aix02

 Name: p18aix02

 UUID: 52138D9D-034C-4114-AA45-4E2DA66D8761

 State: READY_TO_MOVE

 Host: Server-8284-22A-SN10EE85P

 Priority: Medium

 VM_failure_detection_speed: normal

 HA_monitor: enable

 Homehost: Server-8284-22A-SN10EE85P

 VM_status: NO_OPERATION_IN_PROGRESS

 Version_conflict: No

 LPM Validation Status

 LPM validation was successful for Hosts:

 Server-8284-22A-SN10EE85P

 [image:]

 5.4 Host failures

 This scenario simulates a host crash of host Server-8284-22A-SN101AFDR.

 Complete the following steps:

 1.	List the VMs that are available on host Server-8284-22A-SN101AFDR, as shown in Example 5-26.

 Example 5-26 Listing VMs that are available on host Server-8284-22A-SN101AFDR

 [image:]

 hscroot@p18vhmc1:~> lsrefcode -m Server-8284-22A-SN101AFDR -r lpar -F lpar_name:refcode

 p18v03:

 p18ibmi01:00000000

 p18v04:

 p18aix02:

 p18aix03:

 p18aix04:

 p18aix05:

 p18lnx02:Linux ppc64le

 [image:]

 2.	List the VMs that are available on host Server-8284-22A-SN10EE85P, as shown in Example 5-27.

 Example 5-27 Listing VMs that are available on host Server-8284-22A-SN10EE85P

 [image:]

 hscroot@p18vhmc2:~> lsrefcode -m Server-8284-22A-SN10EE85P -r lpar -F lpar_name:refcode

 p18v01:

 p18v02:

 p18lnx01:Linux ppc64le

 [image:]

 3.	Simulate a host crash by shut downing immediately both Virtual I/O Servers (VIOSs) from host Server-8284-22A-SN10EE85P, as shown in Example 5-28.

 Example 5-28 Shutting down the VIOSs from host Server-8284-22A-SN10EE85P

 [image:]

 chsyscfg chsyspwd chsysstate

 hscroot@p18vhmc1:~> chsysstate -m Server-8284-22A-SN101AFDR -r lpar -n p18v03 -o shutdown --immed

 hscroot@p18vhmc1:~> chsysstate -m Server-8284-22A-SN101AFDR -r lpar -n p18v04 -o shutdown --immed

 [image:]

 All VMs from host Server-8284-22A-SN10EE85P have crashed, as shown in Example 5-29.

 Example 5-29 VMs crashed from host Server-8284-22A-SN10EE85P

 [image:]

 p18ibmi01:A6040266

 p18v04:00000000

 p18aix02:0c20

 p18aix03:CA00E175

 p18aix04:CA00E175

 p18aix05:CA00E175

 p18lnx02:00000000

 [image:]

 4.	Check the KSYS by running the ksysmgr command. All monitored VMs restarted in host Server-8284-22A-SN10EE85P, as shown in Example 5-30.

 Example 5-30 VM restarting in host Server-8284-22A-SN10EE85P

 [image:]

 p18ksys:/ # ksysmgr query system status monitor=yes

 Host_group HG_TCHU is currently in Ready state

 Press Q to quit monitoring for activity

 Restart in progress for Host_group HG_TCHU

 Stopping HA monitoring for VM p18lnx02

 HA monitoring for VM p18lnx02 stopped

 Shutdown has started for VM p18lnx02

 Shutdown has completed for VM p18lnx02

 Restart has started for VM p18lnx02

 Starting HA monitoring for VM p18lnx02

 HA monitoring for VM p18lnx02 started

 Restart on Target host Server-8284-22A-SN10EE85P has completed for VM p18lnx02

 Stopping HA monitoring for VM p18aix03

 Stopping HA monitoring for VM p18aix04

 HA monitoring for VM p18aix04 stopped

 Stopping HA monitoring for VM p18aix02

 HA monitoring for VM p18aix02 stopped

 Stopping HA monitoring for VM p18aix05

 Shutdown has started for VM p18ibmi01

 Starting VM monitoring for VM p18lnx02

 HA monitoring for VM p18aix03 stopped

 HA monitoring for VM p18aix05 stopped

 Shutdown has completed for VM p18ibmi01

 Restart has started for VM p18ibmi01

 Shutdown has started for VM p18aix04

 Shutdown has started for VM p18aix02

 Shutdown has started for VM p18aix05

 Shutdown has started for VM p18aix03

 Shutdown has completed for VM p18aix04

 Shutdown has completed for VM p18aix02

 Restart has started for VM p18aix04

 Restart has started for VM p18aix02

 Shutdown has completed for VM p18aix05

 Restart has started for VM p18aix05

 Starting HA monitoring for VM p18aix04

 HA monitoring for VM p18aix04 started

 Starting HA monitoring for VM p18aix02

 HA monitoring for VM p18aix02 started

 Starting HA monitoring for VM p18aix05

 HA monitoring for VM p18aix05 started

 Shutdown has completed for VM p18aix03

 Restart has started for VM p18aix03

 Starting HA monitoring for VM p18aix03

 HA monitoring for VM p18aix03 started

 Restart on Target host Server-8284-22A-SN10EE85P has completed for VM p18ibmi01

 Configuration cleanup started for VM p18ibmi01

 ERROR: Restart has encountered an error for VM p18ibmi01 during Configuration Cleanup

 Restart on Target host Server-8284-22A-SN10EE85P has completed for VM p18aix02

 Restart on Target host Server-8284-22A-SN10EE85P has completed for VM p18aix04

 Restart on Target host Server-8284-22A-SN10EE85P has completed for VM p18aix05

 Restart on Target host Server-8284-22A-SN10EE85P has completed for VM p18aix03

 Configuration cleanup started for VM p18aix02

 VM monitoring for VM p18aix02 started

 Configuration cleanup started for VM p18lnx02

 ERROR: Restart has encountered an error for VM p18lnx02 during Configuration Cleanup

 ERROR: Restart has encountered an error for VM p18aix02 during Configuration Cleanup

 Configuration cleanup started for VM p18aix04

 VM monitoring for VM p18aix04 started

 ERROR: Restart has encountered an error for VM p18aix04 during Configuration Cleanup

 Configuration cleanup started for VM p18aix03

 Configuration cleanup started for VM p18aix05

 VM monitoring for VM p18aix03 started

 VM monitoring for VM p18aix05 started

 ERROR: Restart has encountered an error for VM p18aix03 during Configuration Cleanup

 ERROR: Restart has encountered an error for VM p18aix05 during Configuration Cleanup

 6 out of 6 VMs have been successfully restarted

 [image:]

 5.	List the VMs on host Server-8284-22A-SN10EE85P. You see that all partitions that are monitored from the KSYS from the crashed host Server-8284-22A-SN101AFDR restarted on host Server-8284-22A-SN10EE85P, as shown in Example 5-31.

 Example 5-31 Listing VMs on host Server-8284-22A-SN10EE85P

 [image:]

 hscroot@p18vhmc2:~> lsrefcode -m Server-8284-22A-SN10EE85P -r lpar -F lpar_name:refcode

 p18v01:

 p18ibmi01:00000000

 p18v02:

 p18aix02:

 p18aix03:

 p18aix04:

 p18aix05:

 p18lnx01:Linux ppc64le

 p18lnx02:Linux ppc64le

 [image:]

 6.	List the VMs on host Server-8284-22A-SN101AFDR. You see that the referenced VMs restarted, as shown in Example 5-32.

 Example 5-32 Listing the remaining referenced VMs

 [image:]

 hscroot@p18vhmc1:~> lsrefcode -m Server-8284-22A-SN101AFDR -r lpar -F lpar_name:refcode

 p18v03:00000000

 p18ibmi01:00000000

 p18v04:00000000

 p18aix02:00000000

 p18aix03:00000000

 p18aix04:00000000

 p18aix05:00000000

 p18lnx02:00000000

 [image:]

 7.	Start the VIOS from host Server-8284-22A-SN101AFDR, as shown in Example 5-33.

 Example 5-33 Starting the VIOS from host Server-8284-22A-SN101AFDR

 [image:]

 hscroot@p18vhmc1:~> chsysstate -m Server-8284-22A-SN101AFDR -r lpar -n p18v03 -o on -f default_profile

 hscroot@p18vhmc1:~> chsysstate -m Server-8284-22A-SN101AFDR -r lpar -n p18v04 -o on -f default_profile

 [image:]

 8.	Perform discovery and verification on host group HG_TCHU, as shown in Example 5-34.

 Example 5-34 Performing discovery and verification on host group HG_TCHU

 [image:]

 p18ksys:/ # ksysmgr discovery host_group HG_TCHU verify=yes

 Running discovery on Host_group HG_TCHU, this may take few minutes...

 Existing HA trunk adapter found for VIOS p18v01

 Existing HA trunk adapter found for VIOS p18v02

 Existing HA trunk adapter found for VIOS p18v04

 Existing HA trunk adapter found for VIOS p18v03

 Preparing VIOS in Server-8284-22A-SN101AFDR for HA management

 VIOS in Server-8284-22A-SN101AFDR prepared for HA management

 Preparing VIOS in Server-8284-22A-SN10EE85P for HA management

 VIOS in Server-8284-22A-SN10EE85P prepared for HA management

 Preparing VM p18aix03 in Host Server-8284-22A-SN10EE85P for HA management

 VM p18aix03 in Host Server-8284-22A-SN10EE85P Prepared for HA management

 Preparing VM p18aix04 in Host Server-8284-22A-SN10EE85P for HA management

 VM p18aix04 in Host Server-8284-22A-SN10EE85P Prepared for HA management

 Preparing VM p18lnx02 in Host Server-8284-22A-SN10EE85P for HA management

 VM p18lnx02 in Host Server-8284-22A-SN10EE85P Prepared for HA management

 Preparing VM p18aix02 in Host Server-8284-22A-SN10EE85P for HA management

 VM p18aix02 in Host Server-8284-22A-SN10EE85P Prepared for HA management

 Preparing VM p18aix05 in Host Server-8284-22A-SN10EE85P for HA management

 VM p18aix05 in Host Server-8284-22A-SN10EE85P Prepared for HA management

 Existing first HA client adapter found for VM p18lnx02

 Existing first HA client adapter found for VM p18aix03

 Existing second HA client adapter found for VM p18aix03

 Existing first HA client adapter found for VM p18aix04

 Existing second HA client adapter found for VM p18aix04

 Existing second HA client adapter found for VM p18lnx02

 Existing first HA client adapter found for VM p18aix02

 Existing second HA client adapter found for VM p18aix02

 Existing first HA client adapter found for VM p18aix05

 Existing second HA client adapter found for VM p18aix05

 Skipping VM p18lnx02 on Host Server-8284-22A-SN10EE85P due to some other process in progress

 Discovery has started for VM p18aix03

 Configuration information retrieval started for VM p18aix03

 Discovery has started for VM p18ibmi01

 Configuration information retrieval started for VM p18ibmi01

 Discovery has started for VM p18aix04

 Configuration information retrieval started for VM p18aix04

 Discovery has started for VM p18aix02

 Configuration information retrieval started for VM p18aix02

 Discovery has started for VM p18aix05

 Configuration information retrieval started for VM p18aix05

 Configuration information retrieval completed for VM p18aix03

 Discovery for VM p18aix03 is complete

 Configuration information retrieval completed for VM p18ibmi01

 Discovery for VM p18ibmi01 is complete

 Configuration information retrieval completed for VM p18aix04

 Discovery for VM p18aix04 is complete

 Configuration information retrieval completed for VM p18aix02

 Discovery for VM p18aix02 is complete

 Configuration information retrieval completed for VM p18aix05

 Discovery for VM p18aix05 is complete

 VM monitor state has moved to 'STARTED' for VM p18aix03

 VM monitor state has moved to 'STARTED' for VM p18aix04

 VM monitor state has moved to 'STARTED' for VM p18aix02

 VM monitor state has moved to 'STARTED' for VM p18aix05

 Discovery has finished for HG_TCHU

 1 managed VM has been skipped for discovery

 5 out of 6 managed VMs have been successfully discovered

 Host_group verification started for HG_TCHU

 p18aix03 verification has started

 p18ibmi01 verification has started

 p18aix04 verification has started

 p18lnx02 verification has started

 p18aix02 verification has started

 p18aix05 verification has started

 p18ibmi01 verification has completed

 p18lnx02 verification has completed

 p18aix05 verification has completed

 p18aix04 verification has completed

 p18aix02 verification has completed

 p18aix03 verification has completed

 Verification has finished for HG_TCHU

 6 out of 6 VMs have been successfully verified

 [image:]

 After the discovery and verification of host group HG_TCHU, the VMs that are referenced on host Server-8284-22A-SN101AFDR are cleared, as shown in Example 5-35.

