

 [image: Cover image]

 	
 Note: Before using this information and the product it supports, read the information in “Notices” on page ix.

 First Edition (November 2014)

 This IBM Redbooks publication covers many IBM hardware and software products to describe an integrated mobile solution on the IBM System z platform. We make specific notes about product versions where applicable in the individual chapters.

 Notices

 This information was developed for products and services offered in the U.S.A.

 IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

 IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

 The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

 This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

 Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

 IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

 Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

 Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

 This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

 COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.

 Trademarks

 IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

 The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

 AppScan®

 Cast Iron®

 CICS®

 CICS Explorer®

 CICSPlex®

 DB2®

 developerWorks®

 GDPS®

 Geographically Dispersed Parallel Sysplex™

 Global Business Services®

 Global Technology Services®

 HiperSockets™

 HyperSwap®

 IBM®

 IBM SmartCloud®

 IMS™

 InfoSphere®

 MVS™

 Parallel Sysplex®

 QRadar®

 RACF®

 Rational®

 Rational Team Concert™

 Redbooks®

 Redguide™

 Redpaper™

 Redbooks (logo)[image:]®

 System z®

 Tealeaf®

 Tivoli®

 WebSphere®

 Worklight®

 X-Force®

 z/OS®

 z/VM®

 z/VSE®

 zEnterprise®

 zSecure™

 The following terms are trademarks of other companies:

 Adobe, the Adobe logo, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

 Fiberlink, MaaS360, and We do IT in the Cloud. device are trademarks or registered trademarks of Fiberlink Communications Corporation, an IBM Company.

 Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

 Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

 Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

 UNIX is a registered trademark of The Open Group in the United States and other countries.

 Other company, product, or service names may be trademarks or service marks of others.

 IBM Redbooks promotions

 Preface

 Today, organizations engage with customers, business partners, and employees who are increasingly using mobile technology as their primary general-purpose computing platform. These organizations have an opportunity to fully embrace this new mobile technology for many types of transactions, including everything from exchanging information to exchanging goods and services, from employee self-service to customer service. With this mobile engagement, organizations can build new insight into the behavior of their customers so that organizations can better anticipate customer needs and gain a competitive advantage by offering new services.

 Becoming a mobile enterprise is about re-imagining your business around constantly connected customers and employees. The speed of mobile adoption dictates transformational innovation rather than incremental innovation. Mobile really is a disruptive innovation.

 This brings some specific challenges:

 •React to a new set of user expectations about the way users interact with your company.

 •Deliver high-quality mobile applications quickly and efficiently.

 •Cope with sudden unexpected increases in mobile initiated transactions, for example when a new sales offer becomes available.

 •Manage a wide range of different devices and adapt the existing enterprise security framework to unique security challenges of a mobile environment.

 This IBM® Redbooks® publication has an end-to-end example of creating a scalable, secure mobile application infrastructure, which uses data that is on an IBM mainframe. The book uses an insurance-based application as an example, and shows how the application is built, tested, and deployed into production. This book is for application architects and decision-makers who want to employ mobile technology in concert with their mainframe environment.

 Authors

 This book was produced by a team of specialists from around the world working at the International Technical Support Organization (ITSO), Austin Center, US.

 	
 [image:]

 	
 Axel Buecker is a Certified Consulting Software IT Specialist at the ITSO in Austin, Texas, US. He writes extensively and teaches IBM classes worldwide about software security architecture and network computing technologies. He has 27 years of experience in various areas that are related to workstation and systems management, network computing, and e-business solutions. Before joining the ITSO in March 2000, Axel worked for IBM in Germany as a Senior IT Specialist in Software Security Architecture. He has a degree in Computer Science from the University of Bremen in Germany.

 	
 [image:]

 	
 Aymeric Affouard is an IT Specialist working in the IBM System z® Technical Exploration Center. He is also a member of the System z Mobile Team in the Montpellier IBM Client Center, France. He mainly focuses on IBM z/VM® and Linux on System z, IBM Rational®, IBM WebSphere®, and IBM DB2®. He has five years of experience developing mobile applications and websites. Before working in Montpellier, Aymeric worked in IBM Global Business Services® in Paris, focusing on retail customers.

 	
 [image:]

 	
 Andy Armstrong is an experienced IBM CICS® Software Engineer based in Hursley, United Kingdom. Andy is a recognized IBM Senior Inventor, which he achieved through thinking of innovative solutions to common problems our clients face. In 2013 and 2014, Andy represented CICS at several conferences, delivered a worldwide webcast “CICS goes Mobile,” and participated in the Redbooks publication Implementing IBM CICS JSON Web Services for Mobile Applications, SG24-8161.

 Andy has a particular interest in the latest functionality of CICS including Event Processing, Java in CICS, and extending CICS applications to mobile users. Before joining IBM, Andy completed his honors degree in Computer Science from University of St Andrews Scotland.

 	
 [image:]

 	
 Raymond Chiang is a Senior IBM WebSphere IT Specialist working in IBM Global Services, responsible for designing, deploying, and managing WebSphere infrastructure for major clients in Canada. He has over 20 years of experience in the areas of Enterprise Architecture and IT design with special focus on high availability and scalability of large commercial websites. Raymond is an IBM Certified Solution Architect for Cloud Computing Infrastructure, an IBM Certified Mobile Application Developer for IBM Worklight®, a SOA Solution Designer, a Systems Expert on WebSphere Application Server for IBM z/OS®, and a Certified Java Programmer.

 	
 [image:]

 	
 Tony Duong is a Worldwide IBM WebSphere Technical Sales professional; he is based in the US. He has 14 years of experience in the IT industry. He holds a Bachelor degree in Information Technology from the University of South Florida. His areas of expertise include IBM Worklight, WebSphere Application Server, and other WebSphere portfolio products.

 	
 [image:]

 	
 Richard Gamblin is an IBM Technical Staff Member, zChampion, and IBM Redbooks Mobile Thought Leader. As a Software Architect based in the UK and Ireland, Richard works with clients to develop new solutions and capabilities with WebSphere, Mobile, and System z technologies. He has worked in several Technical Sales roles during his time with IBM, ranging from an Integration and Connectivity Specialist to a WebSphere Architect. Richard is a certified Enterprise Architect in The Open Group Architecture Framework (TOGAF). Before joining IBM in 2006, Richard worked in research computing, completing a doctorate in Bioinformatics.

 	
 [image:]

 	
 Wilhelm Mild is an IBM Executive IT Architect and Open Group Distinguished Architect in the IBM Laboratory, Boeblingen, Germany. After completing his university degree in Computer Science, he worked in data management development for IBM System z, and participated in the creation of Redbooks publications.

 For more than a decade, Wilhelm has designed solution architectures for virtualized heterogeneous environments with z/VM, Linux on System z, and traditional workloads. Today he focuses on mobile architecture. Wilhelm teaches workshops and is a speaker at many international conferences and customer events.

 	
 [image:]

 	
 David Shute is a Technical Enablement Program Manager for IBM DataPower. He has eight years of experience with DataPower and more than 20 years of experience producing and delivering learning materials about IT subjects. David has authored several other Redbooks publications, IBM developerWorks® articles, and numerous classroom and online courses. He has taught classes worldwide on SOA, XML, security, and application-level firewalls.

 	
 [image:]

 	
 Peter Siddell is a Senior IT Specialist based in the IBM Hursley laboratory in the UK. He has over 30 years of experience in IT with over 20 years spent on CICS. His areas of expertise include CICS systems programming and technical support for z/OS products. He delivers education about CICS and IBM CICSPlex® SM and presents regularly at worldwide conferences on the CICS Portfolio.

 	
 [image:]

 	
 Frank Van Der Wal is a Certified IT Specialist in the Advanced Technical Skills group at the IBM Design Center in Montpellier, France. He is the Technical Lead Mobile Specialist for IBM Montpellier, focusing on mobile for IBM System z. Frank co-authored the Redbooks Point-of-View publication System z in a Mobile World, REDP-5088, worked on the Reference Architecture for Mobile on System z, and developed workshops on the same topic. In addition, he was the subject matter expert for several pan-European and worldwide education sessions and co-developer of the Business Critical Infrastructure Solutions (BCIS) collateral.

 Prior to moving to IBM Montpellier, Frank worked as IT Architect and Technical Advocate for several Dutch customers and CSIs. He is a renowned presenter about topics like the Global Technology Outlook, 5-in-5, and other technology trends.

 	
 [image:]

 	
 Nigel Williams is a Certified IT Specialist working in the New Technology Center, Montpellier, France. He specializes in security, CICS, and enterprise application integration. He is the author of many papers and Redbooks publications, and speaks regularly about security and CICS topics

 	
 [image:]

 	
 Richard Young is a Senior Certified Executive IT Specialist. He is a leader within the STG System z Lab Services organization. He has been with IBM for 15 years and has 22 years of experience on System z. Richard’s current areas of expertise include Cloud, Mobile, Linux, and Virtualization on System z. His background also includes z/OS, z/VM, IBM Parallel Sysplex®, WebSphere Application Server, and others. Richard and his team provide post sales technical support and guidance for System z clients worldwide, on new and strategic technologies.

 Thanks to the following people for their contributions to this project:

 Diane Sherman
International Technical Support Organization, Austin Center

 Bruce Armstrong, Asit Dan, Mike Ebbers, Ian Shore, Theresa Tai, Stephen Wehr, Romney White
IBM

 Now you can become a published author, too!

 Here’s an opportunity to spotlight your skills, grow your career, and become a published author—all at the same time! Join an ITSO residency project and help write a book in your area of expertise, while honing your experience using leading-edge technologies. Your efforts will help to increase product acceptance and customer satisfaction, as you expand your network of technical contacts and relationships. Residencies run from two to six weeks in length, and you can participate either in person or as a remote resident working from your home base.

 Find out more about the residency program, browse the residency index, and apply online at:

 ibm.com/redbooks/residencies.html

 Comments welcome

 Your comments are important to us!

 We want our books to be as helpful as possible. Send us your comments about this book or other IBM Redbooks publications in one of the following ways:

 •Use the online Contact us review Redbooks form found at:

 ibm.com/redbooks

 •Send your comments in an email to:

 redbooks@us.ibm.com

 •Mail your comments to:

 IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Stay connected to IBM Redbooks

 •Find us on Facebook:

 http://www.facebook.com/IBMRedbooks

 •Follow us on Twitter:

 https://twitter.com/ibmredbooks

 •Look for us on LinkedIn:

 http://www.linkedin.com/groups?home=&gid=2130806

 •Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks weekly newsletter:

 https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

 •Stay current on recent Redbooks publications with RSS Feeds:

 http://www.redbooks.ibm.com/rss.html

[image:]
[image:]

Understanding the business context in a mobile world

 This part closely examines today’s business requirements, enablers, and opportunities for mobile applications in an enterprise business environment, including the integration of mobile solutions on IBM System z.

 We introduce you to the broader context of the IBM MobileFirst value proposition and highlight its concepts and what it means to bridge the gap between the system of record and system of engagement.

 To connect the business context to the remainder of this book, we introduce you to the IBM technologies that help enable mobile solutions on IBM System z and highlight some representative industry-related use cases.

[image:]
[image:]

Business drivers for a mobile enterprise

 In a similar way that e-business represented a fundamental business shift in the early part of this century, mobile technology offers a unique opportunity for organizations today. Mobile, however, is much more than just an emerging consumer channel, for its capabilities are disrupting traditional business models. It also provides organizations with new sources of information that can lead to improved decision making and the potential for an increase in business results.

 This chapter provides a high-level overview of the following topics:

 •Positioning mobile in a business context

 •Business value of mobile technologies

 •Business drivers for putting mobile first

 •Mobile and the mainframe

 1.1 Positioning mobile in a business context

 The evolution of mobile technology over the past years creates a strong case for organizations to have a mobile strategy to support future business models and globalization of transactional interaction models.

 There is little doubt that consumer adoption of mobile products and services is continuing to grow exponentially. We have already surpassed 1.4 billion smartphone subscribers, and more than 50 percent of mobile phone users in major markets worldwide are now smartphone users. Over 79% of smartphone owners use their devices to purchase goods and services, with US mobile retail revenues through smartphone expected to reach US$31 billion by 20171.

 Every day, countless confidential transactions with financial institutions, online merchants, airlines, and various other retailers are performed on mobile devices. These transactional trends have been analyzed and used to formulate innovative mobile-based advertising strategies, such as location-based advertising campaigns.These strategies have paid off: 75% of mobile shoppers take action after receiving location-based messages. There is increasing use of mobile devices as the primary means of interaction and communication with employers, customers, family, and friends. According to recent studies, 91% of mobile users keep their device within reach 100 percent of the time2.

 And the mobile space is not limited to smartphones. The use of tablets for organizations or in the consumer space is also emerging and the combination with smartphones as being replacements for desktops computers can handle the vast majority of tasks completed on a typical workday.

 In addition, mobility will not stop with smartphones and tablets. With prices of wireless-capable electronic components still declining, the opportunity to have sensors in wristwatches, glasses, and embedded in products ranging from clothing to cars, is a promising one. What is promising from an increase of products and services point of view, but also from a new source of revenue, the Internet of Things cannot be underestimated from a business perspective.

 As mobile becomes the primary engagement model between an organization and its customers, business partners, and employees, two clear trends are emerging.

 •The need exists to rethink business models. The speed of mobile adoption dictates transformational innovation rather than incremental change. The key challenges in this area are:

  –	Rapidly reacting to a new set of user expectations about the way they interact with an organization.

  –	Delivering high-quality mobile applications timely and efficiently.

  –	Managing and exploiting sudden unexpected increases in mobile-initiated transactions.

  –	Managing a wide range of different devices and configuring the existing enterprise security framework to the unique security challenges of a mobile environment.

 •Mobile is a gift that keeps giving from a customer insight perspective. Never was the customer so central in an omni-channel world, and never before could organizations gain access to where, when, how, how long, and under what circumstances customers interact with the organization.

 1.2 Business value of mobile technologies

 The way to interact with customers, business partners, and employees is different with mobile solutions than previously encountered. Organizations realize that this offers them a competitive advantage, although it means that they have to rethink the user experience.

 Business-to-employee communication is an area where mobile technology can add value. One example is of a distribution center for a retail organization where a Warehouse Management System provides logistics, stock processes, and flow information. Typically this information is accessed on terminals that are located in dedicated spaces in the warehouse. Providing access to logistic data on mobile devices for warehouse employees can save the organization substantial amounts of time and cost per employee when it considers the amount of time an employee spends to commute between terminal and warehouse storage locations.

 Another example is of an automotive company. Today, sensors in the car can register all kinds of activities, like windshield wipers being on or off, fog lights, speed, location, and more. By centrally collecting this information from many cars, the automotive company can provide valuable data on actual weather conditions in a specific location. The automotive company can offer this data to weather or traffic service organizations.

 Not only in a commercial environment can mobile be of value. The IBM Intelligent Operations Center provides an executive dashboard to help city leaders gain insight into various aspects of city management. This enables cities to manage large complex environments, communicate more effectively with citizens, understand the state of the city and collaborate between departments.

 The IBM Intelligent Operations Center for Citizen Collaboration mobile application is designed to improve communication between cities and their citizens about non-emergency city matters. For example, people who are walking through a city park where there is a broken hydrant, fountain, or park bench, can use IBM Intelligent Operations Center for Citizen Collaboration to instantly report such problems. They can track their reported problems and get confirmation on the status.

 The Citizen Collaboration app can do these tasks:

 •Enhance citizen involvement in city matters, and promote transparency in the communication with citizens.

 •Enhance citizen engagement and satisfaction.

 •Increase city operational efficiency.

 •Help build city image as being modern and current with the most recent technologies.

 1.3 Business drivers for putting mobile first

 In the early days of the Internet and e-commerce, many isolated initiatives started within many organizations. This led to disconnected, fragmented, and uncoordinated efforts that ineffectively used the limited resources to their full extent. In addition, the tangible results for business benefits were not seen and the user experience varied, depending on which website was used.

 In today’s mobile environment, a similar trend can be seen where separate lines of business initiatives are taking place to develop separate mobile apps. This again can lead to isolated and uncoordinated efforts resulting in ineffective practices and diluted business results.

 In the IBM Institute for Business Value study (together with Oxford Economics) referenced in 1.1, “Positioning mobile in a business context” on page 4, it became apparent that mobile leaders do four things differently:

 •Build apps that unlock core business knowledge for mobile users

 •Secure and manage the mobile enterprise to optimize performance

 •Use insights to engage their customers wherever they are

 •Use mobile to fundamentally transform the way they do business

 These concepts are depicted in Figure 1-1.

 [image:]

 Figure 1-1 Adopting a mobile first approach

 To make sure that these items are being done consistently, an organization must develop a mobile strategy. A successful mobile strategy must align with the organization’s objectives and be backed by a clear governance model to ensure a consistent user experience.

 With the mobile strategy in place, these individual activities can be monitored and governed. When examining these activities, it becomes clear that mobile initiatives do not live on their own. If, for example, an app needs to reveal business information, it touches many areas, applications, and data. To do that in a secure way, all the applications and databases it uses, enterprise application owners, database owners, and security officers must be in the loop during mobile app development efforts. To use insights to engage the customers wherever they are, the organization needs to be effective in areas such as addressing unstructured and structured mobile data, handling large volumes of data, analyzing it and taking action based on that data.

 Consolidating as many of these resources into one contained IT system can offer tremendous business value from a cost, governance, and security posture perspective. A mainframe can be that IT system, providing the following foundation services:

 •A secure and highly available mobile app delivery and runtime environment.

 •A scalable, high performance database platform.

 •An unparalleled transaction environment with decades of reliability.

 •An encompassing high-speed data transport mechanism without the need to use slower network infrastructures between major processing components.

 To make that happen, an organization must position mobile technology as a central initiative in their overall thinking and doing. Complying with the items is difficult if mobile technology is treated as only another way of accessing data. What makes more sense is to position mobile first in the organization’s strategy around its core system and adopt mobile, pervasively now and into the future.

 1.4 Mobile and the mainframe

 Mobile smart devices have dramatically changed the rules of IT requirements, for many reasons, including these:

 •They are not restricted to a single user.

 •They are used for both business and personal reasons.

 •They are location independent.

 •They have a large range of capabilities that can be customized by the user.

 However, the data that mobile devices require access to must be available continuously, it needs to be secure at the source, and must be transmitted rapidly and securely. These are what make the mainframe and System z the primary choice for a mobile architecture. Not only because the platform offers everything in availability, scalability, and accessibility, but also because the domain of an extensive set of tools for mobile development and business analytics can be integrated into any chosen mobile topology.

 Sometimes reconciling the relationship between the hand-held smart device and the processing capability of an IBM zEnterprise® EC12 can be difficult, but consider the scenario of a consumer standing in the retail outlet of a competitor, believing that a better deal can be found than the one right there. The consumer executes a search on the mobile device, and a favorable result is returned for the product. Now the consumer requires directions to your nearest outlet. This example represents a bidirectional transaction flow that has been executed based on the consumer’s decision using the data available to that consumer.

 The mainframe has evolved over the years to process exactly that situation, not only in a single instance, but by many thousands of requests, running concurrently.

 Mainframe transaction processing systems such as CICS and IBM IMS™, along with data management products such as DB2 and VSAM, have been responsible for the control of this huge repository of data for some time. System z offers the ability to operate continuously, with secure access being provided by the latest technological advances in cryptography and digital signatures. Use of web-enabling methods such as SOAP, XML, and JSON, have ported the business world from the browser onto the smart device. Therefore, building a mobile topology onto your enterprise infrastructure makes perfect sense. Exposing enterprise assets as easily consumable REST and JSON based APIs (that is, for access to both existing transactions and data for retrieving and updating system of record) helps you to more easily build and integrate mobile applications. API Management can provide three key benefits:

 •The enterprise application programming interfaces (APIs) are published in a catalog for easy lookup and integration by both internal and external third-party developers of mobile applications. The developer portal also helps to register a consuming application with the generation of a necessary security token, and testing of the application.

 •It provides a centralized control point for enforcing policies and application access to enterprise APIs, protecting core business transactions and data stored in mainframe. It protects from unauthorized access and from sudden workload surge, while prioritizing accesses.

 •It provides analytics that are ready to use and are based on access to the APIs, delivering much needed insight because of new patterns of access to enterprise assets.

 The availability of the IBM Worklight application development platform makes the development and integration of mobile solutions a reality for the enterprise. Consisting of an Eclipse-based IDE, a JavaServer, device runtime components, and multiple adapters for Android, iOS, and Windows, this capability offers mobile code development that can be deployed into multiple target environments.

 1.5 Conclusion

 With the omni-presence and the continuous increase of mobile devices, phones, and tablets alike, organizations must realize that this is both a huge opportunity and also an additional layer of complexity and governance. In spite of the extensive fragmentation of the mobile ecosystem, in terms of devices, operating systems and screen sizes, consumers still expect high quality apps that are frequently updated to satisfy their evolving requirements. The use of these devices is not limited to time and place anymore, resulting in unexpected workloads at any given moment.

 To gain business value from mobile initiatives and, alternatively, govern and contain many individual tasks, organizations must implement a mobile strategy with stakeholders across the board. To stay ahead of a fierce competition, organizations have to put mobile first.

 1 These numbers are from The “upwardly mobile” enterprise Executive Report from IBM Institute for Business Value, GBE03574-USEN-00

 2 http://public.dhe.ibm.com/common/ssi/ecm/en/wss14156usen/WSS14156USEN.PDF

[image:]
[image:]

Introducing IBM MobileFirst for enterprise mobile solutions

 In Chapter 1, “Business drivers for a mobile enterprise” on page 3, we establish the importance of mobile channels in business engagements and the need for successful organizations to have a clear and consistent mobile strategy.

 Recognizing the major shift toward a mobile enterprise, IBM has established a new solution portfolio and capabilities that address all aspects of a mobile enterprise.

 This chapter provides a high-level overview of IBM MobileFirst framework and contains the following topics:

 •IBM MobileFirst: From strategy to insights

 •Application lifecycle with IBM MobileFirst

 2.1 IBM MobileFirst: From strategy to insights

 IBM MobileFirst empowers innovative organizations to seamlessly access client related information by using a wide variety of devices, including mobile, independent of location and time of day.

 Today, organizations can benefit when they deploy new business services to clients or employees by using mobile technology first because more people have access to mobile devices.

 With IBM MobileFirst, an organization can support its mobile strategy by providing an end-to-end solution for mobile interactions with customers, business partners, and employees. Overall, products are available from the IBM MobileFirst solution to support management, security, analytics, and development of the application and data platforms in a mobile environment. In addition, IBM provides services for strategy and design, cloud and managed services, and development and integration services to support mobile activities.

 Using the capabilities of the IBM MobileFirst solutions portfolio, organizations can allow their customers to initiate transactions at the moment of awareness, and deepen relationships with their customers by providing real-time, one-to-one engagements. Learn what customers really want by using mobile analytics and usage data, then follow up and create more compelling interactions.

 As described in 1.2, “Business value of mobile technologies” on page 5, mobile technology can be used to increase workforce productivity by enhancing collaboration, improving knowledge sharing, and reducing response times for a modern mobile-ready organization. This can be achieved by extending existing business capabilities and applications to mobile workers, business partners, and customers.

 To take advantage of these mobile technologies and reap the business benefits, IBM introduced IBM MobileFirst as a comprehensive solution portfolio, which includes the following areas:

 •IBM MobileFirst Application and Data Platform

 Increase your organization’s agility with new mobile apps and multichannel web experiences connected to back-end systems and applications, with accelerated application delivery and support for native and offline apps.

 •IBM MobileFirst Management

 Enhance your organization’s productivity as you manage mobile devices, data, applications, expenses, and services throughout their lifecycles. Bring your own device (BYOD) policies bring more capabilities into your mobile enterprise, helping employees to be more productive when their smartphones and tablets can immediately connect to networks, apps, and data.

 •IBM MobileFirst Security

 Provide secure transactions from an array of devices, from around the world, while keeping your networks safe and efficient. Employees who use their own devices have access to corporate resources, so your IT team must attain close control over those devices.

 •IBM MobileFirst Analytics

 Strengthen your business capabilities by redefining the end-to-end mobile customer experience. Open and expand marketplaces. Reach consumers at the moment of decision by leveraging location services, and create value through mobile capabilities that drive loyalty and satisfaction.

 •IBM MobileFirst Strategy and Design Services

 IBM can help you explore, assess, and plan your mobile platform to address current and future business and technology requirements that are unique to your organization, your industry, and your users. Working with a trusted business partner like IBM can help you dramatically shorten time to market, and identify and prioritize objectives.

 •IBM MobileFirst Development and Integration Services

 IBM can help you develop, deploy, integrate, and manage application and infrastructure elements of your mobile enterprise and user platforms. Plus, IBM can help you optimize new technologies while making the most of your existing application development, IT infrastructure, and communication platform investments, while enabling you to chose from delivery models that include managed services and cloud computing.

 •Cloud and managed Services

 If you do not want to implement these components and infrastructure in your own environment, IBM can help you use the most recent cloud and managed services.

 •IBM API Management

 IBM API Management can help you expose Enterprise Assets (both transaction and data) as consumable APIs by providing you with the necessary business control and insight.

 IBM API Management provides a developer portal for two distinct capabilities:

  –	Create and publish APIs from existing enterprise services by setting up an API as a proxy to an existing service, along with setting entitlement levels as policies.

  –	Register new consuming applications with generation of security tokens.

 These policies and proxy setup information can be automatically deployed across scalable IBM WebSphere DataPower SOA Appliances that help secure, integrate, and optimize access to web, mobile, and API workloads.

 •Industry Solutions and applications

 The IBM MobileFirst portfolio is complemented by an ecosystem of mobile applications from IBM and IBM Business Partners. One example is the IBM Starters Apps portfolio, which is targeted for a specific industry. These apps are approximately 80% ready, consisting of a user interface and the framework to securely connect to an enterprise back-end.

 The IBM Industry Solutions portfolio is designed to integrate infrastructure components, software, and services into business solutions for many industries, and mobile is an integrated part.

 This chapter provides an overview of the comprehensive set of mobile products and services to increase efficiencies and gain a competitive advantage.

 Figure 2-1 on page 15 provides an overview of the IBM MobileFirst main disciplines in Application and Data Platform, Management, Security, and Analytics. They are supported by Consulting Services to help an organization with its mobile efforts. This covers Strategy and Design Services, Cloud and Managed Services, and Development and Integration Services. All those disciplines are complemented by IBM Industry Solutions and IBM and IBM Business Partner Applications.

 [image:]

 Figure 2-1 IBM MobileFirst Overview

 We look more closely at what these disciplines have to offer in terms of capabilities and IBM solution offerings.

 2.1.1 IBM MobileFirst Application and Data Platform

 The IBM MobileFirst Application and Data Platform provides capabilities that help an organization build an agile and scalable application development environment to rapidly deliver a superior user experience across multiple devices and platforms. These capabilities can also help lower risks and reduce total costs.

 To create such applications on the appropriate platforms, a Mobile Enterprise Application Platform (MEAP) is required. Applications can be efficiently developed in one instance and deployed on multiple platforms using a MEAP. A MEAP environment also handles of connections to back-end services.

 IBM MobileFirst Application and Data Platform offers the following IBM solutions:

 •IBM Worklight

 •IBM MessageSight

 •IBM Rational Test Workbench

 •IBM Mobile Application Platform Management Services

 IBM Worklight

 IBM Worklight is a MEAP to help organizations extend their business to mobile devices.

 With IBM Worklight, an organization can efficiently develop, run, host and manage types of mobile applications, reduce development costs, improve time-to-market, and enhance mobile app governance and security. IBM Worklight uses standards-based technologies that avoid the use of code translation, proprietary interpreters, and nonstandard scripting languages.

 With IBM Worklight organizations can accomplish these tasks:

 •Support multiple mobile operating environments and devices with the simplicity of a single, shared code base

 •Easily connect and synchronize with enterprise data, applications and cloud services

 •Safeguard mobile security at the device, application, and network layer

 •Govern their mobile app portfolio from one central interface.

 Details and further information about IBM Worklight are in Chapter 4, “IBM Worklight: The foundation for mobile solutions” on page 45.

 IBM MessageSight

 IBM MessageSight is built to help extend an organization‘s communication with machine-to-machine (M2M) possibilities. This helps an organization to manage and optimize the flow of information in a complex business environment, and enhance the quality of customer engagements.

 MessageSight extends messaging networks outside the data center, scaling to handle concurrent connectivity between a multitude of devices and applications with predictable latency addressing the support for the Internet of Things. This event-driven, interactive infrastructure will provide the level of performance and value to support new systems of interaction with people, mobile devices, sensors, machines, and applications by unlocking information in system of record and enabling business to be conducted anywhere.

 IBM MessageSight provides these benefits:

 •Scalability and high performance

 •High throughput for persistent and non-persistent messages

 •Reliability, assuring that critical messages are delivered

 •Developer-friendly APIs and libraries

 •Native application development, including Android and iOS

 •Security that is DMZ-ready with no user level operating system

 •Integration that extends and connects to existing WebSphere MQ infrastructures

 For more information about IBM MessageSight, see the following web page:

 http://www.ibm.com/software/products/us/en/messagesight/

 IBM Rational Test Workbench

 IBM Rational Test Workbench is a part of the Mobile Application Lifecycle Management and provides a comprehensive test automation solution for mobile applications, regression testing, integration technologies and performance and scalability testing. It helps an organization to build intelligent and interconnected enterprise applications that can be deployed on traditional and cloud infrastructures. Testing costs can be reduced by reducing test cycle times because of an earlier integration of testing into a development lifecycle.

 Rational Test Workbench delivers test automation for all types of applications, including mobile apps, using a physical device or a mobile emulator. It also offers these features:

 •Simplifies test creation with storyboard testing and code-free test authoring.

 •Allows the quick development of complex performance test scenarios with script-less, visual, performance test and workload models.

 •Provides earlier, end-to-end continuous integration testing throughout hardware, software and cloud-based dependencies.

 •Emulates workloads accurately so that a server workload can be created that represents realistic user scenarios.

 •Is extensible and supports standards and protocols to help meet the challenges of a testing environment.

 IBM Mobile Application Platform Management Services

 IBM offers Mobile Application Platform Management Services to help an organization adopt mobile applications that are designed to address both employee and customer needs. The IBM Worklight platform, which is built on open standards, can be used with all types of applications.

 IBM Mobile Application Platform Management Services can help in these ways:

 •Adapt to business-to-consumer and business-to-employee environments.

 •Support emerging trends, such as bring your own device (BYOD).

 •Apply advanced analytics and reporting capabilities to help track application usage.

 For more information about IBM Mobile Application Platform Management Services, see the following web page:

 http://www.ibm.com/services/us/en/it-services/mobile-application-platform-management.html

 2.1.2 IBM MobileFirst Management

 IBM MobileFirst Management contains capabilities to address the challenges of managing an enterprise mobile device environment. These capabilities are paramount to control and deploy policies to mobile devices, including those owned by employees. These policies help an organization to enhance employee productivity and improve overall security posture.

 The focus on managing sensitive data, tracking and optimizing mobile expenses, and handling multiplatform complexities is critical in sustaining an effective and secure environment for mobile devices. To support this initiative, IBM MobileFirst Management has the following capabilities:

 •Unified management across devices

 •Selective destruction of corporate data

 •Configuration and enforcement of password policies, encryption, VPN access and camera use

 •Streamlining of workflow between development and operations with an integrated enterprise app store

 •Optimization of telecommunication expenses with detailed usage analysis

 •User portal for management of mobile equipment, carrier plans, and usage tracking

 IBM MobileFirst Management offers the following IBM solutions:

 •Fiberlink MaaS360

 •IBM Mobile Enterprise Services for Managed Mobility

 Fiberlink MaaS360

 In December 2013, IBM completed the acquisition of Fiberlink®, provider of the MaaS360® mobile device management (MDM) service. This solution provides the ability to consume a cloud-based solution for managing and securing corporate-wide devices, including BYOD and company-provided mobile devices.

 MaaS360 addresses the use-cases where smartphones and tablet computers are used in both work and personal environments. It can provide the necessary separation between these two scenarios.

 Specifically, MaaS360 provides the following capabilities:

 •A security productivity suite and container for email and calendar functions with access to corporate documents

 •Mobile device management for the deployment and lifecycle management of tablet computers and smartphones

 •Mobile application management for the deployment and lifecycle management of mobile applications and embedded content

 •Secure document sharing in order to provide a secure container in which corporate or otherwise sensitive documents can be accessed and worked upon

 •Notebook or portable PC device management

 IBM Mobile Enterprise Services for Managed Mobility

 IBM Mobile Enterprise Services for Managed Mobility can help to reduce the complexity, risk, and higher costs that are associated with a proliferation of mobile platforms in the workplace. This robust solution provides lifecycle services and advanced mobile device management. The services help you improve control with over-the-air provisioning and updates, enterprise-strength security, and governance policies. A simplified subscription-based pricing model is built around devices, usage and service options for greater predictability, flexibility and cost-effectiveness.

 2.1.3 IBM MobileFirst Security

 Mobile device offers a host of possibilities for enterprises, but only if it is implemented correctly and securely. To focus on this key element in gaining the possibilities of mobile devices, IBM introduced several solutions to manage security for a corporation’s information and data.

 For an architectural overview about Mobile Security, see the IBM Redguide™ publication Securely Adopting Mobile Technology Innovations for Your Enterprise Using IBM Security Solutions, REDP-4957. For a detailed view of the IBM MobileFirst Security section, see Securing Your Mobile Business with IBM Worklight, SG24-8179.

 For IBM MobileFirst Security offers the following IBM solutions:

 •IBM WebSphere DataPower SOA appliances

 •IBM Security AppScan

 •IBM Security Access Manager for Mobile

 IBM WebSphere DataPower SOA appliances

 IBM WebSphere DataPower SOA appliances help secure, integrate, and optimize access to web, mobile, and API workloads. The main advantage of WebSphere DataPower appliances is that they are easy to integrate into a network architecture. In addition, you can use the appliance in a virtual machine (VM) to accomplish the same basic functions of the hardware-based appliance.

 When used as the security layer provider, WebSphere DataPower appliances can execute many critical security tasks by offloading them from the application server.

 WebSphere DataPower SOA appliances provide the following key features:

 •Enables new workloads for securing mobile, web, and API management consolidating and simplifying enterprise infrastructure.

 •Provides authorization, authentication, and auditing (AAA) support.

 •Provides application-level security as an integral part of the user interaction.

 •Helps organizations meet compliance requirements, serving as a governance policy enforcement point.

 For a complete listing of WebSphere DataPower SOA Appliances, see the following web page:

 http://www.ibm.com/software/products/en/datapower/

 IBM Security AppScan

 To protect your organization, mobile and web-based software must be secure. Therefore, application security must be a core competency of your organization’s security strategy.

 The IBM X-Force® Research and Development team analyzes trends in attack behaviors across platforms and industries. In doing so the team consistently reveals that a significant percentage of security vulnerabilities pertain to web applications. To address application security challenges effectively, organizations need to test software and applications across their entire portfolio. And to reduce costs of security, testing, and verification, this must occur as early as possible.

 IBM Security AppScan® is designed to manage vulnerability testing throughout the software development lifecycle. It can scan and test all common web application vulnerabilities including SQL-injection, cross-site scripting, buffer overflow, new flash and flex applications, and Web 2.0 exposure scans. In addition, it features a next-generation dynamic application security scanning engine and the innovative, all-new XSS-Analyzer. IBM Security AppScan V8.7 provides the ability to identify and remediate vulnerabilities in code by taking advantage of security insights from over 40,000 analyzed iOS and Android APIs.

 Our application security solutions can help your organization in these ways:

 •Improve the effectiveness of your application security program management efforts.

 •Assess software code, web and mobile applications for vulnerabilities.

 •Automate correlation of static and dynamic analysis results.

 •Use a single console for managing application testing, reporting, and policies.

 •Take advantage of industry leading capabilities from our Application Security Research team including:

  –	Glass-box testing, a form of Interactive Application Security Testing (IAST)

  –	JavaScript Security Analyzer

  –	Cross-site Scripting Analyzer

  –	Support for IBM Worklight project teams

 For more information about IBM Security AppScan, see the following web page:

 http://www.ibm.com/software/products/en/category/application-security

 IBM Security Access Manager for Mobile

 IBM Security Access Manager for Mobile provides mobile access security protection in a modular package. It addresses mobile security challenges by proactively enforcing access policies for web environments and mobile collaboration channels.

 Highly scalable and configurable, IBM Security Access Manager for Mobile is available as a virtual or hardware appliance to provide faster time to value and lower total cost of ownership.

 IBM Security Access Manager for Mobile is one of the two modular offerings available in IBM Security Access Manager appliance. The other modular offering in IBM Security Access Manager appliance is IBM Security Access Manager for Web.

 IBM Security Access Manager for Mobile can help in these ways:

 •Enables secure access to mobile and web applications with single sign-on and session management.

 •Improves identity assurance with built-in and flexible authentication schemes such as one-time password (OTP) and RSA SecurID token support.

 •Enforces context-aware authorization by integrating with Trusteer Mobile SDK and supporting device finger printing, geographic location awareness and IP reputation techniques.

 •Enhances security intelligence and compliance through integration with IBM Security QRadar® products and other software products.

 •Provides flexible deployment and simplified configuration options through the modular access management platform called IBM Security Access Manager.

 For more information about IBM Security Access Manager for Mobile, see the following web page:

 http://www.ibm.com/software/products/en/access-mgr-mobile

 2.1.4 IBM MobileFirst Analytics

 In the first years of implementing mobile channels, many organizations decided to roll-out mobile functionality as quickly as possible to participate in mobile‘s big advantages. This just do it approach resulted in many unsatisfied and disappointed users because of negative experiences with incorrect formatting, and missing or non-working features on their mobile offerings. Customer Experience Management (CEM) is the discipline that focuses on this problem.

 IBM addresses this issue with two offerings:

 •The IBM Worklight operational analytics component

 •IBM Tealeaf CX Mobile

 The IBM Worklight operational analytics component

 The IBM Worklight Server can be regarded as the foundation for IBM MobileFirst. It was enhanced with a Worklight operational analytics component.

 The IBM Worklight operational analytics component is a scalable operational analytics platform that collects logs and events from both mobile applications and back-end servers. Organizations can search collected information with easy-to-use, natural query language and create custom dashboards to search for patterns, determine problems, and summarize the various statistical measures of platform usage as new users, returning users, and usage frequency across mobile operating systems.

 Those functions cover the following items:

 •Collection of user actions performed by the user within the application

 •Context, including geographical data (location, movement, and time) and application-related data (for example, version, device model, and operating system)

 •Means for analyzing data with standard reports that depict the collected information and ability to transfer raw data to enterprise business intelligence systems; integration with real-time monitoring systems

 •Means for acting upon this data for integration with event management systems

 IBM Tealeaf CX Mobile

 IBM Tealeaf® CX Mobile helps organizations apply customer experience management solutions of Tealeaf to their mobile websites, native applications, and hybrid applications, including support for HTML5. Tealeaf CX Mobile is an add-on to the Tealeaf CX platform.

 Tealeaf CX Mobile helps organizations to achieve these benefits:

 •Optimize customer experiences in the mobile channel for all users of mobile web, HTML5-based sites, hybrid apps or native apps.

 •Gain complete mobile visibility by capturing user information for mobile websites, including HTML5-based sites, native applications, and hybrid apps, including both network and client interactions and touch-screen gestures such as pinching, zooming, scrolling and device rotation.

 •Build and manage an early warning system to detect mobile user problems and provide proactive awareness into mobile application failures, usability issues or other obstacles that lead to failed transactions, abandonment, poor app store rankings and negative feedback.

 •Quantify revenue impact and segmentation with real-time drag-and-drop analysis by specific mobile user behaviors or device attributes.

 •Quickly find and isolate problems within mobile customer sessions (for both individual customers and aggregates) with powerful ad hoc discovery and segmentation without predefining tags or beacons.

 2.1.5 IBM MobileFirst Strategy and Design Services

 IBM offers the following strategy and design services in assisting organizations to explore, assess, and plan their mobile platform to address current and future business and technology requirements that are unique to an organization, industry, and user group:

 •IBM Interactive Experience

 •IBM Mobile Infrastructure Strategy Planning Services

 •Omni-channel Experience Assessment

 IBM Interactive Experience

 IBM Interactive Experience is a leading interactive agency with a unique ability to imagine, discover, and deliver compelling user experiences. IBM Interactive Experience uses the full spectrum of IBM global capabilities (strategy, creative, technology, accessibility, and business transformation) to implement solutions that strengthen relationships between organizations and their users. Integrating customer experience visions and strategic frameworks, IBM Interactive Experience helps clients create brand differentiation, enhance business value, and improve key customer interactions across all channels.

 For more information about IBM Interactive Experience, see the following web page:

 http://www.ibminteractive.com/index.html

 IBM Mobile Infrastructure Strategy Planning Services

 IBM Mobile Infrastructure Strategy and Planning Services is enabled to assist an organization to develop a robust mobile infrastructure strategy for a more flexible workplace that enables users to choose (and bring) their own devices in alignment with an organization’s goals.