 Example 5-35 Listing VMs on host Server-8284-22A-SN101AFDR

 [image:]

 hscroot@p18vhmc1:~> lsrefcode -m Server-8284-22A-SN101AFDR -r lpar -F lpar_name:refcode

 p18v03:

 p18v04:

 [image:]

[image:]
[image:]

Additional material

 This book refers to additional material that can be downloaded from the internet, as described in the following sections.

 Locating the web material

 The web material that is associated with this book is available in softcopy on the internet from the IBM Redbooks web server:

 ftp://www.redbooks.ibm.com/redbooks/SG248426

 Alternatively, you can go to the IBM Redbooks website:

 ibm.com/redbooks

 Search for SG248426, select the title, and then click Additional materials to open the directory that corresponds with the IBM Redbooks form number, SG248426.

 Using the web material

 The additional web material that accompanies this book includes the following files:

 File name	Description

 IBM_VMR_DR_IP_change_scripts.tar			 IP change script

 System requirements for downloading the web material

 The web material requires the following system configuration:

 Hard disk space:	100 MB minimum

 Operating System:	Windows, Linux, or macOS

 Processor:	i3 minimum

 Memory:	1024 MB minimum

 Downloading and extracting the web material

 Create a subdirectory (folder) on your workstation, and extract the contents of the web material compressed file into this folder.

 Related publications

 The publications that are listed in this section are considered suitable for a more detailed description of the topics that are covered in this book.

 IBM Redbooks

 The following IBM Redbooks publications provide more information about the topics in this document. Some publications that are referenced in this list might be available in softcopy only.

 •IBM PowerVM Enhancements What is New in 2013, SG24-8198

 •A Practical Guide for Resource Monitoring and Control (RMC), SG24-6615

 You can search for, view, download, or order these documents and other Redbooks, Redpapers, web docs, drafts, and additional materials at the following website:

 ibm.com/redbooks

 Online resources

 These websites are also relevant as further information sources:

 •IBM Knowledge Center: Hardware Management Console (HMC) REST APIs

 https://ibm.co/2Xol4Gf

 •IBM Knowledge Center: Preparing for partition mobility

 https://ibm.co/2KrXsdQ

 •Service and Productivity Tools

 https://ibm.co/2x3aPbt

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 Implementing IBM VM Recovery Manager for IBM Power Systems

 Back cover

 Acrobat bookmark

 ISBN 0738458104

 SG24-8426-00

 ®

 OPS/images/8426ch03.07.1.050.jpg

OPS/images/8426ch03.07.1.052.jpg

OPS/images/8426ch03.07.1.051.jpg

OPS/images/8426ch03.07.1.054.jpg

OPS/images/8426ch03.07.1.053.jpg

OPS/images/8426ch03.07.1.045.jpg

OPS/images/8426ch03.07.1.044.jpg

OPS/images/8426ch03.07.1.047.jpg

OPS/images/8426ch03.07.1.046.jpg

OPS/images/8426ch03.07.1.049.jpg

OPS/images/8426ch03.07.1.048.jpg

OPS/images/8426ch03.07.1.041.jpg

OPS/images/8426ch03.07.1.040.jpg

OPS/images/8426ch03.07.1.043.jpg

OPS/images/8426ch03.07.1.042.jpg

OPS/images/8426ch03.07.1.034.jpg

OPS/images/8426ch03.07.1.033.jpg

OPS/images/8426ch03.07.1.036.jpg

OPS/images/8426ch03.07.1.035.jpg

OPS/images/8426ch03.07.1.038.jpg

OPS/images/8426ch03.07.1.037.jpg

OPS/images/8426ch03.07.1.039.jpg

OPS/images/8426ch03.07.1.070.jpg

OPS/images/8426ch03.07.1.072.jpg

OPS/images/8426ch03.07.1.071.jpg

OPS/images/8426ch03.07.1.074.jpg

OPS/images/8426ch05.09.1.11.jpg

OPS/images/8426ch03.07.1.073.jpg

OPS/images/8426ch05.09.1.12.jpg

OPS/images/8426ch03.07.1.076.jpg

OPS/images/8426ch03.07.1.075.jpg

OPS/images/8426ch05.09.1.10.jpg

OPS/images/8426ch03.07.1.067.jpg

OPS/images/8426ch03.07.1.066.jpg

OPS/images/8426ch03.07.1.069.jpg

OPS/images/8426ch03.07.1.068.jpg

OPS/images/8426ch03.07.1.061.jpg

OPS/images/8426ch03.07.1.060.jpg

OPS/images/8426ch03.07.1.063.jpg

OPS/images/8426ch03.07.1.062.jpg

OPS/images/8426ch03.07.1.065.jpg

OPS/images/8426ch03.07.1.064.jpg

OPS/images/8426ch03.07.1.056.jpg

OPS/images/8426addm.10.1.2.jpg

OPS/images/8426ch03.07.1.055.jpg

OPS/images/8426ch03.07.1.058.jpg

OPS/images/8426ch03.07.1.057.jpg

OPS/images/8426addm.10.1.1.jpg

OPS/images/8426ch03.07.1.059.jpg

OPS/images/8426ch03.07.1.010.jpg

OPS/images/8426ch03.07.1.030.jpg

OPS/images/8426ch03.07.1.032.jpg

OPS/images/8426ch03.07.1.031.jpg

OPS/images/8426ch03.07.1.023.jpg

OPS/images/8426ch03.07.1.022.jpg

OPS/images/8426ch03.07.1.025.jpg

OPS/images/8426ch03.07.1.024.jpg

OPS/images/8426ch03.07.1.027.jpg

OPS/images/8426ch03.07.1.026.jpg

OPS/images/8426ch03.07.1.029.jpg

OPS/images/8426ch03.07.1.028.jpg

OPS/images/8426ch03.07.1.021.jpg

OPS/images/8426ch03.07.1.020.jpg

OPS/images/8426ch03.07.1.019.jpg

OPS/images/pic_3.png
P Y Qe W @ L)

KSYS Login Information

Login to designated KSYS LPAR to deploy/manage VM Recorery
Manager HAJDR for your envronment

KSYS detalls

ISyST005rbcaus stgtabs.fbm.com

OPS/images/pic_2.png
Welcome to VM Recovery Manager High Availability (HA/DR) management
'Add KSYS LPAR to deploy/manage VM Recovery Manager HA/DR for your environment.

KSYS performs VM Recovery HA/DR management within the Host Group.

How it works

UI Server
AIXLPAR

ey | prpem—

E &

HMCs, VI0Ss, LPARS (VM) Storages

e

KSYS 2

ot orops | [ostroup |

E & &

HMCs, VI0Ss, LPARS (VM) Storages

OPS/images/pic_1.png
Welcome to

VM Recovery Manager HA/DR

Username.
Password

Remember me

ogin

VM Restart
HA/DR

End to End High Availability & Disaster Recovery for
Power Systems

OPS/images/8426ch03.07.1.012.jpg

OPS/images/8426ch04.08.1.06.jpg

OPS/images/8426ch03.07.1.011.jpg

OPS/images/8426ch04.08.1.05.jpg

OPS/images/8426ch03.07.1.014.jpg

OPS/images/8426ch04.08.1.04.jpg

OPS/images/8426ch03.07.1.013.jpg

OPS/images/8426ch04.08.1.03.jpg

OPS/images/8426ch03.07.1.016.jpg

OPS/images/8426ch04.08.1.02.jpg

OPS/images/8426ch03.07.1.015.jpg

OPS/images/8426ch04.08.1.01.jpg

OPS/images/8426ch03.07.1.018.jpg

OPS/images/8426ch03.07.1.017.jpg

OPS/images/8426ch01.05.1.17.jpg
Site: sitert11 Site: stert12

System: 8286-28)
serato20g07595 | =

Y

System: 8286424
Seral 02210065

Axhostname 110066

VMR DR move P acdress 10400194

netmask 2552552540
default
et s04001

ONS server 931200

«

OPS/images/HMC_LPM_capable.png
Power VM Licensed Capabilities

v/ Active Memory Sharing Capable

v/ Live Partition Mobility Capable

v Micro-Partitioning Capable

v/ Partition Suspend Capable

v PowerVM Partition Remote Restart Capable

v PowerVM Partition Simplified Remote Restart Capable
v SR-IOV Capable (Logical Port Limit)

v Virtual I/O Server Capable

OPS/images/HMC_SRR_capable.png
Power VM Licensed Capabilities

v Active Memory Sharing Capable
v/ Live Partition Mobility Capable
v Micro-Partitioning Capable

v/ Partition Suspend Capable

v PowerVM Partition Remote Restart Capable

v PowerVM Partition Simplified Remote Restart Capable

v SR-IOV Capable (Logical Port Limit)
v Virtual I/O Server Capable

OPS/images/8426ch01.05.1.12.jpg
System: 8286.428
Serial: 020607585

A hostname
P address
netmask
defaut
aateway
ON server

11006
104032110
255.2552540

1040321

931200

Site: sitert11

2

Other VMs

1

«

Site: sitert12

2

System: £286.428
Serial: 02210065W

OPS/images/8426ch01.05.1.13.jpg
System: 8286-024

E

sl 020607585

VMR DR move
i

Site: sitert12

2

b [vm: 110060

Systom: 8286-028
Serial:02210065W

AXhostname 110065
1P address 10400191
netmask 255.255.2540

detault
eateway

ONS server 931200

104001

OPS/images/8426ch01.05.1.14.jpg

OPS/images/8426ch01.05.1.15.jpg

OPS/images/8426ch01.05.1.16.jpg
Site: sitert11 Site: sitert12

System: 8286424
Serlal: 020607585

=y
3
N

System: 8286-428
Serial: 0221005W

[

",

Other VMs
A hostname rt11006
1 address 104032113

netmask 255.255.254.0 VM: 1111009

defoult 100
sateway

DN server 9.3.1.200

«

OPS/images/8426ch02.06.1.293.jpg

OPS/images/8426ch02.06.1.292.jpg

OPS/images/8426ch02.06.1.291.jpg

OPS/images/8426ch02.06.1.290.jpg

OPS/images/8426ch02.06.1.297.jpg

OPS/images/8426ch02.06.1.296.jpg

OPS/images/8426ch02.06.1.295.jpg

OPS/images/8426ch02.06.1.294.jpg

OPS/images/8426ch02.06.1.299.jpg

OPS/images/8426ch02.06.1.298.jpg

OPS/images/8426ch02.06.1.282.jpg

OPS/images/8426ch02.06.1.281.jpg

OPS/images/8426ch02.06.1.280.jpg

OPS/images/8426ch02.06.1.286.jpg

OPS/images/8426ch02.06.1.285.jpg

OPS/images/8426ch02.06.1.284.jpg

OPS/images/8426ch02.06.1.283.jpg

OPS/images/8426ch02.06.1.009.jpg

OPS/images/8426ch02.06.1.008.jpg

OPS/images/8426ch02.06.1.007.jpg

OPS/images/8426ch02.06.1.289.jpg

OPS/images/vSwitch.png
h
g

OPS/images/8426ch02.06.1.288.jpg
AlXLinux
M
SRS DB | f
A MessaingPltocel =
S e s e <=
£ | RMc
Y

Host Monitor

UnixSocket vwich s Daemon

thread /

VIOSLPAR

T
.

y \ \
(Appstingt) _ threads
"\ thread /paemon

lusisbiksys e

S

Kemel Extension

OPS/images/operational_model_cropped.png
K-sYS
AIX LPAR

l l HMCs

Host 1 Host 2
App
Status IGSW“C" ~ | r;s.wncn
EEYIREY Monitor App | - ! f —
Scripts Health ~ VIOS1 VIoS2 VIOS1 Vios2 b 1
Ap;;)hui‘(mn : } : :
Framework Host Host : | :
i onitor

M Monitor : } : :
| I |
| I |

Monitor VM
Agent Agent

Health Status DB/ SSP Cluster

OPS/images/8426ch02.06.1.287.jpg

OPS/images/8426ch02.06.1.004.jpg
Host 1

OPS/images/aod_cropped.png
VIOS/PowerVM

aep (il app

Host 2

VIOS/PowerVM

Host 3

Flat network

[" gishared disks

(Up to 24 VIOSes)

HostGroup1

OPS/images/8426ch02.06.1.002.jpg

OPS/images/8426ch02.06.1.001.jpg

OPS/images/8426ch02.06.1.231.jpg

OPS/images/8426ch02.06.1.473.jpg

OPS/images/8426ch02.06.1.230.jpg

OPS/images/8426ch02.06.1.472.jpg

OPS/images/8426ch02.06.1.471.jpg

OPS/images/8426ch02.06.1.470.jpg

OPS/images/8426ch02.06.1.235.jpg

OPS/images/8426ch02.06.1.477.jpg

OPS/images/8426ch02.06.1.234.jpg

OPS/images/8426ch02.06.1.476.jpg

OPS/images/8426ch02.06.1.233.jpg

OPS/images/8426ch02.06.1.475.jpg

OPS/images/8426ch02.06.1.232.jpg

OPS/images/8426ch02.06.1.474.jpg

OPS/images/8426ch02.06.1.239.jpg

OPS/images/8426ch02.06.1.238.jpg

OPS/images/8426ch02.06.1.237.jpg

OPS/images/8426ch02.06.1.479.jpg

OPS/images/8426ch02.06.1.236.jpg

OPS/images/8426ch02.06.1.478.jpg

OPS/images/8426spec.03.1.1.jpg
I d

OPS/images/8426ch02.06.1.220.jpg

OPS/images/8426ch02.06.1.462.jpg

OPS/images/8426ch02.06.1.461.jpg

OPS/images/8426ch02.06.1.460.jpg

OPS/images/8426ch02.06.1.229.jpg

OPS/images/8426ch02.06.1.224.jpg

OPS/images/8426ch02.06.1.466.jpg

OPS/images/8426ch02.06.1.223.jpg

OPS/images/8426ch02.06.1.465.jpg

OPS/images/8426ch02.06.1.222.jpg

OPS/images/8426ch02.06.1.464.jpg

OPS/images/8426ch02.06.1.221.jpg

OPS/images/8426ch02.06.1.463.jpg

OPS/images/8426ch02.06.1.228.jpg

OPS/images/8426ch02.06.1.227.jpg

OPS/images/8426ch02.06.1.469.jpg

OPS/images/8426ch02.06.1.226.jpg

OPS/images/8426ch02.06.1.468.jpg

OPS/images/8426ch02.06.1.225.jpg

OPS/images/8426ch02.06.1.467.jpg

OPS/images/8426ch02.06.1.451.jpg

OPS/images/8426ch02.06.1.450.jpg

OPS/images/8426ch02.06.1.219.jpg

OPS/images/8426ch02.06.1.218.jpg

OPS/images/8426ch02.06.1.213.jpg

OPS/images/8426ch02.06.1.455.jpg

OPS/images/8426ch02.06.1.212.jpg

OPS/images/8426ch02.06.1.454.jpg

OPS/images/8426ch02.06.1.211.jpg

OPS/images/8426ch02.06.1.453.jpg

OPS/images/8426ch02.06.1.210.jpg

OPS/images/8426ch02.06.1.452.jpg

OPS/images/8426ch02.06.1.217.jpg

OPS/images/8426ch02.06.1.459.jpg

OPS/images/8426ch02.06.1.216.jpg

OPS/images/8426ch02.06.1.458.jpg

OPS/images/8426ch02.06.1.215.jpg

OPS/images/8426ch02.06.1.457.jpg

OPS/images/8426ch02.06.1.214.jpg

OPS/images/8426ch02.06.1.456.jpg

OPS/images/8426ch02.06.1.440.jpg

OPS/images/8426ch02.06.1.209.jpg

OPS/images/8426ch02.06.1.208.jpg

OPS/images/8426ch02.06.1.207.jpg

OPS/images/8426ch02.06.1.449.jpg

OPS/images/8426ch02.06.1.202.jpg

OPS/images/8426ch02.06.1.444.jpg

OPS/images/8426ch02.06.1.201.jpg

OPS/images/8426ch02.06.1.443.jpg

OPS/images/8426ch02.06.1.200.jpg

OPS/images/8426ch02.06.1.442.jpg

OPS/images/8426ch02.06.1.441.jpg

OPS/images/8426ch02.06.1.206.jpg

OPS/images/8426ch02.06.1.448.jpg

OPS/images/8426ch02.06.1.205.jpg

OPS/images/8426ch02.06.1.447.jpg

OPS/images/8426ch02.06.1.204.jpg

OPS/images/8426ch02.06.1.446.jpg

OPS/images/8426ch02.06.1.203.jpg

OPS/images/8426ch02.06.1.445.jpg

OPS/images/8426ch02.06.1.271.jpg

OPS/images/8426ch02.06.1.270.jpg

OPS/images/8426ch02.06.1.275.jpg

OPS/images/8426ch02.06.1.274.jpg

OPS/images/8426ch02.06.1.273.jpg

OPS/images/8426ch02.06.1.272.jpg

OPS/images/8426ch02.06.1.279.jpg

OPS/images/8426ch02.06.1.278.jpg

OPS/images/8426ch02.06.1.277.jpg

OPS/images/8426ch02.06.1.276.jpg

OPS/images/8426ch02.06.1.260.jpg

OPS/images/8426ch02.06.1.264.jpg

OPS/images/8426ch02.06.1.263.jpg

OPS/images/8426ch02.06.1.262.jpg

OPS/images/8426ch02.06.1.261.jpg

OPS/images/8426ch02.06.1.268.jpg

OPS/images/8426ch02.06.1.267.jpg

OPS/images/8426ch02.06.1.266.jpg

OPS/images/8426ch02.06.1.265.jpg

OPS/images/8426ch02.06.1.269.jpg

OPS/images/8426ch02.06.1.491.jpg

OPS/images/8426ch02.06.1.490.jpg

OPS/images/8426ch02.06.1.253.jpg

OPS/images/8426ch02.06.1.252.jpg

OPS/images/8426ch02.06.1.251.jpg

OPS/images/8426ch02.06.1.250.jpg

OPS/images/8426ch02.06.1.257.jpg

OPS/images/8426ch02.06.1.256.jpg

OPS/images/8426ch02.06.1.255.jpg
KsYs
+

'

e

e Host oritor
Jusrsbinksys hsmond

HMHB
(_ProcessingDbHb_|

~ VM HB

Brocessinghisg)

Processing /"

vios

‘Communication | 7
threads

OPS/images/8426ch02.06.1.254.jpg

OPS/images/8426ch02.06.1.259.jpg

OPS/images/8426ch02.06.1.258.jpg

OPS/images/8426ch02.06.1.480.jpg

OPS/images/8426ch02.06.1.242.jpg

OPS/images/8426ch02.06.1.484.jpg

OPS/images/8426ch02.06.1.241.jpg

OPS/images/8426ch02.06.1.483.jpg

OPS/images/8426ch02.06.1.240.jpg

OPS/images/8426ch02.06.1.482.jpg

OPS/images/8426ch02.06.1.481.jpg

OPS/images/8426ch02.06.1.246.jpg

OPS/images/8426ch02.06.1.488.jpg

OPS/images/8426ch02.06.1.245.jpg

OPS/images/8426ch02.06.1.487.jpg

OPS/images/8426ch02.06.1.244.jpg

OPS/images/8426ch02.06.1.486.jpg

OPS/images/8426ch02.06.1.243.jpg

OPS/images/8426ch02.06.1.485.jpg

OPS/images/8426ch02.06.1.249.jpg

OPS/images/8426ch02.06.1.248.jpg

OPS/images/8426ch02.06.1.247.jpg

OPS/images/8426ch02.06.1.489.jpg

OPS/cover.xhtml

 [image: Cover image]

OPS/images/pic_55.png
111008
i stin)

111010
st

111003
st

111007
i estin)

111004
st

11001
st

111005
i estin)

11009
sl

111002
sl

111006

Events [reomsozan |

[ty s

g

L VM_DISCOVERED_ON_HOST
) e

0000-160 Info - VM 112001 [Usid: 3DABDS65-0080-4100-BCE1-DF 3AB434CEDD] i discoverad on host 12-5236-42A-2100E5W (Sta 0 0).

‘Shutdown on re11-5286-424-0607585 Host hss completed for V4 112001
Restarthas staraa for VM 112001

10576 22700 2015

‘Shutdown on r111-5286-424-0607585 Host has started for V¥ 112001

10576 22700 2015

‘Staning HA moritoring for VM 112001

OPS/images/pic_56.png
ksyscluster
iy

ITSO_HG
HosTaROUP (et

rthme3
sl

rthmcé
sl

1112-8286-42A-2.
HosT (restt)

rt12vl
Vios (et

rt12v2
Vios (et

1112002
sl

1112003
i estin)

1112004
sl

1112005
i ealin)

ITSO_HG > rthmcs > rt12-8286-42A-2100E5W > 112001

rt12001

UUID: 4DABO865-0089-4100-BCE1-DF3ABA34CEDD, Failover Priorty: Medium, Home Host:r12-8286-42A-2100E5W

Summary Application Policies
—

Critical

©o00

Capacity & Usage

096w sssiea amory
Min:4096MB | | Max: 4096 MB

ER—

Min:1 | Mex1

Warning

Aoo

Maintenance

£&00

OPS/images/pic_54.png
ITSO_HG > rthme3 > rt11-8286-42A-0607585 > rt12001

rt12001

UUID: 4DABO865-0089-4100-BCE1-DF3ABA34CEDD, Failover Priorty: Medium, Home Host:r12-8286-42A-2100E5W

Summary Application Policies
—

Critical Warning Maintenance

©o00 Aoo 200

Migrate

Restart & Bring to New Host
Restartat Home Host

Recover this VM

OPS/images/pic_59.png
rt12v2
Vios (et

1112001
B e

1112002
B e

1112003
B e

1112004
B e

1112005
B e

HA/DR

L VIOS CAA_STATE_UP DETECTED
) rove10m 2019

0000-203 Warn - VIOS: 1211 Uuid: 29798A5A-F115-4017-973F-0CFOSFE26A97] CAA state UP

| VIOS CAA_STATE_UP DETECTED
() rove 10m 2019

0000-203 Warn - VIOS: 1242 [Uui

12474052-3307-4BF4-3DA2-5CCIESFODATAI CAA state UP

Activities

LM has starea for 12005
LM nas starea for 12008
oM has stared for 212003
LM has starea for 12002
oM has starac for 12001

120861 22700 2019

Running LPM on VM(S), This May take few minutes

3268 Memory usage

snformatons vent

v

[ty s

g

OPS/images/pic_60.png
111005
i estin)

11009
sl

111002
sl

111006
i alin)

1112001
i eslin)

1112002
sl

1112003
sl

1112004
sl

1112005
i ealin)

rthmcé
M (Helthn)

ITSO_HG > rthme3 > rt11-8286-42A-0607585

rt11-8286-42A-0607585

21085, 15 We
oy i
—

Critical Warning Maintenance Capacity & Usage

000 Aoo 00 W e

s7ee.

Memory usage
Events R R o)
', VM_MOVE @
(O [}

00001538 Info - VM 11001 [Usid: 38F44186-0675-4032-BFAC-95824901822A] s moved from host t12-8286-42A-2100ESW to host 111-3286-42A-0607535 (Site/HG 10 1).