 IBM offers a range of consulting capabilities that assess the current mobile environment against industry best practices, identify important aspects of mobility that might have been overlooked, and help to build a successful business case for mobile initiatives. A focus on strategic planning helps build the right roadmap to mobility and accelerate deployment.

 For more information about IBM Mobile Infrastructure Strategy and Planning Services, see the following web page:

 http://www.ibm.com/services/us/en/it-services/mobile-infrastructure-strategy-and-planning.html

 Omni-channel Experience Assessment

 Most companies have no shortage of ideas for how to improve the customer experience. The real challenge is to select the correct set of initiatives that maximize value, taking into account the dependencies on other elements of the operating model. Consider the following key questions:

 •Which touchpoints matter most in customer interactions with our organization? What are the future capabilities or features that our customers are seeking?

 •How can we tell if our capabilities really differentiate the customer experience we deliver?

 •What should the role of each of our channels be and how should we skew our investment? (Mobile, web, device, contact center, or retail store)

 •How do we develop the business case for investing in better customer experiences?

 Omni-channel Experience Assessment can help you attain these goals:

 •Rapidly develop a customer experience strategy that reflects current and future customer trends and priorities

 •Assess a company’s channel capability maturity and determine optimal future maturity needed to support the omni-channel strategy

 •Create journey maps of key events to characterize the future-state of the customer experience

 •Develop a roadmap and business and organizational cases for change

 For more information about Omni-channel Experience Assessment, see the following web page:

 http://www.ibm.com/mobilefirst/be/en/offerings/

 2.1.6 IBM MobileFirst Development and Integration Services

 IBM has the capability to develop, deploy, integrate, and manage application and infrastructure elements of your mobile enterprise and user platforms. Additionally, IBM can assist a business to optimize new technologies while making the most of the existing application development, IT infrastructure, and communication platform investments, and while enabling the selection of delivery models that include managed services and cloud computing. These services include the following items:

 •IBM Mobile Application Development from the Cloud

 •IBM Mobility and Wireless Services

 •IBM Mobile Application Management Services

 IBM Mobile Application Development from the Cloud

 IBM Mobile Application Development from the Cloud enables fast cycle mobile development and delivery of prototypes, new applications and upgrades. This approach includes development of multiple creative treatments and prototypes for a single price, facilitating rapid, iterative innovation that can be initiated in a cost effective way.

 IBM consulting services can help transform application software development and delivery processes, achieving broad-based improvements in cycle time, quality, and cost of application development and management. IBM Mobile Application Development from the Cloud uses an outcomes-based delivery model to provide a way to link a sourcing strategy to business results, rather than labor hours. IBM delivery model promotes productivity, by aligning incentives and recognition with business outcomes. With the IBM ecosystem of capabilities on IBM SmartCloud®, rapid orchestration is possible for required talent, platforms, and tooling to deliver fast based on requirements, and meeting the demanding time requirements of the mobile application market.

 For more information about IBM Mobile Application Development from the Cloud, see the following web page:

 http://www.ibm.com/services/us/gbs/mobileconsulting/rapid-mobile-app-development.html

 IBM Mobility and Wireless Services

 The development of a mobile enterprise implementation strategy requires a reliable and secure mobility infrastructure, which is provided by IBM Mobility and Wireless Services. These services can help design and deploy a wireless broadband infrastructure that connects people to each other and to the information they need, while lowering costs and defining security requirements. IBM starts by understanding the business environment and requirements, and then uses its proven methods and extensive experience in designing mobility and wireless solutions.

 IBM Mobility and Wireless Services can help an organization with these tasks:

 •Rapidly deploy reliable, secure mobility infrastructures.

 •Reduce network maintenance and communications costs.

 •Gain a high-speed communications system that is extensible to mobile workers.

 •Boost productivity of field sales, public service and customer support professionals.

 •Improve overall organizational responsiveness to gain competitive advantage.

 For more information about IBM Mobility and Wireless Services, see the following web page:

 http://www.ibm.com/services/us/en/it-services/mobility-and-wireless-services.html

 IBM Mobile Application Management Services

 IBM Mobile Application Management Services solution provides capabilities to address challenging business issues and achieve the desired business outcomes from a SAP investment.

 For more information about IBM Mobile Application Management Services, see the following web page:

 http://www.ibm.com/services/us/gbs/application-management/

 2.1.7 Cloud and managed Services

 Going further, if you want IBM to manage or run those services, IBM has a set of cloud and managed services that can remove the burden from you. IBM has specific solutions from IBM Global Technology Services® to help you address BYOD with a full service for managing mobile devices. IBM also delivers hosted versions of the mobile platform with the IBM Mobile Application Platform Management service if you choose to have IBM host and run your infrastructure.

 IBM Cloud and Managed Services offer these features:

 •Flexible and scalable compute power with access to greater network bandwidth

 •Predictable allocation of, and investment in, current skills and IT resources that support mobile initiatives

 •Multi-vendor integration and device support

 •Highly efficient coordination of global mobile projects

 IBM Mobile Enterprise Services for managed mobility

 IBM Mobile Enterprise Services for managed mobility can help reduce the complexity, risk, and higher costs that is associated with a proliferation of mobile platforms. IBM robust solution provides lifecycle services and advanced mobile device management. IBM has the capabilities to improve control with over-the-air provisioning and updates, enterprise-strength security, and governance policies. A simplified subscription-based pricing model is built around devices, usage and service options for greater predictability, flexibility, and cost-effectiveness.

 For more information about IBM Mobile Enterprise Services for managed mobility, see the following web page:

 http://www.ibm.com/services/us/en/it-services/managed-mobility-services.html

 2.2 Application lifecycle with IBM MobileFirst

 Figure 2-2 depicts a typical application lifecycle with the IBM MobileFirst platform, with associated products to support the respective stages.

 [image:]

 Figure 2-2 Application lifecycle with corresponding applications

 The lifecycle activities as portrayed in the figure have the following stages:

 1.	Design and develop

 In the first stage of the mobile development lifecycle, the mobile architecture must be designed and developed. IBM Worklight can help with this. By using open, flexible, and standardized cross-platform (iOS, Android, Windows Phone, and Blackberry) development methodologies, Worklight provides a rich development environment maximizing code reuse. IBM Worklight helps you to develop, and to deploy, host, and manage mobile enterprise applications. With Worklight Studio, organizations can push developed mobile applications straight to the IBM Worklight Server and IBM Worklight Application Center for fast distribution.

 2.	Instrument

 To be able to analyze and monitor how an application behaves before releasing to production, IBM Worklight and IBM Tealeaf CX Mobile provide tools to help simulate how the application will operate. In this way, developers can test their applications on various devices, operating systems, and in various scenarios, such as changing screen orientation, and using the GPS, compass, and camera.

 3.	Integrate

 Mobile cloud services can be integrated as an overall framework. Mobile cloud services provide high-value middleware capabilities, which are designed to be used by mobile apps. As an example, consumers increasingly purchase clothing on their mobile devices. A pass service enables companies to engage with those customers by sending them loyalty coupons, and so on. IBM Worklight and IBM Cast Iron® can process such an integration with back-end data, systems, and cloud services. For cloud services, a firewall controls inbound and outbound connections. To secure these connections, an organization’s internal IT infrastructure can be protected with a proxy or security gateway, such as IBM Security Access Manager or IBM WebSphere DataPower. By using a security gateway, such as IBM WebSphere DataPower, companies can control these parts of the infrastructure that are exposed to consumers, which is especially relevant for push notifications.

 For more information about IBM Worklight, WebSphere Cast Iron, and WebSphere DataPower, see Extending Your Business to Mobile Devices with IBM Worklight, SG24-8117.

 4.	Test

 To test the configured, enterprise specific application, a company can use IBM Rational Test Workbench. It is a comprehensive test automation solution, which enables regression, performance, and scalability testing.

 5.	Scan and certify

 In addition to testing the customized application executed by Rational Test Workbench, IBM Security AppScan is able to scan, evaluate, and certify an organization’s application. It provides the user with enhanced vulnerability testing, scanning, and reporting for mobile web applications and web elements (JavaScript and HTML5) or hybrid mobile applications. See Securing Your Mobile Business with IBM Worklight, SG24-8179.

 6.	Deploy

 The application can be distributed to various channels, such as Worklight Application Center, devices managed by IBM Fiberlink MaaS360, and external app stores. IBM Worklight Application Center distributes mobile applications within an organization.

 7.	Manage

 A mobile device management service is used to manage mobile devices, data, and applications throughout the application lifecycle. IBM MaaS360 is a comprehensive enterprise MDM platform that can provide end-to-end support for users, devices, emails, apps, documents, and web access.

 8.	Obtain insight

 At the end of the cycle, analysis of how the application is used can be derived from Tealeaf CX Mobile. Usage pattern analysis can improve the effectiveness of your application, and highlight areas that users are struggling with. Consequently, this understanding can close the iterative mobile development circle, and influence the next iteration of the product design.

 2.3 Conclusion

 With IBM MobileFirst, IBM empowers organizations to adopt mobile solutions with mobile devices as primary interfaces, exploiting their special device functionality. At the same time, IBM MobileFirst enables the integration of existing core applications and processes into mobile environments in an end-to-end secure solution.

[image:]
[image:]

Bridging the gap from mobile to transactional systems

 This chapter offers insights into the value of System z in a mobile environment. We explore concepts of system of record and system of engagement, and then describe the values of System z. We explain the role of System z as being an important part of an agile, secure, and reliable mobile enterprise platform.

 This chapter contains the following topics:

 •The concept of optimized systems

 •Defining the gap

 •Closing the gap

 3.1 The concept of optimized systems

 In this section, we explore the concepts of optimized systems and, specifically, describe two main types of optimized systems: system of record and system of engagement.

 3.1.1 System of record

 In the last 30 years, organizations have built their IT systems on a foundation of data processing. Examples of these include financial transactions, enterprise resource management, human resource, and customer relation management systems. They were designed to document and record all aspects of enterprise data necessary for the organization to function.

 These are considered systems of record.

 Over the years, these systems of record have transformed the business landscape. Organizations that made significant investment in their IT infrastructure gained a competitive advantage as a result of the efficient processes, just-in-time logistics, and customer insight, as a result of these systems of record.

 More recently, however, these systems have been made available more widely and are only partially seen as offering a competitive advantage. Indeed, the perception of these systems of record have shifted from competitively advantageous to an absolute necessity to conduct business.

 3.1.2 System of engagement

 A system of engagement provides the point of interaction, collaboration, insight, and analytics through community and forum. Basically, a system of engagement provides the point at which the IT services are consumed by the user. A system of engagement often uses cloud technologies to extend the usefulness of systems of record.

 There are two aspects to a system of engagement. The first provides the user experience with which a consumer of the service interacts. The second provides the interaction between the outward-facing user interface and the underpinning system of record to populate and define the service that is being provided.

 Systems of engagement refer to the transition from current enterprise systems, designed around discrete pieces of information (“records”), to systems that are more decentralized, incorporate technologies that encourage peer interactions, and which often use cloud technologies to provide the capabilities to enable those interactions.

 An example is social applications. These applications support and encourage employees to use information to collaborate in an easy and simple way.

 3.2 Defining the gap

 What is the gap between system of record and system of engagement?

 Systems of record, developed for passively serving information have existed for decades.They started out to be read from behind a 3270 green-screen terminal. Over the years, various technologies have appeared, like client/server, web-based browsers, rich clients, and eventually a four screens world (notebook, tablet, mobile, and smart TVs) as depicted in Figure 3-1.

 [image:]

 Figure 3-1 The evolution of computing

 The systems of engagement are relatively new and designed to encourage sharing and quick access. Furthermore they have the properties of social data like unstructured or streaming kinds of workloads.

 From a communication point of view, traditional PC and server-based applications have the processing power to handle heavyweight and secure protocols, like XML and SSH, to process vast amounts of encrypted data. On mobile devices, however, simpler and more efficient technologies are required to balance the needs of sharing data over a limited bandwidth, and securing access with the limited battery and processing capacity. Therefore, secure and lightweight communication protocols are needed, which can provide a balance of technologies for mobile.

 So, from the historical, design, or usage perspective, differences exist between both system of record and system of engagement. Three topics of differences are as follows:

 •User experience

 •Platform considerations

 •Operational differences

 3.2.1 User experience

 User experience in a mobile environment is a key factor, and has several challenges. Examples include a large number of screen sizes and the option to switch between landscape and portrait orientation. This kind of behavior might be unknown to a system of record.

 Not only do screen sizes require a different way of thinking about screens and interfaces, response times are crucial for mobile users, more than for a traditional web browser on a notebook or a PC. One example is a credit card payment that is identified as potentially fraudulent; rather than simply reject the transaction, the bank prefers to push a notification to the card holder and request that the holder validate the payment; this happens within seconds of time. Compared to a system of record, where queries might take minutes or hours, the system of engagement must react in near real-time. Another aspect to the immediacy of a system of engagement is that, for a mobile user, the average use time of a mobile app is about 70 seconds. As such, an elongated response time can render the use of a mobile app entirely impractical.

 Another difference can be the information that is shown. On a PC-based system, many screens might hold the information, some relevant, some perhaps not as relevant. A large set of information might require many pages to be displayed. On mobile devices, information must be short, to the point, and can even be determined in the context of what the state of the mobile device is. If the device is roaming, less information with a bigger font might be appropriate; if the device is located in a private and known network location with an improved security posture, data delivery can be treated differently. More or less information can be shown if a mobile device is outside or inside trusted environments. Geolocation can also determine what information can be displayed.

 3.2.2 Platform considerations

 From a platform perspective, the systems of record are traditionally the most valuable systems for an organization. Cloud computing solutions are increasingly being integrated into more back-end infrastructures; however, systems of record should be considered as being run and managed in a private environment. Reasons for this are the privacy requirements or the core business value of assets that are hosted on the system of record. Historically, these systems were designed from a stand-alone and monolithic point of view. Over the years service-oriented architectures (SOA) have connected many of these systems of record with one another. Some aspects of the system of record are there to interact only to a limited number of users and other systems for reasons of security, high availability, or response times.

 Systems of engagement, however, are meant to be accessible from any location at any time. They are designed to make interactions between users and systems possible. Cloud-like architectures and deployment models apply to the systems of engagement from a design principle. By default, they communicate using open standards like HTTP, JSON, and web services in general.

 3.2.3 Operational differences

 The systems of record are designed for high availability and disaster recovery. For an airline company, losing the ability to sell and book tickets for several hours can mean bankruptcy. Banks lose credibility if their services are not accessible for a period of time, and retail organizations that heavily depend on overnight replenishments of goods can suffer severely if a system of record is unavailable for more than half an hour. That is why these systems are designed to be available all the time. IBM System z, the IBM premier system of record, has unprecedented up-time records compared to other IT infrastructure components.

 But it is not only the infrastructure that makes the availability as high as it is today. Governance requirements and management procedures for the system of record have become more complex and demanding over the years to ensure that they are up and running. Advanced workload management systems, the ability to scale up, and to have processors working at 100% requires that these systems are reliable and robust.

 3.3 Closing the gap

 What mechanisms are in place to close that gap?

 IBM System z in combination with IBM Worklight offer many capabilities. System z in this context also offers additional values.

 3.3.1 User interactions

 Application providers must now engage the customer and not only service a specific request. This leads to the need for the system of engagement to enhance the user’s experience with various service providers, and to deliver new features at a rate that was previously unthinkable. The engagement tier interacts with many sources of data, including the Internet of Things and also data and applications on the system of record that often reside on a mainframe.

 As introduced in 2.1.1, “IBM MobileFirst Application and Data Platform” on page 15, IBM Worklight is a system of engagement that is at the center of the IBM MobileFirst solution portfolio. It provides a comprehensive Mobile Enterprise Application Platform to build, run, and manage mobile applications. Unlike traditional applications where new releases are scheduled yearly or quarterly, consumers expect the lifecycle of mobile applications to be delivered in a matter of days or weeks. The ability to enforce the latest version of a mobile app helps to govern and support the mobile channel. IBM Worklight provides its own Enterprise Application Store and also a strong version control mechanism that can force users to update the app without redirecting them to off-premise application stores.

 In addition, IBM Worklight can enhance mobile application governance and security. These features support the specific needs for the user interface part of the system of engagement.

 3.3.2 Platform considerations

 In a practical way, bridging this gap can be done by placing the system of engagement as close as possible to the system of record. With the virtualization capabilities of System z, and therefore the possibility to have a separate Linux environment running IBM Worklight in that environment, you can deploy both system of engagement and system of record on the same physical mainframe.

 Running IBM Worklight server on Linux for System z provides benefits of local access to services, applications, and data on IBM z/OS across a fast and secure IBM HiperSockets™ connection. This can improve performance and network latency to a point that is difficult to achieve with distributed systems.

 In addition, System z has a renowned capability to have a linear and automated scalability and can handle the unpredictable mobile workload.

 High availability and disaster recovery are further requirements for every organization that embraces a MobileFirst strategy. Implementing and maintaining these requirements have always been one of the strongest capabilities of an IBM mainframe environment. Closing the gap between system of record and system of engagement allows organizations to rely on their established high availability and disaster recovery processes and procedures.

 IBM System z can help you deliver an IT infrastructure that can keep pace with the increased transaction workload that results from mobile engagements, while ensuring the highest levels of protection and privacy. Deploying IBM Worklight server on Linux for System z provides a highly scalable solution and protection against the workload surges that mobile workloads can cause. Recent internal IBM performance tests have demonstrated that a single instance of IBM Worklight is capable of running thousands of mobile transactions per second on System z and scaling in a linear way as the number of processors is increased.

 Still, a general concern among customers is that mobile workload can crush IT. For example, transactions with relatively low value to a bank, such as checking account balances, are frequently performed during all times of day and night.

 Evidence suggests that moving to a push model of interaction, rather than a pull model, can provide significant relief for this problem. The basic idea is to push account balances to the client mobile devices each time a transaction occurs. Studies have shown that this solution can reduce overall load and flatten the peaks that can otherwise occur.

 See the IBM Redpaper™ publication Mobile Design Patterns: Push, Don't Pull, REDP-5072 for more information.

 Figure 3-2 highlights the role of IBM Worklight as a system of engagement between the mobile devices and back-end services that are deployed on the mainframe system, such as CICS, IBM Information Management System (IMS), IBM DB2, IBM WebSphere Application Server, and others.

 [image:]

 Figure 3-2 Overview of IBM Worklight as a MEAP

 The IBM Worklight adapter framework can automatically convert between the protocols that are commonly used in mobile apps (for example, JSON over HTTP) and the protocols that are used by the back-end services (for example, SOAP over HTTP, JMS, or SQL). The adapter can issue requests to multiple back-end systems and then combine the retrieved information into one response that is returned back to the mobile app. The adapter can also cache frequently requested information.

 Consider this example. One or more web services running on IBM CICS Transaction Server (CICS TS) are exposed through SOAP interfaces that will ultimately be used by the mobile client code. Here, you can use tools, such as IBM Rational System Architect, to design and model these services, or Rational Developer for IBM zEnterprise to develop and test the service implementations. Both products include Worklight Studio to simplify the overall environment for developers who are working on both aspects of the mobile application. The server-side components and adapters of an enterprise mobile application are deployed to a Worklight server running in a Java Enterprise Edition server (for example, IBM WebSphere Application Server).

 3.3.3 Security considerations

 You must consider how to design and deliver transactions, for all stakeholders, that are as high in quality as they are high in frequency, and as secure as they are convenient.

 Mobile security is achieved through compliance with the following security principles:

 •Authentication

 Ensures that the identities of both the sender and receiver of the mobile transaction are verified. Protecting access to mainframe applications might require strong authentication or two-factor authentication (2FA) and risk-based authentication (RBA) for added security.

 •Authorization

 Grants a mobile user, system, or process either complete or restricted access to a mainframe resource.

 •Confidentiality

 Protects sensitive data from unauthorized disclosure.

 •Integrity

 Ensures that information that arrives at a destination has not been altered.

 •Non-repudiation

 Proves that a mobile transaction occurred or that a message was sent or received.

 Consider the risks if inadequate authentication and authorization mechanisms are put in place for mobile-initiated transactions that access mainframe services. Thieves of stolen devices might be able to retrieve user credentials from the mobile device, or cyber criminals might bypass authentication controls. To address these challenges, multi-factor authentication can be used (for example, verification of the device, user, and mobile application).

 Consider also the consequences if inadequate confidentiality, integrity, and non-repudiation mechanisms are put in place. The mobile user’s confidential information, such as bank account details, can be lost. Cyber criminals might be able to modify the amounts of money being transferred. Mobile users might be able to deny the transactions that they performed. To address these challenges, encryption capabilities can be used. Also necessary is to ensure that new mobile security features are integrated into the existing System z security infrastructure.

 A good practice implementation covers the following aspects of mobile security:

 •At the mobile device

 •Over the network and throughout the enterprise

 •Inside the mobile application

 IBM offers several options for mobile device management (MDM) and mobile application management (MAM), such as IBM FiberLink MaaS360. This solution offers capabilities for managing, securing, and reporting on notebooks, desktops, servers, smartphones, tablets, and even point-of-sale terminals. The benefit to the organization is visibility and control over all devices, cost reduction, productivity increases, security posture, and compliance improvements. The most effective mechanism to ensure that proper access management policies are enforced is through the use of a centralized mobile security gateway, such as IBM Security Access Manager or IBM WebSphere DataPower. Using a security gateway enables organizations to control the parts of their infrastructure that are exposed to consumers, which is relevant for push notifications and also for mobile-initiated transactions. Mobile authentication and authorization must then be integrated into the existing security infrastructure used by mainframe applications.

 IBM Worklight provides a set of security capabilities that address a wide range of mobile security objectives, including these:

 •Protecting data on the device, for example by encrypting on-device storage and enabling offline authentication

 •Providing mobile application security, for example by encrypting the application code and web resources to prevent tampering with the application.

 •Features to help administrators ensure that critical application security updates are delivered to the applications on the mobile devices

 •Providing robust authentication and authorization and simplifying the task of connecting mobile applications with the System z back-end authentication infrastructure

 Running Worklight on Linux for System z provides these extra security benefits:

 •The IBM Worklight server benefits from System z platform security and EAL 4+ certification

 •Reduced costs and improved performance of encryption processing by using System z hardware cryptography.

 •The security advantages of using HiperSockets to access back-end systems.

 •The potential opportunity of eliminating encryption between the IBM Worklight server and the back-end systems.

 Chapter 8, “Designing for security” on page 113 describes more about mobile security details.

 3.3.4 Mobile analytics considerations

 In a banking scenario, determining whether a payment request is likely to be fraudulent in real time requires analysis of large amounts of payment history and other data. This type of analysis is best done on the platform where the transaction takes place, for example, using the real-time scoring capability in DB2 for z/OS and the ultra fast query capability of the IBM DB2 Analytics Accelerator.

 Similar scenarios exist in the retail industry. For example, signing up to use a store’s mobile application typically provides a customer with access to a history of purchases. The store can then use analytics to determine what projects the customer is working on (for example, remodeling a kitchen) or life events that the customer is going through (for example, having a child). Then, the push notifications can be used to suggest additional products that complement those that were previously purchased or that might be appealing based on a derived customer profile. In addition, when the customer is near the store, a discount coupon can be sent to further encourage a visit to the store.

 The ability to instrument existing mainframe applications, which allows them to emit business events without disruptive change, is a critical enabler for the event-aware mobile enterprise. For example, the business-event-capturing capabilities in CICS allow the middleware to automatically collect and filter events without requiring any change to the application. Emitted events can be aggregated and analyzed (for example, using IBM Operational Decision Management) and then used to support intelligent decisions.

 By capturing and making sense of data in real time and in context, organizations can understand customers, partners, employees, processes, and the world better than they ever have before. And by seamlessly transforming those insights into the best mobile-delivered services, these same organizations can enable better, faster, context-driven decisions and actions by users and even the devices themselves.

 To make the most of mobile analytics, you must do these tasks:

 •Adopt design patterns that are built around the special capabilities of mobile.

 •Be able to aggregate and act on data from back-end mainframe systems.

 •Build a MEAP that is capable of handling the mobile transactions and data (both pulled and pushed).

 In addition to using analytics that are running on the back-end systems and using mobile to engage with customers, IBM Worklight can offer another interesting aspect. When users are activating an app that connects to IBM Worklight server, additional valuable data is brought in: when, where, how long, what kind of device is connected, and so on, is information that can be leveraged.

 3.4 Conclusion

 Mobile changes the way organizations and their customers, business partners and employees interact. More than ever, the means to engage through mobile is more open, more direct, and faster.

 Opportunities and challenges await those organizations that choose to engage with mobile. This chapters describes the two IT systems involved (the system of record and the system of engagement), and how and why they differ. We conclude that the differences lie in interaction, platform and operational activities, and we describe that the IBM MobileFirst approach, and in particular IBM Worklight, can help to overcome those differences.

 IBM System z, with its particular capabilities, can help build an agile and secure mobile enterprise environment.

 One of the opportunities for organizations adopting mobile is the access to unprecedented amounts of data from the users and their mobile devices, especially in the context of where they are and what they are doing. Mobile analytics can therefore offer an additional source of knowledge to gain even more insights into the user interaction with the organization.

[image:]
[image:]

IBM Worklight: The foundation for mobile solutions

 In this chapter, we introduce the IBM Worklight platform as the foundation for mobile solutions on System z and describe how mobile applications for multiple devices can be designed, developed, and deployed with an intuitive set of tools, programming models, and systems.

 This chapter contains the following topics:

 •Business benefits

 •IBM Worklight functional capabilities

 •IBM Worklight architecture

 4.1 Business benefits

 In the rapidly developing and changing world of mobile applications, organizations need to adapt and evolve constantly. User expectations for mobile applications are as high, if not higher, than their experience of other channels, such as web and in-store.

 IBM Worklight enables mobile applications to be designed and developed in a short amount of time. Worklight provides the deployment, management, governance, and security components that result in a successful enterprise ready application.

 	
 Worklight advantages: Using Worklight can decrease the cost of multiplatform application development, integration, and maintenance, and it can increase the speed of time to deployment.

 Worklight delivers the following key business benefits:

 •Rapid time to value from mobile application development through to deployment

 •Reduced development costs through efficient code and asset reuse, and by collaboration across teams

 •Meeting customer expectations, first time, by simulating how the application will look and feel with application record and playback facility

 4.2 IBM Worklight functional capabilities

 IBM Worklight is a Mobile Enterprise Application Platform (MEAP) that provides a comprehensive set of tools, application programming interfaces (APIs) and run time components, designed to help organizations to build, run, and manage mobile applications, and forms part of the IBM MobileFirst Platform product suite.

 Using Worklight, browser, hybrid, mixed, and native mobile applications (Figure 4-1 on page 47) can be efficiently developed in a short amount of time, giving businesses a competitive edge through faster time-to-market, reduced development costs, and enhanced mobile application governance and security.

 [image:]

 Figure 4-1 Mobile application implementations with Worklight

 	
 Application types:

 •Mobile web applications are the same as those used in a desktop browser, but are adapted to fit on the smaller screen of a mobile device. They are typically written with HTML5, CSS and JavaScript, and are portable across multiple devices and operating systems. Web applications cannot access the hardware on the mobile device (such as the camera and microphone).

 •Native applications are written in an operating system-specific language, and have full access to mobile device hardware, features, and functions.

 •Hybrid applications combine both the web and native models; applications are written in the browser but wrapped in a container that allows the application to access the device hardware.

 Development activity is carried out in an environment that can address all supported mobile operating systems. This means an application can be created that looks and feels the same across all deployed devices, but takes advantage of the native capabilities of the mobile device.

 Worklight uses standards-based technologies to integrate directly with the various mobile platform software development kits (SDKs), avoiding the use of code translation, proprietary interpreters, and lesser known scripting languages.

 	
 Worklight capabilities: With Worklight, organizations can attain these goals:

 •Support multiple mobile operating system environments and devices.

 •Connect and synchronize with enterprise data, applications and cloud services.

 •Safeguard mobile security at the device, application and network layer.

 •Govern the mobile application from one central interface.

 Test applications by recording and playing back a process or function on a mobile device or emulated mobile environment

 The five key components of Worklight are shown in Figure 4-2.

 [image:]

 Figure 4-2 Worklight components

 The components in the figure are described as follows:

 1.	Worklight Studio

 An Eclipse-based development platform for coding, testing, and integration tasks for web, hybrid, or native mobile applications. It interfaces with native tools such as XCode and Android Studio.

 2.	Worklight Application Center

 A multiplatform enterprise application store to allow organizations to govern and distribute production-ready mobile applications. It has built-in access controls and role-based security, and can elicit and organize user feedback. It can also be used as part of the development lifecycle to distribute pre-release software to be analyzed by developers for feedback by version and device.

 3.	Device Runtime

 Client-side runtime code compiled into hybrid applications that embed functionality such as offline, encrypted and synchronizable data stores that interact with the Worklight Server.

 4.	Worklight Server

 A scalable mobile middleware that sits between the mobile application and the enterprise back-end services. It acts as an auditable control point for mobile devices, also providing a strong security layer; Worklight Server contains multifactor authentication and mobile application authenticity checking. It enables data connectivity for multisource data extraction and manipulation, mobile application management, analytics, and runtime services, such as push notifications and geolocation capabilities.

 5.	Worklight Console

 A web-based user interface for monitoring and administrating the Worklight Server and its deployed applications. Adapters to connect to services and push notifications are also managed within the console. Furthermore, summaries of platform usage can be displayed on dashboards.

 4.2.1 Worklight Studio

 The Worklight Studio software development kit (SDK) and integrated development environment (IDE) offer simplified development of applications across multiple mobile platforms, including iOS, Android, Windows Phone, and Java ME. The Worklight framework enables a high level of code reuse, and enables developers to deliver a rich and consistent user experience matching the capabilities of the device.

 Worklight Studio features a drag-and-drop user interface (UI) for the design and development of the mobile application. Interfaces such as JQuery Mobile, HTML, and JavaScript files are easily created by dragging HTML5 and Dojo Mobile components from a built-in palette onto the HTML work area, known as the canvas.

 If the developer opts for a hybrid development style, most application code can be shared across multiple mobile device environments, without altering the platform-specific user experience or application functionality. For example, an application can be developed once, with feature and function code unique to the iPhone held in a separate folder.

 Common application code is stored in a shared folder, with device or environment-specific code stored in isolated folders (see Figure 4-3), that can overwrite or compliment the common shared code. As a result, application logic is consistent across the various environments, while the user experience behaves as expected: natively and geared to the functionality and design guidelines of the device.

 [image:]

 Figure 4-3 Multiple device-specific code stored within a single project

 When developing hybrid or native applications, application developers can directly access the APIs (used this way in 4.2.3, “Device Runtime” on page 52) that the devices offer, and can easily integrate with third-party libraries, frameworks, and tools. Because developers are not constrained by intermediary build-time or runtime layers, when new APIs are released, they are accessible for use immediately.

 Worklight Studio allows developers to choose how they develop applications: using pure native code (Objective-C, Java or C#), standard web technologies (HTML5, Cascading Style Sheets 3, JavaScript), or a combination of both.

 For hybrid application development, Worklight Studio supports these scenarios:

 •HTML to call native code using a plug-in, which can be used to perform non-user interactive functions such as reading the compass, or to overlay a user interface on the browser.

 •Implementation of complete screens, with switching between native screens and web screens made seamless with smooth or animated transitions.

 Further development capabilities within Worklight Studio include these:

 •Runtime skins, which allow applications to automatically adjust to different devices using the same operating system, such as different screen sizes, different screen resolutions, and different input methods.

 •Geolocation toolkit, enabling the gathering and analysis of location data from GPS and Wi-Fi efficiently and with minimal drain on the device.

 •Screen templates to automate the creation of mobile screens, such as lists, authentication, navigation, search and configuration.

 •Standard data retrieval, enabling developers to access hierarchical data from many back-end database management systems, such as IBM DB2, and convert to JavaScript Object Notation (JSON) for application use.

 •Invoke back-end services and applications, such as those running in IBM CICS, directly from within the Worklight Studio using JSON and Extensible Markup Language (XML).

 •Unified push notifications to preconfigure automatic alerts from one centralized interface, making the communication with users completely transparent to the developer.

 Worklight Studio includes integrated and automated functional testing, available for Android and iOS native and hybrid applications. This enables developer and testing teams to rapidly test Worklight applications, by recording a sequence of actions on a mobile device to generate a test script, which is then replayed on a real mobile device or on an emulator or simulator. The results can be viewed and shared using a generated HTML report. Device specific functions, such as camera, gyroscope and compass can be emulated and tested with the application.

 4.2.2 Worklight Application Center

 Worklight Application Center provides an enterprise application store for the distribution, governance, and management of pre-release and production-ready mobile applications.

 The Application Center can be used, for example, to deploy applications to employees with their own bring your own device (BYOD) or company owned mobile asset. Existing authentication frameworks can be used to manage application distribution by department, job function, geographical location, or other rule. Consequently, users accessing the store will only see the applications they are entitled to download. Employees can rate applications and provide feedback.

 For development teams, Worklight Application Center can be used to distribute pre-release software to developers and testers. Feedback can be quickly obtained and organized by version and device to isolate and resolve defects. It integrates with the software build process to automate the distribution of the latest releases to project teams.

 Key functions of the Application Center console include being able to do these tasks:

 •Upload different versions of mobile applications.

 •Remove unwanted applications.

 •Control access to applications.

 •View feedback that mobile users have left for an application.

 •Obtain information about applications installed on a device.

 •Make an application inactive so it cannot be downloaded.

 From the mobile device, the Application Center enables users to do these tasks:

 •List available mobile applications.

 •Install a new application on a device.

 •Send feedback about an application.

 The Application Center supports applications for Android and iOS, and Blackberry and Windows Phone devices.

 4.2.3 Device Runtime

 Worklight provides client-side runtime code that services HTML5, hybrid or native applications, and includes libraries for native and JavaScript implementations.

 The runtime components enable a mobile application developer to do these tasks:

 •Access back-end data and transactions through the invocation of Worklight services.

 •Authenticate using pre-configured code to manage the authentication sequence and for securing application data.

 •Provide offline access with a local JSON database for data persistence, with back-end synchronization. Supports encryption and large data sets.

 •Manage new application versions and disable applications in accordance with set policies.

 •Troubleshoot code for detecting runtime connectivity problems in the application, and for collecting diagnostic information.

 •Collect usage reporting for audit and analysis to be recorded by the Worklight Server.

 •Ensure cross-platform compatibility: a set of uniform APIs to hide the differences in features and functions across different devices.

 •Adjust features and functions during run time, optimizing the application for different devices across the same operating system (for example a phone and a tablet).

 4.2.4 Worklight Server

 The Worklight Server (based on WebSphere) is a scalable gateway sitting between applications, external services, and the enterprise, and acts as a container for Worklight application packages.

 The Worklight Server can integrate seamlessly with existing infrastructure, based on industry standard adapters and server-side code. It is a scalable solution, allowing hundreds of thousands of users to perform transactional processes against the mobile application and back-end systems.

 In summary, the Worklight Server provides many capabilities:

 •Encrypted communications between mobile devices and the enterprise

 •Back-end connectivity to existing application services and servers

 •Data manipulation, such as converting hierarchical data to JSON

 •Single sign-on authentication, with integration into existing enterprise authentication services

 •Automatic collection of user-adoption and usage data for analysis

 Server-side entities, such as configuration files and integration code, which are used in the Worklight Server, can be created and managed from within Worklight Studio. These artifacts are automatically built into web archive (WAR) files using Worklight Studio, and deployed onto the Worklight Server.

 In providing the physical connectivity between mobile device and enterprise systems, the Worklight Server supports a wide variety of adapter technology, such as SOAP, Representational State Transfer (REST), and Structured Query Language (SQL). It integrates multiple source data mash ups into one stream for serving to the user, and can host server-side logic to deliver back-end data for mobile consumption.

 4.2.5 Worklight Console

 The Worklight Console is a web-based user interface used for administration of the Worklight Server and deployed applications, adapters and push notifications. Analytics enable an administrator to search across logs and events (that are collected from devices, applications, and servers) for patterns, problems, and platform usage statistics.

 By using the console, an administrator can do these tasks:

 •View dashboards that monitor all deployed adapters and applications.

 •Control and monitor push-notification services, event sources and related applications.

 •Assign device specific security to support the installation of business applications on sanctioned devices.

 •Manage multiple versions of the same application, and remotely disable applications by version and mobile operating system type.

 •Define device based access control policies to control the access to applications (from Worklight v6.1).

 Operational analytics, collated within the Worklight Console, enable the administrator and management teams to look at data on a map view, showing activity on a world map, search through server logs, and by using the equivalent reports feature, can view the full device usage for the last 30, 60, or 90 days. Reporting can be done in near real-time across the various views to provide at-a-glance dashboard reports. The views can show client activities, server logs, and client crash data.

 4.3 IBM Worklight architecture

 After exploring the Worklight functional capabilities, we look more closely at the architectural components of the solution.

 Figure 4-4 shows the Mobile Enterprise Application Platform (MEAP) environment, in this case Worklight, as a component within an enterprise architecture.

 [image:]

 Figure 4-4 Architecture overview of a mobile environment positioning the MEAP

 Applications are distributed to the mobile devices through the Worklight platform and Worklight Application Center. Native, hybrid, and web-based mobile applications connect back to the MEAP to consume the services it provides.

 Application management is provided through the Worklight Application Center to ensure that the applications are at the correct version and accessible by the correct users.

 In terms of security, Worklight facilitates user authentication and integration into existing security systems.

 Worklight provides an integration with back-end applications, systems and services. Existing applications and database management systems can be accessed directly through common service orientated architectures and connectors provided by the Worklight platform.

 4.3.1 Block overview

 The Worklight platform sits within the Middleware layer (Figure 4-5) to provide services between mobile devices and the enterprise.

 Worklight provides the development platform with which to create and modify mobile applications, and also provides the necessary APIs, services, and standards to interface with enterprise security, business applications, database management systems, infrastructure, and service management.

 [image:]

 Figure 4-5 Block overview of Worklight in the Middleware layer

 4.3.2 Components

 Figure 4-6 on page 57 shows the architectural components of the Worklight platform. It can broadly be divided into five areas:

 •Development infrastructure: All the components for building, deploying, and running a mobile application

 •Client runtime environment: The components for running a mobile application directly on a device

 •Server runtime environment: Code, interfaces, and adapters for providing back-end application support and data to a mobile application

 •Console: The management capabilities to provide remote monitoring, dashboards and analytics on mobile devices

 •Application Center services: The stand-alone functionality to host, manage and deploy applications to an enterprise application store

 [image:]

 Figure 4-6 Component view of Worklight

 Development infrastructure

 The development infrastructure supports the functions and capabilities of Worklight to provide the complete mobile application development and test solution: from building the application through to deployment and run time.

 Worklight Studio is an Eclipse-based integrated development environment (IDE) to enable all the coding and integration tasks required to develop a fully operational mobile application for various mobile operating systems. As described in 4.2.1, “Worklight Studio” on page 49, the tool allows for open, multiplatform device development.

 The shell approach to mobile application development is a feature of the Worklight Studio platform that allows the application to be split into two portions: an external shell and an inner application (Figure 4-7). This allows development teams with different skill sets to develop independently, and without affecting the overall “look and feel” of the application.

 [image:]

 Figure 4-7 The shell approach to mobile development

 The shell allows developers to encapsulate mobile code and other assets into a reusable foundation. One development team is responsible for developing the branding, security configurations, auditing, and authentication; another team concentrates on the functional code. Any number of shells can be created, but these enforce the inner applications to automatically comply with these standards.

 With corporate policies enforced by the shell, application developers can focus on the core functionality of the application, such as the user interface, the business logic, and data integration. When completed, the shell and inner application development constructs are distributed into a single application.

 Client runtime environment

 The client runtime environment (discussed in 4.2.3, “Device Runtime” on page 52) consists of frameworks, libraries, APIs, and code bases to support the execution of applications on the mobile device. This functionality allows the deployment of runtime code to the mobile device, with embedded server functionality.

 Worklight provides a framework that enables the development, optimization, integration and management of secure applications that run on client devices. The framework provides the following features:

 •Automatic packaging and provisioning of application resources

 •Tools that offer uniform access to back-end enterprise data, processes, and transactions

 •Uniform persistence

 •Flexible authentication and automatic application protection from web attacks

 Worklight uses the Apache Cordova development framework (Table 4-1) to deliver a bridge between standard web technologies (such as HTML5, CSS3, and JavaScript) and the native functions that the mobile device provides. There is no proprietary programming language or model to learn and adopt.

 Table 4-1 Worklight Development Frameworks and programming models

 	
 Mobile OS

 	
 Devices

 	
 Native applications

 	
 Hybrid applications

 	
 Web applications

 	
 iOS4+

 	
 iPhone, iPad, iPod Touch

 	
 Objective C

 	
 Cordova

 	
 Yes

 	
 Android 2.2 - 4.2

 	
 Phones and tablets

 	
 Java

 	
 Cordova

 	
 Yes

 	
 BlackBerry 6, 7, and 10

 	
 Phones

 	
 -

 	
 Web Works

 	
 Yes

 	
 Windows Phone 7.5 and 8.0

 	
 Phones

 	
 -

 	
 Cordova

 	
 Yes

 	
 Windows 8 (including RT)

 	
 Desktops, notebooks, and tablets

 	
 -

 	
 Cordova

 	
 Yes

 	
 Feature Phones

 	
 Phones

 	
 Java ME

 	
 -

 	
 Yes (mobile browser must support HTML4, CSS 2.1, JS 1.5)

 Client-side runtime APIs are provided to improve application development, allowing the application to access various features during run time. The libraries are bundled into the application, and integrate with the mobile application and the Worklight Server through predefined communication interfaces.

 	
 Client-side APIs: of client-side application programming interfaces include these key features:

 •Cross-platform compatibility, to support development across all platforms, such as accessing common control elements of tab bars, clipboards, location services, and the camera.

 •Client to server integration, to ensure a transparent communication between a mobile application and the Worklight Server. Worklight mobile applications always use an SSL-enabled connection to the server.

 •An encrypted data store, to access private data, using ISO/IEC 18033-3 standards, such as AES256 or PCKS#5.

 •The ability to synchronize mobile application data with related data on the back-end, using JavaScript Object Notation.

 Runtime skinning abstracts devices from the design of the user interface. The runtime skin is applied during run time to configure the screen resolution, operating system and form factor.

 Server runtime environment

 The Worklight Server, discussed in 4.2.4, “Worklight Server” on page 53, provides a run time for adapters, analytics, push notifications, and application hosting services.

 Server-side APIs are provided to integrate communication between the mobile application and back-end systems. JavaScript and Java APIs can be called to perform functions such as authentication, accessing web services, accessing a database, and subscribing to push notifications.

 By developing server-side application code, the mobile application has direct access to back-end transactional systems, such as IBM CICS Transaction Server, and cloud-based services. Performance, security, and maintenance are centralized.

 Built-in JavaScript Object Notation (JSON) translation is provided to reduce the amount of data transferred between the mobile application and the Worklight Server. JSON is a lightweight and human readable data interchange format, and because it is smaller than other data interchange protocols, such as Extensible Markup Language (XML), it can be quickly generated and parsed. The Worklight Server can automatically convert hierarchical data to the JSON format, further optimizing delivery and consumption by the mobile application.

 A built-in security framework provides connectivity and integration into existing enterprise security systems, and sends connection credentials to the back-end. This enables the mobile application to use existing security systems, with credentials residing on the server, not the device.

 The adapter library can be used to connect to various back-end systems, with adapters provided for SOAP, XML over HTTP, Java Database Connectivity (JDBC) and Java Message Service (JMS); see Figure 4-8. With this capability, complex lookup procedures can be defined, and data can be combined from multiple back-end services. This aggregation reduces the amount of network traffic to and from the mobile device.

 [image:]

 Figure 4-8 Worklight adapters for back-end connectivity

 When you connect by using Worklight adapters to a system of record in System z, transactional CICS applications are often involved. Various Worklight adapters can be used to access CICS resources as shown in Figure 4-9. Based on the type of connections that are required in a mobile solution, the HTTP-based protocols (JSON, REST, SOAP) can be used, or for asynchronous secured communications the message queuing (MQ) or the special protocol for mobile devices MQ Telemetry Transport (MQTT) can be used. Even 3270 based applications can be modernized and accessed from a mobile app by using Host Access Transformation Services (HATS), which converts the 3270 calls into Web Services calls.

 [image:]

 Figure 4-9 Worklight adapters to connect to a CICS system

 The push notification service within the server runtime environment (Figure 4-10) is an abstraction layer for sending notifications to the mobile device, using either the device vendor’s infrastructure or the Worklight Server Short Message Service (SMS) capabilities.

 The request to subscribe to notifications is sent from the user’s application to the Worklight Server, containing information about the device and platform. The system administrator can manage subscriptions and notifications from back-end systems, and use the Worklight Application Center to send notifications to the devices.

 [image:]

 Figure 4-10 Worklight push notification service

 The operational analytics feature enables search across applications, services, devices and other sources to reveal usage data or to detect problems. In addition to summarizing report data, more detailed operational analytics are available in the Worklight Console, described in 4.2.5, “Worklight Console” on page 54.

 Worklight includes the IBM WebSphere Analytics Platform, which drives the Worklight analytics feature. IBM WebSphere Analytics Platform can help you understand the volume, velocity, veracity (amount of noise in data), and variety of mobile data. Figure 4-11 shows how Worklight can interface with IBM WebSphere Analytics Platform, and together with Tealeaf CX Mobile, can create detailed reports on mobile data to be accessed by Business Intelligence and Reporting Tools (BIRT).

 [image:]

 Figure 4-11 Worklight Operational Reporting interfacing with Tealeaf CX Mobile

 Console

 The Worklight Console is a centralized web-based portal, used for the control and management of the deployed application, and allows for the analysis of user statistics collected by the Worklight Server runtime environment.

 Details of the functionality and capability of the console are described in 4.2.5, “Worklight Console” on page 54.

 The console consists of application catalogs, a dashboard and push notification display. Figure 4-12 shows an example of the push notifications panel. The left column displays the list of data sources configured in the Worklight Server and how many users are subscribed to it. The column at the right displays the deployed applications that can receive push notifications, how many notifications were sent since system startup, and any errors that occurred.

 [image:]

 Figure 4-12 Worklight Console push notification

 Application Center

 The Application Center consists of the following four main components. Details are described in 4.2.2, “Worklight Application Center” on page 52.

 •Mobile client application: Is used to install applications on a mobile device, and to send feedback about the application to the server.

 •Web console: Is a Java-based application, hosted server-side, that must be deployed in a web application server, such as IBM WebSphere Application Server.

 •Application Center Services: provide functions such as listing available applications, delivery of binary files to the mobile device, and to register feedback and ratings.

 •Applications: The server-side component consists of an administration console and the mobile applications.

 A database repository is held on the server containing information regarding which applications are installed on mobile devices, the feedback about applications and the application binary files themselves.

 A web administration console is where you can manage applications, user access rights to install applications, feedback, and details about the applications installed on devices.

 Figure 4-13 shows how the Application Center can be used to view all the applications installed on a device.

 [image:]

 Figure 4-13 Application Center showing installed applications

 Figure 4-14 shows the architecture of the Application Center, and how the Application Services can consume services.

 Mobile devices can view the applications available to install through the catalog service, install through the install service, and provide feedback through the feedback services. The Application Center mobile application is installed locally on the mobile device, and an administrator uses the Application Center Console to manage the entire process.

 [image:]

 Figure 4-14 Application Center architecture

 Applications that are developed in the Worklight Studio can be published directly into the Application Center.

 4.4 Conclusion

 IBM Worklight running as the system of engagement on System z can provide a highly scalable all-round mobile solution architecture. It can host an enterprise Application Center, hosting all mobile apps for different mobile platforms using a common code and dynamic libraries for device specific functions of a mobile device.

 The flexibility of Worklight to connect to back-end transactional and data services using Worklight adapters makes it well-suited for extending existing System z transactional processes and applications to mobile devices, reaching new markets, and serving globally around the clock.

[image:]
[image:]

Designing and planning the solution

 In this part, we first introduce a typical deployment model, and then more closely look at the overall enterprise IT architecture for a mobile solution on IBM System z.

 The two other important focus areas for a mobile solution on IBM System z focus on the design for resilience and the design for security.

[image:]
[image:]

Deployment model for a mobile solution on IBM System z

 In this chapter, we describe the types and styles of mobile applications and their behavior and characteristics. It also describes deployment options for a System z environment. Based on the MobileFirst design of mobile applications, we focus on the access of the back-end core transaction systems and data on the system of record.

 This chapter contains the following topics:

 •Mobile applications and IBM Worklight

 •Operational type of mobile applications

 •Integration of mobile apps with System z

 •Security and deployment requirements

 5.1 Mobile applications and IBM Worklight

 With MobileFirst, new mobile applications can influence and extend your way of doing business in the following ways:

 •Transforming value chains by enabling new types of mobile interactions and transactions

 •Turning interactions into opportunities for return on investment

 •Connecting mobile applications to systems of record for continuous transactions

 •Ensuring trusted interactions at the application, device, and network levels

 •Taking advantage of cloud-based services to capture unique mobile insights

 As described in Chapter 4, “IBM Worklight: The foundation for mobile solutions” on page 45, IBM Worklight provides the perfect platform to build these new mobile applications.

 Worklight is flexible and offers a framework to deploy various types of mobile applications. You can build your mobile applications for various environments, such as these examples:

 •Mobile environments, which include iPhone, iPad, Android phones and tablets, BlackBerry, and Windows Phone

 •Desktop environments, which include Adobe AIR and Windows 8

 •Web environments, which include Mobile web app and Desktop Browser web page

 A difference exists between the mobile web app environment and the desktop browser web page environment.

 •Mobile web apps are used in only a mobile device. Choose the mobile web app environment when you want your customers to use your application with their mobile device. Mobile devices can also use web browsers to access existing web applications. In this case they are unable to exploit special mobile device functions such as accelerometer or camera functions.

 •Desktop browser web pages are used only in a desktop web browser. With the desktop browser web page environment, you can develop an application that you then embed in your website, but this application is not meant for use in a mobile device. Special considerations must be given to make a web page mobile-aware in case it is accessed by a mobile device.

 Therefore, from a design perspective, consider MobileFirst now and then design the applications with the correct mobile approach.

 5.2 Operational type of mobile applications

 Mobile Enterprise Application Platforms (MEAPs) that run on IBM System z can have different behaviors depending on their design and transactional requirements.

 In a traditional transactional application, we typically know all the parameters, like location of server and client components, availability of network resources, and the users and processes that have been granted access to the application.

 In a world of mobility, we are not that fortunate. Mobile devices might roam between trusted and untrusted networks, and in certain situations a user might encounter no network connectivity. At times, even the type of client might change suddenly when a user purchases a new device.

 Based on this dynamic behavior, you must be prepared for three mobile application types based on their interaction style:

 •Deployment of stand-alone mobile apps

 •Deployment of asynchronous mobile apps

 •Deployment of online transactional mobile apps

 5.2.1 Deployment of stand-alone mobile apps

 A stand-alone app typically has a single component that is stored in the Worklight Application Center and made available for various multiple mobile platforms. After the mobile platform downloads the app (regardless of whether it is iOS, Android, Blackberry, or Windows Phone) the app runs stand-alone on the mobile device without any requirement to be connected to the MEAP.

 These kinds of apps typically leave information on the MEAP, so that newer versions of the app can be made known through push notifications.

 This type of application often provides a capability that can periodically contact the MEAP when the device is online. Such a function is typically used to send statistical information or to check for application updates.

 5.2.2 Deployment of asynchronous mobile apps

 If a mobile app is developed to synchronize its data periodically, we can use the concept for an asynchronous interaction without the requirement to have a permanent online connection to the MEAP.

 This type of app can be used to avoid or restrict a workload increase in back-end servers because of constant mobile app activity. This model can ensure delivery of information by using asynchronous protocols such as message queueing (MQ) or MQ for Telemetry Transport (MQTT). These two protocols can be used end-to-end, from the mobile app on the mobile device all the way to the back-end transaction, for example, in CICS on System z.

 An asynchronous mobile app might require secure network access and proper authentication and authorization before it can access any communication or data synchronization. Proper local encryption on the mobile device might be required for sensitive corporate data.

 An example for asynchronous communication is an email client app on a mobile device. The app is synchronizing with a server periodically, and users can read synchronized content and write new mail while the device is offline. The replication or synchronization process uses asynchronous communication with the MEAP after proper authentication.

 Another example is an app for field or support representatives, where the app is scheduled to asynchronously download the daily task list in addition to an updated product catalog, which can then be used offline. New orders or documents are stored in a secured container or encrypted database on the mobile device.

 A common example for an asynchronous mobile app is the electronic newspaper you have subscribed to. The app is scheduled to download the newspaper every morning. After replication the content is consumed offline, on a read-only base.

 5.2.3 Deployment of online transactional mobile apps

 For mobile apps that exchange sensitive information and initiate data changes on back-end transactional services in an online immediate manner, the requirements are much more extensive than the previously described mobile apps.

 A transactional mobile app stays online at all times with access to the MEAP and transactional systems. The online connection most often requires a secure corporate network connection, like a VPN tunnel. Proper authentication is required to establish this form of communication.

 End-to-end security requirements are typically more stringent for transactional mobile apps. Certain transactions may require second-factor authentication or a particular physical location; for example, it may not be allowed to initiate certain financial transactions from a coffee shop but only from within the corporate network or home location of the employee.

 Transactional mobile apps empower individuals and organizations to perform real-time actions. Consumers and field representatives can enter data, approve requests, initiate banking transactions, but also interact with other mobile apps in parallel. In an instant, these actions are sent to transaction systems, triggering new business processes, resource allocation, and influencing business activity.

 The deployment of such a mobile app typically consists of an application running on the mobile device inside a secured container, accessing encrypted data for all transactions. Over a secured connection, the application accesses an application component on the MEAP on System z. At the MEAP, authorization requests are granted access to the Worklight adapters which can then access back-end services. The end-to-end transaction security is made possible using the adapter security in Worklight. The results from the back-end services are encrypted and transferred back to the mobile device using the secured connection.

 Transactional mobile apps protect their data in secured containers and use synchronous transactional protocols to communicate with the MEAP on System z.

 5.3 Integration of mobile apps with System z

 To deploy mobile apps that access System z back-end transactional services and data, designing the mobile solution with a MobileFirst attitude is important. This means that an organization should follow the guidelines and use the capabilities of the IBM MobileFirst framework to use existing System z applications to their fullest extend and deploy the MEAP within the same environment.

 But what does having a MobileFirst attitude mean?

 5.3.1 Putting mobile first

 Focusing on mobile first means designing a mobile application with the mind-set of a mobile user, its interaction characteristics, and mobile device capabilities. To design a mobile application with MobileFirst requires you to do these tasks:

 •Plan the business logic for the mobile application first.

 Plan for new business, new markets, and new target users.

 •Design the mobile front-end and interaction style.

 Design with mobile user interface components in mind, use less text fields, and include voice recognition.

 •Define the transactional requirements.

 Decide which application type is right for you:

  –	Stand-alone app.

  –	Asynchronous communication with MEAP.

  –	Transactional interaction.

 •Define the security requirements:

  –	Authentication requirements, including second factor or step-up authentication

  –	Authorization requirements for resources on MEAP and back-end services, including risk based authentication and location based authorization

  –	Encryption level requirements, including local sandbox on the mobile device, and VPN communication channels

 •Define the service level requirements.

 Depending on the type of the mobile app, different requirements might have relevance, such as availability of the MEAP, end-to-end availability for back-end services, or processing of requests in a certain amount of time when using asynchronous transactions.

 5.3.2 Architectural options for leveraging existing applications

 Existing core applications on System z, like transactional processing or database services, are often characterized to be secure, reliable, and highly scalable.

 These properties are also important for a mobile application. Beside the application requirements, the challenges for a mobile workload are the expected fast response times and the use of interfaces on the mobile device, based on touch screens and voice.

 With a Worklight mobile server environment that is deployed on System z, you can leverage the secured enterprise transactional workload and integrate it with the mobile environment. The Worklight adapters provide a flexible way to integrate the various System z workloads or processes.

 Architectural options for integrating with existing core applications on System z vary depending on existing enterprise IT architectures. Core applications on System z can interact with the Worklight mobile server environment through these ways:

 •Integration with existing web environments

 •Integration with SOA or Cloud environments

 •Native RESTful interfaces to z/OS subsystems

 A strong suggestion is to use Internet standard protocols for applications and monitoring tools with real-time monitoring and event-driven monitoring to understand and react on capacity requirements of mobile applications.

 Integration with existing web environments

 Existing web environments running on System z are using two separate major web application front ends.

 •Portal-based web environments

 •Web application server environments, such as WebSphere Application Server

 The environments interact through HTTP requests from their web clients. A mobile system of engagement on System z can use these HTTP interfaces and interact with mobile devices. You can use IBM Worklight and integrate it with IBM Portal or with existing web applications. The advantage is that mobile applications use existing (HTTP) applications and enhance the functionality with mobile device functions like GPS, camera, or voice recognition.

 In addition, the existing web based environment can access transactional services using existing connector technologies and host adapters. In WebSphere Application Server host adapters (such as CICS Transaction Gateway (CTG), IMS Connect, or JDBC), drivers can be used to access back-end data and services.

 A mobile environment on System z can therefore bridge the gap between the back-end systems of record and the mobile devices that use existing web environments.

 Integration with SOA or Cloud environments

 For an existing service-oriented architecture (SOA) environment, the connectivity between the service providers and service requesters is implemented by using de-coupled technologies, such as an Enterprise Service Bus (ESB). This approach enables services that have different protocol interfaces, data structures, and service levels to interoperate.

 The following IBM solutions can extend an existing SOA or cloud environment to mobile devices:

 •WebSphere MQ

 WebSphere MQ provides an enterprise messaging backbone technology to support assured, scalable, and secure transportation of messages, files, and web services.

 •IBM Integration Bus

 IBM Integration Bus provides a foundation for universal integration foundation that is based on an enterprise service bus (ESB). Implementations enable connectivity and transformation in heterogeneous IT environments.

 •IBM DataPower

 This purpose-built appliance combines capabilities as a robust security device with integration functions for XML acceleration and transformation, enrichment, and routing of messages.

 •IBM MessageSight

 This appliance-based messaging server that is designed to handle large numbers of connected clients and devices.

 An ESB opens a whole integration horizon for cross-platform, cross-architecture applications such as these examples:

 •Web Service and SOAP based applications

 •HTTP based applications (JSON, REST)

 •Message queueing (MQ) applications

 •MQTT based applications

 MQTT is an open source publish/subscribe messaging protocol that was designed for lightweight messaging, and is ideal for low powered pervasive devices. The majority of back-end systems do not currently communicate using MQTT, so protocol switching is required for direct communication.

 Typically, mobile devices connect to the systems of engagement by using the MQTT protocol. The mobile application that is running in Worklight is then forwarding the request by using an adapter to the ESB within the intranet by using JSON, MQTT, or IBM messaging (IBM MQ). The ESB is running its content switching and interacts with the back-end data and services and returns the result to the ESB and through the adapter to Worklight, which then serves the mobile devices.

 Native RESTful interfaces to z/OS subsystems

 An emerging and widely proliferating technology for integrating mobile applications with existing services is the use of Representational State Transfer (REST). These RESTful interfaces provide an API that conforms to a set of architectural principles, which are defined by the following items:

 •The explicit use of HTTP

 •Stateless functionality

 •Exposure of directory structure-like URIs

 •Support for the transfer of XML, JavaScript Object Notation (JSON), or both

 “Integration with SOA or Cloud environments” on page 78 describes the enterprise integration systems, such as ESB technologies, that can offer RESTful interfaces into core applications and data. In addition to this option, IBM also provides a native RESTful interface on z/OS that can be consumed by mobile applications, either directly or through a MEAP.

 IBM WebSphere Liberty z/OS Connect (z/OS Connect) provides RESTful access to identify and invoke z/OS based business assets in CICS, IMS, UNIX System Services, and batch environments. As its name suggests, z/OS Connect is based on the WebSphere Liberty Profile, and functions as a bridging technology to convert HTTP REST requests with JSON payloads into the target system’s expected format, as illustrated in Figure 5-1 on page 80.

 [image:]

 Figure 5-1 IBM WebSphere Liberty z/OS Connect

 To provide this RESTful interface, z/OS Connect offers several specific functions:

 •Providing RESTful interfaces

 •Message payload conversion

 •Service Providers

 •Connect interceptors

 Providing RESTful interfaces

 The set of RESTful services provided by z/OS Connect enables the linkage from external cloud and mobile environments to business assets on z/OS. A RESTful HTTP GET request can be used to return a list of services that the target z/OS Connect server has under its management, and another GET request can return the information about a single service. An HTTP POST or PUT is used to invoke the asset, passing it a request payload and returning a response.

 Message payload conversion

 IBM z/OS Connect can optionally do a conversion of the request and response payloads that are used for calling a business asset on z/OS. This is enabled by adding a reference in the z/OS Connect configuration to a data transformation implementation. z/OS Connect provides an implementation that can be enabled and will require that the request and response message format be JSON. It supports the conversion of the request to a byte array, which can be mapped by a COBOL, PLI, or C structure. The target program’s structure, or COPYBOOK (description of its parameter’s in/out) is used to generate a binding file and JSON schema files with a utility provided by z/OS Connect. The binding file that is generated by this utility is used by z/OS Connect to do the data conversion to or from JSON and native data formats, as requests arrive and responses are returned. The JSON schemas for the request and response message can be retrieved with a REST API call provided by z/OS Connect.

 Service Providers

 z/OS Connect Service Providers can be written to allow components to build their own handlers that will be driven with the Liberty Service Provider Interface (SPI) to allow them to forward requests to their components. z/OS Connect includes a provider that uses the Liberty WebSphere Optimized Local Adapters component to pass requests to CICS, IMS, UNIX system services, and batch. In the future, a provider will be included that will allow z/OS Connect to use the JCICS API set when Liberty is running under CICS.

 Connect interceptors

 z/OS Connect provides a framework so that interceptors, or predefined methods, can be executed to invoke of the z/OS Connect Service Provider’s invoke, start, stop, and status methods. When an interceptor is defined in the z/OS Connect Service definition or in the z/OS Connect Global definition, it will be invoked with the input request payload before and after the invocation with the response payload from the Service Provider’s invoke method. Interceptors are also called for z/OS Connect operational requests for services it manages (for start, stop, status, and others). With this framework, any number of qualities of service can be injected around the invocation of a z/OS Connect service.

 Summary

 In summary, the RESTful APIs that are provided by IBM WebSphere Liberty z/OS Connect offer a unified and standard mechanism for mobile applications, MEAPs and cloud environments to access core z/OS systems.

 5.4 Security and deployment requirements

 Security in the mobile ecosystem must be considered one of the cornerstones based on the fact that mobile apps must continuously access data on the device and also data through the MEAP. Therefore, mobile applications must be secure by design, using an encrypted container on the mobile device, containing data and providing secured access with strong authentication mechanisms to the MEAP.

 Depending on the mobile application style (described in 5.2, “Operational type of mobile applications” on page 73), the security requirements can vary. Every mobile app must ensure secured access to the MEAP. If the mobile app is accessing any classified resources, be sure to secure and encrypt the data that is exchanged between the mobile device and the back-end services.

 The mobile app deployment must be managed in a well defined process to control the active versions of a mobile app, but also the entire chain of functional components and their dependencies to the back-end services. The deployment must be compliant with the organization’s deployment policies and security policies for software components. The mobile application lifecycle is more dynamic than traditional software and therefore requires security concepts to be tightly integrated in the deployment process itself.

 5.4.1 End-to-end high security

 For mobile application transactions, the end-to-end security is paramount; it is crucial for the overall transactional confidentiality, integrity, and auditability of the requests initiated by a mobile device.

 The classification of workload types in a mobile environment enables security management for context-based workloads and resource security for back-end service access. For more details about a holistic security approach, see Chapter 8, “Designing for security” on page 113.

 5.5 Conclusion

 	
 Tips for deployments:

 •The deployment process should be designed based on the mobile solution design and mobile user classification.

 •Having the right deployment models in place to quickly act on new market trends can ensure business growth.

 •Deployment is a process to ease the fulfillment of service level agreements (SLAs).

 With the deployment variations and models, a design for a mobile solution can be classified based on the consumer types, and the mobile apps can be designed from various perspectives. The considerations about the behavior of a mobile solution can almost transform a mobile application into a business driver that can address new consumers and new business. With the mobile environment running on System z, the scalability and integration potential can be used in common with the mobile Apps designed for the various mobile platforms and can be hosted on the same MEAP on System z.

 The architectural design of the infrastructure of a mobile solution on System z is described in Chapter 6, “The mobile enterprise architecture IBM System z” on page 85.

[image:]
[image:]

The mobile enterprise architecture IBM System z

 In this chapter, we explore the architectural options for delivering a mobile solution on System z. we show the architectural design of the infrastructure for a mobile solution on System z. The goal of this chapter is to provide enterprise architects with the material needed to plan and design an architecture for a mobile solution for System z. We provide details about the architecture overview, networking, and operational models for this solution.

 This chapter contains the following topics:

 •Architectural overview

 •Security layers

 •Caching services

 •Worklight server, the mobile runtime environment

 •Transaction processing systems

 •End-to-end development lifecycle

 •Network overview

 •Operational model

 6.1 Architectural overview

 The architecture for a mobile solution, similar to web-based solutions, is a multitiered environment. Typically, this environment is described in three domains:

 •Client tier devices: These refer to the mobile devices on which the information is presented to and consumed by the user. This tier contains the mobile applications and includes security and caching services to secure data on the device. The mobile application must be designed and optimized for each of the mobile platforms, screen, and resolution variations, and also exploit device specific functions.

 •Middle tier services: These refer to the mobile application and integration services that sit between the mobile devices and the core application and data services. This tier contains the mobile application runtime server, which provides the security components, access to core systems and any caching requirements of this data. The middle tier for a mobile environment, unlike the web environment, has several additional components to support device, service, and mobile application management.

 •Core applications and data services: These fulfill the requests from the middle tier. These services are provided by transaction processing systems or enterprise data services, such as a core banking system or retail order processing system. This provides the core functionality that is ultimately consumed by the user on the mobile device.

 	
 Reminder: In the context of these three domains, we categorize the client devices and middle tier services as the system of engagement. The core application and data services tier is described as the system of record.

 These three domains, spanning the system of engagement and record are shown in the architecture overview diagram in Figure 6-1 on page 87. The client tier devices are shown on the left side of the diagram, connecting to the middle tier. The middle tier contains the Worklight server on Linux on System z, integrating with the core applications and data services shown on the right side of the diagram.

 [image:]

 Figure 6-1 Architecture overview diagram of a mobile environment on System z

 The first aspect to note about a mobile architecture on System z is that it is derived from the standard mobile reference architecture (shown in Figure 4-4 on page 55). This architecture is designed to take advantage of the security, resilience, and scalability characteristics of System z to deliver a continuous service for the mobile user, and end-to-end security for each mobile request.

 6.2 Security layers

 The applications on the mobile device contain functions for authentication, a secured container for locally stored data, and a small component to securely connect to the Worklight Server.

 For the end-to-end security of a mobile request, two security layers protect the environment.

 •Security Layer 1 handles security between the mobile device and the mobile environment on System z.

 •Security Layer 2 ensures security between the Worklight Server, representing the mobile runtime environment and the various back-end services.

 Security Layer 1 requirements are the protection for external requests like denial-of-service (DoS), XML attack, network intrusion, and also authentication. This layer is typically implemented in a DMZ with high isolation.

 After a mobile request reaches the Worklight Server, further fine-grained security decisions can be incorporated into the application logic. After proper access is granted the application logic in Worklight, additional resource security can be used, based on enterprise policies. Worklight then interacts with back-end services and data by using Worklight adapters in securely configured System z connections.

 Security Layer 2 requirements act as a secured gateway between the mobile environment MEAP and the back-end services and data. Layer 2 must provide security functions for identity propagation, authorization, and transactional resource security.

 	
 Extra security: Besides Security Layer 1 and Layer 2, MEAP also provides a component of security, with functions for mobile app security, interfaces for Security Layers 1 and Security Layer 2 and interfaces for external security components such as Lightweight Directory Access Protocol (LDAP).

 Enterprise topologies generally include designating different zones of protection so that specific processing can be secured and optimized.

 •Both security layers can be implemented with System z because of the highest security and isolation certification of the System z platform. The implementation can be done in virtual servers, software security components and Crypto Express (CEX) cards for secured connections and encrypted data exchange.

 •The two security layers can also be externalized in a DMZ with specialized appliances, such as IBM DataPower, which is well suited for such security functions, delivering specialized technology for security on separate levels.

 6.2.1 IBM DataPower

 IBM DataPower is a security and integration gateway, built for simplified deployment and hardened security, bridging multiple protocols and performing conversions at wire speed.

 There are several ways DataPower can be used in the DMZ and in other zones within your network to protect enterprise resources. As you start to build mobile applications hosted in a Worklight Application Center, these methods can be applied to mobile traffic.

 Key methods that are supported by DataPower represent these items:

 •DMZ security

 In DMZ security is a reverse proxy pattern can be implemented using DataPower as a front-end reverse proxy and security gateway for your mobile applications built with and deployed on a Worklight Server.

 REST Service Façade Pattern is another DataPower security method, protecting REST endpoints in the DMZ without using Worklight adapters for integration.

 •Intranet security

 For intranet security, a mediation pattern is often used. DataPower provides the protocol and message transformation and security for enterprise services that are integrated through Worklight adapters and enabling connectivity to your existing SOA infrastructure.

 Federated single sign-on (SSO) with authorization pattern can be realized with DataPower to authorize authenticated access to protected resources.

 The various security functions with DataPower include authentication, identity and resource authorization, and audit and post security processing.

 Figure 6-2 on page 90 outlines the DataPower security functions and interfaces.

 [image:]

 Figure 6-2 IBM DataPower overview of security functions and interfaces

 For more details about security, see Chapter 8, “Designing for security” on page 113.

 6.3 Caching services

 For improved performance and short response times on the mobile devices and the effective use of System z resources, two caching layers can be implemented in an enterprise architecture for mobile on System z. The two caching layers reside between the mobile device and MEAP, and between MEAP and back-end services.

 •Caching service 1 requirement is to securely store information on the device for offline access, plus speed of access to operational content. An example is WebSphere Extreme Scale.

 •Caching service 2 requirement is the optimization of back-end calls to get only most recent information. This is crucial to optimal use of System z transactional resources.

 In some mobile environments, clients want to avoid increased workloads on the back-end servers for query-only requests from their customers. This also affects mobile users. For this purpose, caching service 2 is extremely important between the MEAP and back-end services.

 IBM delivers the possibility to introduce special products for caching. The most prominent products are as follows:

 •WebSphere Extreme Scale, which is a general-purpose scalable cache. It can be added to any java application running in the mid-tier without requiring changes to any transactions running in the back-end. JavaScript code must be implemented in the mobile application source to attain full benefit of WebSphere Extreme Scale.

 •DataPower XC10, which is a ready-to-use caching appliance that can deliver benefits without adoption of (mobile) application. Basically, configure the network topology to point to the XC10. This is a typical technology that can be placed in DMZ to cache static data.

 6.4 Worklight server, the mobile runtime environment

 The mobile runtime environment is mainly built by the IBM Worklight Server running on Linux on System z.

 The Worklight Server is a Java environment that runs on a web application server. Primarily the Worklight Server runs on WebSphere Application Server in various types, such as WebSphere Application Server Liberty Profile, WebSphere Application Server Full Profile, or WebSphere Application Server Network Deployment. The decision which WebSphere environment suites best, depends on the requirements for resiliency, collocation with other Java applications or integration in existing web environments. For ease of setup, Worklight Server is delivered in a bundle with WebSphere Application Server Liberty Profile.

 The Worklight Server requires its own database to store Worklight internal processing parameters, internal runtime information, and mobile apps.

 As a mobile runtime environment, Worklight provides many more functions to manage a cross-platform mobile environment:

 •Runtime environment for the Worklight App Code for all supported mobile platforms, iOS, Android, Blackberry, and Windows Phone

 •Mobile Device Management component for all the various devices per mobile platform

 •Mobile Application Management component for cross-platform mobile apps

 •Mobile Services Management for securing the access and enabling notifications and push services for all mobile platforms

 •Worklight Application Center to enable an independent mobile app store for all apps on all platforms served from Worklight Server

 •Operational support, an environment with integrated Worklight Console, and an analytical server for app usage and behavior

 •Worklight adapters, which enable a flexible integration with back-end transactional and data services of various kinds

 For a mobile environment on System z the adapter concept provided by the IBM Worklight Server is a major advantage of Worklight. The adapters can issue requests to web services, databases, and other System z subsystems and applications and can integrate SOA environments and cloud services on behalf of mobile device applications.

 Adapters can be used to combine information from multiple sources into single responses to mobile devices. They can also modify data before the request and after the response using server-side javascript, and can even be used to cache frequently-requested data.

 Therefore, IBM Worklight on System z bridges the gap between the variety of mobile devices of the systems of engagement and the back-end systems of record on System z.

 Further details about the Worklight server are in Chapter 4, “IBM Worklight: The foundation for mobile solutions” on page 45.

 6.5 Transaction processing systems

 Through the Worklight adapters, mobile devices can directly access systems of record. These systems can be core transaction processing systems, ERP systems such as SAP, SOA environments, data services, or security components.

 The back-end transaction processing systems on System z can be integrated in a mobile environment. In this way, enterprises can extend the business scope from existing core back-end transactional environments to mobile devices. The integration of existing core applications to a mobile environment on System z has the advantage of an end-to-end transactional security and extreme scalability across the entire solution.

 The major transactional environments that can be integrated in a mobile solution on System z are as following:

 •z/OS operating environment

 •z/TPF, the z/Transaction Processing Facility operating system

 •z/VSE, the z/Virtual Storage Extended operating system

 These are described in the following sections. However, more details about Worklight adapters and integration with back-end services are in Chapter 4, “IBM Worklight: The foundation for mobile solutions” on page 45.

 6.5.1 z/OS operating environment

 z/OS, a widely used mainframe operating system, offers a stable, secure, and continuously available environment for applications, high-volume transactions, and databases that are running on the mainframe.

 A business transaction is a self-contained business deal. Transactions occur in everyday life, for example, when you exchange money for goods and services or book a trip. A transaction is an exchange, usually a request and response, that occurs as a routine event in running the day-to-day operations of an organization.

 Transaction systems must be able to support a high number of concurrent users and transaction types. A transaction system must comply with atomicity, consistency, isolation, and durability.

 The following major transaction systems are running in z/OS:

 •CICS: IBM Customer Information Control System

 CICS is a general-purpose transaction processing subsystem for the z/OS operating system. CICS provides services for running an application online, by request, at the same time as many other users are submitting requests to run the same applications, using the same files and programs.

 •IMS: IBM Information Management System

 IMS delivers a low-cost transaction and hierarchical database management system for mission-critical online transaction processing. Expansive integration capabilities enable SOA exploitation, enhanced analytics, new application development, and mobile technology.

 WebSphere Application Server and DB2 on z/OS can enable applications and z/OS processes to be integrated in a mobile environment on System z.

 6.5.2 z/TPF, the z/Transaction Processing Facility operating system

 z/TPF is a special-purpose system that is used by companies that have a high transaction volume, such as credit card companies and airline reservation systems. z/TPF was once known as Airline Control Program (ACP). It is still used by airlines and has been extended for other very large systems with high-speed, high-volume transaction processing requirements.

 z/TPF can use multiple mainframes in a loosely coupled environment to routinely handle tens of thousands of transactions per second, while experiencing uninterrupted availability that is measured in years. Very large terminal networks, including special-protocol networks used by portions of the reservation industry, are common.

 6.5.3 z/VSE, the z/Virtual Storage Extended operating system

 This operating system is popular with users of smaller mainframe computers. Compared to z/OS, the IBM z/VSE® operating system provides a smaller, less complex base for batch processing and CICS transaction processing. The design and management structure of z/VSE is suited for running multiple batch jobs (running in parallel) and extensive, traditional CICS transaction processing.

 The strategy for z/VSE for more than a decade is the integration of core applications with SOA architectures and WebSphere. Most z/VSE clients run in a z/VM virtualized operating environment.

 Because of the integration strategy, z/VSE transactional processes can be integrated into a mobile environment on System z, running on the same virtualization layer z/VM.

 6.6 End-to-end development lifecycle

 The integrated development environment (IDE) for IBM Worklight is the Worklight Studio.

 More details about Worklight Studio can be found in 4.2.1, “Worklight Studio” on page 49.

 For a mobile environment on System z, the development of cross-platform applications is a requirement, fulfilled with Rational Developer for System z. Worklight Studio is integrated into the Rational Developer for System z suite of development tools for enterprise software lifecycle management.

 The advantage with such a toolset is to have an end-to-end development in a single toolset environment. Development tasks range from development of mobile applications to Worklight adapters for back-end integration. It continues, with CICS COBOL development and Web Services exposure. Rational developer can be expanded beyond application development to design and lifecycle management with IBM Rational Team Concert™.

 Rational development tools, help to speed up the changes that are especially required in the mobile environments, but also increases the response time to market and business requirements.

 An overview of the development features for Rational Developer for System z are shown in figure Figure 6-3.

 [image:]

 Figure 6-3 Rational Developer for System z development tool from Mobile Apps to COBOL back-end integration

 6.7 Network overview

 By implementing a mobile system of engagement on System z, with access to a system of record as System z back-end services and data, an entire network topology can be virtualized on the System z platform.

 The official certified high isolation level for System z and the virtual server that it can provision enable the simplification of the entire network without an impact to the overall network security.

 Several advantages exist in flattening the network for any end-to-end application services on System z. This is particularly true for mobile owing to the high traffic volumes.

 The heterogeneous environment on System z can be connected with System z internal networks. Three types of System z internal networks exist between the systems of engagement and systems of record (see Figure 6-4):

 1.	HiperSockets networks implemented in Firmware

 2.	Shared Open System Adapter (OSA)

 3.	z/VM virtualized networks with the VSWITCH function

 [image:]

 Figure 6-4 System z internal network options

 The key characteristics of the System z integrated network topologies are these:

 •HiperSockets networks are within the physical System z server. You can define multiple independent HiperSockets networks in a single System z machine. The HiperSockets networks have three important characteristics:

  –	Highly isolated and high bandwidth. System z design indicates that the HiperSockets networks are highly isolated and have high bandwidth.

  –	Networks are on a speed of memory copy. This means with faster CPU on System z you have faster HiperSockets network communication.

  –	Highly secured because of memory copy in the firmware. This means there is no requirement for network security for servers connected through HiperSockets.

 HiperSockets networks can be defined between LPARs in a System z server.

 •The System z network cards, called Open System Adapters (OSA), are used to build networks between servers and virtual images on System z and the enterprise networks. The OSA adapter keeps every network connection isolated and can behave like a cluster of network cards. An OSA has multiple ports and supports various network types, which can be shared between separate workloads, by keeping the high isolation level. The network communication, when sharing an OSA, is on the speed of the card and therefore independent of the processor speed.

 The networks that are defined with shared OSAs can be internal networks between LPARs, z/VM layers, or virtual servers in the system of engagement and system of record on the same System z machine. In addition, the OSA is the network gate between any operating environment and the enterprise network, intranet, or extranet.

 •The VSWITCH function in z/VM enables mapping of real networks into virtualized networks, which defines a secured network simplification and centralized management of a network topology. Multiple VSWITCH can be defined in a single z/VM environment which represent hubs in isolated networks in the same z/VM virtualization layer. Virtual servers like Linux on z servers and z/OS can belong to one or more virtual networks. A complex network topology can be virtualized in z/VM and significantly simplifies the physical network components in an enterprise.

 Networks based on z/VM VSWITCH are networks that can connect the individual or group of virtual servers running in that z/VM environment. Multiple virtual networks in different LPARs that are managed by VSWITCH can communicate through a shared OSA or through HiperSockets.

 Mobile workload scaling is unpredictable. To avoid network congestion, two network technologies in System z can be used:

 •Applied at the OSA layer, port aggregation can be used to enhance the bandwidth by reusing the high availability capabilities of multiple cross-connected OSA adapter.

 •Channel bonding in Linux on System z allows high bandwidth workload that mitigates surges within the virtual networking environment, unique to Linux.

 The network connections between different servers in a System z mobile environment can be a mix of types of networks. It can be an isolated internal HiperSockets network between servers or systems of engagement and systems of record, and it can be another separated network to connect to the external enterprise network.

 6.8 Operational model

 The operational model represents the request flow from a mobile device to the MEAP and the access to the back-end services on System z. With the operational model in mind, the design for a mobile application provides end-to-end considerations about the components that are involved, and guidance to the more detailed design to fulfill the requirements for a mobile solution architecture.

 When a request from a mobile device is sent to the MEAP on System z, the request flow is run as follows:

 •A security authentication check is performed to grant access to the MEAP.

 •Eventual additional resource authorization security is performed to access data or Worklight adapter.

 •If the MEAP can fulfill the request, the built response page is returned to the mobile device of the requestor.

 •For requests that require back-end services or back-end information services, the Worklight adapters are invoked to fulfill the request.

 •Eventual protocol switching is run between the incoming request and the back-end access.

 •The results from one or more adapters builds the response page and is returned to the mobile device that initiated the request.

 •An end-to-end transactional behavior can be enforced.

 The operational model can be enhanced with concepts for high availability and disaster recovery to fulfill the requirements of availability and a continuous operation.

 Figure 6-5 illustrates the secured flow of the mobile request that we described: from a mobile device to a system of engagement (MEAP) that is accessing a system of record on System z (back-end).

 [image:]

 Figure 6-5 Operational model of a mobile environment on System z

 6.9 Conclusion

 Using the enterprise architecture for mobile solutions on System z described in this chapter, you can build a mobile strategy based on the security and flexibility of the heterogeneous workload that is running on the System z platform. This can enable new business models and an extension to new consumers and new markets.

 To support the always on requirements for a mobile solution architecture, see Chapter 7, “Designing for resilience” on page 101, which elaborates more about the architectural design for resilience, end-to-end high availability, and disaster recovery for a system of engagement and a system of record on System z.