View details

) vM_MovE
() sor7em 20res 2015

00001558 Info - VM 111003 [Usid: 5ADSE4B4-A04C-43C1-ASBE-2CECE4802182] s moved from host r111-3286-424-0607535 1o host r112-5286-42-2100E5W (Ste/HG D 1)
) v

OPS/images/pic_57.png
KSYS (Heslthy) ITSO_HG > rthmc6 > rt12-8286-42A-2100E5W
ITSO_HG
.
Eus
rt12-8286-42A-2100E5W

rthme3 o 2VI0Ss, 5VMs.

==l

rthmeé. N

HMC (Healthy) ~ ‘Summary Policies

v (Migrate to New Host using LPM 1
: , , ——
e Critical Warning Maintenance ———capucny oo
=
i2v2,
T ®oo Aoo 200 v
12001
ozt
3268 Memory usage
12002 -
ey Events ooz~ | (st ooy B
12003 n
et P ————
(V) VST]

rt12004 0000-203 Warn - VIOS: rt12v1 [Uuid: 20798A5A-F115-4017-973F-0CFOSFE26A97] CAA state UP
g
rz2005
T

| VIOS CAA_STATE_UP DETECTED
(v) yooam sl

OPS/images/pic_58.png
Migrate ®
Migrate rt12-8286-42A-2100E5W to

New Host

Selecta New Host to migrate rt12-8286-42A-2100E5W
to.

© r111-6286-42A-0607585 | Address: 10.40.0112

O Ksvs decide the best host

Migrate to selected new Host

OPS/images/8426ch02.06.1.439.jpg

OPS/images/8426ch02.06.1.438.jpg

OPS/images/8426ch02.06.1.433.jpg

OPS/images/pic_52.png
ser HA/DR

Q@'yscluster
'KSYS (Critical) ~ 1 Processors:
e i1 | | maca
o/ ~
 osrasoup G
rthme3 N Events PV I L Gl
sty)L)
1111-8286-42A-0... 0000325 Exor VM gent wihn W 120011 coid ot etabishconncsion with VIOS 11111 host mriring subaytem, Suggesion: Vs ot being moniored b bt VOSes. Plesse
i v eaar o A o e FM an e lssoery. I montoin s s d4aret, hm s HAmGTor b
othmes View detals
“HMC (Critical) ~
°rt’12—SZB&4ZA'2_. ', VM_DISCOVERED_ON_HOST
ri12-626 ~ () Eirrss
0000-160 o - U 12001 i 4DABOB65-0059-3100-BCEL-DFSABAICBOD) i disoverd o has F2-8286-£2A-2100ES (52 10 0
ri2vl
Vi s View detals .
i2v2,
Vi i
12002 Resart s state for VM 112001
" 10:46PM, 12 Feb 2019
12003
s Shutdonn o 12:8286-£2A-21008 ot hascomplatedfor VM 12001
s0dsrr 1212019
12004
sy
Shutdonn o 12:8286-£2 21005 Hos hassared for V¥ 12001
12005

i ttn) 10:36 1 22700 2015 9

OPS/images/8426ch02.06.1.432.jpg

OPS/images/pic_53.png
I HA/DR

ITSO_HG > rthme3 > rt11-8286-42A-0607585 > rt12001

111008 rt12001

i stin) UUID: 4DABO865-0089-4100-BCE1-DF3ABA34CEDD, Failover Priorty: Medium, Home Host:r12-8286-42A-2100E5W

[o~

111003 —
j—

111010
st

111007
i estin)

e 000 Aoo

11001
st

Warning

11005
j—

Capacity & Usage
11009
j— 8096 w8 ssiged vemery

eI Min:4096MB | | Max: 4096 MB

sl

111006

Min:1 | Mex1

(E————)

Events [Meemaweme v |

OPS/images/8426ch02.06.1.431.jpg

OPS/images/pic_50.png
ksyscluster
iy

ITSO_HG
HosTaROUP (et

rthme3
sl

1111-8286-42A-0...

HosT (rest)

rthmcé
sl

1112-8286-42A-2...

HosT (restt)

rt12vl
Vios (et

rt12v2
Vios (et

1112002
sl

1112003
i estin)

1112004
sl

ITSO_HG > rthmcs > rt12-8286-42A-2100E5W > 112001

rt12001

UUID: 4DABO865-0089-4100-BCE1-DF3ABA34CEDD, Failover Priorty: Medium, Home Host:r12-8286-42A-2100E5W

Summary Application Policies
—

Critical

©o00

Capacity & Usage

096w sssiea amory
Min:4096MB | Max: 4096 MB

ER—

Min:1 | Mex1

Maintenance

£&00

OPS/images/8426ch02.06.1.430.jpg

OPS/images/pic_51.png
Restart ®

Restart & Bring to New Host

Select a New Host to migrate 111001 from
FH11-8286-42A-0607585 to.

© r111-6286-42A-0607585 | Address: 10.40.0112

Restart at new Host

OPS/images/8426ch02.06.1.437.jpg

OPS/images/8426ch02.06.1.436.jpg

OPS/images/8426ch02.06.1.435.jpg

OPS/images/8426ch02.06.1.434.jpg

OPS/images/pic_44.png
Activities

LM has starea for 11001
10055 22780 2015

Running LPM on VH(S), tis may tak few minutes.
100551 2280 2015

OPS/images/pic_45.png
gpksyscluster

kS rainenance)

QITSO_HG

"HOSTGROUP (atanance)

rthmc3
L

£r111-8286-42A-0...

HoST (Haimenance)

rt1lvl
Vios (et

rt11v2
Vios (et

111008
i stin)

111010
st

111003
st

111007
i estin)

111004
st

ITSO_HG > rthme3 > rt11-8286-42A-0607585 > rt11001

rt11001

UUID: 38F44186-0679-4032-BF4C-058249018224, Failover Prioiy: Madium, Home Host:111-3286-424-0607535

Summary Application Policies

—

Critical

©o00

Capacity & Usage

2096 s sssignes ey

Min: 4096 MB

E—

Min-1

Max-1

Max: 4096 MB

Warning

Aoo

Maintenance

£01

01w

Migrate

OPS/images/pic_48.png
gpksyscluster

'KSYS (Meintenance) ~ 1 Processors:
Qso_rG i1 || maca
"HOSTGROUP (Maintenancs) ~
rthmc3 o e R B)
HMC (Healthy) - B - -
) vM_Move .
#::"E';fﬁ ~ Y 201sem 212019

00001538 Info - VM 11001 [Usid: 38F44186-0675-4032-BFAC-95824901822A] s moved from host t12-8286-42A-2100ESW to host 111-3286-42A-0607535 (Site/HG 10 1).

(r112-8286-42A-2..

DR -

rt12vl

vios ety VM_MON_SETUP ISSUES.
O nin o

t12v2

0000-325 Error - VM agant within VM [E11001] could not establsh connection with VIOS [r111v1] host moritoring subsystem. Suggestion: VM i not being moritored by both VIOSes. Plsase.
Festar his VM from the HMC and rerun discovery.If monitoring s not deired, then disable HAmonitor pol.

1112001 ctiies

ey

002 restore s staried for 111001

o s0se0m 32702015

1112003 Running restore on VMIS), tis maytaksfow minutes.

eyt sose0m 32re0 2015

1112004

et L 0ut of . Ma e been sucssssflyparformed LM
e

1112005

i ealin) v

OPS/images/pic_49.png
r HA/DR

=D ~ 111001
D! SE74156-0675-4052-5F 0555249015224, Falover Py Hediom,Home Hes- 11-5285-425-060735
ITSO_HG
HOSTGROUP (Health] ~
= Summary s ot -~
HMC (Healthy) ~ —v
~ Warning Maintenance
os i
- 000 Aoo 200
os i
11008
g
11010 Capacity & Usage
e
P —
rt11003 Min: 4096 MB Max: 4096 MB.
ety
11007 1 Frocessors.
g v | | e
11004
Events [(emavarmng v | [reany oy o)

‘L) vM_movE

) otz azren 201
00001538 Info - VM 11001 [Usid: 38F44186-0675-4032-BFAC-95824901822A] s moved from host t12-8286-42A-2100ESW to host 111-3286-42A-0607535 (Site/HG 10 1).

OPS/images/pic_46.png
er HA/DR

ksyscluster
iy ITSO_HG > rthmcé > rt12-8286-42A-2100E5W > rt11001

ITSO_HG
HosTaROUP (et

rt11001

rthme3 UUID: 38F44186-0679-4032-BF4C-058249018224, Failover Prioiy: Madium, Home Host:111-3286-424-0607535
sl

rthmcé
v ~ Summary Application Policies vgse v

1112-8286-42A-2... N

HosT (restt)

A Critical Warning Maintenance

Vios (et

e ©o00 Aoo 200

Capacity & Usage
8096 o ssined vamory
Min4096MB | Mex:4096 M

1112003
) ER—
112004 win1 | | Max1
i)
12005 Events T B o)

W (esting

OPS/images/pic_47.png
ITSO_HG > rthmcs > rt12-8286-42A-2100E5W > rt11001

rt11001

UUID: 38F44186-0679-4032-BF4C-058249018224, Failover Prioiy: Madium, Home Host:111-3286-424-0607535

o

v Migrate to New Host using LPM

Migrate beck to HomeHost
Critical Warning Maintenancs:

©o00 Aoo 200

OPS/images/8426ch02.06.1.429.jpg

OPS/images/8426ch02.06.1.428.jpg

OPS/images/8426ch02.06.1.427.jpg

OPS/images/8426ch02.06.1.422.jpg

OPS/images/pic_41.png
ITSO_HG > rthme3 > rt11-8286-42A-0607585 > rt11001

rt11001

UUID: 38F44186-0679-4032-BF4C-058249018224, Failover Prioiy: Madium, Home Host:111-3286-424-0607535

Summary Application Policies vigate v | [restn v
—~——
Policies applied on rt11001
Failover Priority (D | Medium v HAMonitoring (D | Enabled v
HomeHost (D | rt11-8286-4... v Managethisvm (D | Managed v

VM Faliure Detection speed (D) | Normal (190 ... v

Blackisted Hosts () @ Blacklisted Hosts

OPS/images/8426ch02.06.1.421.jpg

OPS/images/pic_42.png
ITSO_HG > rthme3 > rt11-8286-42A-0607585 > rt11001

rt11001

UUID: 38F44186-0679-4032-BF4C-058249018224, Failover Prioiy: Madium, Home Host:111-3286-424-0607535

o

v Migrate to New Host using LPM

Migrate beck to HomeHost
Critical Warning Maintenancs:

©o00 Aoo 200

OPS/images/8426ch02.06.1.420.jpg

OPS/images/pic_39.png
ITSO_HG > rthme3 > rt11-8286-42A-0607585 > rt11001

rt11001

UUID: 38F44186-0679-4032-BF4C-058249018224, Failover Prioiy: Madium, Home Host:111-3286-424-0607535

Summary Application Policies
—

Critical Warning Maintenance

©o00 Aoo 200

Capacity & Usage

2096 s sssignes ey
Min:4096MB | | Max: 4096 MB

E—

Min:1 | Mex1

OPS/images/pic_40.png
ITSO_HG > rthme3 > rt11-8286-42A-0607585 > rt11001

rt11001

UUID: 38F44186-0679-4032-BF4C-058249018224, Failover Prioiy: Madium, Home Host:111-3286-424-0607535

Summary Application Policies
—

Applications Running on rt11001: 00

Migrate

OPS/images/8426ch02.06.1.426.jpg

OPS/images/8426ch02.06.1.425.jpg

OPS/images/8426ch02.06.1.424.jpg

OPS/images/pic_43.png
Migrate ®

Migrate rt11001 to New Host

Select a New Host to migrate 111001 from
FH11-8286-42A-0607585 to.

© r12-6286-42A2100E5W Address: 10.40.0.113

O Ksvs decide the best host

Migrate to selected new Host

OPS/images/8426ch02.06.1.423.jpg

OPS/images/8426ch02.06.1.419.jpg

OPS/images/8426ch02.06.1.418.jpg

OPS/images/8426ch02.06.1.417.jpg

OPS/images/8426ch02.06.1.416.jpg

OPS/images/8426ch02.06.1.411.jpg

OPS/images/8426ch02.06.1.410.jpg

OPS/images/8426ch02.06.1.415.jpg

OPS/images/8426ch02.06.1.414.jpg

OPS/images/8426ch02.06.1.413.jpg

OPS/images/8426ch02.06.1.412.jpg

OPS/images/pic_64.png
111005
i estin)

11009
sl

111002
sl

111006
i alin)

rthmcé
i sl

rt12vl
Vios (et

rt12v2
Vios (et

1112001
i eslin)

1112002
sl

1112003
sl

1112004
sl

1112005
i ealin)

ITSO_HG > rthmcé > rt12-8286-42A-2100E5W

rt12-8286-42A-2100E5W

2VI0ss, 5vMs

Summary Policies

—

Critical Warning

©o00 Aoo

VIOS_CAA_STATE_UP_DETECTED
720957,10 2 2019

0000-203 Warn - VIOS: 1211 Uuid: 29798A5A-F115-4017-973F-0CFOSFE26A97] CAA state UP

VIOS_CAA_STATE_UP_DETECTED
720957,10 2 2019

0000-203 Warn - VIOS: 1212 [Uuid: 12474082-5307-4BF 4-3DA2-5CC1ESFODATA] CAA state UP

Maintenance

£&00

Capacity & Usage

2017% CPU usage

3268 Memory usage

[womsterazen |

s s Gl

OPS/images/8426ch03.07.1.200.jpg

OPS/images/8426ch02.06.1.408.jpg

OPS/images/8426ch02.06.1.407.jpg

OPS/images/8426ch02.06.1.406.jpg

OPS/images/8426ch02.06.1.405.jpg

OPS/images/8426ch02.06.1.409.jpg

OPS/images/8426ch02.06.1.400.jpg

OPS/images/pic_63.png
11001
st

111005
i estin)

11009
sl

111002
sl

111006
i alin)

1112001
B e

1112002
B e

1112003
B e

1112004
B e

1112005
B e

rthmcé
[

ITSO_HG > rthme3 > rt11-8286-42A-0607585

rt11-8286-42A-0607585

Ao
ey @
o

Critical Warning Maintenance Capacity & Usage.

000 Aoo 205 W e

s7ee.

Memory usage

Events R R o)
L vmmove 2
) sozam s1ren 2015 B

00001538 Info - VM 11001 [Usid: 38F44186-0675-4032-BFAC-95824901822A] s moved from host t12-8286-42A-2100ESW to host 111-3286-42A-0607535 (Site/HG 10 1).

View details

L vMmove

OPS/images/pic_61.png
ITSO_HG > rthmcé > rt12-8286-42A-2100E5W

rt12-8286-42A-2100E5W

2vI0s,0vH

Summary Policies

—

Critical

©o00

Warning

Aoo

"Migrate to New Host using LPM

Migateback o HomeHost
Maintenance oy o

200 s cru ussge

1268 Memory usage

OPS/images/pic_62.png
Activities

restors has sarted for 12005
restors has started for 112004
restors has started fo 112003
restors has started for 112002
restors has started for 12001

742613 Fob 2015

Running Restors on VH(S), This May take few minutes.
7241613 Fob 2015

OPS/images/8426ch02.06.1.404.jpg

OPS/images/8426ch02.06.1.403.jpg

OPS/images/8426ch02.06.1.402.jpg

OPS/images/8426ch02.06.1.401.jpg

OPS/images/8426ch02.06.1.080.jpg

OPS/images/8426ch02.06.1.082.jpg

OPS/images/8426ch02.06.1.081.jpg

OPS/images/8426ch02.06.1.084.jpg

OPS/images/8426ch04.08.1.21.jpg
reating Host Grou...

Deploying your Host Group confgurations

— ™ v ™ Vo
Daployment has bean completed. You can proceed 1o dashoard

NoPolces tobe modied or Vi

o Poes o be modiied o his HG

Discovery Sccess

OPS/images/8426ch02.06.1.083.jpg

OPS/images/pic_16.png
ksyscluster

kS st

ITSO_HG

HosTaROUP (et

rthme3
sl

rthmcé
sl

1112-8286-42A-2...
HosT (restt)

ITSO_HG > rthme3 > rt11-8286-42A-0607585

rt11-8286-42A-0607585

2VI0s5,20Ma

Summary Policies

—

Critical Warning

©o00 Aoo

| VIOS_CAA_STATE_UP_DETECTED
) zommz0m 2019

0000-203 Warn - VIOS: 1112 [Uuid: 55FO5704-AF34-45€2-83DF-4DEAOATDEBTE] CAA state UP

Maintenance

£&00

Capacity & Usage
3333% CPU usage

768 Memory usage

T——

v

sty sy Gl

OPS/images/8426ch02.06.1.086.jpg

OPS/images/8426ch02.06.1.085.jpg

OPS/images/8426ch04.08.1.20.jpg
Creating Host Group...

Deploying your Host Group configurations

DeploymentStartd. lease donot ke any changes fom keysmer CLL

V10565 managad unmanaged sccessuly

st Addac vith dfalt polcy

T ——

OPS/images/8426ch02.06.1.077.jpg

OPS/images/pic_8.png
(@ »v515) () cresterestorom () vororvmroonrs)

HostGroup Details HMC Selection Host Slection Vios selection Diskselection WM selection Summary
VIOSs: 4 Available | 4 Selected "
Q search
Independent VIOS ® select All
VIOS under rt11-8286-42A-0607585: 2 available ® select All
®H11V2 s csrosss e socessorsomsonosere | AEEHERIEISS) (658 J
T T —— \
VIOS under r112-8286-42A-2100E5W: 2 aailable ® scicctu
®rt12v2 e sercer o srvoos ccoeveons SRS W J
[R === = ‘

Cancel

< Back

OPS/images/8426ch02.06.1.076.jpg

OPS/images/8426ch04.08.1.15.jpg
@ @))

g et ot - r—
Mo s 103 s nr
O st 25t

® pdisko.

o e
®naisio R
BBs kot sngerun [
sk, —
e

fL T— [r—

Reposiory Disk

HApoot sk

Selct D

OPS/images/8426ch02.06.1.079.jpg

OPS/images/pic_6.png
(@ »v515) () cresterestorom () vororvmroonrs)

Host Group Details. HMC Selection Host Selection VIOS Selection Disk Selection VM Selection Summary

Select all the hosts which will be part of this Host Group

Host: 19 Available | 1 Selected

| Qsearen | Select All

‘ r122-8286-02A-210315W (Address: NA) [ithmes |

Policies ‘

[!mz-szse-au-zmo(sw (Address: NA) [ithmes | 3 Policies ‘

Policy for rt12-8286-42A-2100E5W

Vi Failure Detection speed. (D) Host A Moritoring. @

| Normal (190 seconds) v || Enabled v

Cancel < Back

OPS/images/8426ch02.06.1.078.jpg

OPS/images/pic_7.png
Host Group Details. Host Selection VIOS Selection Disk Selection VM Selection

€60m3-8408-E8D-21DDABT (Address: NA) [rthmes | Policies
® 1111-8286-42A-0607585 (address:NA) [rthmea | [Policies
Policy for r111-8286-12A-0607585

VM Failure Detection speed. (D) tost A Monitoring. (0

Normal (190 seconds) v || Enabled v

r121-8286-42A-2100DAW (Address: NA) [rhme3 | Policies
€52m2-8408-E8D-21DDA4T (Address: NA) [thme3 | Policies

Cancel < Back

OPS/images/8426ch04.08.1.18.jpg
@) @) ()

[weseucion e ossun Er—

® 002

® 2005

00
® 200
® 2000
® 200

® 200

OPS/images/8426ch04.08.1.19.jpg
os G Cntigrtn ey

_—
— -
= —

OPS/images/8426ch04.08.1.16.jpg
[e— esiion socion [r— frev— . oy
005 o e s e, L
[T ———] @t () poe
00z o s) [[Py ———C P

Wrsioon o s e [@i Q) s

prs—) [r—c]

Normal (190 suconde) v vesom v

e ©

Enavis v

OPS/images/8426ch04.08.1.17.jpg
@ @) T

[er—— s i - o [e
010 s ovs s, [— Py

P ———— | | Py—
008 oo o s S Pyre—
P — | | P——

[T — -

[T —— | P

Briia00 o o s scsonso = P —

@

c]

[T —T] @i

OPS/images/8426ch02.06.1.071.jpg

OPS/images/8426ch02.06.1.070.jpg

OPS/images/8426ch02.06.1.073.jpg

OPS/images/pic_4.png
Host Group Details. HMC Selection

(@ »v515) () cresterestorom () vororvmroonrs)

Host Selection VIOS Selection

Disk Selection

VM Selection

Host Group indicates a group managed systems that are logically grouped together to build an HA environment

Enter the basic details of Host Group
Host Group name (7)

mso_He

O Default Policy Customize Policy

Restartolcy (D
Auto

Host Group HA Monitoring (7)
Enabled

Cancel

Host Failure Detection Time (90 to 600 seconds) ()
90 second

VM Failure Detection Speed (7)
Normal (190 seconds)

Summary

OPS/images/8426ch02.06.1.072.jpg

OPS/images/pic_5.png
@)

create ostrow)—((_) vorormstinnrs)

Host Group Details. HMC Selection Host Selection

VIOS Selection

DiskSelection WM Selection Summary
Select HMCs that will be par o the HA management environment
HMC: 2 available | 2 selected @ select Al @ AddHMC
HMC IP address or name || root | Aes | ‘ Add |
® rthmcé ® rthmes
Address: 9.3.207.78 Address: 9.3.18.159
Cancel < Back

OPS/images/8426ch02.06.1.075.jpg

OPS/images/8426ch02.06.1.074.jpg

OPS/images/8426ch02.06.1.066.jpg

OPS/images/8426ch02.06.1.065.jpg

OPS/images/8426ch02.06.1.068.jpg

OPS/images/8426ch02.06.1.067.jpg

OPS/images/8426ch02.06.1.069.jpg

OPS/images/pic_34.png
ITSO_HG > rthmcé > rt12-8286-42A-2100E5W

rt12-8286-42A-2100E5W

2VI0ss, 5vMs

Summary Policies
=

HAMonitoring (D | Enabled v

VM Flire etecton Speed (D)

Normal (190 ... v

Migrate

OPS/images/pic_37.png
ITSO_HG > rthme3 > rt11-8286-42A-0607585 > rt11vl

rtllvl

UUID: SFABABCS-8188-4C70-BF9F-84403FB290C, Version: VIOS 3.1.0.00

Summary SSPCluster Folicies
—

SSP Cluster where rt11v1: 01

P Cluster Name.