[image:]
[image:]

Designing for resilience

 In this chapter, we explore the options for building a resilient mobile architecture on System z. Specifically, we consider each of the components within the end-to-end design and describe how each of them can be made highly available and able to protect against component and server failures.

 This chapter contains the following topics:

 •Resilience considerations

 •Designing for high availability

 •Designing for disaster recovery

 7.1 Resilience considerations

 An important characteristic for a solution design for mobile environments is resilience. It is the ability of an IT ecosystem to provide a mobile service, irrespective of problems across the operational layers, including servers, network, storage systems, or an entire data center. Resilience also involves the capability to recover quickly and continue operating even when an equipment failure, power outage, or other disruption occurs.

 With resilience, consider these three characteristics:

 •A high availability (HA) environment provides service during defined periods, at acceptable or agreed-upon levels, and masks unplanned outages from users. It employs fault tolerance, automated failure detection, recovery, bypass reconfiguration, testing, problem, and change management.

 •A continuous operations (CO) environment continuously operates and masks planned outages from users. It employs nondisruptive hardware and software changes, nondisruptive configuration, and software coexistence.

 •A continuous availability (CA) environment delivers nondisruptive service to the user 7 days a week, 24 hours a day (there are no planned or unplanned outages).

 We can consider solutions that require high availability for components within a mobile environment or across multiple environments. Critical mobile solutions might be required to be protected against disasters that make an entire mobile environment unavailable. Here are the differences between high availability and disaster recovery:

 •High availability is a solution design to enable an automatic failover for failing components in the same datacenter. High availability solutions are typically realized using duplication and clustering of resources. Failover times are measured in seconds and minutes and rely on synchronous inter-node communication between cluster nodes. When one element fails or experiences a disruption, the redundant element takes over seamlessly and continues to support computing services to the user base. Ideally, users of a resilient system never know that a disruption has occurred.

 •Disaster recovery solutions are typically realized with two or more physical sites that can switch in case of a disaster. Failover times are often measured in minutes and hours.

 For core workloads running on a typical System z environment, resilience can be enabled for all channels. However, the mobile channel is unique in that users expect a service at their convenience, whenever and wherever they are. The mobile channel is also susceptible to large variations in workload. A resilient mobile environment must therefore combine speed to market with an always-on characteristic, while also ensuring alignment with existing operational models.

 Smartphone users typically keep their phones handy day and night. As such, mobile, more than any other business channel, must be delivered as a service that is always available.

 Running a MEAP, such as Worklight server on Linux for System z, can increase the availability of the MEAP solution significantly. High availability of the MEAP can be achieved in two ways:

 •Active-active

 In an active-active scenario, two or more cluster nodes are active at the same time. The workload is typically spread across the nodes, but each node must be able to run the entire workload stand-alone. Because of the extreme virtualization on System z, a mobile environment will likely need fewer dedicated resources than on distributed servers. An active-active cluster can be built across two isolated LPARS, or two virtual Linux machines in z/VM with a common virtualization layer as a shared-everything environment.

 •Active-passive

 In an active-passive scenario, one node of a cluster is active and the other is passive. The passive node of the cluster is waiting for the active node to fail to then take over the entire workload. The implementation on System z can be realized in two LPARS, which protect against all failures including LPAR failure. Another solution can be a cluster with two Linux virtual guests in a z/VM environment, which protect against the software failures except the virtualization layer.

 The selection of a solution depends on the business requirements and the service level agreements that need to be fulfilled.

 More details are in High Availability Architectures for Linux on IBM System z:

 http://ibm.co/1sKIpqv

 Chapter 3, “Bridging the gap from mobile to transactional systems” on page 33 introduces the business benefits of deploying a MEAP on System z, with resilience being a key factor. System z is designed for resilience and high availability, therefore it is a major architectural factor in the decision to deploy a mobile environment on System z.

 To ensure end-to-end high availability (HA) for a solution, each component that provides a core service must be designed for HA. Figure 7-1 shows the layers of components that were designed together to provide a highly resilient platform. In the following sections, we explore each component shown in the diagram and discuss the design considerations for high availability.

 [image:]

 Figure 7-1 System z layers for a high availability solution architecture

 7.1.1 System z hardware is designed for resilience

 System z is fundamentally designed for delivering the highest levels of continuous business service. Almost all hardware components in the System z server are redundant. Examples of redundant components are as follows:

 •Power supplies are redundant to protect against power failures.

 •Processors are organized in redundant books and equipped with spare processors that are switched on automatically in case of a processor failure.

 •System z in the latest server version zEC12 can dynamically switch on and switch off over 100 processors so that dynamic workloads can use capacity on demand.

 •Internal memory uses redundant array of independent memory (RAIM) to avoid memory operation failures.

 •I/O adapter redundancy enables automatic failover after a disk subsystem failure.

 •The Service Element used for configuring System z server has built-in redundancy.

 Configurable extensions to the system meet mobile workload demand, both short term, with on/off capacity on demand and long-term adding more processing capacity or memory dynamically as needed, with no loss of service. This is important for a mobile workload, with the requirement to be dynamic and always on.

 The call-home function of System z enables repair action in early stages, when the system itself senses parts that are not working properly.

 7.1.2 Disk and data resilience

 The most important asset in a company is the business data. Therefore, a crucial factor is to ensure that the data is stored on a reliable disk storage system that is highly available. High availability for disk storage can be enabled in several ways:

 •Disk mirroring.

 With IBM TotalStorage disks systems, this is achieved by using the synchronous Metro Mirror feature. This is a storage feature that is independent of the applications.

 •HyperSwap

 For z/VM virtual guests, the HyperSwap function allows a switch from one storage pack to another one, without any disruption of the production systems. The HyperSwap function is supported in the IBM Global Dispersed Parallel Sysplex (GDPS®) solution on System z. For example, the mobile service can be maintained even if a disk error occurs because GDPS dynamically switches to another disk system as needed.

 •Multipathing for Linux on System z

 Multipathing for Linux on System z can secure the mobile environment for disk access failures. Multipathing defines multiple paths to the same storage system and enables automatic failover in case of a path error.

 With these disk high availability scenarios you can fully support the requirements of a continuous operation of a mobile environment.

 7.1.3 Network resilience

 Network resilience is an important factor for heterogeneous solutions. Mobile on System z is a solution that is dependant on network reliability and therefore using System z internal network topologies as much as possible is important. This reduces the network complexity and exploits the features and functions of System z internal networks, which contain resilience in their design.

 7.1.4 Virtualization layers and resilience

 System z has two virtualization concepts, which are independent from each other but can also be combined for the best solution:

 •LPAR virtualization is characterized by a high isolation level. Two LPARs behave like two independent servers. The advantage of System z is that processors, network adapters, and storage I/O adapters can be shared across LPARs. Memory must be allocated to each LPAR. This enables an economic high availability solution where you do not need to buy and manage double capacity and double network infrastructure. It is economically also attractive because, in a high availability scenario with failover, you can use the same shared resources, which reduces licensing costs for software and other shared components.

 For example, if the server that is running in an LPAR fails or a software component in the server fails, the other LPAR can take over the workload, sharing the same processors and I/O adapters.

 •z/VM virtualization can be enabled for an LPAR and used to host a large number of virtual servers. z/VM enables virtualization with a shared-everything pool of resources that can be strictly separated, but also shared as necessary to provide an HA environment.

 For example, if one node of a cluster fails, the same amount of work can continue because the same number of processing resources (processors, memory, I/O, interfaces, and others) are still available in the cluster. The other nodes that are running in the same z/VM environment take over the work, without the need to duplicate the resources.

 The virtualization that is provided by z/VM includes the ability to cluster entire virtualized environments on a single server or across multiple System z servers with the single system image (SSI) capability.

 For continuous operation over a descriptive hardware maintenance or upgrade path, z/VM provides the ability to move the in-flight mobile runtime environment on Linux between physical System z servers using the Live Guest Relocation (LGR) capability.

 The virtualization layer is considered the foundation for a scalable and reliable mobile solution on System z.

 7.2 Designing for high availability

 Figure 7-2 depicts a sample architecture for a high availability (HA) implementation of a mobile environment on System z. Solid lines denote the primary data path; dashed lines denote the backup data path.

 [image:]

 Figure 7-2 High availability implementation of a mobile environment on System z

 All mobile requests are required to run through the authentication layers implemented in IBM DataPower. After validation, the requests are routed to an HA v environment that is built across two LPARs running z/VM and Linux on System z guests. The software components are clustered and cross -connected for high availability. The back-end transactional system is shown as an LPAR running z/OS.

 In the following sections we describe several high availability options for each component that is shown in Figure 7-2 on page 107.

 7.2.1 IBM DataPower

 DataPower can provide various services in a mobile environment, such as security (see Chapter 8, “Designing for security” on page 113), XML preprocessing, and network-based routing. These functions can be provided in the DMZ, edge of network, and within the corporate trusted domains.

 In scenarios where DataPower is deployed, and particularly in the use-case we describe for this section, it is the first entry point for mobile into the enterprise. As such, it is a key component that must be made resilient.

 There are several options for building a resilient DataPower clustered solution. These are documented in the developerWorks article, “Managing WebSphere DataPower SOA Appliance configurations for high availability, consistency, and control,” at the following address:

 https://www.ibm.com/developerworks/websphere/library/techarticles/0801_rasmussen/0801_rasmussen.html

 7.2.2 Linux high availability

 The implementation of Linux virtual machine high availability depends on the Linux supplier and the layers that are included in the entire high availability solution architecture.

 On System z, the two supported Linux distributions are SUSE Linux Enterprise Server (SLES) and Red Hat Enterprise Linux (RHEL).

 The two Linux distributions deliver separate solutions for high availability of the Linux operating system and resources managed from within Linux.

 •SUSE incorporates a High Availability Extension in the SLES distribution on System z. It is part of the Linux on System z license and delivers a graphical interface to setup high availability resources and relations.

 •RHEL can be enabled for high availability by using a third-party solution, Sine Nomine, which provides support for Linux-HA on RHEL on System z.

 •A multiplatform and global high availability solution is provided by IBM. The IBM solution is based on the advanced automation capabilities with IBM Tivoli® System Automation for Multiplatforms.

 More information about Tivoli System Automation for Multiplatforms, the necessary configuration for a highly available Linux solution, is in End-to-end Automation with IBM Tivoli System Automation for Multiplatforms, SG24-7117.

 7.2.3 WebSphere Application Server

 The Worklight Server runs as an application within WebSphere Application Server. Worklight can take advantage of the underlying high availability characteristics of WebSphere Application Server.

 There are several options for designing a WebSphere Application Server high availability solution, depending on which implementation of WebSphere Application Server is used. Worklight can run in different WebSphere Application Server environments in a high availability implementation:

 •WebSphere Application Server Liberty Profile

 •WebSphere Application Server Base

 •WebSphere Application Server Network Deployment

 The decision of which implementation to use will most likely depend on the application server patterns and deployment models that are used within an organization. Each of these WebSphere Application Server implementations enable support for high availability.

 •WebSphere Liberty Profile is designed for lightweight web profile applications that are suited to the Worklight Server. As such, this is a common pattern for new mobile deployments.

 More information about WebSphere Liberty Profile is in the IBM Redbooks Solution Guide, From Development to Production with the IBM WebSphere Application Server Liberty Profile, TIPS1024.

 •WebSphere Application Server, either the Base or Network Deployment (ND) editions, provides a more comprehensive environment for application serving.

 More details about WebSphere Application Server Liberty and WebSphere Application Server Full Profile, including details about high availability configurations are in WebSphere Application Server V8.5 Concepts, Planning, and Design Guide, SG24-8022.

 7.2.4 Database for Worklight run time

 The Worklight Server uses a database server as an application artifact repository to deliver its MEAP functions. Therefore this database must be designed with the same resilience as the Worklight Server.

 IBM DB2 is one of the databases that can be used for this repository and with the db2 high availability disaster recovery (HADR) feature, it provides an HA solution for partial and complete site failures.

 This is defined in High Availability and Disaster Recovery Options for DB2 for Linux, UNIX, and Windows, SG24-7363.

 7.2.5 High availability for the system of record

 The nature of the system of record within an enterprise is that it can be implicitly designed with high availability and resilience in mind.

 •A highly available mobile environment, delivered on System z, can fully participate in the resilient design of the system of record.

 •The core transactional processing systems provide their own resilience characteristics based on z/OS, such as GDPS and the CICSPlex exploitation of parallel sysplex.

 More details about IBM Geographically Dispersed Parallel Sysplex™ (IBM GDPS) family of offerings and the role they play in delivering a business IT resilience solution are in GDPS Family: An Introduction to Concepts and Capabilities, SG24-6374.

 7.3 Designing for disaster recovery

 To establish the most resilient solution architecture, in addition to the high availability features outlined previously, recovery against disasters that impact an entire data center must also be considered.

 Figure 7-3 on page 111 shows a solution architecture for a mobile environment on System z across two data centers. The first data center (Production Site 1) and the second data center (DR Site 2) are interconnected for disaster recovery. The interconnection is implemented in a z/VM Single System Image, which allows the management of both sites like one single cluster.

 [image:]

 Figure 7-3 High Availability and Disaster Recovery implementation in a z/VM SSI environment

 The mobile environment is implemented as a cluster on each site. On Production Site 1, the Mobile12 server is clustered with Mobile22; on DR Site 2 the Mobile32 server is clustered with Mobile42.

 Disk replication functionality ensures that the data is replicated in real time to both sites.

 In case of a maintenance upgrade in cluster node2, the cluster node1 on the production site takes over the entire workload without doubling capacity in z/VM.

 In case of a disaster, DR Site 2 takes over full production and is installed with a similar implementation as the Production Site1.

 For switching from one site to the other in case of a disaster, the GDPS implementation in z/OS manages the controlled switching of the z/OS sites, and the GDPS extension xDR (Extended Disaster Recovery) feature manages the Linux and mobile environment and the other Linux on System z guests. The control of site switches for the Linux machines is coordinated by a GDPS proxy, which is implemented in each z/VM as DR proxy server.

 With this implementation that takes into consideration both high availability and disaster recovery, resiliency of a mobile solution on the System z platform can be achieved and the always on requirement can be fulfilled.

 7.4 Conclusion

 A mobile solution deployed on System z benefits from the additional reliability of System z for 24x7 operations and automatic inclusion of the MEAP into existing disaster recovery procedures.

[image:]
[image:]

Designing for security

 In this chapter, we describe the unique security risks introduced by mobile devices and discuss the various steps that you can use to address these risks. We review the security solutions that can be used to secure mobile access to System z.

 We compare several System z mobile security topologies:

 •Using IBM Worklight security

 •DataPower as a policy enforcement point

 •z/OS Connect

 •DataPower as a reverse proxy for Worklight server

 •DataPower XI50z as a second security layer

 •IBM Security Access Manager as a policy enforcement point

 This chapter contains the following topics:

 •Mobile security requirements

 •The IBM Mobile Security Framework

 •Topologies for securing mobile access to System z

 8.1 Mobile security requirements

 Organizations that recognized the benefit of extending access to their back-office applications, such as inventory or billing, to business partners through what is now known as web services, also recognized the concurrent need for safety. This need caused the invention and deployment of increasingly powerful security measures, such as firewalls, reverse proxies, and gateways using advanced cryptography and authorization systems. Many of these security measures can be used to grant access to these applications to employees sitting at computers anchored to a specific desk and to a specific network located on the premises of the organization.

 Fast forward to today. Organizations want to grant access to many of those same applications to individual users who carry their computers in their pockets or cases. These users are connected to the Internet from various locations by using a network carrier of their choice. In addition, those users can own those devices, run operating systems of any sort and source, and use them for more than just connecting to a corporate network, such as playing games for example. To a safety-minded Chief Information Officer (CIO), this looks like chaos.

 As tempting as it is to simply ban such devices from connecting to any mission-critical application (if not the entire corporate network), the advantages of any time, any where, any device access are too great to dismiss. Not only for employees or business partners, but for customers also.

 Charged with building a mobile first organization, the CIO must understand the risks. The following list describes the most important security risks posed by mobile devices:

 •Mobile devices roam around and use many different connection points

 The topology of the network connection between a mobile device and the edge of the enterprise network is not possible to know in advance. Preventing the use of networks that are monitored in some way is not possible in advance.

 •Mobile device connections are often not persistent

 The device might be in motion, such as riding in a bus or a car. The network path might change during the time the device is connected. The connection might get dropped and restarted more than once.

 •Wider range of device capabilities

 The resources available on mobile devices vary greatly. A lower price smartphone offers much less computing power than a high-end tablet. Some devices can establish high-speed WiFi connections and others can rely only on the data speeds of their carrier. The bandwidth and resources available for security measures change from device type to device type.

 •Mobile devices can be easily lost or stolen

 A smartphone or tablet that is left for even a minute at an airport store counter can be stolen in an instant. Because of the easy resale value, a device like that is much more likely to be stolen than a notebook computer. When stolen or lost, the device can represent a potentially open gateway into the enterprise network. Another important factor in this case is the loss of potentially valuable data assets that are stored locally on the mobile device.

 •Mobile devices are not necessarily owned by enterprise

 The low cost and high power of mobile devices, particularly tablets, motivates many people to connect their own device to the enterprise network (known as bring your own device, or BYOD). This means that the organization can no longer dictate the type and capability of devices connecting to their networks. The organization now has no control over the other applications that can run on that device and they cannot control who else uses that device.

 •Large volumes of low-value transactions

 When customers are given access to enterprise applications, these customers often engage in repeated and sporadic access to low value transactions, such as checking a bank balance or the status of a package delivery. This can create an uneven, spiky load pattern on enterprise resources, comparable to a denial of service attack.

 Figure 8-1 on page 116 depicts a summary illustration of these risks.

 [image:]

 Figure 8-1 Security concerns of mobile devices accessing corporate and public network

 With diverse devices in use throughout the organization, especially if the organization has adopted a bring your own device (BYOD) policy, the first necessary step is to put into place comprehensive, cross-platform capabilities for managing and securing devices and applications. Secure access to enterprise assets should include secure connectivity with capabilities for managing identities, access, and authorization. Conduct vulnerability testing of mobile applications to support the organization’s trust relationships with customers, employees, and business partners. Visibility into the full data flow is important for keeping the mobile security program ahead of constantly growing threats.

 In the world of mobility, more so than in traditional IT environments, an important factor is that the security model adapts to the user rather than requiring the user to comply with mandates. Another reason for security to adapt to the user is that attacks tend to be more targeted at individuals, departments, or organizations rather than being general, mass attacks. Be sure to realize that user behavior is different when the issues are related to the mobile devices and mobile access; more emphasis is placed on avoiding disruption of the user experience than on establishing the ultimate security solution. The security model that adapts to a user’s mobile context (for example, location, type of content accessed, time of day or risk profile) and that has a minimal impact on user experience can help ensure compliance with security policies and ultimately assist in securing enterprise data.

 8.1.1 Mobile security roadmap

 Figure 8-2 depicts a typical roadmap for an organization to adopt mobile security.

 [image:]

 Figure 8-2 Typical mobile security roadmap for an organization

 No matter how capable a mobile security solution is, its value is diminished greatly if it cannot be efficiently deployed or easily managed. The organization must carefully assess the overall risks and the effort that is required for initial roll-out and ongoing management of a solution.

 The organization can take a risk-based approach to securing the mobile enterprise with these steps:

 •Securing the mobile device:

  –	Capture detailed device information and identify non-compliant devices.

  –	Detect jailbroken or rooted devices.

  –	Enforce security best practices and take corrective action including updates, denying or removing access, virtual private network configuration and delivery of anti-malware solutions.

  –	Remotely locate, lock, and perform selective wipes when devices are lost, stolen, or decommissioned.

  –	Use a single infrastructure to deliver controls for a broad set of enterprise endpoints including smartphones, tablets, desktops, notebooks and servers.

 •Protecting access to enterprise resources:

  –	Deploy context-aware authentication and authorization of mobile users and their devices.

  –	Support mobile-friendly open standards such as OAuth.

  –	Implement strong session management and protection.

  –	Extend the infrastructure employed for protecting access from any endpoint with the ability to address requirements unique to mobile computing.

 •Delivering safe mobile applications:

  –	Support developers with security features including data encryption, direct updates and application validation.

  –	Perform vulnerability assessments during development, testing, and run time to mitigate the risk of deploying unsafe applications.

  –	Employ a secure channel through which to deliver mobile applications to enterprise mobile users.

  –	Offer a secure runtime environment for mobile applications that enables centralized management with application locking.

 •Attaining visibility and delivering an adaptive security posture:

  –	Generate reports on compliance.

  –	Assess consistency of security policy enforcement.

  –	Be proactive in responding to emerging threats and adapt to changing user behaviors.

 8.2 The IBM Mobile Security Framework

 The IBM Mobile Security Framework addresses the end-to-end security of mobile applications in the following areas.

 •Security at the mobile device

 •Security over the network and inside the organization

 •Security for the mobile app

 Figure 8-3 depicts the IBM Mobile Security Framwork.

 [image:]

 Figure 8-3 IBM Mobile Security Framework

 In the next sections we discuss security solutions in these areas in more detail.

 8.2.1 Security at the mobile device

 The three aspects of device security are as follows:

 •Device level management

 •Data security

 •Application level security

 Device level management

 Most mobile devices are targeted toward the consumer market with only rudimentary security capabilities built in as optional features. For employees who want to participate in a BYOD scenario, organizations want to centrally manage the mobile devices used by the employees. These capabilities for device protection are generally grouped under the umbrella of mobile device management (MDM). For business-to-consumer scenarios, this is usually not feasible because it represents an invasive technology that is not acceptable to general consumers. However for business-to-employee scanarios, the organizations have more authority to dictate specific security requirements, including the installation and maintenance of MDM software on the mobile device. Employees wishing to opt-in to mobile application usage are required to agree to specific terms and conditions of use.

 The best practice for organizations wishing to implement a highly secure mobile environment is to deploy an MDM solution. For any mobile device to be eligible for use in an enterprise environment, it should be treated like any other IT resource owned and managed by the company (for example, notebooks, PCs).

 Figure 8-4 on page 121 depicts the generally accepted MDM capabilities.

 [image:]

 Figure 8-4 Generally accepted MDM capabilities

 The role of an MDM includes the following tasks:

 •Enroll the device by registering it with a enterprise management system.

 •Ensure the device is not tampered with (this includes jailbreak or root detection).

 •Ensure the OS on the device is patched and without zero-day vulnerability.

 •Ensure the applications running on the device are properly segragated for each other’s storage, either in processing or in regard to the data accessing.

 •Enable and enforce password policies.

 •Enable device encryption.

 •Force encrypted backup.

 •Disable insecure device synchronization with cloud-based services (for example iCloud).

 •Ensure policy compliance when accessing corporate data

 •Implement a selective or full device wipe.

 MaaS360 is a comprehensive enterprise MDM platform that provides end-to-end support for users, devices, emails, apps, documents, and web access. In addition to fulfilling all the requirements stated previously, MaaS360 provides the following advantages:

 •Simple to set up and use in a matter of minutes to manage and secure all major smartphone and tablet operating systems including Apple iOS, Android, Windows Phone, and BlackBerry.

 •Provides collaboration and containerization capabilities for mobile enablement use cases.

 •Built on a true multitenant cloud infrastructure that can easily scale to manage 100 to 100,000 devices.

 •Quickly and seamlessly integrates with all of the existing infrastructure without need for on-premises servers or network configurations.

 Data security

 An emerging trend when deploying an MDM solution is to segregate the personal profile and the business profile on the mobile device and to manage only the business profile.

 One approach is to use a secure container to isolate the organization’s application and data. The user is restricted to access organization data through the application in the container.

 Another approach is for the business application data to be published using a Virtual Desktop Infrastructure (VDI). The enterprise data never leaves the corporate server, which results in high security at relatively low cost. However, the users cannot invoke the application in offline mode and this can impact the user experience.

 For an optimal user experience with good data security, the application data should be transferred to the remote device securely and stored by using encryption technology.

 MaaS360 delivers data security on the mobile device. It provides containers to separate “work” from “play” in the same device. It enforces the compliance of device configurations with enterprise security policies and employs platform facilities to enforce data encryption. This solution provides remote device lock and both full and selective data-wipe capabilities while providing the infrastructure to deliver anti-malware solutions. It can also require that virtual private networks be used to protect sensitive data communications.

 Application level security

 Independent of device level management where the organizations have more control of the devices in the business-to-employee scenario, mobile security can also be enforced at the application level.

 A security framework should be adopted for the enterprise server to validate the authenticity of the mobile application before it is allowed to access corporate data. One possible strategy for the server is to send a public key infrastructure challenge token to the mobile device; the device must respond with its unique signature. The process of signing should be completed in the device native code, and the communication channel to the server must be encrypted, so that a third party cannot eavesdrop and reverse engineer the signing algorithm.

 IBM Worklight offers mobile application developers security by providing facilities with the tools needed to achieve the following objectives:

 •Encrypt data of their applications on the device (cache and local storage).

 •Use offline mode authentication to access device data.

 •Coordinate with Worklight server to enforce application authenticity.

 •Enforce application security update.

 •Integrate with MDM jailbreak and malware detection components.

 IBM Worklight provides a set of security capabilities that address these mobile app security objectives (see Figure 8-5 on page 124).

 [image:]

 Figure 8-5 IBM Worklight security capabilities

 In addition, subscription-based IBM Hosted Mobile Device Security Management is a turnkey software-as-a service (SaaS) solution. It provides assurance of data security and policy compliance with anti-malware, anti-theft, lock, and wipe features, all delivered from the cloud.

 8.2.2 Security over the network and inside the organization

 To properly protect access to resources, an organization must apply the following principles:

 •Authenticate users and enforce access policy to the corporate servers.

 •Implement strong session management using a mobile security gateway.

 •Monitor the payload to detect threats and establish security intelligence.

 •Establish a secured connectivity from the devices to the enterprise servers.

 •Protect against fraud in business transactions.

 User and device authentication

 Organizations can enforce device security with user ID and password by using an MDM solution. To protect access to enterprise applications and sensitive data on the mobile device, a stronger authentication policy can be used, for example, two-factor authentication (2FA) and risk-based authentication (RBA).

 Two-factor authentication often combines password authentication with a second factor, such as token or certificate-based authentication, or a one-time password (OTP).

 RBA is often used in banking and for highly secure and sensitive applications. It is more “user-friendly” and can be deployed in the background after the user is authenticated through the user ID and password. RBA examines the risk level of the user access request and checks, for example, user ID, user location, device ID, analysis of user behavior, and usage patterns, to grant access to the transaction.

 However, if indicators suggest an anomaly or the requested information is highly sensitive, the user is asked to provide extra authentication credentials. When RBA is used with single sign-on (SSO), for the users to access resources securely becomes highly convenient and productive. RBA can use the organization’s existing SSO and identity management infrastructure.

 Another authorization protocol that is commonly used in mobile security deployments is OAuth 2.0. It is an authorization framework that allows a resource owner to grant permission for access to their resources without the sharing of credentials and to provide limited access to the resources hosted by web-based services accessed over HTTP. OAuth is focused on Web 2.0 and web API types of interactions in order to provide customizable access to an enterprise’s applications and a specific user’s data.

 Other device features can be exploited to authenticate a user:

 •Near field communication (NFC) capabilities

 •Finger print sensor

 •Camera for visual recognition

 •Microphone for voice recognition

 Access control with a mobile security gateway

 The most effective mechanism to enforce the proper access policies is through the use of a centralized mobile security gateway. It is a proxy solution that serves as an entry point for mobile network and application traffic into the enterprise internal network. It delivers a configurable set of modular capabilities to protect and enhance online mobile interactions. The gateway acts as the policy enforcement point (PEP) for all authentication and authorization decisions that are related to mobile traffic. By deploying a mobile security gateway, the enterprise can decouple the enforcement of security policy from the application. It also provides functional offload of security capabilities to allow better use of computation resources to handle the high request volume of the mobile app.

 IBM offers three solutions that can act in the role of a PEP for authentication and authorization decisions at the gateway layer:

 •IBM Security Access Manager for Mobile

 •IBM WebSphere DataPower gateway appliances

 •IBM Worklight Server

 IBM Security Access Manager for Mobile

 IBM Security Access Manager for Mobile is an appliance-based security solution that enables secure user access to mobile and web applications with SSO, session management, and context-based access control. It improves identity assurance with flexible authentication schemes, such as one-time passwords (OTP) and RSA SecurID token support ensure that SSO is available from all access points in the network. It also enforces context-aware authorization using device fingerprinting, geographic location awareness, and IP reputation scores. These features improve user experience while ensuring secure access in the mobile applications. Security Access Manager can also integrate with the IBM Worklight solution to deliver seamless user and application security.

 Security Access Manager for Mobile has two more integration points with other security products to further enhance security in the network and on the device:

 •Gathers security intelligence to help reduce risk and demonstrates compliance by integrating with IBM Security QRadar solutions.

 •Protects from high risk mobile devices by integrating with Trusteer Mobile software development kit (SDK).

 Figure 8-6 depicts IBM Security Access Manager for Mobile as a security gateway that uses a dynamic authentication policy based on real time context.

 [image:]

 Figure 8-6 IBM Security Manager for Mobile as security manager

 The numbers in the figure are as follows:

 1.	A user tries to access confidential data from inside the corporate network.

 2.	Based on device location, Security Access Manager prompts the user for a user ID and password combination.

 3.	A user tries to access confidential data from outside the corporate network.

 4.	Based on device location, Security Access Manager prompts the user for a user ID and password combination and then initiates an OTP.

 IBM WebSphere DataPower gateway appliances

 As a mobile security gateway, WebSphere DataPower can securely expose corporate data, application, and services to external consumers and business partners, while optimizing delivery of the workload.

 It can provide the following integration capabilities:

 •JSON transformation

 •XML offloading

 •Message validation and filtering

 •Message and transport protocol transformation

 •Traffic control and quota enforcement

 •SOA governance and management

 •Dynamic routing and intelligent load distribution

 Furthermore, WebSphere DataPower can provide high levels of certified security assurance, for example, Transport Protocol Security (Secure Sockets Layer and Transport Layer Security, or SSL/TLS), Message Level Security, and also authentication, authorization, and audit (AAA). Its System z integration capability allows CICS and IMS transactions to consume external web services and it provides a secure path for mobile access to System z services.

 Figure 8-7 shows DataPower in the role of a mobile security gateway.

 [image:]

 Figure 8-7 WebSphere DataPower security gateway

 In Chapter 11, “Enabling end-to-end security” on page 257, we configure WebSphere DataPower to be used in our Worklight deployment.

 IBM Worklight Server

 IBM Worklight Server provides its own infrastructure for performing user authentication and authorization. As applications are developed for Worklight, certain resources can be protected and configured to require user authentication before they can be accessed. Worklight has several authenticators that can be assigned to a protected resource (for example, HTTP basic authentication, form-based authentication, custom header authentication, persistent cookie authentication, and LTPA). Worklight can also provide integration with an identity store for validating credentials that are supplied by the mobile user (for example, database, LDAP, and web service calls).

 Figure 8-8 depicts a topology where the IBM Worklight Server, which is deployed on Linux on z, acts as a PEP.

 [image:]

 Figure 8-8 Worklight Server as security policy enforcement point

 Each topology has advantages and disadvantages. For example, Security Access Manager and DataPower are better suited for DMZ-based deployments, whereas Worklight should not be placed in the DMZ because it combines the mobile application platform and the enforcement point into one component. See 8.3, “Topologies for securing mobile access to System z” on page 140 to see the deployment options.

 Monitor and protect

 Because today’s corporate data center must handle various external users, including remote employees, customers, and business partners, using web-based and mobile-based IT traffic, the historical enterprise IT perimeter is no longer a clearly defined security checkpoint.

 Implementing an effective network security strategy is critical for protecting the organization from the new potential threats introduced by these new IT channels. In addition to traditional network security devices such as intrusion detection systems (IDS) and intrusion prevention systems (IPS), more intelligent, application-aware products have emerged to provide a greater level of security and protection. Web application firewalls (WAFs) can be effective tools for providing this higher level of protection against known, and even some unknown, security vulnerabilities.

 The purpose of a WAF is to protect corporate IT resources from malicious inbound requests that could either compromise the integrity of the backend system or could lead to the unintentional disclosure of sensitive data in responses. WAFs can generally operate in a passive (logging only) or active (blocking) mode. Both modes of operation have advantages and disadvantages. Logging-only mode prevents the system from discarding otherwise benign requests (false positives), but will otherwise let identified malicious requests pass through and only log the occurrence for potential future analysis. Blocking mode may require configuration down to the smallest common denominator of web and mobile applications being protected in order to avoid costly false positives.

 Some of the most common web and mobile application threats that a WAF is targeted to protect the organization from include these threats:

 •Cross-site scripting (XSS)

 •Injection (for example, SQL, XPath, LDAP, OS shell)

 •Cross-site request forgery (CSRF)

 •Brute force attacks

 •Data loss prevention (DLP)

 •Broken authentication and session management

 •Path traversal and forced browsing

 •Content-based denial of service (DoS) (for example, XML, JSON)

 Both Security Access Manager and DataPower can monitor payload to prevent malicious data from reaching backend services.

 In addition to these traditional threat detection technologies, a new event-driven approach to threat management allows you to apply artificial intelligence (AI) technologies to predict the likelihood of suspicious usage. Mobile devices provide convenient access to corporate IT services from any location, which might increase the likelihood of suspicious behavior. Furthermore, they can provide extra data, such as geolocation to determine acceptable usage. Organizations require visibility into their environment so they can examine the various events that are generated from mobile devices.

 IBM QRadar Security Intelligence Platform products provide a unified architecture for integrating security information and event management (SIEM), log management, anomaly detection, and configuration and vulnerability management. These products offer advanced threat detection, greater ease of use and lower total cost of ownership.

 IBM Security QRadar SIEM consolidates log source event data from thousands of devices endpoints and applications that are distributed throughout a network. It performs immediate normalization and correlation activities on raw data to distinguish real threats from false positives. Log data can be collected from IBM Worklight, Security zSecure™, IBM Security Access Manager for Mobile, and IBM Security AppScan for Mobile.

 As an option, IBM Security QRadar SIEM incorporates IBM Security X-Force Threat Intelligence, which supplies a list of potentially malicious IP addresses, including malware hosts, spam sources, and other threats.

 Secure communication

 Mobile applications that transfer sensitive data with corporate application servers must properly secure the communication channels to avoid man-in-the-middle attacks. The two most popular technologies in use for secure communication are Secure Sockets Layer (SSL) and virtual private network (VPN). SSL is more granular in securing individual message exchanges; VPN can secure all communication to corporate IT services from the mobile application. VPN technology is typically used to access interval services from public networks, SSL communication is commonly used to access services through an enterprise DMZ.

 IBM Mobile Connect is a VPN solution that enables secure connectivity from the mobile device to the corporate network (see Figure 8-9 on page 132) to protect enterprise data in transit from mobile devices to back-end systems.

 [image:]

 Figure 8-9 IBM Mobile Connect

 Fraud protection

 Mobile security is a primary concern for the financial sector because of the significant rise in popularity of mobile banking. As financial institutions introduce broader capabilities for money movement to the mobile channel, cybercriminals will intensify attacks, invent new techniques, and continually challenge fraud-prevention professionals who try to keep this channel safe.

 A primary concern in the mobile channel is a coordinated account takeover attack that involves both the online and mobile channels. Cybercriminals steal credentials from a victim’s PC through malware or phishing attacks to commit account takeover using the mobile device browser. This scheme is enabled by the tendency among banks to use the same username and password combination in both the online and mobile channels and also to use the same challenge questions as password reminders.

 To protect against threats like cross-channel account takeover attacks, being able to identify risk factors for devices and accounts in the online and mobile channels is important. One of the most effective ways to detect current and future fraud schemes is through an integrated mobile risk engine such as the one provided by Trusteer. Trusteer offers both on-device components and a centralized risk engine.

 8.2.3 Security for the mobile app

 Consider the following aspects of mobile app security:

 •Secure application development

 •Secure management of mobile apps

 •Secure integration from the mobile application to back-end services

 Secure application development

 Many security vulnerabilities exist because developers do not follow secure coding practices.

 Many security functions are typically disabled during the early stages of development to ensure rapid development and integration; however, this approach can expose an organization to security flaws if these security functions are not configured after the code is promoted into production environments. Side-channel data leakage can occur when mobile application developers do not realize how data is used within the mobile app. Mobile apps can be used in offline mode for optimal user experience. They can cache and store sensitive data to provide an optimal user experience; however, this data might contain private information, such as session information, and customer or account details.

 Security vulnerability testing of mobile apps is a critical component during development. These tests can be scripted and executed after major code releases or executed from packaged solutions. The three common platforms for mobile app development are iOS, Android, and web. Each of these platforms present different security challenges and require platform-specific knowledge to understand the vulnerabilities. Furthermore, security testing must focus on the end-to-end message flow and consider the various components that may log sensitive information. Low-level debug logging must be disabled in a production environment to avoid logging of sensitive information, or debug data should be masked by using an appropriate encryption technology.

 IBM Security AppScan can detect vulnerabilities in native mobile web apps, in the web elements of hybrid mobile apps, and in iOS and Android apps through analysis during development. It can seamlessly integrate with Worklight Studio and scan Worklight projects for security vulnerabilities.

 As depicted in Figure 8-10, Security AppScan takes a risk management approach where the apps are classified and the risk and impact of a security vulnerability is evaluated.

 [image:]

 Figure 8-10 IBM Security AppScan used to classify and evaluate applications

 Secure management of mobile apps

 When an organization adopts a BYOD strategy, the organization accepts mobile apps running on the employee’s own device to access corporate data. Although the applications are typically installed using well known public app stores or the trusted app store of the organization, ensuring that the applications are not altered maliciously is important; otherwise the corporate data could be compromised.

 The security features of IBM Worklight (see Figure 8-5 on page 124) enable organizations to efficiently develop, deliver, and run safe HTML5, hybrid, and native mobile applications with direct updates and application validation.

 The Worklight Server can automatically update hybrid iOS and Android applications with new versions of their web resources (HTML, JavaScript, and CSS). In this way, the user does not have to manually get these updates from an app store.

 By ensuring that all users are using the most recent version of the application, securty is enhanced because the process of issuing security updates is fast and simple to perform.

 A DataPower appliance can securely proxy management requests between the Worklight Server and the mobile app and ensure data integrity and confidentially during the update process.

 Integrate securely

 System z applications and their associated data constitute some of the most valuable assets owned by an enterprise. Therefore, the protection of these assets is an essential part of any mobile solution that reuses these assets.

 Several unique System z security features can be used to protect mobile access to System z applications running in

 •IBM Security zSecure Suite and RACF

 •HiperSockets

 •z/OS Connect

 •DataPower XI50z

 IBM Security zSecure Suite and RACF

 The IBM Security zSecure Suite is a family of products that helps you to enhance your mainframe administration, and also provides a solution for audit and compliance reporting and management within your z/OS infrastructure. Figure 8-11 on page 136 shows the products.

 [image:]

 Figure 8-11 IBM Security zSecure Suite

 The components of Security zSecure are divided into two categories.

 •Administration management, which offers these utilities:

  –	Security zSecure Admin

  –	Security zSecure Visual

  –	Security zSecure Manager for RACF z/VM

  –	Security zSecure CICS Toolkit

 The proper administration of IBM RACF® databases is a cornerstone of a secure mainframe environment. Security zSecure administration products for RACF provide a “what you see is what you get” access pattern to the RACF database.

 Administration for z/OS RACF is done by using either Security zSecure Admin or the Windows component Security zSecure Visual. The administration for RACF for z/VM is done by using Security zSecure Manager for RACF z/VM. The user interface to RACF is the same for z/OS and z/VM.

 The speedy creation and administration of RACF IDs (for users or systems) and general profiles is important when you are deploying new mobile applications.

 •Security audit and compliance, which offers these utilities:

  –	Security zSecure Audit

  –	Security zSecure Alert

  –	Security zSecure Command Verifier

 Security audit and compliance for z/OS systems is achieved with these products. By using them, you can more easily ensure that your system is compliant with the rules and regulations to which you must adhere.

 Security zSecure Audit can be used to feed data into the QRadar SIEM solution. Events from System Management Facility (SMF) are recorded to an event file in the Log Enhanced Event format (LEEF). QRadar retrieves the LEEF event log files using the log file protocol and processes the events. You can schedule QRadar to retrieve events on a polling interval, which allows QRadar to retrieve the events on the schedule you have defined.

 Security zSecure Alert can be configured to send real-time events to QRadar SIEM thus enabling a single view of mobile security threats.

 HiperSockets

 Many data center environments today provide multitiered server applications, with various middle-tier servers surrounding the System z data and transaction server. Interconnecting this multitude of servers requires the cost and complexity of many networking connections and components. The performance and availability of the inter-server communication is dependent on the performance and stability of the set of connections. The more servers involved, the greater the number of network connections and complexity to install, administer and maintain.

 Alternatively, the mid-tier servers can be consolidated onto multiple Linux virtual servers running on System z, using a high-speed HiperSockets network. HiperSockets provides high-speed connectivity between combinations of logical partitions or virtual servers within a System z server. The technology eliminates the need for any physical cabling or external networking connection between these virtual servers. This network within a box concept minimizes network latency and maximizes bandwidth capabilities between z/VM, Linux on System z and z/OS images.