KSYS_ksyscluster_1

Status

up

OPS/images/pic_38.png
ITSO_HG > rthme3 > rt11-8286-42A-0607585 > rt11vl

rtllvl

UUID: SFABABCS-8188-4C70-BF9F-84403FB290C, Version: VIOS 3.1.0.00

Summary SsPCluster Policies

-

Policies applied on VIOS

Manage thisvios (D | Managed v

OPS/images/pic_35.png
rthmcé
sl

1112-8286-42A-2...
HosT (restt)

rt12vl
Vios (et

rt12v2
Vios (et

1112001
st

1112002
sl

1112003
i estin)

1112004
sl

1112005
i ealin)

OPS/images/pic_36.png
ITSO_HG > rthme3 > rt11-8286-42A-0607585 > rt11vl

rtllvl

UUID: SFABABCS-8188-4C70-BF9F-84403FB290C, Version: VIOS 3.1.0.00

Summary SSPCluster Policies

—

Warning Maintenance

Ao0o 200

OPS/images/8426ch02.06.1.099.jpg

OPS/images/pic_30.png
ITSO_HG > rthme3 > rt11-8286-42A-0607585

rt11-8286-42A-0607585

2VI0s5,20Ma

Summary Policies Migrate
—

Critical Warning Maintenance Capacity & Usage

000 Aoo 00 EOET

768 Memory usage

OPS/images/8426ch02.06.1.098.jpg

OPS/images/pic_31.png
ITSO_HG > rthme3 > rt11-8286-42A-0607585

rt11-8286-42A-0607585

2VI0s5,20Ma

Summary Policies
=

HAMonitoring (D | Enabled v

VM Flire etecton Speed (D)

Normal (190

Migrate

OPS/images/pic_28.png
Informational Event erfor detail

VIOS

Name: t11v2

VIOS CAA_STATE_UP_DETECTED
1:09PM, 10 Feb 015

10000-203 Warn - VIOS: ri1 12 [Uuie: 55F05704-
AF34-15€2-830F-4DEAOATDEBTE] CAA state UP

OPS/images/pic_29.png
rthmcé

OPS/images/pic_32.png
1111-8286-42A-0...
HosT (rest)

rt1lvl
Vios (et

rt11v2
Vios (et

111008
i stin)

111010
st

111003
st

111007
i estin)

111004
st

11001
st

111005
i estin)

11009
sl

111002
sl

111006
i alin)

OPS/images/pic_33.png
ITSO_HG > rthmcé > rt12-8286-42A-2100E5W

rt12-8286-42A-2100E5W

2VI0ss, 5vMs

Summary Policies

—

Critical

©o00

Warning

Aoo

Maintenance

£&00

Migrate

Capacity & Usage

2017% CPU usage

3268 Memory usage

OPS/images/8426ch02.06.1.091.jpg

OPS/images/8426ch02.06.1.090.jpg

OPS/images/8426ch02.06.1.093.jpg

OPS/images/8426ch02.06.1.092.jpg

OPS/images/8426ch02.06.1.095.jpg

OPS/images/pic_26.png
Activities

Existng HA trunk adapter found for VIOS 1142
2525m 1070b 2010

Existng HA trunk adapter found for VIOS 122
Existing HA trunk adapter found for VIOS re1241
2525m 107eb 2010

Running discovery on Host_group ITSO_HG, this may take few minutes.
2525m 107eb.2035

OPS/images/8426ch02.06.1.094.jpg

OPS/images/pic_27.png
Events

VIOS_CAA_STATE_UP_DETECTED
09, 1079b 2035

0000-203 Warn - VIOS: 1112 [Uuid: 55FO5704-AF34-45€2-83DF-4DEAOATDEBTE] CAA state UP

View details

VIOS_CAA_STATE_UP_DETECTED
09, 1079b 2035

0000-203 Warn - VIOS: 1111 [Uuid: SFABABCS-8188-4C70-8F9F-54403FB29DC3] CAA state UP

T ——

critical

Warning

Malntenance

Informationel Event

OPS/images/8426ch02.06.1.097.jpg

OPS/images/pic_24.png
ITSO_HG =

2HMCs, 2 Hosts, 4 VIOSs, 15VMs | Discover Status: SUCCESS | Last Discover: 2:10 PM, 10 Feb 2019

v

-~ Discover Host Group

Policies applied on ITSO_HG Verfy Host Group.

Discover & Veriy Host Group

OPS/images/8426ch02.06.1.096.jpg

OPS/images/pic_25.png
cover and Verify ITSO_HG

Discovery and verification of all the nodes of ITSO_HG will take time.

Do you want to continue?

Discover & Verfy.

OPS/images/8426ch02.06.1.088.jpg

OPS/images/pic_19.png
ITSO_HG
= v || eter @ rosrewtonirny @snins
s , ;

Add HMC

Remove HMC
Summary Policies

Settings

L Unregister KSYS
Notification Preferences

Unregister KSYS

OPS/images/8426ch02.06.1.087.jpg

OPS/images/pic_20.png
ksyscluster
iy

ITSO_HG
HosTaROUP (et

rthme3
sl

rthmcé
sl

ITSO_HG

ITSO_HG

2HMCs, 2 Hosts, 4 VIOSs, 15VMs | Discover Status: SUCCESS | Last Discover: 2:10 PM, 10 Feb 2019

Summary Policies
=

Policies applied on ITSO_HG

Restartpolicy (D | Auto v
HaMonitoring (| Enabled v

Other Policies for VM

mrerrrrrs ©) () 5

VM Faliure Detection Speed (1) | Normal (190

OPS/images/8426ch04.08.1.23.jpg
[T o G Smn [E5]

v © | Evaled v arsrumcenion @ | ®

s st @ | Normal (190 second) v

OPS/images/8426ch02.06.1.089.jpg

OPS/images/pic_18.png
ksyscluster
iy

ITSO_HG
T ey Y-

Summary Policies

Settings

Unregister KSYS

© Add another person

OPS/images/pic_23.png
ot rastr

Policy Name Policy Type. VMs in this Policy Actions

N 5 X X
Anit-Collocation anticollocation (7) 11005 112005
[oyr—

OPS/images/pic_21.png
KeyS7005rbdr oot
VM Recovery Manager HA/DR e ksys7005: v e t v

ksyscluster
~ [——
o i) ITS0_HG @ A newomous

ITSO_HG

HOSTGROUP (reatin)

rthme3 2 HMC, 2 Hosts 8VIOSs, 15VMe | DiscoverStatus: SUCCESS | Last Discovr: 210 PH, 10 Fab 2019

e reati Add Host

rthmeé. RemoveHost ————————)
o v Summary oanover & Verfvar

OPS/images/pic_22.png
S—

palicy Neme Policy Type VMs inthis olicy Actons
Anit-Collocation Anti-Collocat... A ©Add VM [cancet] [save |
Collestion

WorkGroup

OPS/images/8426ch02.06.1.040.jpg

OPS/images/8426ch02.06.1.042.jpg

OPS/images/8426ch02.06.1.041.jpg

OPS/images/8426ch02.06.1.033.jpg

OPS/images/8426ch02.06.1.032.jpg
ksysmgr CLI

—
Persistent Registry

OPS/images/8426ch02.06.1.035.jpg

OPS/images/8426ch02.06.1.034.jpg

OPS/images/8426ch02.06.1.037.jpg

OPS/images/8426ch02.06.1.036.jpg

OPS/images/8426ch02.06.1.039.jpg

OPS/images/8426ch02.06.1.038.jpg

OPS/images/8426ch02.06.1.031.jpg

OPS/images/8426ch02.06.1.030.jpg

OPS/images/8426ch02.06.1.029.jpg

OPS/images/8426ch05.09.1.09.jpg

OPS/images/8426ch05.09.1.08.jpg

OPS/images/8426ch05.09.1.07.jpg

OPS/images/8426ch05.09.1.06.jpg

OPS/images/8426ch02.06.1.022.jpg

OPS/images/8426ch05.09.1.05.jpg

OPS/images/8426ch02.06.1.021.jpg

OPS/images/8426ch05.09.1.04.jpg

OPS/images/8426ch02.06.1.024.jpg

OPS/images/8426ch05.09.1.03.jpg
'—ﬂ/m

OPS/images/8426ch02.06.1.023.jpg

OPS/images/8426ch05.09.1.02.jpg

OPS/images/8426ch02.06.1.026.jpg

OPS/images/8426ch05.09.1.01.jpg

OPS/images/8426ch02.06.1.025.jpg

OPS/images/8426ch02.06.1.028.jpg

OPS/images/rmc_framework.png
Node 1

Node 2

RMCAPI

RMgrLib

Resource
Manager

RMgrLib

RMgrAPI

Resource
Manager

OPS/images/8426ch02.06.1.060.jpg

OPS/images/8426ch02.06.1.062.jpg

OPS/images/8426ch02.06.1.061.jpg

OPS/images/8426ch02.06.1.064.jpg

OPS/images/8426ch02.06.1.063.jpg

OPS/images/8426ch02.06.1.055.jpg

OPS/images/8426ch02.06.1.054.jpg

OPS/images/8426ch02.06.1.057.jpg

OPS/images/8426ch02.06.1.056.jpg

OPS/images/8426ch02.06.1.059.jpg

OPS/images/8426ch02.06.1.058.jpg

OPS/images/8426ch02.06.1.051.jpg

OPS/images/8426ch02.06.1.050.jpg

OPS/images/8426ch02.06.1.053.jpg

OPS/images/8426ch02.06.1.052.jpg

OPS/images/8426ch02.06.1.044.jpg

OPS/images/8426ch02.06.1.043.jpg

OPS/images/8426ch02.06.1.046.jpg

OPS/images/8426ch02.06.1.045.jpg

OPS/images/8426ch02.06.1.048.jpg

OPS/images/8426ch02.06.1.047.jpg

OPS/images/8426ch02.06.1.049.jpg

OPS/images/8426ch02.06.1.194.jpg

OPS/images/8426ch02.06.1.193.jpg

OPS/images/8426ch02.06.1.192.jpg

OPS/images/8426ch02.06.1.191.jpg

OPS/images/8426ch02.06.1.198.jpg

OPS/images/8426ch02.06.1.197.jpg

OPS/images/8426ch02.06.1.196.jpg

OPS/images/8426ch02.06.1.195.jpg

OPS/images/8426ch02.06.1.190.jpg

OPS/images/8426ch02.06.1.199.jpg

OPS/images/8426ch02.06.1.183.jpg

OPS/images/8426ch02.06.1.182.jpg

OPS/images/8426ch02.06.1.181.jpg

OPS/images/8426ch02.06.1.180.jpg

OPS/images/8426ch02.06.1.187.jpg

OPS/images/8426ch02.06.1.186.jpg

OPS/images/8426ch02.06.1.185.jpg

OPS/images/8426ch02.06.1.184.jpg

OPS/images/8426ch03.07.1.009.jpg

OPS/images/8426ch03.07.1.008.jpg

OPS/images/8426ch03.07.1.007.jpg

OPS/images/chapter_4_picture_4.png

OPS/images/8426ch02.06.1.189.jpg

OPS/images/chapter_4_picture_3.png
K-SYS

AIXLPAR

HMC

Host 2

Host 1

X
4
o
=
E
i}
z

REPOSITORY

OPS/images/8426ch02.06.1.188.jpg

OPS/images/8426ch03.07.1.004.jpg
General BEl -

View and mody the Vitual O Server (VIOS) setings that is onfigurd on the managed system You can modHy e |~ xvanceq
VIOS name and you can also configure additional setings using the Advanced Settings option

Loam Hore 3
Key Lock Postion: OManal @ Nomal
Sorial Number * System £266.42A2100E5W
Wachine Type:

Descrpt

Group Tags: (2 -

Advanced Settings 2

et st s

 Mover Senvce Parition Enable VIPM
 Enatie Connection Moritorng) Alow Performance Information Collection
Enatie Redundant Eor Path Reparting
Madmum Viual Adaplers:

‘Save configuration changes to profle: (2
Disabled -~

OPS/images/chapter_4_picture_1.png
[Ksvs.