 HiperSockets is implemented in System z key protected memory, therefore the messages cannot be “sniffed.” When Worklight Server is deployed on Linux for System z, and HiperSockets is used for communication with the z/OS LPARs, secure access to the enterprise applications that are running on z/OS can be achieved.

 z/OS Connect

 In “Native RESTful interfaces to z/OS subsystems” on page 79, we introduce the IBM z/OS Connect offering, which provides a fast, secure, and reliable connector to access z/OS applications. z/OS Connect provides a standard way for these assets to be identified and reached using RESTful HTTP requests.

 z/OS Connect can be used to provide a unified interface to z/OS back-end applications that run in CICS, IMS, DB2, or even batch jobs. This can be helpful in standardizing the security controls that you apply for mobile access to these services.

 z/OS Connect provides a framework that allows interceptors, or methods, to be executed around the invocation of the service. These are called by z/OS Connect before the service is called (pre-invoke) and after the service is called (post-invoke), as shown in Figure 8-12. In the figure, WAS is WebSphere Application Server.

 [image:]

 Figure 8-12 z/OS Connect interceptors

 z/OS Connect provides implementations of service security authorization and SMF-based auditing by using the interceptor framework, as follows:

 •com.ibm.wsspi.zos.connect.Authorization()

 Provides SAF-based authorization checks for z/OS services.

 •com.ibm.wsspi.zos.connect.Audit()

 Provides SAF-based auditing and tracking

 z/OS Connect provides group level authorization checking at the service level with three types of access:

 •Administrator

 Implies that updates to z/OS Connect configuration are permitted by callers of the service.

 	
 Note: This is not supported in Version 1 of z/OS Connect but is expected to be supported in the future.

 •Operations

 Implies that the user is authorized to use the following methods, among others, for the service:

  –	start()

  –	stop()

  –	status()

  –	getData()

  –	getJSONschema()

 •Invoke

 Implies that the user is permitted to drive the associated service provider’s invoke() method.

 z/OS Connect includes an interceptor implementation that supports both SAF and LDAP. It uses the getGroupsforUser() security API to determine which groups the current user is in, and then compares these to the group or groups provided on the service definition.

 	
 Important: The interceptor framework is extensible, which allows for any number of qualities of service to be injected around the invocation of a z/OS Connect service.

 DataPower XI50z

 IBM WebSphere DataPower Integration Appliance XI50 for zEnterprise (DataPower XI50z) is a multifunctional appliance for the System z environment. It can be implemented to help provide XML hardware acceleration, secure web services and provide other integration functions, including routing, protocol and data transformation, and auditing.

 The appliance is hosted and integrated securely inside the IBM zEnterprise BladeCenter Extension (zBX), and managed by the zEnterprise Unified Resource Manager. For customers that installed the zBX, DataPower XI50z can provide an extra security layer for protecting mobile access to CICS IMS applications (see 8.3.5, “WebSphere DataPower XI50z as a second security layer” on page 146).

 8.3 Topologies for securing mobile access to System z

 Various security topologies can be used to secure mobile access to System z services:

 •Worklight security

 •DataPower as a policy enforcement point

 •WebSphere DataPower as reverse proxy for Worklight Server

 •z/OS Connect

 •WebSphere DataPower XI50z as a second security layer

 •IBM Security Access Manager for Mobile as a PEP

 	
 Note: These are only a selection of the different security topologies that can be used. Many different variations of these are possible.

 8.3.1 Worklight security

 This topology, shown in Figure 8-13, is likely to be used for solutions that have a defined internal user base, for example, for a business-to-employee scenario.

 [image:]

 Figure 8-13 Worklight server security

 In this topology, you can use the flexible security framework of Worklight (see Figure 8-5 on page 124), for example, for user, device, and application authentication.

 Extra security benefits are achieved when Worklight server is deployed to Linux for System z:

 •By running Worklight Server on Linux for System z, you can benefit from the hardware cryptography support for SSL/TLS connections to the Worklight server. Cryptographic hardware, available on zEnterprise EC12, includes the following features:

  –	Central Processor Assist for Cryptographic Functions (CPACF)

 CPACF offers a set of symmetric cryptographic functions for high performance encryption and decryption with clear key operations for SSL/TLS. The cryptographic assist includes support for these functions:

  •	Data Encryption Standard (DES) and Triple DES (TDES) data encrypting and decrypting.

  •	Advanced Encryption Standard (AES) for 128-bit, 192-bit, and 256-bit keys

  •	Pseudo random number generation (PRNG)

  •	Message authentication code (MAC)

  •	Hashing algorithms: SHA-1 and SHA-2 support for SHA-224, SHA-256, SHA-384, and SHA-512

 The CPACF functions are supported by z/OS, z/VM and Linux on System z.

  –	Crypto Express4S

 Asynchronous cryptographic functions are provided by the Crypto Express features. On the EC12 machine, the Crypto Express4S PCI Express adapter coprocessor can be configured in several ways. When configured as an accelerator, it supports public key and private key cryptographic operations that can significantly improve the performance of SSL/TLS handshaking.

 •The security advantages of using HiperSockets, because there’s no network connection to intercept.

 •The opportunity to eliminate encryption between the Worklight Server and the back-end system.

 •The EAL4+ certification that was assigned to Linux for System z running under z/VM.

 	
 EAL4+ certification: z/VM has earned Common Criteria EAL4+ certification for its ability to protect virtual machines in an LPAR.

 This topology, however, is probably not appropriate for an Internet-facing mobile application. In this case, you are likely to want to deploy a mobile security gateway in a DMZ configuration, as shown in the subsequent scenarios.

 8.3.2 DataPower as a policy enforcement point

 This topology, shown in Figure 8-14, can be used for Internet-based solutions.

 [image:]

 Figure 8-14 DataPower as a policy enforcement point

 In this topology, you can use the wide range of DataPower security capabilities as described in “IBM WebSphere DataPower gateway appliances” on page 127. DataPower acts as the first line of defence against security attacks and protects access to back-end resources that are accessed by mobile applications.

 This topology offers the following benefits:

 •DataPower provides mechanisms to protect against many common malicious payload-based attacks that a web application firewall (WAF) is typically deployed for, including service and API content inspection and validation.

 •DataPower can provide a workload shaping capability by controlling the number of requests that are handled simultaneously.

 •DataPower supports a wide range of user authentication mechanisms, including HTTP basic authentication, form-based, LTPA, SAML, and OAuth.

 •DataPower has good integration with System z including RACF integration and support for z/OS identity propagation.

 8.3.3 WebSphere DataPower as reverse proxy for Worklight Server

 This topology, depicted in Figure 8-15, is how Worklight and DataPower can be used together to benefit from the capabilities of both products.

 [image:]

 Figure 8-15 DataPower as reverse proxy for Worklight server

 This topology offers the following benefits:

 •DataPower can authenticate mobile users. After successful authentication, it can generate a single sign-on token (such as an LTPA token) that is trusted by the Worklight server.

 •DataPower can be used to make intelligent routing decisions by choosing the most appropriate Worklight server to process the mobile request.

 •DataPower can be used to cache static data like images, therefore, improving mobile response times.

 In Chapter 11, “Enabling end-to-end security” on page 257, we configure WebSphere DataPower to be used in our Worklight deployment.

 8.3.4 z/OS Connect

 This topology, depicted in Figure 8-16, is how z/OS Connect can be used to standardize the security controls that you apply for mobile access to z/OS services.

 [image:]

 Figure 8-16 z/OS Connect

 This topology can be useful when you need to provide mobile access to various types of back-end z/OS applications but you want a single entry point for these requests. This allows you to use the unified service security authorization, auditing, and workload context support that is provided by z/OS Connect (see “z/OS Connect” on page 138.)

 This topology offers the following additional benefits:

 •z/OS Connect provides security checking to ensure the requesting user or system is authorized to access the back-end application and it tracks the access in z/OS SMF records.

 •z/OS Connect helps to more easily separate mobile requests from other types of web requests.

 •z/OS Connect offers a way to discover with a simple REST call of all the services in its configuration.

 	
 RESTful: z/OS Connect supports only RESTful services, it does not support SOAP-based web services.

 8.3.5 WebSphere DataPower XI50z as a second security layer

 This topology, depicted in Figure 8-17, introduces a second security layer (DataPower XI50z).

 [image:]

 Figure 8-17 DataPower XI50z as a second security layer

 In this topology, the IBM WebSphere DataPower Integration Appliance XI50 for zEnterprise (DataPower XI50z) is used to provide extra defense-in-depth. DataPower XI50z has the same capabilities as other DataPower form factors like connectivity, security, data transformation, and protocol bridging.

 DataPower XI50z is installed in the IBM zEnterprise BladeCenter Extension (zBX), so this topology is most applicable to existing zBX clients. This deployment benefits from the private and secure 10 Gbps intraensemble data network (IEDN) that connects the zBX to the z/OS LPARs that run the back-end systems.

 This topology offers the following benefits:

 •DataPower XI50z can be an additional security layer protecting the most critical back-end systems.

 •DataPower enables z/OS identity propagation support when used as a gateway for CICS web services. For example, Worklight may propagate an LTPA token to DataPower XI50z, which then maps the token to an identity token specific to z/OS and that contains the distributed identity of the user. The request is then forwarded to CICS over the secure IEDN, and CICS passes the token to RACF so the client’s identity can be mapped to a RACF user ID. The advantage of this solution is that the original caller’s identity is not lost; it is stored as an extension to the RACF identity.

 •DataPower XI50z can act as a secure proxy for push notifications from the Worklight Servers back to the mobile devices.

 8.3.6 IBM Security Access Manager for Mobile as a PEP

 This topology, depicted in Figure 8-18 is how the IBM Security Access Manager for Mobile can be used as a reverse proxy for a web-based mobile application.

 [image:]

 Figure 8-18 IBM Security Access Manager for Mobile as a policy enforcement point

 In this topology, you can use several unique security capabilities of Security Access Manager as described in “IBM Security Access Manager for Mobile” on page 126.

 This topology offers the following benefits:

 •Security Access Manager supports a wide range of web-based authentication mechanisms and is effective as a web application firewall (WAF).

 •Security Access Manager supports risk-based authentication (RBA).

 RBA is often used in banking and for highly secure and sensitive applications. It is more user-friendly, and can be employed in the background after the user has authenticated by using a basic user ID and password. RBA examines the risk level of the user access request and checks, for example, user ID, user location, device ID, analysis of user behavior, and usage patterns, to grant access to the transaction. However, if indicators suggest an anomaly, or if the information requested is highly sensitive, the user is asked to provide more authentication credentials.

 When RBA is used with single sign-on, secure user access to resources becomes highly convenient and productive. RBA reuses the organization’s existing single sign-on and identity management solution infrastructure.

 •Security Access Manager integrates well with security intelligence solutions such as QRadar (see “Monitor and protect” on page 129).

 •Security Access Manager integrates well with fraud detection solutions such as Trusteer (see “Fraud protection” on page 132).

 For more information about using Securing Access Manager for risk-based authentication decisions to protect Worklight adapters see Securing Your Mobile Business with IBM Worklight, SG24-8179.

 	
 Note: DataPower and IBM Security Access Manager can also be used together, for example, Security Access Manager for web requests and DataPower for RESTful service requests.

 8.4 Conclusion

 Although the risks presented by shifting the organization to adopt a MobileFirst posture might initially seem nearly insurmountable, a comprehensive mobile security framework with a set of solutions can address all of these concerns. This allows organizations to extend the tremendous wealth of knowledge, data, and capability that is running on their IBM System z platform to customers and employees anytime and anywhere by using nearly any device.

[image:]
[image:]

Customer scenario

 In this part, we use a fictional company and mobile application deployment to show an example of how a mobile solution can be deployed on System z.

 We start with an overview of the scenario, mobile solution requirements, and the outline of the designed implementation. Subsequent chapters provide details about how the mobile app is deployed to Worklight Server running on Linux for System z, how it integrates with an existing CICS application, how we deployed the application to a secure and highly available infrastructure, and how we used analytics to track the usage of the mobile app.

[image:]
[image:]

Overview of scenario, requirements, and approach

 In this chapter, we introduce a typical business scenario of a fictional insurance company, referred to as the fictional general insurance company or the insurance company. We describe the business and technical requirements of a new mobile application deployment.

 This chapter contains the following topics:

 •Company overview

 •Business vision

 •Business requirements

 •Functional requirements

 •Design approach

 •Implementation steps

 9.1 Company overview

 The fictional general insurance company is a long-established company, based in the US, offering a wide range of general insurance products and services for individuals, small and large businesses.

 Customers can access the company’s products and services directly or through insurance agents and brokers. The company provides Internet access to insurance policy data, and recently started to create a presence by using social media, including Facebook and Twitter.

 9.1.1 Current IT infrastructure

 The insurance company runs the critical insurance applications on an IBM System z mainframe. One of the basic requirements for the IT infrastructure is to provide continuous business operations in the event of planned or unplanned disruptions. The availability of the installation’s mission-critical applications, based on a highly available platform, directly correlates to successful business operations.

 The company has an established parallel sysplex that allows clustered servers to provide resource sharing, workload balancing, and data sharing capabilities. Insurance policy data is stored in DB2 and VSAM data sets.

 Insurance requests are processed by the following transactional systems:

 •CICS Transaction Server is used to host the insurance applications, including a general insurance application called GENAPP. Most of these applications are written in COBOL, although Java is also being used for new applications.

 GENAPP is a COBOL application that is used to create and manage customer and insurance policy data.

 Several CICS applications, including GENAPP, have been exposed as web services for external and business partner integration.

 The CICS systems are run as part of a CICSplex and CICSPlex SM is used for CICS workload management.

 •IMS is also used to host insurance applications, and also internal applications that are used to administer the company.

 •WebSphere Application Server running on Linux for System z is used for intranet and Internet access to insurance applications like GENAPP. WebSphere is configured to use the IBM Tivoli Directory Server as an LDAP user registry.

 9.2 Business vision

 The CEO of the insurance company realizes that mobile technology is now part of everyone’s life. He wants the company to become a mobile enterprise. By embracing a mobile first strategy, he plans to gain new customers at the expense of his competitors by offering new proactive mobile services. He also plans to reduce costs by empowering his existing clientele to use mobile channels to connect to all offerings that his company provides, thus reducing branch staff and agent fees.

 The mobile development team has already developed and tested a few native apps that enable the user to list insurance policies and make claims. This has proven to be cumbersome when trying to address various devices from various manufacturers. By developing a mobile app that can be used on a wide range of devices, the CEO hopes that smartphones and tablets can become the primary way to access the company’s insurance services. In this way, customers can more easily alter their policies, for example, to add extra cover before going on a ski holiday, or to add an another driver to a car policy when a son or daughter starts to use the family car. It can also enable the company to offer new services, for example, a healthcare policy when a customer reaches a certain age.

 9.3 Business requirements

 Based on the strategic aspects highlighted in 9.2, “Business vision” on page 153 the insurance company wants to achieve the following short-term business goals:

 •Improve the quality and availability of insurance services and satisfaction by delivering an excellent, individualized mobile experience.

 •Add new mobile-based features such as automatic claim notification.

 •Maintain the high level of protection of all customer-related and business-related information, and address the diverse security risks that are driven by compliance requirements, and emerging mobile technologies.

 •Facilitate the management and demonstration of the overall compliance posture with data privacy laws and industry regulations while opening new communication channels into a diverse mobile landscape.

 Overall, the insurance company wants mature solutions that can prevent information leaks, and ensure trustworthy authentication and individual traceability and accountability of all actions that affect their customers and employees.

 By addressing these pressing business requirements, the insurance company is trying to achieve the following goals:

 •Develop a new mobile app version 1 interface and content by using a team of line-of-business managers that interface with the development and IT departments in the enterprise. In this approach, user satisfaction levels are an important metric for the project.

 •Prepare and deploy the new mobile app version 1 into a highly available production environment that can also provide a centralized approach for authentication of users. The new mobile first initiative must be highly available because customers can access the app whenever and wherever they are.

 •Use mobile data analytics to examine use case patterns and better understand when and how customers are accessing information using mobile technology. In this way, the insurance company can better anticipate and plan for future upgrades and enhancements of its mobile first initiative.

 After the business executives reach a clear understanding about their path into a mobile future, their technical teams prepare for an investigation of the functional requirements.

 9.4 Functional requirements

 To properly address the new business requirements that are established by the insurance company’s leadership team, the technical leaders completed an enterprise mobile app requirements review. The following four key functional drivers emerged:

 •Build an agile approach to deliver apps

 •Secure every transaction

 •Build a scalable and highly available infrastructure

 •Use mobile analytics to gain customer insight

 After a review of these requirements, the company selected IBM Worklight as its Mobile Enterprise Application Platform (MEAP) to achieve accelerated deployment by taking advantage of its development and deployment tools. The company chose to implement a hybrid mobile app, which would best meet the varying platform matrix of the company’s customers and employees.

 The critical requirements are the need to integrate the new mobile channel into the existing IT infrastructure, reuse existing services, enhance the insurance applications with new features, and not to compromise the existing operational processes.

 9.4.1 Build an agile approach to deliver apps

 The application development manager identified the following areas that he believes are required to keep pace with the demands for new and improved mobile apps:

 •Enable rapid process for development and deployment

 •Use common technologies and toolkits

 •Reuse of existing enterprise applications

 Enable rapid process for development and deployment

 To deliver mobile apps to its customers and employees, the insurance company must first build the apps, then at a later time, maintain, update, and enhance the existing apps, and provide new apps in the future.

 Using Worklight Studio, the developers are able to take advantage of the features and capabilities of the Worklight client, and also build and reuse Worklight shell components for common content in their apps.

 The Worklight Console and the Worklight Application Center can then be used to rapidly distribute, update, control, and gather feedback about the apps.

 The WebSphere Liberty Profile was chosen as a test environment because it can be configured to have a small memory footprint, it starts fast, and has low processor usage when idle. All are key performance features for a development server that is started and stopped often.

 Use common technologies and toolkits

 Worklight Studio enables the development of rich multiplatform apps using HTML5 and JavaScript for hybrid and native application types. It provides access to device APIs that use native code, or standard web languages.

 Worklight Studio also integrates with third-party tools, libraries, and frameworks, such as JQuery Mobile, Sencha Touch, and Dojo Mobile. Therefore, the insurance company can deploy mobile apps that most of its customers can use.

 Worklight Studio can also be used to design, develop, and test Worklight adapters for back-end data source connectivity and data retrieval.

 Reuse of existing enterprise applications

 By extending existing enterprise applications onto a mobile platform, the insurance company can capitalize on its existing investment without the need to develop an entirely new solution to support mobile services.

 The company has several enterprise applications that currently run on IBM System z. In particular, the general insurance application (GENAPP) allows employees of the company to create and manage its customers and insurance policies. The CICS application provides a 3270 interface, used by company employees, to create and inquire about customers and policy information. An Internet browser interface is also provided so that employees and customers can manage policies and make claims. Authorized business partners can also access certain policy information by using web service calls.

 A requirement exists to enable a mobile solution for GENAPP so that the company can compete with other insurance companies that are providing their customers with mobile apps.

 The company wants to put the solution into the market as soon as possible, and does not want to change the existing COBOL application programs.

 By using the IBM Worklight adapter framework, the company is able to quickly build a mediation layer between the mobile devices and the back-end CICS transactions. Worklight Server is designed to integrate into the enterprise environment and use its existing resources and infrastructure.

 9.4.2 Secure every transaction

 Mobile apps are designed to be accessible from anywhere at any time, which introduces new security scenarios, because you can no longer rely on physical device ownership and location. The mobile apps and their supporting infrastructure must provide extra security controls to overcome the mobile challenges.

 The existing infrastructure of the insurance company is already highly secured. When the company considers its mobile app strategy, an important factor is to ensure that the company builds on the secure platform that already exists and that no new exploitable systems are introduced.

 A key feature for the mobile solution is to provide convenient access for customers to their insurance policies. However, security is paramount and no exceptions can be made for ease of use or enablement.

 The following requirements are identified for the secure deployment of the GENAPP mobile app:

 •Users must authenticate before using the app.

 •The security solution must be integrated with the existing user directory.

 •Mobile access to back-end transactions must be authorized and audited.

 •The security solution must be integrated with the existing security gateway.

 •The authenticity of the mobile app must be assured.

 •Data in transmit must be protected.

 Authenticate mobile users

 Mobile users must authenticate with a customer number and password before they are allowed to access their insurance policy data.

 Depending on the type of transaction being performed, customers are also required to provide an additional authentication validation for certain transactions, for example, when a claim is made. The insurance company plans to implement this additional authentication challenge using risk-based authentication (RBA) in a future version of the app.

 Integration with the existing user directory

 The insurance company maintains customer user accounts and passwords in a Lightweight Directory Access Protocol (LDAP) directory by using the IBM Tivoli Directory Server, hosted on the IBM System z. The mobile security solution must use the same user directory.

 Authorize mobile access to the back-end transactions

 The insurance company uses RACF for CICS transaction security. Employees each have unique RACF IDs, and access to CICS transactions is controlled by RACF. Customers of the insurance company, however, do not have RACF user IDs and, therefore, customer-initiated CICS transactions must run with a generic user ID.

 The insurance company wants to be able to identify mobile-initiated transactions across its CICS systems so that the company can track the workload impact of the mobile app. Mobile-initiated CICS transactions are authorized only if the request comes from the IBM Worklight Server.

 The ability to track mobile-initiated transactions is also important if a customer wants to apply for Mobile Workload Pricing for z/OS, which can be used to mitigate the impact of mobile on System z software charges when higher transaction volumes cause a spike in machine utilization.

 	
 Mobile pricing: For more information about mobile pricing, see the announcement letter for the IBM Mobile Workload Pricing for z/OS:

 http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=899/ENUSLP14-0279

 Integration with the existing security gateway

 The IBM WebSphere DataPower Appliance, deployed in the DMZ, was recently implemented by the insurance company as a web-secure proxy, and for providing single sign-on (SSO) capability. DataPower is also used as a web service security gateway for the small number of web services that the company has enabled on its back-end systems.

 The insurance company decided to use DataPower as a security enforcement point to validate the mobile user’s credentials on behalf of the Worklight Server before access is granted to the app’s data and back-end systems. The company also wants to use DataPower to protect against malicious attacks and to control the rate of mobile requests that arrive at the Worklight Server.

 In addition, the insurance company deployed other network edge components to provide intrusion prevention and protection for advanced persistent threats (APT) and fraudulent incoming network traffic. These initiatives are not part of this particular deployment and are not investigated any further in this book.

 	
 More information: See the following web pages:

 •For infrastructure protection:

 http://www.ibm.com/software/products/en/category/infrastructure-protection

 •For security intelligence and compliance analytics:

 http://www.ibm.com/software/products/en/category/security-intelligence

 Application updates and authenticity testing

 When providing a mobile app on an employee’s device, the insurance company must ensure that the app is secure by addressing these requirements:

 •It is not tampered with or modified in any way.

 •It is not used to access restricted areas of their systems.

 •It was not modified or redistributed with malware or exploits that can potentially compromise systems or capture confidential customer data.

 The application authenticity feature of IBM Worklight can be used for this assurance.

 Further, if the company needs to add extra capabilities to its apps, or needs to resolve a critical flaw or vulnerability immediately (without relying on its users to download the latest version from the public or enterprise app store), the company can take advantage of the Direct Update feature by using the Worklight Console.

 Data integrity and encryption for communications

 All of the data that is transferred by the mobile app requires encryption to comply with industry regulatory standards.

 To protect integrity and non-repudiation during the transmission of data, SSL with server identity verification is used. Worklight enables security-rich client and server communication over HTTP Secure (HTTPS) to prevent data leakage, and uses automatic server certificate verification to thwart known attacks, such as man-in-the-middle attacks. Used in conjunction with the secure reverse proxy, all data communications are always tightly secured by using SSL or TLS.

 9.4.3 Build a scalable and highly available infrastructure

 The Chief Information Officer (CIO) of the insurance company must deliver an IT infrastructure that can keep pace with the increased transaction workload that he expects from the deployment of the GENAPP mobile app and future apps. Mobile users expect 24x7 access to their policy information and want to be able to make claims and track the status of claims at any time of the day.

 The CIO identified the following requirements for a robust mobile infrastructure:

 •The mobile app must be deployed in a highly available and scalable manner by using the existing WebSphere infrastructure.

 •The app deployment must be well integrated with the CICS workload management processes that are in place today.

 •Limiting the number of mobile requests that are sent to the Worklight Server must be possible.

 Scalable and highly available infrastructure

 The insurance company already has a high availability configuration for Internet access to GENAPP, based on WebSphere Application Server Network Deployment (WebSphere ND).

 The deployment of the GENAPP mobile app builds on this existing infrastructure by creating a cluster of multiple Worklight Servers that share the same database instance. The basic setup consists of the load balancer, the cluster nodes, and a database that is shared by the cluster nodes.

 Integration with CICS workload management

 The mobile app deployment must integrate with the existing CICSplex so that GENAPP service calls to CICS can be processed by any Application Owning Region (AOR) within the GENAPP CICSplex.

 The insurance company wants to monitor the number of CICS transactions that are initiated by the GENAPP mobile app.

 Workload policy control

 To protect against unexpected surges in mobile requests, for example when the occurrence of a large storm triggers many inquiries or claim activity, the insurance company wants to limit the number of requests that can be sent to the Worklight Server. The acceptable level of requests must be policy-controlled and configurable. Such a policy can also be used to prevent malicious denial-of-service attacks.

 A DataPower message count monitor is used to provide a precise specification of the permitted workload.

 9.4.4 Use mobile analytics to gain customer insight

 To assess the impact of the mobile app, the company must have a way to track and analyze usage statistics. The insurance company wants to track use of the new mobile app, for example, the number of new insurance policy requests. There is also a need to track the number of claim events in relation to geolocation information.

 The Worklight Console is used to collect and analyze user statistics and to complete the following actions:

 •Monitor all deployed apps, adapters, and push notification subscriptions

 •Collect user statistics from all running apps

 •Generate built-in, pre-configured user adoption and usage reports

 9.5 Design approach

 A prototype of the GENAPP mobile app was written by a small development team. The app allows customers of the insurance company to do these tasks:

 •Retrieve information about their existing policies.

 •Buy new policies.

 •Make insurance claims.

 Figure 9-1 shows an overview of how a GENAPP mobile request is processed.

 [image:]

 Figure 9-1 GENAPP mobile request processing overview

 GENAPP mobile request processing consists of these steps (see Figure 9-1):

 1.	A client of the insurance company uses his mobile device to initiate an insurance request which results in a request to the Worklight Server.

 2.	A Worklight security test ensures that the mobile user is authenticated.

 3.	A Worklight adapter transforms the insurance request to a web service invocation and sends the request to CICS.

 4.	The CICS web service pipeline processes the request and calls the GENAPP COBOL application.

 5.	The GENAPP COBOL application updates the insurance database in DB2.

 When that process is used to perform a motor policy claim request, additional processing in CICS initiates the claim notification processing. Figure 9-2 on page 162 shows an overview of claim notification processing.

 [image:]

 Figure 9-2 GENAPP mobile claim notification overview

 The GENAPP mobile claim notification processing consists of the following steps (see Figure 9-2):

 1.	A customer of the insurance company uses a mobile device to initiate an insurance claim request which results in a request to the Worklight Server.

 2.	The CICS GENAPP COBOL application is enabled to emit an event when a motor policy claim is processed. After CICS captures the claim event, it sends an HTTP post request containing the customer and policy details to Worklight Server.

 3.	The Worklight claim notification adapter receives the claim event, looks up the device ID and device type of the customer who the claim is against, and uses a Worklight API to push a notification to the Apple iOS notification framework (APNS) or the Google Android notification framework (C2DM).

 4.	The push notification is received on the mobile device of the customer who the claim is against stating that a motor insurance claim has been made against him. By pressing the notification, the user can view his policy claims page and insurance policy details of the claim participant.

 This scenario demonstrates how Worklight Server and CICS can process GENAPP insurance requests from mobile users, and how unique mobile capabilities like push notifications can be used to provide customers with better visibility of their insurance accounts and claims status.

 9.5.1 Infrastructure design

 To provide customers 24x7 mobile access to their policy information, the insurance company must deploy the mobile app to a highly available infrastructure.

 End-to-end security design

 The GENAPP mobile app must be deployed into a secure infrastructure. Figure 9-3 shows the end-to-end security design that was chosen, based on the GENAPP mobile security requirements outlined in 9.4.2, “Secure every transaction” on page 156.

 [image:]

 Figure 9-3 End-to-end security design

 The end-to-end security design consists of the following security policies (see Figure 9-3):

 1.	HTTPS is used to protect data communication between servers.

 2.	WebSphere DataPower is used to authenticate the mobile user.

 3.	User authentication is done against the existing IBM Tivoli Directory Server LDAP user registry.

 4.	WebSphere DataPower is used for threat protection and traffic control.

 5.	Worklight enforces application updates and tests the authenticity of the mobile application.

 6.	Mobile initiated CICS transactions are run under a RACF user ID that represents the Worklight Server.

 7.	Existing RACF access control mechanisms are used to authorize the Worklight Server to the set of GENAPP CICS transactions.

 More information about how we implemented end-to-end security is in Chapter 11, “Enabling end-to-end security” on page 257.

 High availability infrastructure

 The deployment of the GENAPP mobile app builds on an existing WebSphere Application Server infrastructure using a cluster of multiple Worklight Servers and a shared database.

 Figure 9-4 shows the target high availability Worklight Server infrastructure.

 [image:]

 Figure 9-4 High availability Worklight Server infrastructure

 The target high availability infrastructure consists of the following elements:

 •WebSphere DataPower that acts as a mobile security gateway and load balancer.

 	
 Tutorial: DataPower Application Optimization (AO) can be used to distribute a load across multiple WebSphere DataPower appliances. This configuration is not explored in this book. See the IBM developerWorks tutorial “Using the WebSphere DataPower Option for Application Optimization to demonstrate self-balancing across multiple DataPower appliances and intelligent load distribution to back-end servers” for more information about DataPower high availability:

 http://www.ibm.com/developerworks/websphere/tutorials/1207_mohith/

 •DataPower balances mobile requests between two HTTP servers. If an HTTP server fails, DataPower detects the failure and routes subsequent requests to the surviving HTTP server.

 The WebSphere plug-in deployed in the HTTP server routes mobile requests to the two WebSphere servers in the cluster. If one of the WebSphere servers fails, the plug-in detects the failure and routes subsequent failures to the surviving WebSphere server.

 •Worklight Server is installed into the WebSphere Network Deployment cluster.

 •The DB2 high availability disaster recovery (HADR) feature is used to provide high availability for the Worklight databases. HADR uses two DB2 servers to mirror the data from the primary database to the standby.

 •The Worklight Server HTTP adapters communicate with CICS across a fast HiperSockets connection.

 	
 Note: For high availability and scalability, the GENAPP CICS application is deployed in a CICSplex. This configuration is not explored in this book. See CICS and SOA: Architecture and Integration Choices, SG24-5466, for more information about CICS integration and high availability.

 9.6 Implementation steps

 After understanding all of the requirements for the deployment of the GENAPP mobile app, the IT architecture team can apply this knowledge to select the appropriate technical solutions.

 The remaining chapters of this book focus on the implementation plan steps to deploy and manage the solution. This approach results in the following distinct deployment phases (listed here with the chapters where the information is covered):

 1.	Deployment of the GENAPP mobile app into a Worklight test environment using WebSphere Application Server Liberty profile.

 During this phase, the development team slightly modifies the GENAPP mobile app and tests the Worklight application development lifecycle (build, test, deploy).

 In this phase, the CICS team explores the new capabilities of CICS to support JSON web services.

 This phase is described in Chapter 10, “Agile approach to deliver application functionality” on page 169.

 2.	Enablement of end-to-end security for the GENAPP mobile app.

 In this phase, the security team implements the security design described in “End-to-end security design” on page 163. This phase is described in Chapter 11, “Enabling end-to-end security” on page 257.

 3.	Deployment of the GENAPP mobile app into a high availability infrastructure.

 During this phase, the target deployment infrastructure are built and workload management and availability are considered. The GENAPP mobile app will be deployed to the WebSphere Application Server Network Deployment cluster.

 This phase is described in Chapter 12, “Deploying the mobile app in to an HA infrastructure” on page 337.

 4.	Enablement of mobile analytics to track usage of the new mobile deployment.

 This phase is described further in Enablement of mobile analytics for the GENAPP mobile app. This phase is described in Chapter 13, “Mobile analytics” on page 441.

 9.7 Conclusion

 In this chapter, we described the business and technical requirements of a fictional insurance company. We also gave an outline of the GENAPP mobile application and a target infrastructure design.

 This scenario is closely tied to the IBM GENAPP Mobile SupportPac. Downloading the SupportPac, and then deploying and testing the mobile app in your own environment is described in Chapter 10, “Agile approach to deliver application functionality” on page 169.

[image:]
[image:]

Agile approach to deliver application functionality

 In this chapter, we explain the implementation of a mobile application that relies on an existing CICS back-end application and exposes a new interface using a mobile application that is written in IBM Worklight. We download and install the CICS application, download and configure a Worklight project, and then partner that project with the CICS application.

 This chapter contains the following topics:

 •Introduction and terminology

 •Installing the GENAPP CICS application

 •Installing the Worklight project for GENAPP

 •Preparing and installing the GENAPP mobile application

 •Running GENAPP on a mobile device

 10.1 Introduction and terminology

 An agile and flexible environment is necessary in today’s mobile application development. This chapter offers the following information:

 •How to prepare the necessary back-end resources.

 •How to customize and deploy a mobile application in separate development and test environments.

 •Guidance to install and configure the IBM GENAPP application and supplement resources in an existing CICS z/OS environment.

 •How to obtain, install, and deploy the IBM Worklight development studio and server infrastructure.

 •How to easily update and customize an existing Worklight mobile application.

 If you are not familiar with installing applications into a CICS environment, here is the terminology to help you:

 •JavaScript Object Notation (JSON) is a text-based open standard that is designed for human-readable data interchange, which is derived from the JavaScript scripting language. A JSON+REST (Representational State Transfer) interface is now preferred to their predecessor, the SOAP interface. See 10.2.1, “Get started with JSON” on page 172.

 •The WSBind file is a resource that describes to CICS the specifics of a web service.

 •The Java Virtual Machine (JVM) server is the strategic runtime environment for Java applications in CICS. A JVM server can handle many concurrent requests from different Java applications in a single JVM. To use a JVM server, Java applications must be threadsafe and must comply with the OSGi specification.

 •The Open Service Gateway initiative (OSGi) specification is a service platform for the Java programming language that implements a dynamic component model, something that does not exist in stand-alone Java/VM environments. Applications or components (that are in the form of bundles for deployment) can be remotely installed, started, stopped, updated, and uninstalled without requiring a reboot.

 •A CICS bundle is a directory that contains artifacts and a manifest that describes the bundle and its dependencies. CICS bundles provide a way of grouping and managing related resources.

 •URIMAP definitions are resources that match the Uniform Resource Identifiers (URIs) of HTTP, Atom feed, or web service requests, and provide information about how to process the requests.

 10.2 Installing the GENAPP CICS application

 In this section, we assume that you have a general understanding of installing applications into a CICS environment.

 To help you better understand how IBM software on System z can be agile and serve mobile, we use an example application to describe the transition between a proof-of-concept mobile project and a production-style system where security and scalability considerations are addressed. See Chapter 11, “Enabling end-to-end security” on page 257 and Chapter 12, “Deploying the mobile app in to an HA infrastructure” on page 337.

 The general insurance application (GENAPP) is a CICS COBOL application that simulates transactions made by an insurance company to create and manage customer and insurance policy data. It provides sample data and an IBM 3270 interface for creating and inquiring about customers and insurance policy information. The application demonstrates a 3270 green screen interface, DB2 and VSAM backed data, web services and Java in CICS amongst many other feature demonstrations.

 The SupportPac documentation describes the application architecture, how to install and set up the application, and how to test that the application is working correctly.

 You must install the CB12 SupportPac to your CICS systems in order to continue with the remainder of this chapter where we install and test the proof-of-concept mobile project. Download the GENAPP SupportPac (CB12) from the following web page:

 http://www.ibm.com/support/docview.wss?uid=swg24031760

 	
 GENAPP web services: When installing GENAPP, an optional component for the installation is the web services for the application. Be sure that all of these services are installed at this point because they are used as the interface between the Mobile Worklight project and CICS.

 After GENAPP is installed, the services listed in Table 10-1 must be enabled. The context root of the URI (/GENAPP/) might differ on your systems.

 Table 10-1 List of default services after adding web services components of GENAPP

 	
 URI

 	
 Protocol

 	
 Service name

 	
 /GENAPP/LGICUS01

 	
 SOAP

 	
 Inquire Customer

 	
 /GENAPP/LGIPOLM1

 	
 SOAP

 	
 Inquire Motor Policy

 	
 /GENAPP/LGIPOLC1

 	
 SOAP

 	
 Inquire

 	
 /GENAPP/LGIPOL02

 	
 SOAP

 	
 Policy Search

 	
 /GENAPP/LGIPOLH1

 	
 SOAP

 	
 Inquire House Policy

 	
 /GENAPP/LGIPOLE1

 	
 SOAP

 	
 Inquire Endowment Policy

 	
 /GENAPP/LGIPOLB1

 	
 SOAP

 	
 Inquire Business Policy

 	
 /GENAPP/LGAPOLH1

 	
 SOAP

 	
 Add House Policy

 	
 /GENAPP/LGAPOLM1

 	
 SOAP

 	
 Add Motor Policy

 	
 /GENAPP/LGAPOLE1

 	
 SOAP

 	
 Add Endowment Policy

 	
 /GENAPP/LGDPOLH1

 	
 SOAP

 	
 Delete Home Policy

 	
 /GENAPP/LGDPOLE1

 	
 SOAP

 	
 Delete Endowment Policy

 	
 /GENAPP/LGDPOLM1

 	
 SOAP

 	
 Delete Motor Policy

 At this point, the SOAP web services are ready to service the mobile application calls. As mentioned previously, a shift to using JSON as a payload of choice for mobile developers has occurred. Part of this shift is because of JSON’s lightweight approach. The general insurance company wants to investigate JSON and determine whether it meets their business needs. The company decides to create a JSON interface to the Inquire Customer service, LGICUS01, as a comparison to the SOAP interface.

 10.2.1 Get started with JSON

 JavaScript Object Notation (JSON) has existed for a long time. The growth of the mobile industry and hybrid application development has prompted for it to be the payload of choice for communications between a mobile device and a service provider. JSON is a way of carrying data in a lightweight format, which makes JSON similar to the way XML is used.

 A JSON payload is shown in Example 10-1.

 Example 10-1 A JSON payload

 [image:]

 {

 "employees": [

 					{ "firstName":"John" , "lastName":"Doe" },

 					{ "firstName":"Anna" , "lastName":"Smith" },

 					{ "firstName":"Peter" , "lastName":"Jones" }

]

 }

 [image:]

 A more detailed discussion of the differences between XML and JSON as payload options is at the following web page:

 http://www.json.org/xml.html

 Enable a CICS JSON web service to allow the general insurance company to identify the advantages and comparisons between reusing existing SOAP web services and a JSON web service.

 The steps involved are as follows:

 •Install CICS TS Feature Pack for Mobile Extensions V1.0

 •Create a JSON web service in CICS

 10.2.2 Install CICS TS Feature Pack for Mobile Extensions V1.0

 The general insurance company wants to experiment with JSON web services for mobile service calls to the back-end CICS regulated data. To do this, install the CICS Transaction Server (CICS TS) Feature Pack for Mobile Extensions V1.0 because the company is running CICS TS V5.1.

 To install this feature pack, follow the download and installation instructions that are at the following web page:

 http://www.ibm.com/software/htp/cics/mobile/

 	
 Version information: In CICS TS 5.2, this function is incorporated into CICS, therefore installing this feature pack is no longer required.

 10.2.3 Create a JSON web service in CICS

 This scenario takes an existing CICS (COBOL) application and enables it for use as a JSON web service.

 This section contains the following topics:

 •Use case for language structure to JSON

 •Language structure to JSON schema solution

 Use case for language structure to JSON

 The insurance company wants to enable a mobile solution for its existing COBOL GENAPP application.

 The company intends to create an application for mobile devices, implemented in JavaScript and accessing existing CICS and DB2 assets. The initial version of the application allows customer records to be added to the DB2 database, and for specific records to be queried and updated. The company wants to get the solution into the marketplace as soon as possible, and currently does not have the resources to change the existing COBOL application programs. The company realizes that JSON is a valid option and wants to test a JSON web service to determine performance and cost considerations.

 The insurance company is will enable its existing COBOL applications to use JSON by creating a JSON web service from the company’s existing language structures. In this way, the COBOL programs can remain completely unchanged. In the remain subsections, we describe how this is done by using the GENAPP application.

 Language structure to JSON schema solution

 Having completed the setup of GENAPP, you are now in the position to extend the application to use JSON web services without changing any of the existing COBOL sources or compilations.

 Configure CICS and enable a JSON request to inquire on a customer record. The steps are as follows:

 1.	Identify the general insurance COBOL programs and copybooks to use. See “Identify the COBOL programs and copybooks” on page 175.

 2.	Tailor the job control language (JCL) for running DFHLS2JS for the COBOL customer programs. See “Tailor DFHLS2JS for the COBOL customer programs” on page 176.

 3.	Submit the JCL to create WSBIND files and JSON schemas for each of the listed requests. See “Submit the DFHLS2JS JCL” on page 179.

 4.	Set up a PIPELINE to install the WSBIND files and enable a Uniform Resource Identifier (URI) for each request. See “Enable the JSON Request URI” on page 181.

 5.	Test that the JSON request can be successfully performed. See “Test that the JSON request can be successfully performed” on page 183.

 	
 Preparation: We assume that you set up and installed an appropriate JVMServer and TCPIPSERVICE in your CICS region.

 Identify the COBOL programs and copybooks

 The inquire request that this scenario covers is handled by a specific COBOL program. This is in the GENAPP source data set:

 CICSCFG.GENAPP.REDBOOK.SOURCE

 The member containing this program’s source code is the Customer Inquiry program:

 LGICUS01

 The GENAPP programs are supplied already compiled and installed with the same name in the general insurance load library.

 In this scenario, no changes are required to the programs. Instead, we create a WEBSERVICE resource that can transform a JSON request to the expected application data.

 We need to identify the customer data structure that these programs use to take as input. In this case, the COBOL copybook that we import is LGCMAREA. This copybook is also in the GENAPP source data set.

 Looking at the COBOL source code and copybook, you see that the data that you need to send to the program is in the CA-CUSTOMER-REQUEST structure, as show in Example 10-2.

 Example 10-2 CA-CUSTOMER-REQUEST in LGCMAREA copybook

 [image:]

 03 CA-REQUEST-ID PIC X(6).

 03 CA-RETURN-CODE PIC 9(2).

 03 CA-CUSTOMER-NUM PIC 9(10).

 03 CA-REQUEST-SPECIFIC PIC X(32482).

 * Fields used in INQ All and ADD customer

 03 CA-CUSTOMER-REQUEST REDEFINES CA-REQUEST-SPECIFIC.

 05 CA-FIRST-NAME PIC X(10).

 05 CA-LAST-NAME PIC X(20).

 05 CA-DOB PIC X(10).

 05 CA-HOUSE-NAME PIC X(20).

 05 CA-HOUSE-NUM PIC X(4).

 05 CA-POSTCODE PIC X(8).

 05 CA-NUM-POLICIES PIC 9(3).

 05 CA-PHONE-MOBILE PIC X(20).

 05 CA-PHONE-HOME PIC X(20).

 05 CA-EMAIL-ADDRESS PIC X(100).

 05 CA-POLICY-DATA PIC X(32267).

 [image:]

 	
 Requirements: The JSON assistants require that the data structures are separated from the program code. It also does not support REDEFINE operations.

 The GENAPP application provides support for SOAP web services. We can therefore use the supplied data set member SOAIC01 (shown in Example 10-3), which contains the customer request data structure of interest.

 Example 10-3 The Customer Request data structure in SOAIC01

 [image:]

 01 CA.

 03 CA-REQUEST-ID PIC X(6).

 03 CA-RETURN-CODE PIC 9(2).

 03 CA-CUSTOMER-NUM PIC 9(10).

 * Fields used in INQ All and ADD customer

 03 CA-FIRST-NAME PIC X(10).

 03 CA-LAST-NAME PIC X(20).

 03 CA-DOB PIC X(10).

 03 CA-HOUSE-NAME PIC X(20).

 03 CA-HOUSE-NUM PIC X(4).

 03 CA-POSTCODE PIC X(8).

 03 CA-NUM-POLICIES PIC 9(3).

 03 CA-PHONE-MOBILE PIC X(20).

 03 CA-PHONE-HOME PIC X(20).

 03 CA-EMAIL-ADDRESS PIC X(100).

 03 CA-POLICY-DATA PIC X(30000).

 [image:]

 Having identified the data that the programs require, we will use this data to generate a JSON schema and a WSBIND file that can be use by a JSON request.

 Tailor DFHLS2JS for the COBOL customer programs

 CICS Transaction Server (CICS TS) Feature Pack for Mobile Extensions V1.0 supplies the DFHLS2JS procedure. This procedure is for running the JSON assistants to create a WSBIND file for deployment by PIPELINE and JSON schemas, which map to the response and requests related to the COBOL data structure.

 The DFHLS2JS JCL procedure is in the Mobile Extensions feature pack installed library, SDFHMOBI. This procedure accepts many parameters, which are documented at the CICS TS Feature Pack for Mobile Extensions V1.0 web page:

 http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.mobileextensions.doc/welcome/WelcomePage.html

 For the purpose of this scenario, we use a minimum number of parameters to call the DFHLS2JS procedure. The JCL in Example 10-4 must be tailored to your environment.

 	
 Required changes: The values in bold text (Example 10-4) must be changed to values you need when running the DFHLS2JS for the inquire (LGICUS01) and update (LGUCUS01) requests. They all use the same SOAIC01 copybook.

 Example 10-4 Sample JCL to run the DFHLS2JS Procedure for Inquire Customer

 [image:]

 //LS2JS JOB 'accounting information',name,MSGCLASS=A

 //JCLLIB JCLLIB ORDER=CICSCFG.GENAPP.REDBOOK.JCLLIB

 //LS2JS EXEC DFHLS2JS,

 // 	 JAVADIR='J7.0_64',

 // USSDIR='cicsts.v5r1',

 // PATHPREF='',

 // TMPDIR='/tmp',

 // TMPFILE=''

 //INPUT.SYSUT1 DD *

 PDSLIB=CICSCFG.GENAPP.REDBOOK.SOURCE

 LANG=COBOL

 MAPPING-LEVEL=3.0

 PGMNAME=LGACUS01

 REQMEM=SOAIC01

 RESPMEM=SOAIC01

 DATETIME=PACKED15

 LOGFILE=/var/cicsts/CICSMOBT/logs/LS2JS_LGIJCUS01.LOG

 URI=GENAPP/getCustomerDetails

 PGMINT=COMMAREA

 WSBIND=/var/cicsts/CICSMOBT/wsbind/getCustomerDetails.wsbind

 JSON-SCHEMA-REQUEST=/var/cicsts/CICSMOBT/wsbind/getCustomerDetailsreq.json

 JSON-SCHEMA-RESPONSE=/var/cicsts/CICSMOBT/wsbind/getCustomerDetailsresp.json

 /*

 [image:]

 The following parameters are supplied:

 Log file	The z/OS file system (zFS) file where a log of the DFHLS2JS processing is created.

 PDSLIB	The partitioned data set where the language structure source is stored.

 PGMNAME	The name of the program that the language structure relates to.

 LANG	The high-level language of the language structure source.

 MAPPING-LEVEL	The level of mapping applied by the JSON assistant. 3.0 or greater should be used, earlier mapping levels are supported only for compatibility with the SOAP web services assistants.

 REQMEM	The copybook in the partitioned data set (PDS) specified by the PDSLIB parameter that the request JSON schema is generated from.

 RESPMEM	The copybook in the PDS specified by the PDSLIB parameter that the response JSON schema is generated from.

 DATETIME	Specifies if JSON date-time properties in the language structure are mapped as time stamps. PACKED15 indicates that they are mapped as time stamps.

 URI	Specifies the relative or absolute URI to be used by the client to access the JSON web service.

 PGMINT	Sets how CICS passes the data to the target program.

 WSBIND	The zFS file and location of the produced WSBIND file.

 JSON-SCHEMA-REQUEST	The zFS location of the JSON schema for the request output.

 JSON-SCHEMA-RESPONSE	The zFS location of the JSON schema for the response output.

 Full details of all parameters for DFHLS2JS are in the “DFHLS2JS: High-level language to JSON schema conversion for linkable interface” topic in the CICS TS Feature Pack for Mobile Extensions, which for CICS TS V5.1 is at the following web page:

 http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.mobileextensions.doc/reference/dfhws_js2lsapi.html

 Submit the DFHLS2JS JCL

 After you tailor the JCL to run the DFHLS2JS, submit the JCL.

 A successful execution of the DFHLS2JS finishes with a return code 0. Verify the job output and log file to resolve any problems, if they occur.

 The successful completion creates the following artifacts:

 •A WSBIND file in the location specified to DFHLS2JS.

 •A log file containing diagnostics related to the WSBIND file. You are asked to supply this file if you need to contact IBM support for assistance.

 •A JSON schema that describes the request to CICS.

 •A JSON schema that describes the response from CICS.

 In the case of a language structure to JSON, the produced response and request schemas are often identical because the communication area (COMMAREA) usually is the same. This is the case in this scenario; however, the JSON schema can differ if the copybooks differed.

 The key parts of the generated JSON schema for the Customer Create request are shown in Example 10-5.

 Example 10-5 JSON request schema produced from DFHLS2JS for Customer Create

 [image:]

 {

 "$schema":"http:\/\/json-schema.org\/draft-04\/schema#",

 "description":"Request schema for the LGACUS01 JSON interface",

 "type":"object",

 "properties":{

 "LGACUS01Operation":{

 "type":"object",

 "properties":{

 "ca":{

 "type":"object",

 "properties":{

 "ca_request_id":{

 "type":"string",

 "maxLength":6

 },

 			"ca_customer_num":{

 "type":"integer",

 "maximum":9999999999,

 "minimum":0

 },

 		

 },

 "required":[

 "ca_request_id",

 "ca_return_code",

 "ca_customer_num",

 		

]

 }

 },

 "required":[

 "ca"

]

 }

 },

 "required":[

 "LGACUS01Operation"

]

 }

 [image:]

 The JSON produced by the assistant from the COBOL copybook includes all of the data fields that the program requires for input in the JSON schema.

 After the schema and description tags, there is the JSON structure itself. The top element in the language structure to JSON generated schema is always a wrapping operation field. In the Customer Create example, this is LGACUS01Operation.

 After the operation field is the JSON representation of the COBOL data structure from the copybook. Because the original copybook has an 01 CA top-level structure, this is mapped to a JSON object, as is the LGACUS01Operation. In the Customer Create copybook, the data fields that the COBOL program expects are all at level 03. The assistant examines their COBOL data types, and then creates a mapping to a JSON data type.

 This results in the COBOL CA-REQUEST-ID field (PIC X(6)) being converted to a JSON string with a maximum length of 6 characters. Conversely, the CA-CUSTOMER-NUM (PIC 9(10)) is mapped to a JSON integer property in the range of 0 - 9999999999.

 For more details about language data types and their mappings, see the CICS TS Feature Pack for Mobile Extensions V1.0 web page:

 http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.mobileextensions.doc/welcome/WelcomePage.html

 In addition, the assistant generates a WSBIND file that is used by CICS to transform the JSON request to the application data.

 Enable the JSON Request URI

 To enable CICS to accept the JSON request, a PIPELINE must perform a scan of the WSBIND files.

 To perform a scan, be sure you previously created a JSON PIPELINE resource in a CICS region that has permissions to read the zFS location of the WSBIND files directory, which is specified on the WSBIND parameter of the assistants that were run in “Submit the DFHLS2JS JCL” on page 179.

 To do the PIPELINE scan in IBM CICS Explorer®, complete the following steps:

 1.	Right-click your PIPELINE resource and select Scan from the menu (Figure 10-1).

 [image:]

 Figure 10-1 IBM CICS Explorer menu for PIPELINE resource

 2.	When the Perform Scan Operation dialog opens, click OK (Figure 10-2).

 [image:]

 Figure 10-2 IBM CICS Explorer Perform SCAN Operation

 The PIPELINE then scans the pickup directory that is defined for the resource. This causes your newly created WSBIND file to be read, and creates the required WEBSERVICE and URIMAP for the JSON web service.

 Use the CICS Explorer web service operations views to see that these artifacts were created and are in service.

 The messages, shown in Example 10-6, are also viewable in the CICS MSGUSR log on a successful PIPELINE scan.

 Example 10-6 Example CICS MSGUSR log of PIPELINE scan success messages

 [image:]

 DFHPI0703 I 25/06/2013 10:10:34 IYCKZCCE CICSUSER PIPELINE LSTOJSPI is about to scan the WSDIR directory.

 DFHPI0715 I 25/06/2013 10:10:35 IYCKZCCE CICSUSER PIPELINE LSTOJSPI explicit scan has completed. Number of wsbind files found in the

 WSDIR directory: 000001. Number of WEBSERVICEs created or updated: 000000. Number of WEBSERVICEs not requiring an update:

 000001. Number of failed WEBSERVICE creates or updates: 000000.

 [image:]

 Having successfully performed the PIPELINE scan CICS can now accept JSON requests for the Customer Inquire functions of the GENAPP application.

 Test that the JSON request can be successfully performed

 To test the JSON request, use the curl command-line tool. You may download this open source tool from the following website:

 http://curl.haxx.se/

 	
 Alternative tools: For more information about other tools to perform this check, see the following website:

 http://www.json.org/

 To complete this scenario, we make a JSON request to GENAPP using curl. Use the following steps to complete this procedure:

 1.	Send a request to inquire on a customer record.

 The JSON request expects the two integer fields in the request.

 In a more readable format of the JSON, the request for this scenario is shown in Example 10-7. The LGICUS01Operation operation field has changed to the operation field in the generated customer inquiry JSON schema generated by the assistant.

 Example 10-7 The JSON inquiry payload

 [image:]

 {"LGICUS01Operation":{ "ca" : {

 "ca_customer_num" : "1000106",

 }

 }

 }

 [image:]

 2.	The command line then looks as shown in Example 10-8. Again, change the URI to your CICS JSON customer inquiry URI.

 Example 10-8 The curl command-line request for inquire customer request.

 [image:]

 curl -v -H "Content-Type: application/json" -d {\"LGICUS01Operation\":{\"ca\":{\"ca_customer_num\":\"1000106\"}}} http://your.cics.region:30661/GENAPP/LSJSCUSI

 [image:]

 Example 10-9 on page 184 shows the returned data on a successful request. Again, the request returns all of the required fields in the JSON response schema.

 Example 10-9 The JSON data returned by the Inquire Request

 [image:]

 {"LGICUS01OperationResponse":{"ca":{"ca_request_id":"","ca_return_code":0,"ca_customer_num":1000106,"ca_first_name":"anew","ca_last_name":"customer","ca_dob":"1970-01-01","ca_house_name":"","ca_house_num":22,"ca_postcode":"ZP1 1EX","ca_num_policies":0,"ca_phone_mobile":"","ca_phone_home":"","ca_email_address":"example@example.com","ca_policy_data":""}}}

 [image:]

 As demonstrated with the JSON in our examples in this chapter, the input structure contains some output-only fields. The reverse can also be true, in that some output data can contain input-only data. In addition, the data names are based on the language structure’s original names. These names might not be meaningful to the JSON developer.

 To make the JSON schema more meaningful to a JSON application developer, it can be modified to suit the service for which it is being used. If the JSON schema is modified, the WSBIND file and the COBOL structures need to be regenerated using DFHJS2LS. This necessitates the creation of a wrapper application to use this new COBOL interface with the existing COBOL applications.

 10.3 Installing the Worklight project for GENAPP

 Worklight is installed into Eclipse along with the CICS Explorer SDK. This allows a single development environment for creating a hybrid mobile application and managing resources defined within CICS. Part of the GENAPP mobile application is deploying a Java application into CICS using the CICS Explorer SDK. This section describes the following installations:

 •Install Eclipse

 •Install Worklight Studio 6.1

 •Install the CICS Explorer SDK

 10.3.1 Install Eclipse

 Eclipse 4.2.2 or later is a prerequisite to run IBM Worklight Studio 6.1 on your workstation. To install Eclipse, start at the following website, and download the section shown in Figure 10-3 on page 185:

 http://eclipse.org/downloads

 At the time of writing, the latest version of Eclipse is 4.3.1, named Kepler.

 [image:]

 Figure 10-3 Eclipse.org website

 Select your platform, download, and install. When you finish, you may install IBM Worklight Studio.

 10.3.2 Install Worklight Studio 6.1

 Installing Worklight Studio consists of the following steps:

 1.	Launch Eclipse. The system prompts you to select or create a workspace directory for all the files in your workspace. You can use the default or modify it to your preferred location.

 2.	Add Worklight Studio. There are several ways to do that. If you navigate to the Eclipse Marketplace, you can download the Developer Edition, which includes every function that is available in the Enterprise Edition except for some additional security-related features. To install the Enterprise Edition in Eclipse, download the p2 install directory on IBM developerWorks.

 3.	In Eclipse, select Help → Install New Software as shown on Figure 10-4.

 [image:]

 Figure 10-4 Eclipse: Help, Install New Software

 4.	In the Install window, click Add, as shown in Figure 10-5.

 [image:]

 Figure 10-5 Eclipse: Available Software

 5.	In the Add Repository dialog, click Local to select the folder location where you extracted the p2 file. Enter a name for the repository and click OK, as shown on Figure 10-6.

 [image:]

 Figure 10-6 Eclipse: Add Repository

 6.	When you return to the Available Software dialog, the IBM Worklight Studio Development Tools are listed. Select the appropriate check box and click Next, as shown on Figure 10-7 on page 189.

 [image:]

 Figure 10-7 Eclipse: Worklight Studio Enterprise Edition p2 installation

 7.	Read and accept the license, and then click Finish. The installation starts.

 After the installation is complete, Eclipse must restart for the changes to take effect.

 10.3.3 Install the CICS Explorer SDK

 The CICS Explorer SDK can be installed into Eclipse in the same way that you installed Worklight.

 Complete the following steps:

 1.	Select Help → Install New Software (Figure 10-8), and then add the following CICS Explorer update site to the Eclipse Marketplace:

 http://public.dhe.ibm.com/software/htp/zos/2/1/0

 [image:]

 Figure 10-8 Installing the CICS Explorer from an update site

 2.	Select the CICS Explorer entry and continue through the installation by following the installation dialog windows.

 3.	At the end of the installation, Eclipse prompts you to restart.

 When complete, the CICS Explorer is installed into the Eclipse.

 10.4 Preparing and installing the GENAPP mobile application

 Now that the development environment is set up, download the IBM GENAPP mobile application sample for CICS TS by going to the following web location and downloading the GENAPP Mobile SupportPac (CA0D):

 http://www.ibm.com/support/docview.wss?uid=swg24035181

 Extract this file into a directory of choice on your workstation. This archive has five important files:

 •The unzipMeForProjects.zip file contains a Java CICS Application to extend the original base CICS GENAPP application.

 •The GENAPP Mobile Project.zip file contains a Worklight project for the GENAPP Mobile SupportPac.

 •The eventBinding.zip file contains a CICS Explorer project that contains an event binding and an event adapter for the push notifications part of the sample.

 •The CA0D Readme.pdf file contains a stand-alone installation guide for the SupportPac.

 •The licenses folder contains license information for the SupportPac.

 To configure and install the SupportPac, use the following steps, which are described in this section:

 1.	Customize the Worklight project

 2.	Update the GENAPP mobile application

 3.	Test GENAPP mobile on a workstation

 4.	Customize and install CICS Java Application for policy search

 5.	Customize the CICS event binding for push notification

 10.4.1 Customize the Worklight project

 At the time of writing this book, the project that is provided as part of the SupportPac requires IBM Worklight version 6.1. After you import the project archive into the workspace, the Worklight tools automatically attempt to migrate the project from the imported version to the current installed version of Worklight Studio. This section helps you customize the project so that the mobile application can be used in your environment.

 1.	Import the Worklight project

 2.	Alter the CustomAuthenticator Java class

 3.	Update the Worklight adapter definition

 Import the Worklight project

 To import the project, follow these steps.

 1.	In Worklight Studio select File → Import. In the Select dialog (Figure 10-9), select Existing Project into Workspace, and then click Next.

 [image:]

 Figure 10-9 Import wizard

 2.	In the Import Projects window (Figure 10-10), select the Select archive file option, click Browse, and navigate to the location where the GENAPP Mobile Project.zip file is located.

 [image:]

 Figure 10-10 Import existing GENAPP Mobile Project

 3.	Make sure that the appropriate project name is selected, then click Finish. You do not need to select the Native Android project, because the Android development tools will generate this automatically when you build the application in Worklight Studio.

 4.	After you validate the migration and complete any necessary post migration tasks, follow the remainder of this section to update and customize the Worklight project for deploying in your environment.

 5.	Use Project Explorer (Figure 10-11) to expand the GENAPPMobileSample project folder structures, and review the artifacts that you imported to understand the structure of the Worklight project.

 [image:]

 Figure 10-11 Project Explorer for GENAPPMobileSample

 The main structure under the GENAPPMobileSample project contains the Java Resources, JavaScript Resources, adapters, apps, bin, and server folders.

 6.	Expand Java Resources (Figure 10-12) to find a package named com.ibm.cics that contains two Java classes. These classes are used as part of the authentication process for the mobile application. We will examine this later.

 [image:]

 Figure 10-12 Custom Java classes for GENAPPMobileSample

 7.	Expand JavaScript Resources (Figure 10-13) to find the Worklight API Library that is available to Worklight applications.

 [image:]

 Figure 10-13 JavaScript Resources for GENAPPMobileSample

 	
 More information about Worklight project structures: See the training module in the “Getting started with IBM Worklight Foundation” web page:

 http://www.ibm.com/developerworks/mobile/worklight/getting-started.html#basics

 Alter the CustomAuthenticator Java class

 The authentication scheme of the mobile application uses a custom Worklight authenticator and login module that is implemented in Java. Follow the instructions in this section to update the implementation details. The assumption is that you completed the steps to set up the resources like the CICS GENAPP resources and DB2 tables.

 Complete the following steps:

 1.	In Project Explorer (Figure 10-14), find the GENAPPMobileSample project, and then expand Java Resources → server/java → com.ibm.cics package.

 [image:]

 Figure 10-14 Worklight project Java Resources

 2.	Double-click MyCustomAuthenticator.java class to open it and review the details to better understand the authenticator flow.

 3.	Open MyCustomLoginModule.java class and review the current implementation details.

 4.	The current implementation uses a DB2 table to look up and validate the user ID and password to authenticate the user of the mobile application.

 5.	Locate the connectDB2 method where the DB2 server connection information is declared.

 6.	Update the host, port, subsytem, DBUsername, DBPassword, and Database information to what was configured in your environment, as shown in Figure 10-15 on page 197.

 [image:]

 Figure 10-15 Update DB2 connection information

 7.	Make sure to save the changes to the Java class file after updating. The changes must be deployed before the application can go into production.

 	
 Final deployment: Before the mobile application is able to properly make use of authentication services, you must deploy the changes to the Worklight Server. The details of how to do this are covered in “Apache Ant” on page 235.

 For now, continue on through the next sections to complete the setup steps needed to run the mobile application in your environment.

 Update the Worklight adapter definition

 Worklight uses an adapter framework to make back-end service calls on behalf of the mobile client, which in this case are running in CICS as web services. The adapter that is currently exists in the GENAPP Mobile project must point to the CICS web services that are created in 10.2.3, “Create a JSON web service in CICS” on page 174.

 To do this you need to know the URLs for the CICS web services and the port on which these services are listening. Complete the following steps:

 1.	In Project Explorer (Figure 10-16) locate and expand the adapters folder. Two adapters are listed: ClaimNotifiation and GENAPPInquire.

 [image:]

 Figure 10-16 Worklight adapters

 2.	Expand the GENAPPInquire adapter folder to reveal the two files that make up the adapter (Figure 10-17). The GENAPPInquire.xml file is the declarative definition of the adapter that contains details about the connection to the back-end, like protocol, host name, and optional security parameters. The GENAPPInquire-impl.js represents implementation of the adapter procedures in JavaScript.

 [image:]

 Figure 10-17 GENAPPInquire adapter

 3.	Open the GENAPPInquire.xml adapter definition file (Figure 10-18). Update the Protocol, Domain, and Port details to match what is configured in your environment.

 [image:]

 Figure 10-18 GENAPPInquire adapter definition

 4.	We use the built-in testing capability of Worklight Studio to test the adapter procedures. To do this test, we might need to remove the securityTest reference in the procedure declaration if a procedure declared it. For this test we can use the getCustomerDetails procedure and remove the securityTest definition as shown in Example 10-10.

 Example 10-10 Adapter procedure declaration in GENAPPInquire.xml

 [image:]

 <procedure name="getCustomerDetails" />

 <procedure name="editCustomerDetails" securityTest="WebServicesAdapters-securityTest"/>

 <procedure name="getCustomerPolicies" securityTest="WebServicesAdapters-securityTest"/>

 <procedure name="getMotorPolicy" securityTest="WebServicesAdapters-securityTest"/>

 [image:]

 5.	In Project Explorer, locate and right-click the GENAPPInquire folder in the adapters folder. In the context menu, select Run As → Deploy Worklight Adapter (Figure 10-19) to deploy changes that you just made to the connectionPolicy in the previous steps.

 [image:]

 Figure 10-19 Deploy Worklight Adapter from Worklight Studio

 6.	Use the same context menu to select Run As → Invoke Worklight Procedure (Figure 10-20).

 [image:]

 Figure 10-20 Invoke Worklight Procedure from Worklight Studio

 7.	The Invoke Worklight Procedure dialog opens. From the drop-down list, select the getCustomerDetails procedure (Figure 10-21). Enter 1 in the Parameters box, and then click Run.

 [image:]

 Figure 10-21 Invoking Worklight adapter procedure getCustomerDetails

 Depending on how you set your Eclipse workspace browser preference, you either get a browser that is opened inside the Eclipse workspace (shown in Figure 10-22 on page 202), or your system default browser opens. The browser displays the invocation result of the adapter procedure call.

 [image:]

 Figure 10-22 getCustomerDetails response detail Eclipse internal browser

 If everything was properly configured, you can expect a well formed response from the Worklight Server after having called the back-end CICS service.

 In later sections, we provide guidance for how to make additional changes to the application and adapter resources.

 10.4.2 Update the GENAPP mobile application

 You can modify the mobile application project that is provided with the SupportPac as follows:

 •Change the back-end CICS service from SOAP to JSON

 •Change the client content

 •Configure the mobile application for push notification

 Before starting these application updates, we do an optional step. The name of the imported application is currently GENAPP_Mobile_Sample to distinctly define that this is an example application. This application name is embedded into various locations throughout the application, including the display name.

 At the time of writing this book, no simple way exists to rename an application. Therefore, we use a shortcut to create a new application named GENAPPMobile for convenience:

 1.	Create a new hybrid application called GENAPPMobile in the same project.

 2.	Delete the common folder of the new application.

 3.	Copy the common folder from GENAPP_Mobile_Sample.

 4.	Update the mainFile element in the application-descriptor.xml file.

 In the remainder of the scenario, we refer to the application as GENAPPMobile.

 Change the back-end CICS service from SOAP to JSON

 The Worklight framework allows for a flexible integration with Enterprise Information Systems. This means that you can make connectivity and integration decisions based on the requirements set forth by development, infrastructure, or business teams. In this scenario, you have a mobile application that connects through a CICS enterprise back-end application by using the SOAP/HTTP web service. You also have guidance for how to use the CICS Feature Pack for Mobile to enable lightweight JSON/HTTP web services for one of the service calls.

 The following steps guide you through updating the Worklight resources to test the benefit of this new service:

 1.	In the Project Explorer, open the GENAPPInquire-impl.js file, which is under the adapters → GENAPPInquire folder. This file contains the JavaScript implementation of the adapter procedures or functions that are executed on the Worklight Server.

 2.	Locate the first function that is available to execution at approximately line 65:

 function getCustomerDetails(custNum){.....}

 3.	Review the content of the request variable. It represents the construction of the SOAP envelope, body, and operation for communication with the CICS back-end web service to retrieve details about a particular customer based on the provided customer number.

 Above this is another function with the same name that is wrapped in a comment block. Review the content and notice that the content is mostly the same, except for the request and pathURL details, which seem to be simpler. This is the implementation of a RESTful JSON/HTTP web service client call that, when invoked, will also be sent to the CICS back-end for processing and provide in return details about a particular customer based on the provided customer number. See Figure 10-23 on page 204.

 [image:]

 Figure 10-23 Partial view of getCustomerDetails JSON service implementation

 4.	To change the implementation of the service call from SOAP/HTTP to JSON/HTTP, add a comment block to the SOAP/HTTP function, currently not in comment, and remove the comment block from the JSON/HTTP function.

 5.	Save the GENAPPInquire-impl.js file. Then use the context menu to deploy the changes you just made by using the Deploy Worklight Adapter method, following the steps shown in Figure 10-19 on page 200.

 6.	Test the newly updated and deployed JSON/HTTP procedure by using the Invoke Adapter Procedure.

 7.	Review the content of the invocation result that is returned. It is similar to the content that was returned previously when the SOAP/HTTP procedure is used. The reason is because of two principles:

  –	The Worklight adapter framework automatically performs a JSON translation of the returned payload depending if the returned content is XML, text, or HTML. Perhaps you noticed this from the earlier SOAP/HTTP test.

  –	The implementation on the server side is designed to return a particular schema to the client code so that, regardless of what type of back-end call was made, the client receives a similar response structure and is able to handle the data appropriately.

 This example demonstrated how powerful and flexible the Worklight adapter framework can be when you integrate with enterprise back-end systems.

 The example highlighted how to switch a service call type, residing on the same back-end. In your scenario, you might call a different CICS service, hosted on a different LPAR, and achieve a similar result. The implementation might differ slightly because you might use another adapter with a connectionPolicy pointing to that particular address of the LPAR. However, instead of swapping two procedures with the same name, you can have the initial procedure call a second procedure in another adapter. If you more closely examine the implementation of GENAPPInquire-impl.js, this is actually what is being done in the same adapter. The flexible framework allows for a mashup type of server-side implementation before returning the payload to the client. This keeps the heavy-duty processing on the server side where CPU cycles are more abundant and where there is no concern for battery life, not to mention the security and integrity of the data. This capability is extremely key for mobile applications.

 Change the client content

 The mobile application that is included in the Worklight project included with the SupportPac can be built, deployed, and run in your environment. However, at certain placeholder areas in the application you might want to and possibly should update to reflect your own “look and feel.” For example, there are blank image placeholders where pictures of cars might be displayed. In this section, we explain how to make such changes to your application resources, even when you have already deployed your mobile application for testing or production within your organization. This feature of the Worklight framework is Direct Update.

 Complete the following steps:

 1.	Open the GENAPP_Mobile_Sample.html file and switch to the source code pane. Locate the places in the source code where the following instances are in use rather than the actual images (see Figure 10-24):

 images/Placeholder-image-**

 [image:]

 Figure 10-24 Snippet of source code that has image place holder to be updated.

 2.	In Project Explorer, expand the ../apps/GENAPPMobile/common/images directory, as shown in Figure 10-25.

 [image:]

 Figure 10-25 Images folder in common environment

 The folder lists six images following a Placeholder-image-** naming convention. We can either create new images with the same name, so that changing the code is unnecessary, or we can create new images with new names and update the HTML source code appropriately.

 3.	Locate the ScrollableView with the ID loginForm by performing a text search. In this view, below the login button, there is a placeholder image with the following code portion:

 Create an image file of your choice with the 200x98 pixel dimension and replace the current placeholder.

 4.	Make sure to save the source code after making updates.

 The intent of this section is to demonstrate how quick and simple updating the content of a Worklight hybrid mobile application can be. It is like editing the content of a web page.

 Configure the mobile application for push notification

 Several advantages exist of mobile applications over traditional web or mobile web applications. These advantages are related to being able to better engage and interact with the users by leveraging mobile device capabilities. These capabilities include hardware sensors and devices on the mobile such as accelerometer and camera in addition to specific features like push notifications. The push notification is one of the most popular methods for getting the attention of a mobile user.

 To learn more about local and remote notification programming, see the Apple iOS Developer Library:

 https://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html/Security/Conceptual/Security_Overview/Introduction/Introduction.html

 Push notification services are provided by the specific software development kit (SDK) vendors:

 •For iOS, it is Apple Push Notification Services (APNS) to provision the required artifacts and information for using push notification service:

 https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ProvisioningDevelopment.html#//apple_ref/doc/uid/TP40008194-CH104-SW3

 •For Android it is Google Cloud Messaging (GCM) to provision the required artifacts and information for using push notification service

 http://developer.android.com/google/gcm/gs.html

 •Other vendors are available also, however providing more details is not within the scope of this book.

 This section does not intend to duplicate or replace the documentation provided by the respective vendors, however, we attempt to highlight the steps to add and configure push notification support for our specific Worklight application.

 We now create the necessary Worklight Android and iPhone environments and the artifacts and credentials for push notification support.

 Configure Worklight environments for push notification

 To add support for push notifications, we must add the native environments that we want to target for this Worklight application. In this book, we use Android and iPhone because they are currently the most popular mobile platforms.

 Complete the following steps:

 1.	In Project Explorer, view the GENAPPMobileSample overview (Figure 10-26). At this point we updated only the Worklight adapter and common web resource code. We now need to add platform-specific support.

 [image:]

 Figure 10-26 GENAPPMobile application before adding native platform support

 2.	Select the GENAPPMobile application folder, click the Worklight shortcut button on the Eclipse menu, and select Worklight Environment (Figure 10-27).

 [image:]

 Figure 10-27 Using Worklight shortcut to add Worklight Environment

 3.	A Worklight Environment dialog opens (Figure 10-28). Select the iPhone and Android phones and tablets check boxes, and then click Finish.

 [image:]

 Figure 10-28 Select iPhone and Android environments

 The result of this action is the creation of two extra folders (android and iphone) and the common folder, under the GENAPPMobile application folder, (Figure 10-29).

 [image:]

 Figure 10-29 Android and iPhone environment folders created

 There is also a new Android native project created in the workspace and called GENAPPMobileSampleGENAPPMobileAndroid. This is because the Android development tools and SDK were also installed in this Eclipse environment. The Worklight builder tools create a native project for each environment that we selected. There is a native Android project under the android/native folder and a native Xcode project under the iphone/native folder that can be used to compile the native mobile application file using the vendor SDK tools.

 4.	Open the application-descriptor.xml file by using the Application Descriptor Editor. Select the Design tab of the descriptor file, if not already selected. Expand the application environments. See Figure 10-30.

 [image:]

 Figure 10-30 Application descriptor file in Design mode

 5.	Select the Android environment and click Add to open the dialog window (Figure 10-31) where you can add features to the environment. Select Push Sender and then click OK.

 [image:]

 Figure 10-31 Dialog to add push and skins support in Worklight environments

 6.	A Push Sender item is displayed. Select it to display the information in the Details panel (Figure 10-32). This is the information required to add push notifications for the Android mobile application. For now, we leave the details empty and move to the iPhone environment.

 	
 Google Cloud Messaging details: For Android apps that use Google Cloud Messaging (GCM), define the connectivity details, as shown in Figure 10-32:

 •Key field: GCM API key

 •Sender ID field: GCM Project Number

 [image:]

 Figure 10-32 Android Push Sender information required for application descriptor

 The process for Android includes creating a Google API project, enabling the GCM service, and obtaining an API key. This information is later used to populate the required fields in the application-descriptor.xml file.

 7.	Repeat the procedure for the iPhone environment (as in step 5 on page 212). The result shows that a password is required for the SSL certificate that is used for APNS, depicted in Figure 10-33.

 	
 Apple Push Notification Service details: For iPhone apps define the password to the SSL certificate, encrypting the communication link with the Apple Push Notification Service (APNS). Note that the password attribute can refer to a property in the worklight.properties file and can thus be encrypted.

 [image:]

 Figure 10-33 iPhone Push Sender information required for application descriptor

 The process for setting up push notifications for an application on iOS is different than for Android. The majority of the work is done by using the iOS developer portal to create an application identifier such as the following identifier, and associating it with a provisioning profile and certificate:

 com.ibm.<something>.GENAPPMobile

 All details and required documentation are at the developer portals:

  –	https://developer.apple.com/devcenter/ios/index.action

  –	https://developer.apple.com/notifications/

 8.	For the purpose of this book, we assume that the application identifier, created for the iPhone, is com.ibm.ctp.democenter.GENAPPMobile. This identifier (or AppID) is associated with a certificate. Do these steps:

 a.	In development, rename your certificate file as follows and place it in the application root folder.

 apns-certificate-sandbox.p12

 b.	When you move to production, rename your certificate file as follows and place it in the application root folder, as depicted in Figure 10-34:

 apns-certificate-production.p12

 The password used to protect that certificate is placed in the required field of the application-descriptor.xml file.

 [image:]

 Figure 10-34 Application descriptor after adding push notification support

 For more details about setting up push notifications, review the related module from the Worklight getting started documentation at the following location:

 http://www.ibm.com/developerworks/mobile/worklight/getting-started.html

 The application is now push notification ready.

 10.4.3 Test GENAPP mobile on a workstation

 IBM Worklight Studio is an open and flexible integrated development environment (IDE) that provides a comprehensive set of tools for use to develop, test, and run hybrid mobile applications. It also is open for integrating with popular third-party tools and frameworks to improve productivity and to suit individual developer’s tooling suites. In this section we provide guidance for several available integrated options for running this and other Worklight mobile applications on a workstation.

 We highlight the following methods:

 •Web preview

 •Mobile Browser Simulator

 •Native SDK simulators

 Web preview

 This Worklight mobile application was developed using the hybrid programming model, meaning the user interface and application logic was written with HTML5, JavaScript, and CSS. One of the benefits of this development style allows us to develop once in the common environment and then build, deploy, and run on multiple mobile platforms such as Android and iOS. The Rich Page Editor of the Worklight Studio is where to visualize some of the static content on the views or pages of the application user interface. If we want to see the actual application in execution mode, several approaches exist, one of which is called Preview. This preview is like running a web page in a browser. It works well because we are writing web code.

 To see how this works, complete the following steps:

 1.	In Project Explorer, locate the GENAPP_Mobile_Sample.html file (under the ..apps/GENAPPMobile/common folder). Right-click the file name and select Run As → Preview (Figure 10-35).

 [image:]

 Figure 10-35 Run As Preview for GENAPP_Mobile_Sample.html

 	
 Error message: If you encounter an error message in the Worklight Server console log indicating that the application ID is missing from the database, repeat step 1, but instead select Run As → Run on Server. This action deploys the application and associated metadata to the Worklight repository database.

 2.	See that the mobile application is running on your default browser and that the loginForm is displayed (Figure 10-36).

 [image:]

 Figure 10-36 Web Preview of loginForm

 The web page is displayed in full screen although the body of the application is narrow. This is because the application is designed for a mobile form factor. One simple technique to change this is to resize the browser window to a smaller size if you do not like the large page.

 If these steps are properly executed, for example preparing the DB2 resources and updating the Java login module, you can log in and navigate the application by using this web preview.

 The disadvantage of this method is that, although the web code can execute like any other web page, you cannot test items, such as push notifications or other native device features.

 3.	Continue to navigate through the mobile application and review various details such as viewing and purchasing policies.

 Mobile Browser Simulator

 The Mobile Browser Simulator is a web application that helps you test mobile web applications without having to install a device vendor native SDK.

 You can use the Mobile Browser Simulator to preview Worklight applications on Android, iPhone, iPad, BlackBerry 6 and 7, Windows Phone 7, Windows Phone 8, and mobile web application environments.

 The Mobile Browser Simulator contains a frame that emulates a target device. It shows how your page will appear in the mobile device browser. You can switch the frame to emulate different screen resolutions and form factors. You can also rotate the frame to mimic orientation change (portrait or landscape). You can add multiple devices to the frame to view the various displays simultaneously. If a device detection servlet is configured for your web project, the simulator emulates requests from various device-specific agents.

 To use the Mobile Browser Simulator for our project, follow these steps.

 1.	In the Project Explorer, locate the GENAPP_Mobile_Sample.html file (under the ..apps/GENAPPMobile/Android folder). Right-click the file name and select Run As → Preview as shown in Figure 10-37.

 [image:]

 Figure 10-37 iPhone Run As Preview context menu

 The mobile application opens in the Mobile Browser Simulator (Figure 10-38 on page 219).

 [image:]

 Figure 10-38 GENAPPMobile application running in iPhone Mobile Browser Simulator

 When testing mobile applications by using the Mobile Browser Simulator, Worklight APIs such as JSONStore, Geolocation, and so on are supported, in addition to the native sensors and features of mobile devices.

 Features such as camera API calls are able to return a predefined image to validate that the code ran successfully. Other events and states, such as back button and network status, can also be retrieved by using these simulated APIs. This way is useful for testing applications within a single integrated environment without having to go through the entire cycle to deploy to a real device.

 Although this capability is convenient, you must test on actual devices before releasing mobile applications into production or other preproduction environments.

 2.	Proceed to navigate and test various functions of the GENAPPMobile application.

 Native SDK simulators

 Worklight Studio has integration capabilities with native SDK simulators so you can build and test native application capabilities. We highlight the use of the Android Virtual Device (AVD) for testing the GENAPPMobile application on a simulated Android device.

 	
 More details: Not covered in this book are the steps for setting up Android Development Tools (ADT), SDK, or Android Virtual Device (AVD). More details are on the Android developer website:

 http://developer.android.com

 If you properly installed and configured the ADT, SDK, and AVDs in the same Eclipse environment that Worklight Studio is using, you are able to see the Native Android project that the Worklight builder tools that are generated when you performed a build action.