Host Host
onitor [l wonitor liwonitor

OPS/images/8426ch03.07.1.002.jpg

OPS/images/8426ch03.07.1.001.jpg

OPS/images/8426ch02.06.1.172.jpg

OPS/images/8426ch02.06.1.171.jpg

OPS/images/8426ch02.06.1.170.jpg

OPS/images/8426ch02.06.1.176.jpg

OPS/images/8426ch02.06.1.175.jpg

OPS/images/8426ch02.06.1.020.jpg

OPS/images/8426ch02.06.1.174.jpg

OPS/images/8426ch02.06.1.173.jpg

OPS/images/8426ch02.06.1.019.jpg

OPS/images/8426ch02.06.1.018.jpg

OPS/images/8426ch02.06.1.011.jpg

OPS/images/8426ch02.06.1.010.jpg

OPS/images/8426ch02.06.1.179.jpg

OPS/images/8426ch02.06.1.013.jpg

OPS/images/8426ch02.06.1.178.jpg

OPS/images/8426ch02.06.1.012.jpg

OPS/images/8426ch02.06.1.177.jpg

OPS/images/8426ch02.06.1.015.jpg

OPS/images/8426ch02.06.1.014.jpg

OPS/images/8426ch02.06.1.017.jpg

OPS/images/8426ch02.06.1.016.jpg

OPS/images/8426ch02.06.1.161.jpg

OPS/images/8426ch02.06.1.160.jpg

OPS/images/8426ch02.06.1.165.jpg

OPS/images/8426ch02.06.1.164.jpg

OPS/images/8426ch02.06.1.163.jpg

OPS/images/vios_block_cropped.png
HMC

\\

REST API
pass-through

vioservice

rmcd

Host Monitor

vio_daemon

libviohealth.a

VIOs

SSP

ﬂ/

OPS/images/8426ch02.06.1.169.jpg

OPS/images/8426ch02.06.1.168.jpg

OPS/images/8426ch02.06.1.167.jpg

OPS/images/8426ch02.06.1.166.jpg

OPS/images/8426ch01.05.1.01.jpg

OPS/images/DR_RTO-RPO.png
imeline

Checkpointin Prepareto System Repail Minimum Full Operation
eiingec Outage reppair ysiemRepalr Service Delivery Restored
| RPO Il RTO |

Decision Recovered

OPS/images/CA_other.png
Systems
Management

Environment

People

High
availability

Continuous
EVETELI 1Y

Continuous
operation

Software

Data

Hardware

OPS/images/HA_RTO-RPO.png
Timeline

Checkpoint Cut Fallover to Restart Full Operation
in time utage Backup System Application(s) Restored
I
| RPO || RTO |

Event Recovered

OPS/images/Outage_Int-Ext.png
Internal-Managed HA/DR (Application based HA/DR) :

Fallover to
Backup Systom

Outage

HW, OS, Appl. outage
08, Appl. corruption

Data corruption

Time

based HA/DR) :

Fallover to

HW, OS, Appl. outage
08, Appl. corruption
Data corruption

Time

OPS/images/Admin_Int-Ext.png
Internal-Managed HA/DR (Application based HA/DR) :

Fallover &

ackup System
HW, Firmware updates
05 and Appl. Down
08, Appl. updates

External-Managed HA/DR based HA/DR) :

Fallover
[Backup System

HW, Firmware updates
08 and Appl. Down
0S, Appl. updates

Time

>

Time

OPS/images/HA_Int_Ext.png
Internal-Managed HA/DR External-Managed HA/DR
(Application based HA/DR): (VM based HA/DR):

OPS/images/CA-CO-HA.png
CA =CO + HA = 24-hours operation

High Availability (HA) Continuous Operations (CO)

OPS/images/8426ch01.05.1.02.jpg

OPS/images/8426ch02.06.1.110.jpg

OPS/images/8426ch02.06.1.352.jpg

OPS/images/8426ch02.06.1.351.jpg

OPS/images/8426ch02.06.1.350.jpg

OPS/images/8426ch03.07.1.155.jpg

OPS/images/8426ch03.07.1.154.jpg

OPS/images/chapter_4_picture_9.png
Daemon start / stop
Application Management

Querying daemon &
App details

cu

/usr/sbin/ksysvmmgr Changing Log Levels
Help messages

Snap

Backup & Restore

OPS/images/chapter_4_picture_8.png
Relocation Mapper Flow

Consider priority while
iterating the VMs.

(for failed VM's
failure or all VM's - CEC
failure

While calculating
the CPU, refer
Refer availa ur rron Flex Capacity
on the target CEC in HG : value.
and place VM's with
resource CEC

xhaust,
ailable CEC

OPS/images/8426ch03.07.1.159.jpg

OPS/images/8426ch03.07.1.158.jpg

OPS/images/8426ch02.06.1.119.jpg

OPS/images/8426ch03.07.1.151.jpg

OPS/images/8426ch03.07.1.150.jpg

OPS/images/8426ch03.07.1.153.jpg

OPS/images/8426ch03.07.1.152.jpg

OPS/images/8426ch02.06.1.114.jpg

OPS/images/8426ch02.06.1.356.jpg

OPS/images/8426ch02.06.1.113.jpg

OPS/images/8426ch02.06.1.355.jpg

OPS/images/8426ch02.06.1.112.jpg

OPS/images/8426ch02.06.1.354.jpg

OPS/images/8426ch02.06.1.111.jpg

OPS/images/8426ch02.06.1.353.jpg

OPS/images/ksys_functional_modules.png
KSYS

- - (Fa\\ure Detectm‘n\ LPAR

~ i
/" Discovery & Emgme 7 'E\En?"

K\Vermcamn J/ tificati

—— ~ Policy -
/Canﬂguratwo? __Manager {'/ Recovery
T Manager
\\EJETTWST, . //Relocamn\\é‘\xiig“/-
/ Ve Apphcamn \\E@f,//

\\Manager/ KSYS daemon

— —
~C)

Rest
Server | T~

HMC

OPS/images/ksys_thread_model.png
Resource &
Class Registry

(1)

KSYS daemon

§ED)
RecpRepint

Scheduler
ZQuickheck

KSYS
LPAR

Rest

Server

HMC

Host Monitor)

OPS/images/8426ch02.06.1.359.jpg

OPS/images/8426ch02.06.1.116.jpg

OPS/images/8426ch02.06.1.358.jpg

OPS/images/8426ch02.06.1.115.jpg

OPS/images/8426ch02.06.1.357.jpg

OPS/images/8426ch02.06.1.341.jpg

OPS/images/8426ch02.06.1.340.jpg

OPS/images/8426ch03.07.1.144.jpg

OPS/images/8426ch03.07.1.143.jpg

OPS/images/8426ch03.07.1.146.jpg

OPS/images/8426ch03.07.1.145.jpg

OPS/images/8426ch03.07.1.148.jpg

OPS/images/8426ch03.07.1.147.jpg

OPS/images/8426ch03.07.1.149.jpg

OPS/images/8426ch02.06.1.109.jpg

OPS/images/8426ch02.06.1.108.jpg

OPS/images/8426ch03.07.1.140.jpg

OPS/images/8426ch03.07.1.142.jpg

OPS/images/8426ch03.07.1.141.jpg

OPS/images/8426ch02.06.1.103.jpg

OPS/images/8426ch02.06.1.345.jpg

OPS/images/8426ch02.06.1.102.jpg

OPS/images/8426ch02.06.1.344.jpg

OPS/images/8426ch02.06.1.101.jpg

OPS/images/8426ch02.06.1.343.jpg

OPS/images/8426ch02.06.1.100.jpg

OPS/images/8426ch02.06.1.342.jpg

OPS/images/8426ch02.06.1.107.jpg

OPS/images/8426ch02.06.1.349.jpg

OPS/images/8426ch02.06.1.106.jpg

OPS/images/8426ch02.06.1.348.jpg

OPS/images/8426ch02.06.1.105.jpg

OPS/images/8426ch02.06.1.347.jpg

OPS/images/8426ch02.06.1.104.jpg

OPS/images/8426ch02.06.1.346.jpg

OPS/images/8426ch02.06.1.330.jpg

OPS/images/8426ch03.07.1.133.jpg

OPS/images/8426ch03.07.1.132.jpg

OPS/images/chapter_4_picture_7.png
Host 1, Host 2 Host3

‘Host Groun: ABC.

OPS/images/8426ch03.07.1.134.jpg

OPS/images/8426ch03.07.1.137.jpg

OPS/images/8426ch03.07.1.136.jpg

OPS/images/8426ch03.07.1.139.jpg

OPS/images/8426ch03.07.1.138.jpg

OPS/images/8426ch02.06.1.339.jpg

OPS/images/8426ch03.07.1.131.jpg

OPS/images/8426ch03.07.1.130.jpg

OPS/images/8426ch02.06.1.334.jpg

OPS/images/8426ch02.06.1.333.jpg

OPS/images/8426ch02.06.1.332.jpg

OPS/images/8426ch02.06.1.331.jpg

OPS/images/8426ch02.06.1.338.jpg

OPS/images/8426ch02.06.1.337.jpg

OPS/images/8426ch02.06.1.336.jpg

OPS/images/8426ch02.06.1.335.jpg

OPS/images/8426ch03.07.1.129.jpg

OPS/images/chapter_4_picture_6.png
Host 1 Host2 Host 3

PowertiA Cluster

“Anti-collocation Policy Host Group: ABC

OPS/images/8426ch03.07.1.121.jpg

OPS/images/8426ch03.07.1.124.jpg

OPS/images/8426ch03.07.1.123.jpg

OPS/images/8426ch03.07.1.126.jpg

OPS/images/8426ch03.07.1.125.jpg

OPS/images/8426ch03.07.1.128.jpg

OPS/images/8426ch03.07.1.127.jpg

OPS/images/8426ch02.06.1.329.jpg

OPS/images/8426ch02.06.1.328.jpg

OPS/images/8426ch03.07.1.120.jpg

OPS/images/8426ch02.06.1.323.jpg

OPS/images/8426ch02.06.1.322.jpg

OPS/images/8426ch02.06.1.321.jpg

OPS/images/8426ch02.06.1.320.jpg

OPS/images/8426ch02.06.1.327.jpg

OPS/images/8426ch02.06.1.326.jpg

OPS/images/8426ch02.06.1.325.jpg

OPS/images/8426ch02.06.1.324.jpg

OPS/images/8426ch02.06.1.150.jpg

OPS/images/8426ch02.06.1.392.jpg

OPS/images/8426ch02.06.1.391.jpg

OPS/images/8426ch02.06.1.390.jpg

OPS/images/8426ch02.06.1.154.jpg

OPS/images/8426ch02.06.1.396.jpg

OPS/images/8426ch02.06.1.153.jpg

OPS/images/8426ch02.06.1.395.jpg

OPS/images/8426ch02.06.1.152.jpg

OPS/images/8426ch02.06.1.394.jpg

OPS/images/8426ch02.06.1.151.jpg

OPS/images/8426ch02.06.1.393.jpg

OPS/images/8426ch03.07.1.199.jpg

OPS/images/8426ch03.07.1.198.jpg

OPS/images/8426ch03.07.1.191.jpg

OPS/images/8426ch03.07.1.190.jpg

OPS/images/8426ch03.07.1.193.jpg

OPS/images/8426ch03.07.1.192.jpg

OPS/images/8426ch03.07.1.195.jpg

OPS/images/8426ch03.07.1.194.jpg

OPS/images/8426ch03.07.1.197.jpg

OPS/images/8426ch03.07.1.196.jpg

OPS/images/8426ch02.06.1.158.jpg

OPS/images/8426ch02.06.1.157.jpg

OPS/images/8426ch02.06.1.399.jpg

OPS/images/8426ch02.06.1.156.jpg

OPS/images/8426ch02.06.1.398.jpg

OPS/images/8426ch02.06.1.155.jpg

OPS/images/8426ch02.06.1.397.jpg

OPS/images/8426ch02.06.1.159.jpg

OPS/images/8426ch02.06.1.381.jpg

OPS/images/8426ch02.06.1.380.jpg

OPS/images/8426ch02.06.1.143.jpg

OPS/images/8426ch02.06.1.385.jpg

OPS/images/8426ch02.06.1.142.jpg

OPS/images/8426ch02.06.1.384.jpg

OPS/images/8426ch02.06.1.141.jpg

OPS/images/8426ch02.06.1.383.jpg

OPS/images/8426ch02.06.1.140.jpg

OPS/images/8426ch02.06.1.382.jpg

OPS/images/8426ch03.07.1.188.jpg

OPS/images/8426ch03.07.1.187.jpg

OPS/images/8426ch03.07.1.189.jpg

OPS/images/8426ch03.07.1.180.jpg

OPS/images/8426ch03.07.1.182.jpg

OPS/images/8426ch03.07.1.181.jpg

OPS/images/8426ch03.07.1.184.jpg

OPS/images/8426ch03.07.1.183.jpg

OPS/images/8426ch03.07.1.186.jpg

OPS/images/8426ch03.07.1.185.jpg

OPS/images/8426ch02.06.1.147.jpg

OPS/images/8426ch02.06.1.389.jpg

OPS/images/8426ch02.06.1.146.jpg

OPS/images/8426ch02.06.1.388.jpg

OPS/images/8426ch02.06.1.145.jpg

OPS/images/8426ch02.06.1.387.jpg

OPS/images/8426ch02.06.1.144.jpg

OPS/images/8426ch02.06.1.386.jpg

OPS/images/8426ch02.06.1.149.jpg

OPS/images/8426ch02.06.1.148.jpg

OPS/images/8426ch02.06.1.370.jpg

OPS/images/8426ch02.06.1.132.jpg

OPS/images/8426ch02.06.1.374.jpg

OPS/images/8426ch02.06.1.131.jpg

OPS/images/8426ch02.06.1.373.jpg

OPS/images/8426ch02.06.1.130.jpg

OPS/images/8426ch02.06.1.372.jpg

OPS/images/8426ch02.06.1.371.jpg

OPS/images/8426ch03.07.1.177.jpg

OPS/images/8426ch03.07.1.176.jpg

OPS/images/8426ch03.07.1.179.jpg

OPS/images/8426ch03.07.1.178.jpg

OPS/images/8426ch03.07.1.171.jpg

OPS/images/chapter_4_picture_10.png
Application
pendenc;
Il
1

OPS/images/8426ch03.07.1.173.jpg

OPS/images/8426ch03.07.1.172.jpg

OPS/images/8426ch03.07.1.175.jpg

OPS/images/8426ch03.07.1.174.jpg

OPS/images/8426ch02.06.1.136.jpg

OPS/images/8426ch02.06.1.378.jpg

OPS/images/8426ch02.06.1.135.jpg

OPS/images/8426ch02.06.1.377.jpg

OPS/images/8426ch02.06.1.134.jpg

OPS/images/8426ch02.06.1.376.jpg

OPS/images/8426ch02.06.1.133.jpg

OPS/images/8426ch02.06.1.375.jpg

OPS/images/krest_cropped.png
HMC
RESTAPI

Atom XML ¢ vioHADR2.00 XML '

CEC

OPS/images/8426ch02.06.1.138.jpg

OPS/images/8426ch02.06.1.137.jpg

OPS/images/8426ch02.06.1.379.jpg

OPS/images/8426ch02.06.1.121.jpg

OPS/images/hvncp_packet_cropped.png
8 16 31
Protocol version (major) Protocol version (minor) Reserved
8 9 10 11 12 13 14 15 24 31
AIAIB|E|P|S|H
packet/ack number ﬁ C|E|IN|IR|Y|E Reserved Checksum
RIK|IGIDJIINJL
Flags 31

frame

OPS/images/8426ch02.06.1.120.jpg

OPS/images/ame_state_diagram.png
Unset («<—| ‘UnMonitored

Update XML
Ly
> monitor script not usable 3
‘monitor KO “EK
Failing
‘monitor KO *max_monitor stop script not usable
L 5 To be stopped — > Config stop failure
Stop OK
Y start script not usable
To be started > Config startfailure.
Start OK [Monitor KO, stop OK, start OK] * max_restart
[Stop KO * max_stop 5| Appiication faiure
Start KO * max_start

OPS/images/ame_main_loop.png
doMainLoop(): main AME loop

| doXML(): at startup and on notifications only, load XML file and
| populate or update application maps in memory; if no applications

|| defined, the AME thread sleeps

| |

| | doLaunch(): for each application take its updated configuration and
current status, determine from its configuration and current status if

any and which seript need to be launched, then launch it and compute

| | timeout time for forked child process

\ doNonBlockingWait(): for each application look for non-blocked child
| process (timeout not reached); if not returned yet do nothing, if returned

| take the returned code and update the application status accordingly

/

F\’/dolnspectForTimeout[): for each application, if it has a launched
process which has reached its timeout kill the process and update

the application status accordingly

doSleep(): sleep period seconds (default 1, can
be between 1 and 5)

OPS/images/8426ch02.06.1.360.jpg

OPS/images/8426ch03.07.1.166.jpg

OPS/images/8426ch03.07.1.165.jpg

OPS/images/8426ch03.07.1.168.jpg

OPS/images/8426ch03.07.1.167.jpg

OPS/images/8426ch03.07.1.169.jpg

OPS/images/8426ch03.07.1.160.jpg

OPS/images/8426ch03.07.1.162.jpg

OPS/images/8426ch03.07.1.161.jpg

OPS/images/8426ch03.07.1.164.jpg

OPS/images/8426ch03.07.1.163.jpg

OPS/images/8426ch02.06.1.125.jpg

OPS/images/8426ch02.06.1.367.jpg

OPS/images/8426ch02.06.1.124.jpg

OPS/images/8426ch02.06.1.366.jpg

OPS/images/8426ch02.06.1.123.jpg

OPS/images/8426ch02.06.1.365.jpg

OPS/images/8426ch02.06.1.122.jpg

OPS/images/8426ch02.06.1.364.jpg

OPS/images/8426ch02.06.1.129.jpg

OPS/images/8426ch02.06.1.128.jpg

OPS/images/8426ch02.06.1.127.jpg

OPS/images/8426ch02.06.1.369.jpg

OPS/images/8426ch02.06.1.126.jpg

OPS/images/8426ch02.06.1.368.jpg

OPS/images/8426ch05.09.1.73.jpg

OPS/images/8426ch05.09.1.71.jpg

OPS/images/8426ch05.09.1.72.jpg

OPS/images/8426ch05.09.1.70.jpg

OPS/images/8426ch05.09.1.68.jpg

OPS/images/8426ch05.09.1.69.jpg

OPS/images/8426ch05.09.1.62.jpg

OPS/images/8426ch05.09.1.63.jpg

OPS/images/8426ch05.09.1.60.jpg

OPS/images/8426ch05.09.1.61.jpg

OPS/images/8426ch05.09.1.66.jpg

OPS/images/8426ch05.09.1.67.jpg

OPS/images/8426ch05.09.1.64.jpg

OPS/images/8426ch05.09.1.65.jpg

OPS/8426cover.jpg
@ Redhooks

nnnnnnnnnnnnnn

Implementing IBM VM
Recovery Manager
for IBM Power Systems

Dino Quintero
Jose Martin Abeleira

Adriano Aimeida
Bernhard Buehler
Primitivo Cervantes
Stuart Cunliffe

Jes Kiran ~
Byron Martinez Martinez
Antony Steel

Oscar Humberto Torres

Stefan Velica

A Cloud
Power Systems

OPS/images/8426ch05.09.1.59.jpg

OPS/images/8426ch05.09.1.57.jpg

OPS/images/8426ch05.09.1.58.jpg

OPS/images/8426ch03.07.1.092.jpg

OPS/images/8426ch03.07.1.119.jpg

OPS/images/8426ch03.07.1.091.jpg

OPS/images/8426ch03.07.1.118.jpg

OPS/images/8426ch05.09.1.30.jpg

OPS/images/8426ch03.07.1.094.jpg

OPS/images/8426ch03.07.1.093.jpg

OPS/images/8426ch03.07.1.096.jpg

OPS/images/8426ch05.09.1.33.jpg

OPS/images/8426ch03.07.1.095.jpg

OPS/images/8426ch05.09.1.34.jpg

OPS/images/8426ch03.07.1.098.jpg

OPS/images/8426ch05.09.1.31.jpg

OPS/images/8426ch03.07.1.097.jpg

OPS/images/8426ch05.09.1.32.jpg

OPS/images/8426ch03.07.1.111.jpg

OPS/images/8426ch03.07.1.110.jpg

OPS/images/8426ch03.07.1.113.jpg

OPS/images/8426ch03.07.1.112.jpg

OPS/images/chapter_4_picture_5.png
Host 2

Collocation Policy Host Group: ABC

OPS/images/8426ch03.07.1.114.jpg

OPS/images/8426ch03.07.1.090.jpg

OPS/images/8426ch03.07.1.117.jpg

OPS/images/8426ch03.07.1.116.jpg

OPS/images/8426ch02.06.1.319.jpg

OPS/images/8426ch02.06.1.318.jpg

OPS/images/8426ch02.06.1.317.jpg

OPS/images/8426ch02.06.1.312.jpg

OPS/images/8426ch03.07.1.089.jpg

OPS/images/8426ch05.09.1.26.jpg

OPS/images/8426ch02.06.1.311.jpg

OPS/images/8426ch03.07.1.088.jpg

OPS/images/8426ch05.09.1.27.jpg

OPS/images/8426ch02.06.1.310.jpg

OPS/images/8426ch05.09.1.24.jpg

OPS/images/8426ch05.09.1.25.jpg

OPS/images/8426ch02.06.1.316.jpg

OPS/images/8426ch02.06.1.315.jpg

OPS/images/8426ch02.06.1.314.jpg

OPS/images/8426ch05.09.1.28.jpg

OPS/images/8426ch02.06.1.313.jpg

OPS/images/8426ch05.09.1.29.jpg

OPS/images/8426ch03.07.1.081.jpg

OPS/images/8426ch03.07.1.108.jpg

OPS/images/8426ch03.07.1.080.jpg

OPS/images/8426ch03.07.1.107.jpg

OPS/images/8426ch03.07.1.083.jpg

OPS/images/8426ch03.07.1.082.jpg

OPS/images/8426ch03.07.1.109.jpg

OPS/images/8426ch03.07.1.085.jpg

OPS/images/8426ch05.09.1.22.jpg

OPS/images/8426ch03.07.1.084.jpg

OPS/images/8426ch05.09.1.23.jpg

OPS/images/8426ch03.07.1.087.jpg

OPS/images/8426ch05.09.1.20.jpg

OPS/images/8426ch03.07.1.086.jpg

OPS/images/8426ch05.09.1.21.jpg

OPS/images/8426ch03.07.1.100.jpg

OPS/images/8426ch03.07.1.102.jpg

OPS/images/8426ch03.07.1.101.jpg

OPS/images/8426ch03.07.1.104.jpg

OPS/images/8426ch03.07.1.103.jpg

OPS/images/8426ch03.07.1.106.jpg

OPS/images/8426ch03.07.1.105.jpg

OPS/images/8426ch02.06.1.309.jpg

OPS/images/8426ch02.06.1.308.jpg

OPS/images/8426ch02.06.1.307.jpg

OPS/images/8426ch02.06.1.306.jpg

OPS/images/8426ch02.06.1.301.jpg

OPS/images/8426ch03.07.1.078.jpg

OPS/images/8426ch05.09.1.15.jpg

OPS/images/8426ch02.06.1.300.jpg

OPS/images/8426ch03.07.1.077.jpg

OPS/images/8426ch05.09.1.16.jpg

OPS/images/8426ch05.09.1.13.jpg

OPS/images/8426ch03.07.1.079.jpg

OPS/images/8426ch05.09.1.14.jpg

OPS/images/8426ch02.06.1.305.jpg

OPS/images/8426ch05.09.1.19.jpg

OPS/images/8426ch02.06.1.304.jpg

OPS/images/8426ch02.06.1.303.jpg

OPS/images/8426ch05.09.1.17.jpg

OPS/images/8426ch02.06.1.302.jpg

OPS/images/8426ch05.09.1.18.jpg

OPS/images/8426ch05.09.1.51.jpg

OPS/images/8426ch05.09.1.52.jpg

OPS/images/8426ch05.09.1.50.jpg

OPS/images/8426ch05.09.1.55.jpg

OPS/images/8426ch05.09.1.56.jpg

OPS/images/8426ch05.09.1.53.jpg

OPS/images/8426ch05.09.1.54.jpg

OPS/images/8426ch05.09.1.48.jpg

OPS/images/8426ch05.09.1.49.jpg

OPS/images/8426ch05.09.1.46.jpg

OPS/images/8426ch05.09.1.47.jpg

OPS/images/8426ch05.09.1.40.jpg

OPS/images/8426ch05.09.1.41.jpg

OPS/images/8426ch05.09.1.44.jpg

OPS/images/8426ch05.09.1.45.jpg

OPS/images/8426ch05.09.1.42.jpg

OPS/images/8426ch05.09.1.43.jpg

OPS/images/8426ch05.09.1.37.jpg

OPS/images/8426ch03.07.1.099.jpg

OPS/images/8426ch05.09.1.38.jpg

OPS/images/8426ch05.09.1.35.jpg

OPS/images/8426ch05.09.1.36.jpg

OPS/images/8426ch05.09.1.39.jpg