 Follow these steps:

 1.	See Figure 10-39, which shows the highlighted native Android project.

 [image:]

 Figure 10-39 Generated Native Android project folder

 2.	Expand the folder to reveal the typical native Android project structure with some additional libraries and resources that are specific to the Worklight hybrid application (Figure 10-40).

 [image:]

 Figure 10-40 Expanded native Android project folder

 3.	With the native project folder selected, use the context menu by right-clicking and selecting Run As → Android Application. This action causes the Android project to be compiled and then deployed to an active AVD (or the Android Tools start an AVD for the application to run on).

 [image:]

 Figure 10-41 Run As Android Application

 The Worklight application now runs as a native Android application on an AVD (Figure 10-42).

 [image:]

 Figure 10-42 GENAPPMobile application running on Android Virtual Device

 10.4.4 Customize and install CICS Java Application for policy search

 The GENAPP mobile application uses a Java application so that you can retrieve all the policies for a specific customer.

 Import the unzipMeForProjects.zip as an existing project archive file into the Eclipse environment, with the CICS Explorer SDK installed. Then, create a CICS V4.2 target platform.

 	
 More details: For more details about creating the target platform in your Eclipse environment, see the following web page:

 http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/index.jsp?topic=%2Fcom.ibm.cics.ts.java.doc%2Ftopics%2Fgettingstarted_jcicsproject.html

 To alter the Java code to point to your DB2 that is configured for use with the GENAPP, complete the following steps.

 1.	Ensure that your JVM server is set up to access DB2 and OSGi.

 For more information, see Configuring a JVM server for an OSGi application at the following web page:

 http://pic.dhe.ibm.com/infocenter/cicsts/v5r1/topic/com.ibm.cics.ts.java.doc/JVMserver/config_jvmserver_app.html

 Also, see the chapter about setting up a Java virtual machine server in IBM CICS and the JVM server: Developing and Deploying Java Applications, SG24-8038.

 2.	The DBName variable in the DB2InquirePolicy.java file (shown in Figure 10-43) in the com.ibm.cics.genapp.mobile.db package must be altered.

 [image:]

 Figure 10-43 The DB2InquirePolicy java file

 To do this, alter the DBName variable so that DBName represents the database ID (DBID) that you installed as part of the GENAPP installation, as shown in Example 10-11.

 Example 10-11 Alter the DBName variable

 [image:]

 public class DB2InquirePolicy{

 public static void main(String[] args){

 String DBName = "GENAPP1";

 Task t = Task.getTask();

 ...

 [image:]

 If you choose to use an alternative JVM server name, you must alter these files so that it represents your naming scheme (as shown in Example 10-12):

  –	The mobile.osgibundle file in the com.ibm.cics.genapp.mobile.bundle

  –	The db.osgibundle file in the com.ibm.cics.genapp.mobile.db.bundle

 Example 10-12 Updated naming scheme

 [image:]

 <osgibundle symbolicname="com.ibm.cics.genapp.mobile" version="1.0.2" jvmserver="SERV1"/>

 [image:]

 3.	Export both bundles (com.ibm.cics.genapp.mobile.bundle and com.ibm.cics.genapp.mobile.db.bundle) by right-clicking the project and selecting Export project to z/OS UNIX File System. Place these bundles in a similar directory to your wsdir. The directory must be accessible by CICS.

 	
 Note: The z/OS FTP connection must be active to perform this step.

 4.	Install two new bundle definitions in CICS, as in Example 10-13.

 Example 10-13 Bundle definitions for our 2 Java CICS applications

 [image:]

 Bundle ==> GENAPMOB

 BUndledir ==> exportedDir/com.ibm.cics.genapp.mobile.bundle_1.0.0

 Bundle ==> GENAPDBM

 BUndledir ==> exportedDir/com.ibm.cics.genapp.mobile.db.bundle_1.0.0

 [image:]

 5.	Install two new program definitions in CICS, as in Example 10-14 on page 225.

 Example 10-14 Program definitions for our Java CICS Applications

 [image:]

 PROGram : IPDBMOB

 EXECKey ==> Cics

 COncurrency ==> Required

 JVM ==> Yes

 JVMClass ==> genapp.mobile.policy.DB2InquirePolicy

 JVMServer ==> SERV1

 PROGram : IPPROGMB

 EXECKey ==> Cics

 COncurrency ==> Required

 JVM ==> Yes

 JVMClass ==> genapp.mobile.policy.InquirePolicy

 JVMServer ==> SERV1

 [image:]

 The two CICS bundles and program definitions are now installed in CICS.

 As a result of these steps we now have installed two Java CICS applications, one of which will access the DB2 that is configured for GENAPP.

 10.4.5 Customize the CICS event binding for push notification

 CICS event processing is used in this example to drive notifications on the mobile devices by using the Worklight API to communicate with the Apple iOS notification framework (APNS) and the Google Android notification framework (C2DM) from one API. When a claim process begins, a notification arrives on the mobile device of the other application user for the claim, and shares the details of the other driver.

 To configure the event binding, follow these steps:

 1.	Extract the eventBinding.zip file and import the project into your Eclipse environment (configured in 10.3, “Installing the Worklight project for GENAPP” on page 184).

 2.	Export the GENAPPNotification project by right-clicking the project and selecting Export project to z/OS UNIX File System. Place this project in a similar directory to your wsdir. The directory must be accessible by CICS.

 3.	Install one new bundle definition in CICS, as shown in Example 10-15.

 Example 10-15 Event processing bundle definition in CICS

 [image:]

 Bundle ==> GENAPPEP

 BUndledir ==> exportedDir/com.ibm.cics.genapp.mobile.db.bundle_1.0.0

 [image:]

 Verify that a new event binding and event processing adapter are installed. This can be done in CICS Explorer or alternatively by logging in to CICS by using a 3270 interface:

  –	In CICS Explorer, select Operations view → Event Processing → Event Bindings. This view displays the installed event bindings.

  –	In CICS Explorer, select Operations view → Event Processing → EP Adapters. This view displays the installed EP adapters.

 You can also use these steps:

  –	Log in to CICS and issue the CEMT I EVENTBINDING command. This command displays the installed event bindings.

  –	Log on to CICS and issue the CEMT I EPADAPTER command. This command displays the installed EP adapters.

 4.	Create a URIMAP named NOTIFY2. This defines the new URIMAP NOTIFY2 so that CICS can perform an HTTP Post action to the Worklight Server when the event binding conditions are met. You need the URL of the deployed Worklight Server or Worklight Studio Liberty Profile where the GENAPP Mobile ClaimNotification adapter is installed. This URIMAP is shown in Example 10-16.

 Example 10-16 A URIMAP definition for our Worklight server

 [image:]

 Usage:Client

 Scheme:HTTP

 Port:9080 (Your Worklight Server port)

 Host:www.example.com (Your Worklight server hostname)

 Path:/worklight/invoke?adapter=ClaimNotification&procedure=submit

 Notification¶meters=%5b%5d

 [image:]

 	
 Changing names: If you change the name of the URIMAP from NOTIFY2 to something else, you must update the EPAdapter file in the GENAPPNotification project and redeploy the project followed by a reinstallation of the associated bundle.

 For notifications to be used in a Worklight project, you must configure your GENAPP Mobile Worklight project according to the developerWorks instructions in IBM Worklight: Getting started with IBM Worklight V6.0 Push notifications.

 You can download the associated Worklight demonstration project for that documentation from developerWorks in IBM Worklight “Getting started with IBM Worklight” at the following web page:

 http://www.ibm.com/developerworks/mobile/worklight/getting-started.html#basics

 10.5 Running GENAPP on a mobile device

 Now we must deploy the mobile application to the Worklight Server and the mobile devices. We do this in two parts:

 •Deploy GENAPP to Worklight Server by using Liberty Profile

 •Install the application on a mobile device

 10.5.1 Deploy GENAPP to Worklight Server by using Liberty Profile

 After you complete the development part of the mobile app, in Worklight Studio, deploy the app on a Worklight Server. Use one of the following three ways to deploy an application to the Worklight Server:

 •Prepare to deploy mobile applications

 •Deploy the mobile app using Ant

 •Deploy the app using the Worklight Console

 Prepare to deploy mobile applications

 Before you can deploy mobile applications to a Linux on System z Worklight Server, prepare that server to receive applications.

 For that installation, the Linux on System z server has these prerequisites:

 •IBM Installation Manager V1.6.2 as a minimum version

 •DB2 V9.7 as a minimum version

 •Java SE 6.0 or later runtime environment

 The Java version we installed on the Linux on System z server is 7.0, as shown on Example 10-17.

 Example 10-17 Java SDK version

 [image:]

 lxWorklight:~ # java -version

 java version "1.7.0"

 Java(TM) SE Runtime Environment (build pxz6470_27-20131115_04)

 IBM J9 VM (build 2.7, JRE 1.7.0 Linux s390x-64 Compressed References 20131114_175264 (JIT enabled, AOT enabled)

 J9VM - R27_Java727_GA_20131114_0833_B175264

 JIT - tr.r13.java_20131113_50523

 GC - R27_Java727_GA_20131114_0833_B175264_CMPRSS

 J9CL - 20131114_175264)

 JCL - 20131113_01 based on Oracle 7u45-b18

 [image:]

 WebSphere Liberty installation

 We identify the repository.config file that was extracted from the compressed file, which contains the product:

 WAS_Liberty_Core_V8.5.5_1_OF_3.zip.

 Then, we register that file on the IBM Installation Manager.

 We install the product as root user because we assume that the IBM Installation Manager was installed as root. We can create a wasuser user and install the product with that user, but to do that, we also must install IBM Installation Manager by using wasuser. For the installation of other software components, reinstalling IBM Installation Manager every time is inconvenient, so, we install all products as the root user. After the installation is complete, we change the ownership of the product to the user who will run the software, as follows:

 1.	As the root user, start IBM Installation Manager in a VNC viewer by running the following command:

 lxWorklight:/opt/IBM/InstallationManager/eclipse # ./IBMIM

 2.	Click File → Preferences (Figure 10-44).

 [image:]

 Figure 10-44 IBM Installation Manager

 3.	On the next panel select Add Repository.

 4.	In the Add a Repository dialog, click Browse to find the repository.config file. Click OK twice. The WebSphere Liberty Profile is registered and ready to be installed, as shown in Figure 10-45.

 [image:]

 Figure 10-45 IBM Installation Manager - Add Repository

 5.	Click OK, and on the main page of the IBM Installation Manager click Install to start the installation process.

 6.	In the Install Packages dialog, select IBM WebSphere Application Server Liberty Core and click Next, as shown on Figure 10-46.

 [image:]

 Figure 10-46 IBM Installation Manager - Select packages

 7.	Read and accept the license agreement.

 8.	Select the location for the shared resources directory. The default location is /opt/IBM/IMShared.

 9.	Select the location for the WebSphere Liberty components. The default location is /opt/IBM/WebSphere/Liberty.

 10.	In the next dialog, select the features to install. You do not need the Embeddable EJB Container and JPA Client for this example, so you can clear the check box, as shown on Figure 10-47.

 [image:]

 Figure 10-47 IBM Installation Manager - Select features

 11.	In the summary dialog, click Install and then click Finish to return to the main page of IBM Installation Manager.

 WebSphere Liberty customization

 After the WebSphere Liberty product is installed, create a server for the Worklight Server. Be sure you are logged in as root user and do these steps.

 1.	Navigate to the ../Liberty/bin directory and issue the following commands:

 cd /opt/IBM/WebSphere/Liberty/bin

 ./server create Server1

 2.	Add a new group and new user to that group with the following commands:

 groupadd wasgroup

 useradd -m -d /home/wasuser -g wasgroup wasuser

 passwd wasuser

 Worklight Server installation

 As for the WebSphere Liberty installation, we must identify the repository file from the extracted files of the Worklight Server. In Worklight Server V6.1, the file is in the disk1 folder and the name of the file is diskTag.inf.

 Complete the following steps:

 1.	Register the diskTag.inf file in IBM Installation Manager (as we did with WebSphere Liberty) and then start the installation.

 2.	In the first Install Packages dialog, select IBM Worklight Server (Figure 10-48 on page 231), and then click Next to proceed.

 [image:]

 Figure 10-48 IBM Installation Manager: Install Packages Worklight Server

 3.	Read and accept the license agreement.

 4.	In the next dialog, set the location for the Worklight Server product. The default location is /opt/IBM/Worklight.

 5.	In the next dialog, select the features to install. In this case only one choice is available.

 6.	Follow the configuration steps for the Worklight Server:

 a.	In the Choose configuration step (Figure 10-49), indicate whether to install IBM Application Center. We select Yes.

 [image:]

 Figure 10-49 IBM Installation Manager: Install Packages, Choose configuration

 b.	In the Choose your database type step, select DB2.

 c.	Configure Database server properties step as shown in Figure 10-50 on page 232.

 [image:]

 Figure 10-50 IBM Installation Manager: Install Packages, Database server properties

 d.	Configure Database server additional properties step as shown in Figure 10-51.

 [image:]

 Figure 10-51 IBM Installation Manager: Install Packages, Database server additional properties

 e.	In the Create database step, select the database instance shown in Figure 10-52 on page 233.

 [image:]

 Figure 10-52 IBM Installation Manager: Install Packages, Create database (APPCNTR)

 f.	In the Database creation progress step, wait until the database is successfully created, as shown in Figure 10-53.

 [image:]

 Figure 10-53 IBM Installation Manager: Install Packages, Database creation progress (APPCNTR)

 g.	In the Select your application server type step, select WebSphere Application Server.

 h.	In the Application server properties step (Figure 10-54 on page 234), we use the following settings:

  •	WebSphere installation directory: /opt/IBM/WebSphere/Liberty

  •	Profile: Liberty

  •	Server name: Server1 (which is the one we created in “WebSphere Liberty customization” on page 230).

 [image:]

 Figure 10-54 IBM Installation Manager: Install Packages, Application server properties

 i.	Optional: In the Multiple users step (Figure 10-55), select the Single user check box and wasuser user in the drop-down list (which we created in “WebSphere Liberty customization” on page 230.

 [image:]

 Figure 10-55 IBM Installation Manager: Install Packages, Multiple users

 j.	In the final Thank you step, click Finish to complete the installation.

 7.	Although installation of the IBM Worklight Server V6.1 is complete, further customization is necessary because we performed the installation as the root user. Therefore, we must change ownership of the WebSphere directory to allow the wasuser to launch the WebSphere Liberty server.

 With root user privileges, run the following commands:

 cd /opt/IBM

 chown -R wasuser:wasgroup WebSphere

 Now Server1 can be launched by wasuser.

 Apache Ant

 To deploy a mobile application on a Worklight Server, use the Apache Ant tool. For convenience, Apache Ant 1.8.4 is included with IBM Worklight Server. It is in the WL_INSTALL_DIR/shortcuts/ directory.

 To create a link to the Ant tool from the /usr/local/bin folder, use the following commands:

 cd /usr/local/bin

 ln -s /opt/IBM/Worklight/shortcuts/ant

 If you run the tool now, you might encounter the following error message:

 wasuser@lxWorklight:~> ant -version

 Unable to locate tools.jar. Expected to find it in /usr/lib64/jvm/java-1.7.0-ibm-1.7.0/lib/tools.jar

 Apache Ant(TM) version 1.9.3 compiled on December 23 2013

 This message means that the tools.jar file is missing. Here we only have the JRE of Java available, not the SDK (which formerly was called JDK). The Java SDK must be available to fix this problem.

 The Ant tool is now available. Use it to deploy the mobile app to the Worklight Server.

 Deploy the mobile app using Ant

 The mobile app, after it is built in Worklight Studio, is constituted of several files in the bin folder as shown in Figure 10-56.

 [image:]

 Figure 10-56 bin folder in Worklight Studio

 The .war file must be deployed to the WebSphere Application Server. The other files, .wlapp and .adapter, will be deployed using the Worklight Console.

 Complete the following steps:

 1.	Before starting the deployment, be sure that the files you deploy will target the correct Worklight Server. So, in Worklight Studio right-click the GENAPP Mobile Sample in the apps folder, and then select Run as → Build Settings and Deploy Target (Figure 10-57).

 [image:]

 Figure 10-57 Worklight Studio: Build Settings and Deploy Target

 2.	In the Configure Worklight Build and Deploy Target dialog (Figure 10-58), select the Build the application to work with a different Worklight server check box and complete both fields with Worklight Server information.

 [image:]

 Figure 10-58 Configure Worklight Build and Deploy Target

 3.	The files in the bin folder must reflect that change, so right-click the GENAPP Mobile Sample in the apps folder and select Run as → Build All Environments. Wait for the build to finish.

 4.	Send the GENAPPMobileSample.war to the Worklight Server, using your preferred method, such as FTP, NFS, or other means. In our case, we use FTP to copy the file to the /opt/Project folder on the Worklight Server.

 5.	On the Worklight Server, customize a configuration file (in the ../Worklight folder). In our case, it is in this location:

 /opt/IBM/Worklight/WorklightServer/configuration-samples/

 Choose the correct configuration file, depending on the middleware you use. In our case, it is WebSphere Liberty and DB2.

 Copy the configure-liberty-db2.xml file into a new file GENAPP.xml and customize it, as shown in Example 10-18 on page 239. Pay close attention to the bolded sections.

 Example 10-18 GENAPP.xml customized file

 [image:]

 <!-- Worklight: sample configuration of a WebSphere Application Server Liberty profile with DB2 databases. -->

 <project basedir="." default="help">

 	<!-- PROPERTIES, TO BE ADJUSTED BEFORE USE. -->

 	<!-- The war file generated by IBM Worklight Studio for the project. -->

 	<property name="worklight.project.war.file" value="/opt/Project/GENAPPMobileSample.war"/>

 <!-- Installation directory of IBM Worklight Server. -->

 <property name="worklight.server.install.dir" value="/opt/IBM/Worklight"/>

 <!-- The server on which to create or assume the DB2 databases. -->

 <property name="db2.databases.server" value="localhost"/>

 <property name="db2.databases.port" value="50001"/>

 <!-- The user name used to access the DB2 databases. -->

 <property name="db2.databases.username" value="db2inst1"/>

 <!-- The password used to access the DB2 databases. -->

 <property name="db2.databases.password" value="db2inst1"/>

 <!-- The directory that contains the DB2 JDBC driver. -->

 <property name="db2.driver.dir" value="/opt/IBM/DB2/V10.5/java"/>

 <!-- The credentials of a DB2 administrator, used to create the DB2 databases. -->

 <property name="db2.databases.admin.username" value="db2inst1"/>

 <property name="db2.databases.admin.password" value="db2inst1"/>

 <!-- Installation directory of IBM WebSphere Application Server Liberty profile. -->

 <property name="was.liberty.install.dir" value="/opt/IBM/WebSphere/Liberty"/>

 <!-- The name of the Liberty server. -->

 <property name="was.liberty.server.name" value="Server1"/>

 <!-- The context root to use for the deployed war file in the application server. By definition, this is the common prefix of the path of URLs that are directed to this war file, in particular of the path of the Worklight console URL. -->

 <property name="contextroot" value="/genapp"/>

 <!-- The directory in which to place shortcuts. -->

 <property name="shortcuts.dir" value="/tmp/shortcuts"/>

 <!-- The directory in which to place BIRT reports. -->

 <property name="reports.dir" value="/tmp/reports"/>

 <!-- END OF PROPERTIES. -->

 ...

 <!-- If changing the default 50000 port number and to be queried intercatively for passwords, you need to modify the following lines in the 3 sections : databases, install and uninstall. -->

 <!-- We remove the password=”” to be queried interactively. -->

 <db2 database="WRKLGHT" server="${db2.databases.server}" port="${db2.databases.port}" user="${db2.databases.username}">

 ...

 <db2 database="WLREPORT" server="${db2.databases.server}" port="${db2.databases.port}" user="${db2.databases.username}">

 ...

 [image:]

 6.	Before you deploy the .war file, verify that Server1 of WebSphere Liberty is not launched.

 7.	Now, you can create the databases in DB2 and install the .war file into Server1 of WebSphere Liberty by using the following commands.

 cd /opt/IBM/Worklight/WorklightServer/configuration-samples

 ant -f GENAPP.xml databases

 ant -f GENAPP.xml install

 8.	After this deployment, you can launch Server1 in WebSphere Liberty using the following commands.

 cd /opt/IBM/WebSphere/Liberty/bin

 ./server start Server1

 9.	To verify the operation, use a web browser and navigate to the following web address:

 http://<worklight-server>:9080/genapp

 This opens the IBM Worklight Console (Figure 10-59).

 [image:]

 Figure 10-59 IBM Worklight Console

 Deploy the app using the Worklight Console

 From the IBM Worklight Console, deploy the other files from the bin folder of the app in Eclipse as follows:

 1.	In the IBM Worklight Console (Figure 10-59), click Browse, and then search for the GENAPP_Mobile_Sample-all.wlapp file, which is shown in Figure 10-60. Click OK to continue.

 [image:]

 Figure 10-60 The bin folder of GENAPP Mobile Sample app

 2.	After you return to the IBM Worklight Console (Figure 10-59), click Submit to deploy the application. Figure 10-61 shows the status display while the GENAPP_Mobile_Sample-all.wlapp file is being deployed.

 [image:]

 Figure 10-61 IBM Worklight Console: Deploy application

 The GENAPP Mobile Sample app is now deployed on the Worklight Server as shown on Figure 10-62.

 [image:]

 Figure 10-62 IBM Worklight Console - GENAPP Mobile Sample app successfully deployed

 3.	Do the same for the two adapters, ClaimNotification.adapter and GENAPPInquire.adapter, as shown in Figure 10-63.

 [image:]

 Figure 10-63 IBM Worklight Console: GENAPP Mobile Sample

 The GENAPP Mobile Sample app is successfully deployed on the Worklight Server.

 10.5.2 Install the application on a mobile device

 After building your mobile application, the next step is to deploy it to mobile devices. Worklight Server provides the IBM Worklight Application Center where you can upload your mobile apps and where mobile devices can download the apps.

 The next tasks you can do are as follows:

 •Install the IBM Worklight Application Center

 •Upload apps to Worklight Application Center

 •Install apps on mobile devices

 Install the IBM Worklight Application Center

 The installation of the IBM Worklight Application Center was performed when we installed Worklight Server (in “Worklight Server installation” on page 230). IBM Installation Manager registered the applicationcenter into the server.xml file of our WebSphere Liberty server, as shown in Example 10-19.

 Example 10-19 server.xml file customized by IBM Installation Manager

 [image:]

 <!-- Declare the IBM Application Center Console application. -->

 <application id="appcenterconsole" name="appcenterconsole" location="appcenterconsole.war" type="war">

 <application-bnd>

 <security-role name="appcenteradmin">

 <group name="appcentergroup"/>

 </security-role>

 </application-bnd>

 </application>

 <!-- Declare the IBM Application Center Services application. -->

 <application id="applicationcenter" name="applicationcenter" location="applicationcenter.war" type="war">

 <application-bnd>

 <security-role name="appcenteradmin">

 <group name="appcentergroup"/>

 </security-role>

 </application-bnd>

 <classloader delegation="parentLast">

 <commonLibrary>

 <fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_1.0.1.jar"/>

 </commonLibrary>

 </classloader>

 </application>

 <!-- Declare the user registry for the IBM Application Center. -->

 <basicRegistry id="applicationcenter-registry" realm="ApplicationCenter">

 <!-- The users defined here are members of group "appcentergroup",

 thus have role "appcenteradmin", and can therefore perform

 administrative tasks through the IBM Application Center Console. -->

 <user name="appcenteradmin" password="admin"/>

 <user name="demo" password="demo"/>

 <group name="appcentergroup">

 <member name="appcenteradmin"/>

 <member name="demo"/>

 </group>

 </basicRegistry>

 [image:]

 You can access the Worklight Application Center (Figure 10-64) at the following address:

 http://<worklight-server>:9080/applicationcenter

 [image:]

 Figure 10-64 IBM Worklight Application Center console

 By default, the two users allowed to access the Worklight Application Center are listed in the server.xml file (Example 10-19 on page 244). They are appcenteradmin and demo with the password in clear text in the same file.

 One way to improve the security of the Worklight Application Center is to use an LDAP server for authentication. Example 10-20 on page 246 uses LDAP users to access the console. We deleted the <basicRegistry> tag and replaced it with an <ldapRegistry> tag. In our case, sslEnabled is set to false, meaning that no SSL encryption is used between the Application Center and the LDAP server. For a production environment, this usually is a bad idea because passwords are sent in clear text over the network. For a test environment, it is fine, but SSL must be implemented between the WebSphere Application Server and the LDAP server before deploying this solution into a production environment. We also modified the <application-bnd> tag for the appcenterconsole and the applicationcenter to allow access of groups of users or specific users.

 Example 10-20 server.xml file customized with LDAP authentication

 [image:]

 <ldapRegistry id="ldap" realm="SampleLdapIDSRealm"

 host="10.3.20.12" port="4389" ignoreCase="true"

 baseDN="o=aic,c=us"

 userFilter="(&(uid=%v)(objectclass=ePerson))"

 groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)

 (objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))"

 userIdMap="*:uid"

 groupIdMap="*:cn"

 groupMemberIdMap="mycompany-allGroups:member;mycompany-allGroups:uniqueMember;

 				groupOfNames:member;groupOfUniqueNames:uniqueMember"

 ldapType="IBM Tivoli Directory Server"

 sslEnabled="false"

 sslRef="LDAPSSLSettings">

 </ldapRegistry>

 <!-- Begin of configuration added by IBM Worklight installer. -->

 <!-- Declare the IBM Application Center Console application. -->

 <application id="appcenterconsole" name="appcenterconsole" location="appcenterconsole.war" type="war">

 <application-bnd>

 <security-role name="appcenteruser" id="appcenteruser">

 <group name="ldapGroupForAppcenteruser" />

 </security-role>

 <security-role name="appcenteradmin" id="appcenteradmin">

 <user name="rgyadmin"/>

 <user name="wasadmin"/>

 </security-role>

 </application-bnd>

 </application>

 <!-- Declare the IBM Application Center Services application. -->

 <application id="applicationcenter" name="applicationcenter" location="applicationcenter.war" type="war">

 		 <application-bnd>

 <security-role name="appcenteruser" id="appcenteruser">

 <group name="ldapGroupForAppcenteruser" />

 </security-role>

 <security-role name="appcenteradmin" id="appcenteradmin">

 <user name="rgyadmin"/>

 <user name="wasadmin"/>

 </security-role>

 		 <application-bnd>

 <classloader delegation="parentLast">

 <commonLibrary>

 <fileset dir="${wlp.install.dir}/lib" includes="com.ibm.ws.crypto.passwordutil_1.0.1.jar"/>

 </commonLibrary>

 </classloader>

 </application>

 [image:]

 Figure 10-65 shows the LDAP entry of the rgyadmin user that is defined in Example 10-20 on page 246.

 [image:]

 Figure 10-65 LDAP user example

 After you log in to the Worklight Application Center, you now have access, as shown on Figure 10-66.

 [image:]

 Figure 10-66 IBM Worklight Application Center

 Upload apps to Worklight Application Center

 From the Worklight Application Center, you can load mobile apps that can be downloaded from mobile devices. This Application Store is dedicated for business-to-enterprise purposes. For business-to-commercial purpose, we must use public application stores like the Google Play Store or the Apple App Store.

 Two steps are necessary so that mobile devices can download mobile apps from the Worklight Application Center:

 1.	Download the IBM App Center application on the mobile device. This can be achieved by using a browser on the mobile device. The IBM App Center is listed on the mobile device as a new app store, just like the public app stores.

 2.	Download new mobile apps from the IBM App Center.

 The IBM App Center is supplied with the Worklight Server in this directory:

 <installed-directory>/Worklight/ApplicationCenter/installer

 That directory contains the IBMAppCenter folder, which is the Worklight Studio project of the IBM Application Center.

 After this project is imported into Worklight Studio, you can customize and deploy it to targeted devices. For Android devices, the IBMApplicationCenter.apk is provided in the installer folder.

 Import that file into the Application Center console as follows:

 1.	Select Add Application and upload the IBMApplicationCenter.apk file in the Application File section. Click Next to go to the Application Details page (Figure 10-67).

 [image:]

 Figure 10-67 IBM Worklight Application Center - Application Details

 2.	Select the Installer check box, which means that the app will be listed if you are targeting the IBM Application Center from a mobile browser. Otherwise the app will be listed only if targeting the IBM Application Center from the IBM App Center app.

 3.	Click Done to finalize the upload of the IBM App Center application.

 The app is ready to be downloaded as shown in Figure 10-68.

 [image:]

 Figure 10-68 IBM App Center for Android

 We upload the GENAPP Mobile app, and we do the same with the GenappMobileGENAPP_MobileAndroid.apk file. However, selecting the Installer check box is unnecessary, so the app is as shown in Figure 10-69.

 [image:]

 Figure 10-69 IBM Worklight Application Center - GENAPP Mobile

 Now the IBM Application Center is ready to receive calls from Android mobile devices to download apps.

 Install apps on mobile devices

 On a mobile device first download the IBM App Center, which represents the Enterprise App Store, and next download the GENAPP app from the App Store. The steps are as follows:

 1.	On a mobile device, open a browser window and go to the IBM Application Center link, as shown in the following example (see Figure 10-70):

 http://<worklight-server>:9080/applicationcenter/installers.html

 [image:]

 Figure 10-70 Installers from the Mobile Browser

 You are prompted for a user name and password (see “Install the IBM Worklight Application Center” on page 244).

 The next screen lists the IBM App Center app (Figure 10-71).

 [image:]

 Figure 10-71 List of Installer Apps

 2.	Select the IBM App Center and then select Install. The app is downloaded and installed.

 3.	When complete, launch the IBM App Center and connect to the IBM Application Center as shown on Figure 10-72.

 [image:]

 Figure 10-72 IBM App Center login screen

 After login from the IBM App Center app to the IBM Application Center on the Worklight Server, you see all the apps for the specific device (Figure 10-73).

 [image:]

 Figure 10-73 IBM App Center apps

 You can now select the GENAPP_Mobile entry, and then select Install to download the GENAPP mobile app to the device.

 The GENAPP mobile app is now downloaded to the device, an Android in our example. To download on other devices, iOS for example, you must upload the iOS version of the app to the IBM Application Center and also the IBM App Center iOS version. And before we can upload an iOS app, we must build the iOS version of the two apps using the iOS SDK (xCode).

 10.6 Conclusion

 In this chapter, we installed and configured the GENAPP CICS application for back-end integration of our IBM System z resources. We demonstrated how to change the communication model from SOAP to JSON and how to use both models concurrently, giving an organization the flexibility to use either one.

 We explained how to set up an IBM Worklight environment and then customized the GENAPP Worklight project for agile code changes. In this context, we also showed ways of testing your mobile project.

 Finally we showed how to deploy mobile apps to the Worklight Application Center and then onto your mobile devices.

 See Chapter 11, “Enabling end-to-end security” on page 257 for more information about end-to-end security for your mobile applications.

[image:]
[image:]

Enabling end-to-end security

 In this chapter, we describe the end-to-end security solution that we implemented for the GENAPP mobile application.

 The security solution is based on the principal of having multiple layers of security, thus benefitting from the combined capabilities of Worklight, DataPower, CICS, and z/OS security (System SSL and RACF).

 This chapter contains the following topics:

 •Introduction

 •Using LTPA-based authentication with Worklight

 •Enabling Worklight application authenticity checks

 •Using DataPower as a mobile security gateway

 •DataPower load balancing

 •Securing the connection from Worklight Server to CICS

 11.1 Introduction

 In this chapter, we describe how we implement the end-to-end security design described in “End-to-end security design” on page 163. The chosen security solution uses a combination of capabilities that are implemented by using the Worklight security framework, DataPower as a mobile security gateway, transport security, and also some traditional CICS and RACF security mechanisms.

 In the solution, DataPower is used as a reverse proxy for Worklight server, as shown in Figure 11-1.

 [image:]

 Figure 11-1 End-to-end security configuration

 In this configuration, DataPower that is deployed in the DMZ acts as a first line of defense and protects access to the Worklight Server. Specific mobile security capabilities of Worklight, such as application verification, can be used. Also, the Worklight server benefits from the platform security features that System z provides. A secure and trusted connection can be established to the CICS GENAPP application.

 	
 What we used: DataPower is available in various form factors. For this book, we used the IBM WebSphere DataPower Integration Appliance XI52 Virtual Edition with firmware level 6.0.0.1.

 The following sections describe how to set up and use DataPower as a proxy to secure access to Worklight mobile applications. DataPower authenticates the mobile user and generates a single sign-on (SSO) token to be used by the WebSphere Application Server that runs the Worklight Server.

 In this chapter, we describe how we configured security for these items:

 •Worklight security.

  –	Worklight is configured for LTPA-based authentication.

 	
 Note: Lightweight Third-Party Authentication (LTPA) is an authentication technology, used in IBM WebSphere, that can be used to implement SSO.

  –	Worklight application authenticity checking is enabled.

 •Using DataPower as a mobile security gateway.

  –	DataPower is configured as a reverse proxy for the GENAPP mobile application.

  –	DataPower is configured to balance requests across two Worklight Servers.

 •The connection between the Worklight Server and CICS is secured using SSL mutual authentication.

 11.2 Using LTPA-based authentication with Worklight

 We set up and use the DataPower Multi-Protocol Gateway (MPGW) service to proxy and secure access to Worklight mobile applications. We demonstrate how to use HTTP form-based login between the mobile client and DataPower. DataPower then authenticates the user and generates an LTPA SSO token to be used at the back-end WebSphere Application Server, as shown in Figure 11-1 on page 258.

 These are the tasks we do:

 •Modify the GENAPP mobile app

 •Update Worklight security configuration for LTPA

 •Update WebSphere Application Server security configuration

 11.2.1 Modify the GENAPP mobile app

 In Chapter 10, “Agile approach to deliver application functionality” on page 169 we slightly modified an existing application to deploy and run in its current state. The changes were made to the infrastructure details that are specific to our environment. In this section, we add content and modify our application resources to change the authentication mechanism, leveraging the built-in LTPA support that the IBM Worklight platform provides.

 Those changes are as follows:

 •Create a client-side challenge handler

 •Update the application main html file

 Create a client-side challenge handler

 Each security check defines its own protocol, which is a sequence of challenges that are sent by the server and responses that are sent by the client. On the server side, the component that implements this private protocol is the authenticator. On the client side, the corresponding component is called the challenge handler. For more information, see the following web page:

 http://pic.dhe.ibm.com/infocenter/wrklight/v6r1m0/topic/com.ibm.worklight.dev.doc/dev/c_ibm_worklight_security_overview.html

 When the client request tries to access a protected resource, Worklight Server checks all the appropriate realms. Several realms can decide to send a challenge. Challenges from multiple realms are composed into a single response and sent back to the client.

 The Worklight client infrastructure extracts the individual challenges from the response, and routes them to the appropriate challenge handlers. When a challenge handler finishes the processing, it submits its response to the Worklight client infrastructure. As an example, this occurs when the challenge handler obtains the user name and password from a login user interface. When the response is received, the Worklight client infrastructure resends the original request with all the challenge responses.

 Worklight Server extracts those responses from the request and passes them to the appropriate authenticators. If an authenticator is satisfied, it reports a success, and Worklight Server calls the login module. If the login module succeeds in validating all of the credentials, the realm is considered successfully authenticated. If all the realms of the security test are successfully authenticated, Worklight Server allows the request processing to proceed.

 If a realm check fails, its authenticator sends another (or the same) challenge to the client, and the whole process repeats.

 Combining multiple challenges and responses into a single response and request maximizes security efficiency by reducing the number of extra round trips. For example, the checks for device authentication, application authenticity, and direct update can be done in a single round trip.

 The fact that the Worklight client infrastructure automatically resends the original request with the challenge responses allows separation between the application logic and security aspects. Although any application request can result in a security challenge, the application logic must not include any special processing for that case. The challenge handlers are not related to the application context and can focus on the security-related logic.

 	
 More information about Worklight security: Review the appropriate sections of Securing Your Mobile Business with IBM Worklight, SG24-8179

 A skeleton resource file, sampleWASLTPARealm.js, is provided with the additional files (for this book) for customization in this section. A completed file, WASLTPARealmChallengeHandler.js, is available if you want to import and review the content. See Appendix A, “Additional material” on page 449 for more information.

 In this section, the assumption is that you have the IBM Worklight Studio environment available.

 Complete these steps to import and implement the client-side challenge handler:

 1.	In the Enterprise Explorer, expand and then right-click the following folder:

 GENAPPMobileSample/apps/GENAPPMoble/common/js/authenticators

 Then, in the context menu, select Import (Figure 11-2 on page 262). The import wizard dialog starts.

 [image:]

 Figure 11-2 Import challenge handler

 2.	Select File System and click Next. Click Browse to find where you extracted the resource archive and select the WASLTPARealmChallengeHandler.js file.

 A similar example is at the following web page:

 http://pic.dhe.ibm.com/infocenter/wrklight/v6r1m0/topic/com.ibm.worklight.installconfig.doc/admin/t_protecting_your_mobile_app_traffic_using_datapower.html

 To gain an understanding of client-side challenge handler interactions, review the implementation of the WASLTPARealmChallengeHandler.js in Example 11-1.

 Example 11-1 Snippet of implemented WASLTPARealmChallengeHandler.js

 [image:]

 ...

 myChallengeHandler.isCustomResponse = function(response) {

 	//A Form login authentication failure occurred

 	var findAuthError = response.responseText.search("authentication failure");

 	if(findAuthError >= 0) {

 		alert('Authentication failed');

 		hideMainProgressBox();

 		console.log('authentication Error');		

 		return true;

 	}

 	

 	//A normal Worklight login form has been returned

 	var findWLForm = response.responseText.search("Worklight Login");

 	if(findWLForm >= 0) {

 		console.log('Worklight Login');

 		lastRequestURL = response.request.url;

 		if(!submitSuccessCounter>=1){

 	return true;

 		} else{

 	alert('This is a second login request, please contact administrator!');

 	console.log('Worklight is challenging after DataPower!');

 	//TODO: Validate error condition

 	return true;

 	}

 	}

 	//An error Worklight login form has been returned

 	var findErrorForm = response.responseText.search("Worklight Login Error");

 	if(findErrorForm >= 0) {

 		console.log('Worklight LoginError');

 		lastRequestURL = response.request.url;

 		return true;

 	}

 	

 	//Successful authentication using WASLTPARealm

 	var findWASLTPARealm = response.responseText.search("WASLTPARealm");

 	if(findWASLTPARealm >= 0) {

 		console.log('Authentication is succesful');		

 		//set the variable to be used with adapter invocation

 		LTPAResponse=response.responseJSON.userInfo.WASLTPARealm;

 		//username=response.responseJSON.userInfo.WASLTPARealm.userId;

 		authStatus='complete';

 		return true;

 	}

 	

 	//This response is a Worklight server response, handle it normally

 	console.log('normal WL Server resposne');

 return false;

 };

 ...

 [image:]

 In the previous steps, we reviewed the client challenge handler to make use of LTPA. Now, we describe several more rules to use DataPower as the secure proxy in front of our Worklight Server. Use the following steps:

 1.	Open the WASLTPARealmChallengeHandler.js file and locate the isCustomResponse method/function.

 2.	Review the rules:

  –	Does the response contain a DataPower Login form?
If it does, return true and continue to the handleChallenge method/function, as shown in Example 11-2.

 Example 11-2 Rule to check if a normal DataPower login form has been returned

 [image:]

 	//A normal DataPower login form has been returned

 	var findLoginForm = response.responseText.search("DataPower Form Login");

 	if(findLoginForm >= 0) {

 	 	console.log('DataPower Form Login');

 	 	lastRequestURL = response.request.url;

 	return true;

 	}

 [image:]

  –	Does the response contain a DataPower Error?
If it does, return true and continue to the handleChallenge method/function, as shown in Example 11-3.

 Example 11-3 Rule to check if a error DataPower login form has been returned

 [image:]

 	//An error DataPower login form has been returned

 	var findError = response.responseText.search("DataPower Error");

 	if(findError >= 0) {

 		console.log('DataPower Error');

 		return true;

 	}

 [image:]

 3.	You can add more rules or conditions to check the response, based on what you are expecting as responses, coming back from either the back-end or the DataPower gateway.

 Update the application main html file

 After reviewing the WASLTPARealmChallengeHandler.js, proceed to update the main HTML file to use in place of the existing procedure.

 1.	In Project Explorer, open the GENAPP_Mobile_Sample.html file from the GENAPPMobileSample/apps/GENAPPMobile/common directory.

 2.	Using the Source tab of the Rich Page Editor, move to the bottom of the HTML page. Locate the script tag for the existing challenge handler, shown in Example 11-4.

 Example 11-4 Original client challenge handler from sample project

 [image:]

 	</script>

 <script src=”js/authenticators/CustomAuthenticatorRealmChallengeHandler.js”></script>

 [image:]

 3.	Update the script tag to use the new WASLTPARealmChallengerHandler implementation, as shown in Example 11-5.

 Example 11-5 Updated script tag for new client challenge handler

 [image:]

 	</script>

 <script src=”js/authenticators/WASLTPARealmChallengeHandler.js”></script>

 [image:]

 4.	Save and close the HTML file.

 11.2.2 Update Worklight security configuration for LTPA

 Worklight supports various infrastructure topologies for a set of requirements that can take advantage of the LTPA. In this section, we cover the configuration changes to the Worklight Server on WebSphere Application Server as the infrastructure topology.

 Worklight security configuration is defined in the authenticationConfig.xml file. We create the appropriate security definitions required to support LTPA-based authentication.

 For more information about the elements of the Worklight LTPA security configuration, see the “Worklight Security and LTPA overview” web page:

 http://pic.dhe.ibm.com/infocenter/wrklight/v6r1m0/topic/com.ibm.worklight.deploy.doc/admin/c_security_ltpa_overview.html

 The two approaches to working with the security definition are either to use the Design user interface or to edit the source XML file directly. For the purpose of this exercise, we modify the security definition by using the Authentication Configuration Editor.

 1.	Navigate to the GENAPPMobileSample/server/conf directory. Right-click the authenticationConfig.xml file. Use the context menu to select Open With → Authentication Configuration Editor (Figure 11-3).

 [image:]

 Figure 11-3 Open authenticationConfig.xml using the Authentication Configuration Editor

 2.	In the Authentication Configuration Editor, select the Design tab on the lower left corner of the opened document.

 3.	Expand Login Configuration → Login Modules, and also Realms, and Security Tests to reveal the existing definitions (Figure 11-4 on page 267).

 [image:]

 Figure 11-4 Worklight Security configuration

 4.	Return to the Source tab (Figure 11-5) to review and understand the existing setup.

 [image:]

 Figure 11-5 authenticationConfig.xml

 5.	At the top, under loginConfiguration, the staticResources is commented out (line 4). This resource is intended to protect access to the Worklight Server Console because, by default, there is no password required to access. Our focus is on the following items:

  –	securityTests

  –	realms

  –	loginModules

 The current loginConfiguration uses the CustomAuthenticatorRealm realm. Two entries in the securityTests section reference this realm in their configuration, shown in Example 11-6.

 Example 11-6 Current customSecurityTest in authenticationConfig.xml

 [image:]

 <securityTests>

 	<customSecurityTest name="SubscribeServlet">

 			<test isInternalUserID="true" realm="SubscribeServlet"/>

 	</customSecurityTest>

 	<customSecurityTest name="WebServicesAdapters-securityTest">

 			<test isInternalUserID="true" realm="CustomAuthenticatorRealm"/>

 	</customSecurityTest>

 	<mobileSecurityTest name="PushApplication-strong-mobile-securityTest">

 			<testUser realm="CustomAuthenticatorRealm"/>

 			<testDeviceId provisioningType="none"/>

 	</mobileSecurityTest>

 </securityTests>

 [image:]

 Below the securityTests are authenticator realms. A realm that is named CustomAuthenticatorRealm (Example 11-7) has a loginModule defined as CustomLoginModule. This realm has com.ibm.cics.MyCustomAuthenticator className, which is a custom authentication Java class that was implemented as the base security configuration in this supplied Worklight project.

 Example 11-7 customAuthenticatorRealm

 [image:]

 <realms>

 	<realm loginModule="rejectAll" name="SubscribeServlet">

 			<className>com.worklight.core.auth.ext.HeaderAuthenticator</className>

 	</realm>

 	<realm loginModule="CustomLoginModule" name="CustomAuthenticatorRealm">

 			<className>com.ibm.cics.MyCustomAuthenticator</className>

 	</realm>

 </realms>

 [image:]

 Further below are loginModules. One is named CustomLoginModule with a className specified as com.ibm.cics.MyCustomLoginModule (Example 11-8). This is the Java class that we edited in the DB2 connection information in “Alter the CustomAuthenticator Java class” on page 195.

 Example 11-8 CustomLoginModule

 [image:]

 <loginModules>

 	<loginModule name="rejectAll">

 			<className>com.worklight.core.auth.ext.RejectingLoginModule</className>

 	</loginModule>

 	<loginModule name="CustomLoginModule">

 			<className>com.ibm.cics.MyCustomLoginModule</className>

 	</loginModule>

 	<loginModule name="requireLogin">

 			<className>com.worklight.core.auth.ext.SingleIdentityLoginModule</className>

 	</loginModule>

 </loginModules>

 [image:]

 The base sample implementation provides a custom client side challengeHandler and accompanying Java code that validates the user credentials entered against a DB2 table.

 Here, we describe the steps to use a system-provided authenticator and login module that uses the underlying WebSphere Application Server security infrastructure. There is no custom serve-side (Java in this base setup) implementation needed. Now that you have a better understanding of the existing definitions, continue with the steps to add in the new definitions. An updated authenticationConfig.xml file is included in the downloadable files for this book (see Appendix A, “Additional material” on page 449).

 6.	Add a mobileSecurityTest named WASTest-securityTest in the securityTests section of the authenticationConfig.xml file. Include the testUser realm call WASLTPARealm and testDeviceId elements, as shown in Example 11-9.

 Example 11-9 Define mobileSecurity

 [image:]

 <mobileSecurityTest name="WASTest-securityTest">

 		<testDeviceId provisioningType="auto"/>

 		<testUser realm="WASLTPARealm"/>

 </mobileSecurityTest>

 [image:]

 7.	Add an authenticator realm called WASLTPARealm with loginMobile specified as WASLTPAModule. Include the className and parameter elements, as shown in Example 11-10 on page 270.

 Example 11-10 Define realm WASLTPARealm referenced in customSecurityTest

 [image:]

 <realm name="WASLTPARealm" loginModule="WASLTPAModule">

 <className>com.worklight.core.auth.ext.WebSphereFormBasedAuthenticator</className>

 	 <parameter name="login-page" value="/login.html" />

 	 <parameter name="error-page" value="/loginError.html" />

 </realm>	

 [image:]

 8.	Add a loginModule named WASLTPAModule with the className and parameters that are specified in Example 11-11.

 Example 11-11 Define login module

 [image:]

 <loginModule name="WASLTPAModule">

 			<className>com.worklight.core.auth.ext.WebSphereLoginModule</className>

 			<parameter name="cookie-name" value="LtpaToken"/>

 			<parameter name="cookie-domain" value="edu.ihost.com"/>

 </loginModule>

 [image:]

 11.2.3 Update WebSphere Application Server security configuration

 Worklight supports various infrastructure topologies for a set of requirements that can take advantage of LTPA.

 A reverse proxy can be used to authenticate and then forward the user’s LTPA token after the user is authenticated. This configuration can be useful when you want to offload Worklight from handling vital user credentials or to use an existing authentication setup. The Worklight Server must be configured for LTPA authentication to receive the user identity. Both supported LTPA configurations log the user in automatically if the LTPA token is valid and the user is authorized. We focus on these tasks:

 •Enable WebSphere Application Server security

 •Update the Worklight project WAR

 Enable WebSphere Application Server security

 You can secure IBM Worklight in a typical WebSphere Application Server runtime environment in either of two ways:

 •Option 1: Authentication is enforced by WebSphere Application Server.

 •Option 2: Worklight Server enforces the authentication by relying on WebSphere Application Server configuration.

 More information about these two options is at the following web page:

 http://pic.dhe.ibm.com/infocenter/wrklight/v6r1m0/topic/com.ibm.worklight.installconfig.doc/admin/c_websphere_application_server_s.html

 In our scenario we use option 2, which we configure in the following steps.

 1.	First, enable WebSphere Application Server security by selecting the appropriate options, as shown in Figure 11-6 on page 272.

 a.	Open and log into the WebSphere Application Server Administration Console.

 b.	Use left pane to navigate to Security → Global Security.

 c.	Select the Enable administrative security and Enable application security check boxes.

 d.	Click Apply and save the changes.

 [image:]

 Figure 11-6 Enable Administrative and Application security

 2.	Export the WebSphere LTPA key for use with DataPower.

 To integrate DataPower with the Worklight Server running on WebSphere Application Server, both components need to share some LTPA context. In this case, they must share the same LTPA key.

 Use the following steps to export the LTPA key from WebSphere Application Server:

 a.	In the Global security panel, locate the User account repository section (Figure 11-7). Click Configure.

 [image:]

 Figure 11-7 User account repository

 b.	Set the Realm name field to WASLTPARealm (Figure 11-8). Select Allow operations if some of the repositories are down, then click Apply at the bottom of the page.

 [image:]

 Figure 11-8 Update Realm name field to WASLTPARealm

 c.	The next dialog requests an administrative user password (Figure 11-9). Provide the password then click OK. Save the changes.

 [image:]

 Figure 11-9 Enter administrative password for primary administrative user account

 d.	Navigate back to the Global security page. Locate the Authentication panel in the upper right corner of the page (Figure 11-10). Select the LTPA link.

 [image:]

 Figure 11-10 Authentication panel of Global security page

 e.	In the next dialog, enter and confirm a password for protecting the LTPA key. Enter a path and file name for where to export the key, and then click Export keys. If the export is successful, a message is displayed at the top of the page (Figure 11-11).

 [image:]

 Figure 11-11 Export WASLTPARealm key for use with DataPower configuration

 3.	Provide this LTPA key and password to the person responsible for configuring DataPower. That person could be you.

 Update the Worklight project WAR

 The overall intent of this section is to prepare the environment for the authentication enforcement to be done by the WebSphere DataPower Security Gateway. However, if your environment does not have this infrastructure available, authentication can be enforced by the Worklight Server and using the WebSphere Application Server security infrastructure.

 For this, several more steps required:

 	
 Additional files: In the following steps, we use three files that are available as downloads with this book:

 •login.html

 •loginError.html

 •updateWAR.xml

 To download these files, see Appendix A, “Additional material” on page 449.

 1.	Create a login page by creating a new file named login.html and saving it to the root of your WAR file. Example 11-12 shows a sample login.html file.

 	
 Following standards: This form is a standard Java EE login page file, using the same standard Java EE names for form action, Username, and Password.

 Example 11-12 Login page: login.html

 [image:]

 <html>

 <head><title>Worklight Login</title></head>

 <body>

 <form action="j_security_check" method="post">

 Username: <input type="text" name="j_username" size="20">

 Password: <input type="password" name="j_password" size="20">

 <input type="submit" value="Login">

 </form>

 </body>

 </html>

 [image:]

 2.	The next step is similar, you must create a login error page. Its content can be as simple as shown in Example 11-13.

 Example 11-13 Login error page: loginError.html

 [image:]

 <html>

 <head><title>Worklight Login Error</title></head>

 <body>

 Login invalid.

 </body>

 </html>

 [image:]

 3.	Add the newly created login.html and loginError.html files to the root of the project WAR file. To do this, you can extract the WAR file, add the files, and then compress the WAR file before deploying it to the external WebSphere Application Server Network Deployment environment.

 To simplify this step, an Ant script is included in the downloadable resource file of this book (see Appendix A, “Additional material” on page 449). Follow these optional steps to update the WAR file:

 a.	Place a copy of the project WAR file, located in the /bin directory of the Worklight project, into a working directory, for example C:\workdir or /home/user/workdir.

 Make sure that changes to the authenticationConfig.xml were saved. Worklight Studio automatically updates the project WAR file when any resources under the project server/conf directory are udpated and saved.

 b.	Place the login.html and loginError.html files into the same directory that is used for the WAR in step 1 on page 276.

 To properly run an Ant script, you need to have the Ant and Java tools available in your environment variables.

 c.	Edit the updateWar.xml Ant script with the appropriate directory information for the artifacts, described in the previous steps.

 d.	Run the task by using the following command:

 ant -f <pathToScriptFile>/updateWar.xml

 The project WAR file is now ready for deployment.

 11.3 Enabling Worklight application authenticity checks

 The Worklight security framework provides support for checking the authenticity of a mobile application. In the same way that the user authentication realm is used to obtain and validate a user’s identity, an application authenticity realm is used to obtain and validate the identity of an application. The application authenticity check ensures that the application that tries to connect to a Worklight Server is the authentic one and was not tampered with or modified by some third-party attacker.

 	
 Optional configuration: This step is optional and requires the use of IBM Worklight Studio Consumer or Enterprise edition. The Worklight Studio for Developer edition does not have this advanced security feature available.

 For more information about the authenticity feature, see this web page:

 http://pic.dhe.ibm.com/infocenter/wrklight/v6r1m0/topic/com.ibm.worklight.dev.doc/dev/c_ibm_worklight_app_authentication_overview.html

 The steps to enable application authenticity checks are in these topics:

 •Update Worklight security configuration

 •Update application descriptor

 •Build and compile client

 •Manage authenticity

 11.3.1 Update Worklight security configuration

 In this first task, to enable application authenticity is to modify the authenticationConfig.xml file by adding the relevant authentication realm to the security tests:

 1.	Locate and open the authenticationConfig.xml file.

 2.	Edit the mobileSecurityTest name WASTest-securityTest to include the testAppAuthenticity child element, as shown in Example 11-14.

 Example 11-14 Modify security test to include authenticity element

 [image:]

 <mobileSecurityTest name="WASTest-securityTest">

 	<testAppAuthenticity/>

 	<testDeviceId provisioningType="auto"/>

 	<testUser realm="WASLTPARealm"/>

 </mobileSecurityTest>

 [image:]

 3.	Use the updateWar.xml Ant script to update the project WAR if used in 11.2.3, “Update WebSphere Application Server security configuration” on page 270.

 11.3.2 Update application descriptor

 The application authentication is based on certificate keys that are used to sign application bundles. Only the developers or the enterprise who have the original private key that was used to create the application are able to modify, repackage, and re-sign a bundle. This involves modifying the application-descriptor.xml file of your application.

 To enable application authenticity check for the iOS environment, specify the bundle ID of your application exactly as you defined it in the Apple Developer portal, shown in Figure 11-12.

 [image:]

 Figure 11-12 Create Application Identifier in the Apple Developer Portal

 To enable application authenticity check for the Android environment, extract the public signing key of the certificate that is used to sign the application bundle (.apk file).

 Complete the following steps:

 1.	Locate and right-click the GENAPPMobile/android folder and select Extract public signing key (Figure 11-13). A new wizard starts.

 [image:]

 Figure 11-13 Extract Android public signing key

 2.	Provide the keystore file location (Figure 11-14). This file is located within {Users}/.android/debug.keystore. This location is the default for the development environment.

 [image:]

 Figure 11-14 Extract keystore wizard

 3.	For the keystore password, enter android. This is the default password. Click Load Keystore. The Key alias field is displayed.

 4.	Select the predefined key alias from the list (Figure 11-15). Click Next.

 [image:]

 Figure 11-15 Create Android public signing key

 The full key is displayed in a new panel (Figure 11-16).

 [image:]

 Figure 11-16 Add Android Public Signing Key to application descriptor

 5.	Click Finish. This augments the application-descriptor.xml file by including the newly generated public signing key. See Figure 11-17 on page 283.

 [image:]

 Figure 11-17 Application descriptor with publicSigningKey populated

 If you are building an application for distribution (production), you must extract the public key from the certificate that you are using to sign your production ready application.

 If you are building an application in the development environment, you might use the public key from a default development certificate that is supplied by the Android SDK.

 11.3.3 Build and compile client

 After making the client and server changes, build the Worklight environments and then compile and export the appropriate mobile clients. For example, for iOS, use the Xcode tools to compile and export an IPA archive file. For Android, use the tools that are integrated with the Worklight Studio to export a signed application package, as shown in Figure 11-18.

 [image:]

 Figure 11-18 Export signed Android application package

 An important aspect to understand is that nobody, including IBM Worklight or other mobile development environment vendors, can dictate how an application must be compiled and signed. This is defined by the mobile SDK providers, and thus susceptible to any changes by such providers over time. More SDK provider information about this topic is at the following web sites:

 •Android:

 http://developer.android.com/tools/publishing/app-signing.html

 •iOS:

 https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/DistributingApplicationsOutside/DistributingApplicationsOutside.html#//apple_ref/doc/uid/TP40012582-CH12-SW2

 11.3.4 Manage authenticity

 The Worklight Console provides a means for enabling and disabling an application authenticity realm. This feature can be useful for development and QA environments. You can set three modes (see Figure 11-19):

 •Enabled, blocking

 This mode means that the application authenticity check is enabled. If the application fails the check, it will not be served by a Worklight Server.

 •Enabled, servicing

 This mode means that the application authenticity check is enabled. If the application fails the check, it will still be served by a Worklight Server.

 •Access Disabled

 This mode means that application authenticity check is disabled.

 [image:]

 Figure 11-19 GENAPPMobile application deployed with application authenticity enabled

 11.4 Using DataPower as a mobile security gateway

 You can configure WebSphere DataPower as a reverse proxy and security gateway for the GENAPP mobile application.

 A reverse proxy can be used to authenticate a user, and then create and forward an LTPA token to back-end services. This configuration can be useful when you want to offload Worklight from handling vital user credentials or to use an existing authentication setup. The Worklight Server must be configured for LTPA authentication to retrieve the user identity. Both supported LTPA configurations automatically log in the user if the LTPA token is valid and the user is authorized.

 The DataPower MultiProtocol Gateway service provides security services between the mobile application and the edge of the organization, and then between DataPower and the Worklight Server.

 Configuration of the necessary service requires the following tasks:

 •Copy the service pattern

 •Deploy the pattern

 •Adjust the configuration

 •Add monitoring

 •Control content type header

 11.4.1 Copy the service pattern

 Copy the service pattern from the default domain to the production domain:

 1.	At your WebSphere DataPower console, log in to the default domain as an administrator. You see the standard Control Panel.

 2.	Enter the pattern console (Figure 11-20 on page 287) by adding /dp to the end of the URL, as in the following example:

 https://datapower_host:9090/dp

 [image:]

 Figure 11-20 Pattern console

 3.	Select Create a Pattern. A list of available patterns is displayed.

 4.	Select Web application with Form-based authentication and LTPA SSO pattern to highlight it, shown in Figure 11-21.

 [image:]

 Figure 11-21 Highlight LTPA SSO pattern

 5.	Click the Export icon to the right of the Deploy button (Figure 11-22).

 [image:]

 Figure 11-22 Pattern export icon

 6.	Save the exported file to a local location, as shown in Figure 11-23.

 [image:]

 Figure 11-23 Save exported file

 7.	Click default on the header and select Production from the list (Figure 11-24). This changes the current domain.

 [image:]

 Figure 11-24 Select the Production domain

 8.	Click the Import icon (Figure 11-25) to import the LTPA pattern.

 [image:]

 Figure 11-25 Click the Import icon

 9.	Browse for the exported pattern file and click Import (Figure 11-26).

 [image:]

 Figure 11-26 Selecting the pattern file to import

 The imported pattern file is now available for deployment.

 11.4.2 Deploy the pattern

 Create the necessary service by using the pattern:

 1.	Return to the PatternConsole and select Deploy a Pattern. This launches the deployment screen.

 2.	Under Step 1 (Figure 11-27), enter zMobileLTPA in the Service name field and provide a description. Under Step 2, enter http://worklight_host_addr:port in the URL field.

 [image:]

 Figure 11-27 Step 1 and 2 of the deployment process

 3.	Under Step 3 (Figure 11-28), enter the IP address and the port number. Use the drop-down list to select the only available SSL Proxy Profile from the list. The pattern contains this profile.

 [image:]

 Figure 11-28 Details of the front-end endpoint

 4.	Under Step 4 (Figure 11-29), click Upload to upload the appropriate LTPA security key. You can browse your local workstation for the key file. Enter the password for the key file in the Key file password field.

 5.	Under Step 5, use the drop-down list to select the LTPA key file you uploaded in Step 4. Enter the password for the key file in the Key file password field.

 [image:]

 Figure 11-29 Setting the LTPA keys

 6.	Click Deploy Pattern. A notice is displayed in the lower right corner to confirm the deployment.

 7.	Select Endpoints in the upper left area of the Pattern Console. The new service endpoint is listed, as shown in Figure 11-30.

 [image:]

 Figure 11-30 Newly deployed service

 Notice that the service is currently down (Error status). We address this error state in 11.4.3, “Adjust the configuration” on page 294.

 8.	Return to the Control Panel (remove the /dp from the end of the current location of the browser), shown in Figure 11-31.

 [image:]

 Figure 11-31 Production domain Control Panel

 9.	Click the Multi-Protocol Gateway icon.

 A list of services is displayed. The operating state indicates that the zMobile LTPA gateway is currently down. We address this state in 11.4.3, “Adjust the configuration” on page 294.

 [image:]

 Figure 11-32 Gateway list

 11.4.3 Adjust the configuration

 We next adjust the deployed service for authentication and cryptography.

 To open the gateway, modify the cryptographic key and certificate objects to use valid files rather than the defaults that are created by the pattern deployer. Complete the following steps:

 1.	Type Crypto Tool in the search field of the navigation menu. Select Crypto Tools from the list that is displayed. The Crypto Tools page opens (Figure 11-33 on page 295). Enter the following data and then click Generate Key:

 Country Name	us

 Locality	aic

 Organization	ibm

 Object Name	zMobile

 Common Name	dpowerz

 [image:]

 Figure 11-33 Creating cryptographic keys

 2.	A confirmation dialog box opens (Figure 11-34). Click Close.

 [image:]

 Figure 11-34 Confirm key generation

 The keys and objects are now complete.

 To be able to use these new key objects, follow these steps:

 1.	Type Id in the search field of the navigation menu. Select Cryptographic Identification Credential from the list.

 2.	Select the zMobileLTPA_Web_HTTPS_FormLTPA object in the list of available identification credentials.

 The object configuration page opens (Figure 11-35).

 [image:]

 Figure 11-35 Identification credentials object

 3.	For Crypto Key, select the zMobile object (Figure 11-36). For Certificate, select the zMobile object.

 [image:]

 Figure 11-36 Valid key objects selected

 4.	Click Apply. The gateway service is now up and running.

 5.	Click Save Config.

 By default, the pattern deployer uses a file on the device for authentication. To use an LDAP server instead, follow these steps:

 1.	Type AAA in the search field of the navigation bar, then select AAA Policy.

 2.	Select zMobileLTPA_Web_HTTPS_FormLTPA in the list of policies.

 3.	Navigate to the Authentication tab.

 4.	Select Bind to LDAP server as the Method. A new set of input fields opens, as shown in Figure 11-37 on page 299.

 5.	Complete the information in the following fields:

 Host	IP address of the LDAP host (such as 10.3.20.12)

 Port	A port number (such as 4389)

 LDAP DN Suffix	An appropriate string (such as ou=musers, o=aic, c=us)

 [image:]

 Figure 11-37 Configuring LDAP server authentication

 In many cases, an SSL Proxy Profile is required in order to use SSL for all communications with the LDAP server. This is optional. Similarly, many LDAP servers require a specific DN and corresponding password to bind to the server for a search or other operation. This is optional.

 6.	Click Apply, and then Save Config.

 7.	Type Multi in the search form of the navigation bar. Select MultiProtocol Gateway from the list of search results.

 8.	Select zMobileLTPA. The service configuration page opens (Figure 11-38 on page 300).

 [image:]

 Figure 11-38 Gateway configuration

 Next, we configure monitoring for our gateway (11.4.4, “Add monitoring” on page 301).

 11.4.4 Add monitoring

 Create a throughput monitor to protect the back-end systems from excessive traffic.

 1.	On the Configure Multi-Protocol Gateway page (Figure 11-38 on page 300) click the Monitors tab. A new page opens (Figure 11-39).

 [image:]

 Figure 11-39 Available monitors

 2.	Click the plus sign (+) under Message Count Monitors.

 A Message Count Monitor page opens (Figure 11-40).

 [image:]

 Figure 11-40 Initial Message Count Monitor page

 3.	Type zMobile in the Name field.

 4.	Click the plus sign (+) under Message Type. A dialog opens. Type zMobile in the Name field.

 5.	Click the plus sign (+) under Message Matchings. A dialog opens. Type zMobile-all in the Name field.

 6.	Click Apply. The window closes and the Configure Message Type window regains focus (Figure 11-41).

 [image:]

 Figure 11-41 Message Type configuration

 7.	Click Apply. The window closes and the Configure Message Count Monitor window regains focus (Figure 11-42).

 [image:]

 Figure 11-42 Message Count Monitor configuration

 8.	Click the Thresholds/Filters tab (Figure 11-43).

 [image:]

 Figure 11-43 Initial Thresholds/Filters page

 9.	Click Add. The Edit Thresholds/Filters window opens. Complete the information in the following fields:

 Name	all

 Interval	1000

 Rate Limit	1000

 Burst Limit	1200

 10.	Click the plus sign (+) to create a new Action. A window opens.

 11.	Type zMobile-reject in the Name field and set the Type to Reject. Then, set the Log Priority to Warning and click Apply. The window closes.

 The Edit Thresholds/Filters window regains focus, as shown in Figure 11-44.

 [image:]

 Figure 11-44 Thresholds/Filters complete

 12.	Click Apply. The window closes. The Message Count Monitor regains focus (Figure 11-45).

 [image:]

 Figure 11-45 Message Count Monitor complete

 13.	Click Apply. The window closes. The Monitors pane of the Gateway configuration regains focus (Figure 11-46).

 [image:]

 Figure 11-46 Monitors complete

 14.	Click Apply and then click Save Config.

 11.4.5 Control content type header

 The configuration we did for the DataPower device alters the HTTP protocol content-type header during processing. This can cause unwanted behavior by a back-end system. The next set of steps protects against this possibility.

 On the Configure Multi-Protocol Gateway page, click the ellipsis (...) button under Multi-Protocol Gateway Policy. A window opens, listing the policy (Figure 11-47 on page 308).

 [image:]

 Figure 11-47 Processing policy pane

 15.	Click zMobile_Web_HTTPS_FormLTPA_rule_1 in the list of rule names.

 16.	Double-click the AAA action icon. A window opens (Figure 11-48).

 [image:]

 Figure 11-48 AAA Action configuration

 17.	Enter tmp1 in the Output field and click select Done. The window closes.

 18.	Drag the Advanced action icon onto the rule behind the AAA action, as shown in Figure 11-49.

 [image:]

 Figure 11-49 Drag Advanced action icon to the rule

 19.	Double-click the highlighted icon.

 A window opens (Figure 11-50).

 [image:]

 Figure 11-50 Select Set Variable

 20.	Select Set Variable from the list of available actions and click Next.

 21.	Under Input, select tmp1 for the value of the Context field (Figure 11-51).

 [image:]

 Figure 11-51 Setting the context

 22.	Click Var Builder in the Variable Name line.

 23.	Expand Extension Variables and select var://local/_extension/. Then add Content-Type to the end of the variable name in the Variable Name field, as shown in Figure 11-52.

 [image:]

 Figure 11-52 Variable Name

 24.	Type application/x-www-form-urlencoded in the Variable Assignment field.

 25.	Click Done. The window closes.

 26.	The Processing Policy window regains focus (Figure 11-53). Double-click the Results action (highlighted in the figure).

 [image:]

 Figure 11-53 Processing rule altered

 The next window opens (Figure 11-54).

 [image:]

 Figure 11-54 Results action input

 27.	Set the Input to INPUT. Click Done. The window closes. The Processing Policy window regains focus.

 28.	Select zMobile_Web_HTTPS_FormLTPA_rule_3.

 29.	Double-click the Convert Query Params icon.

 The next window opens (Figure 11-55).

 [image:]

 Figure 11-55 Setting the Output

 30.	Type tmp2 in the Output field. Click Done. The window closes.

 31.	Drag the Advanced action icon onto the rule, after the Convert Query Params icon.

 32.	Double-click the highlighted action.

 33.	A new window opens (Figure 11-56 on page 315). Select Set Variable from the list of available actions, then click Next.

 [image:]

 Figure 11-56 Select Set Variable

 34.	Under Input, select tmp2 for the value of the Context field.

 35.	Click Var Builder in the Variable Name line.

 36.	Expand Extension Variables, select var://local/_extension/, and then add Content-Type to the end of the variable name in the Variable Name field, as shown in Figure 11-57.

 [image:]

 Figure 11-57 Variable Name

 37.	Enter application/x-www-form-urlencoded in the Variable Assignment field.

 38.	Click Done. The window closes. The Processing Policy window regains focus.

 39.	Click Apply Policy.

 40.	Click Close Window. The window closes.

 41.	Click Apply on the Configure Multi-Protocol Gateway page.

 42.	Click Save Config.

 The DataPower device can now automatically set the HTTP Content-type header to the value (application/x-www-form-urlencoded) expected by the back-end systems to eliminate any conflicts.

 11.5 DataPower load balancing

 Add load balancing to the service as follows:

 1.	Type Load in the Search field of the navigation bar. Select the Load Balancer Group in the list of results.

 2.	Click Add to create a new Load Balancer Group.

 3.	Enter Worklight in the Name field (Figure 11-58).

 [image:]

 Figure 11-58 Load Balancer group main tab

 4.	Click the Members tab and click Add. A new window opens.

 a.	Add the member by completing the information in the following fields:

 Action Host	IP address of a destination host (such as 10.3.20.29)

 Mapped Server Port	Port number (such as 443)

 b.	Click Apply. The window closes. The entry is listed in the Members table.

 c.	Repeat these steps as needed for each member you want.

 Your final table of load balancer members will resemble the table in Figure 11-59.

 [image:]

 Figure 11-59 Load Balancer members

 5.	When you are done adding members click Apply.

 6.	Type Multi in the Search field of the navigation bar. Select Edit MultiProtocol Gateway in the search result list that opens.

 7.	Click the name of the service in the table that opens. The main configuration page of the service opens, shown in Figure 11-60.

 [image:]

 Figure 11-60 Service configuration page

 8.	Click the ellipsis (...) button to open the XML Manager configuration page.

 9.	Scroll to the Load Balance Groups input field (Figure 11-61).

 [image:]

 Figure 11-61 XML Manager Load Balance Groups

 10.	Expand the drop-down list and select Worklight from the list of available groups, and then click add.

 11.	The selected group is added to the list of groups (Figure 11-62).

 [image:]

 Figure 11-62 XML Manager Load Balance group list

 12.	Click Apply. The XML Manager configuration window closes.

 13.	Click Apply on the Multi-Protocol Gateway service configuration page.

 14.	Click Save Config.

 Now that the Load Balancer group is created and made active through the XML Manager, DataPower can automatically load balance requests between the back end servers, increasing reliability and throughput of client requests.

 11.6 Securing the connection from Worklight Server to CICS

 A critical factor for the insurance company is that only authorized requests are processed by the CICS GENAPP application. To secure the connection from Worklight Server to CICS, the decision is to use SSL mutual authentication.

 SSL/TLS is a well understood and popular way to provide encryption and data integrity. It can also be used to enable both server and client authentication.

 Server authentication with CICS requires CICS to have an X.509 certificate stored in the CICS region’s certificate key ring. The certificate (which we refer to as the CICS server certificate) is used as part of the SSL handshake processing. The client, in this case a Worklight Server, validates the CICS server certificate. Successful server authentication requires the certificate authority (CA) that signed the CICS server certificate to be considered trusted by Worklight. To be considered trusted, the certificate of the CA must be in the keystore of the client.

 To use mutual authentication, the Worklight Server must have a client X.509 certificate (which we refer to as the Worklight client certificate). The CICS region validates the Worklight client certificate. Successful client authentication requires the CA that signed the Worklight client certificate to be considered trusted by CICS. To be considered trusted, the certificate of the CA must be in the key ring of the CICS region.

 CICS uses z/OS System SSL (a component of z/OS Communications Server) to support both the SSL and TLS protocols.

 We focus on the following topics:

 •Use certificates and RACF user IDs

 •Create X.509 certificates with RACF

 •Enable SSL

 •Enable SSL mutual authentication

 •Optimize SSL performance

 11.6.1 Use certificates and RACF user IDs

 The certificates we use in our configuration are listed in Table 11-1.

 Table 11-1 Certificates used in configuration

 	
 Value

 	
 Export format

 	
 File

 	
 CA certificate

 	
 CERTDER

 	
 aicCA.cer

 	
 CICS server certificate

 	
 Not exported

 	
 Not exported

 	
 Worklight client certificate

 	
 PKCS12DER

 	
 aicWKLT.p12

 RACF user IDs we use in our configuration are listed in Table 11-2.

 Table 11-2 User IDs used in the SSL scenario

 	
 Value

 	
 RACF user ID

 	
 CICS region user ID

 	
 CICSMOBP

 	
 User ID for which we want to permit access to GENAPP CICS services

 	
 WKLTMOBP

 11.6.2 Create X.509 certificates with RACF

 Create the CA certificate, CICS server certificate, and Worklight client certificate.

 Create the CA certificate

 We create the CA certificate, which establishes the trust between the Worklight Server and CICS, by using the RACF command listed in Example 11-15.

 Example 11-15 RACDCERT command to create CA certificate

 [image:]

 RACDCERT CERTAUTH +

 GENCERT +

 SUBJECTSDN(CN('InsuranceCompany') +

 OU('itso') +

 O ('aic') +

 C ('US') +

) +

 SIZE(2048) +

 TRUST +

 WITHLABEL('InsuranceCompanyCA') +

 KEYUSAGE(CERTSIGN)

 [image:]

 Example 11-19 on page 323 shows the RACF commands that we use to connect the CA certificate to the CICS key ring.

 Example 11-16 RACF command to connect CA certificate to RACF key ring

 [image:]

 RACDCERT ID(CICSMOBP) +

 CONNECT(RING(itso.CICSMOBP) +

 LABEL('InsuranceCompanyCA') +

 CERTAUTH) [image:]

 	
 Note: If the DIGTCERT or DIGTRING classes are RACLISTed, refresh the classes to activate your changes.

 Next, export the certificate to a data set, and use the OPUT command to copy the exported certificate to an HFS file. The commands we use are listed in Example 11-17.

 Example 11-17 Export and copy the CA certificate to an HFS file

 [image:]

 RACDCERT EXPORT(LABEL('InsuranceCompanyCA')) CERTAUTH +

 DSN('NIGEL.MOBPCA.DER') FORMAT(CERTDER)

 OPUT 'NIGEL.MOBPCA.DER' '/var/cicsts/CICSMOBP/aicCA.cer' +

 BINARY CONVERT(NO)

 [image:]

 The file format used in the export is CERTDER because we do not export the private key.

 Create the CICS server certificate

 Example 11-18 shows the RACF command that we use to create the CICS server certificate.

 Example 11-18 CICS server certificate

 [image:]

 RACDCERT GENCERT ID(CICSMOBP) +

 SUBJECTSDN(CN('zt01.edu.ihost.com') +

 OU('itso') +

 O ('aic') +

 C ('US')) +

 WITHLABEL ('InsuranceCompanyCICS') +

 SIGNWITH(CERTAUTH LABEL('InsuranceCompanyCA')) +

 KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN) +

 NOTAFTER(DATE(2020/12/31)) +

 SIZE(2048)

 [image:]

 Consider the following information about the command in Example 11-18 on page 322:

 •The RACDCERT GENCERT command creates the certificate and a public/private key pair. The ID specifies that the CICS region user ID CICSMOBP is to be associated with the certificate.

 •SUBJECTDSN specifies the common name (CN) as the host name zt01.edu.ihost.com and other parts of the X.509 distinguished name.

 	
 Important: The CN must match the host name that is specified in the Worklight adapter. If it does not match, Worklight rejects the CICS server certificate.

 •WITHLABEL specifies the label name to be associated with the certificate.

 •SIGNWITH specifies the certificate with a private key that is signing the certificate. The CICS server certificate is signed with the CA certificate.

 •KEYUSAGE indicates how the keys that are associated with the certificate are to be used. We specify the following items:

  –	HANDSHAKE because the certificate will be used for SSL handshakes

  –	DATAENCRYPT because the certificate will be used for encryption

  –	DOCSIGN because the certificate will be used for signing

 •NOTAFTER specifies the date after which the certificate is no longer valid.

 •SIZE specifies the size of the private key expressed in decimal bits. We specified a high strength key length of 2048.

 Example 11-19 shows the RACF commands that we use to connect the CICS certificate to the key ring and to list the certificate.

 Example 11-19 RACF command to connect CICS certificate to RACF key ring

 [image:]

 RACDCERT ID(CICSMOBP) CONNECT(ID(CICSMOBP) LABEL('InsuranceCompanyCICSMOBP') + RING(itso.CICSMOBP))

 RACDCERT ID(CICSMOBP) LIST

 [image:]

 	
 Note: If the DIGTCERT or DIGTRING classes are RACLISTed, refresh the classes to activate your changes.

 Example 11-20 on page 324 shows the output of the RACDCERT LIST command.

 Example 11-20 Listing of CICS server certificate

 [image:]

 Digital certificate information for user CICSMOBP:

 Label: InsuranceCompanyCICS

 Certificate ID: 2QjDycPi1NbC18mVoqSZgZWDhcOWlJeBlajDycPi

 Status: TRUST

 Start Date: 2014/02/18 00:00:00

 End Date: 2020/12/31 23:59:59

 Serial Number:

 >04<

 Issuer's Name:

 >CN=InsuranceCompany.OU=itso.O=aic.C=US<

 Subject's Name:

 >CN=zt01.edu.ihost.com.OU=itso.O=aic.C=US<

 Key Usage: HANDSHAKE, DATAENCRYPT, DOCSIGN

 Key Type: RSA

 Key Size: 2048

 Ring Associations:

 	Ring Owner: CICSMOBP

 	Ring:

 		>itso.CICSMOBP<

 [image:]

 System SSL manages the SSL environment; the SSL environment includes a cache that contains copies of the certificates in the designated key ring for the CICS region. To rebuild the SSL environment that is used by the CICS region, the region can be restarted or the CEMT PERFORM SSL REBUILD command can be used. When rebuilding the SSL environment is successful, the cache of certificates is rebuilt from the key ring for the CICS region, which is held in the RACF database.

 Create the Worklight Server client certificate

 Example 11-21 shows the RACF command to create the Worklight Server client certificate.

 Example 11-21 Worklight Server client certificate

 [image:]

 RACDCERT GENCERT ID(WKLTMOBP) +

 SUBJECTSDN(CN('InsuranceCompanyWorklightServer') +

 OU('itso') +

 O ('aic') +

 C ('US')) +

 WITHLABEL ('InsuranceCompanyWorklightServer') +

 SIGNWITH(CERTAUTH LABEL('InsuranceCompanyCA')) +

 KEYUSAGE(HANDSHAKE DATAENCRYPT DOCSIGN) +

 NOTAFTER(DATE(2020/12/31)) +

 SIZE(2048) +

 PASSWORD('ZM0BILE')

 [image:]

 Example 11-22 shows the output of the RACDCERT ID(WKLTMOBP) LIST command.

 Example 11-22 Listing of Worklight Server client certificate

 [image:]

 Digital certificate information for user WKLTMOBP:

 Label: InsuranceCompanyWORKLIGHT

 Certificate ID: 2Qjm0tPj1NbC18mVoqSZgZWDhcOWlJeBlajm1tnS08nHyONA

 Status: TRUST

 Start Date: 2014/02/14 00:00:00

 End Date: 2020/12/31 23:59:59

 Serial Number:

 >00<

 Issuer's Name:

 >CN=InsuranceCompanyWORKLIGHT.OU=itso.O=aic.C=US<

 Subject's Name:

 >CN=InsuranceCompanyWORKLIGHT.OU=itso.O=aic.C=US<

 Key Usage: HANDSHAKE, DATAENCRYPT, DOCSIGN

 Key Type: RSA

 Key Size: 2048

 	Private Key: YES

 	Ring Associations:

 	*** No rings associated ***

 [image:]

 The Worklight Server client certificate is owned by user ID WKLTMOBP, which is the user ID that will be used for running the CICS transactions.

 Export the certificate to a data set, and use the OPUT command to copy the exported certificate to an HFS file. The commands we use are listed in Example 11-23.

 Example 11-23 Export and copy the Worklight Server client certificate to a HFS file

 [image:]

 RACDCERT EXPORT(LABEL('InsuranceCompanyWorklightServer')) +

 ID(WKLTMOBP) +

 DSN('NIGEL.MOBPWKLT.P12') FORMAT(PKCS12DER) PASSWORD('ZM0BILEW')

 OPUT 'NIGEL.MOBPWKLT.P12' '/var/cicsts/CICSMOBP/aicWKLT.p12' +

 BINARY CONVERT(NO) [image:]

 The file format that we use in the export is PKCS12 because we need to export the private key.

 11.6.3 Enable SSL

 We enable server-side SSL between the Worklight Server and CICS and then test. These are the tasks we do:

 1.	Configure the CICS TCPIPSERVICE to use SSL

 2.	Configure Worklight Server for SSL

 3.	Test SSL between Worklight Server and CICS

 Configure the CICS TCPIPSERVICE to use SSL

 Table 11-3 shows the security attributes of the TCPIPSERVICE that we create to be able to use server-side SSL.

 Table 11-3 Security attributes in CICS TCPIPSERVICE for server-side SSL

 	
 Attribute

 	
 Description

 	
 CERTIFICATE

 	
 We specify CICSMOBP as the label of an X.509 certificate that is used as a CICS server certificate during an SSL handshake.

 	
 PORTNUMBER

 	
 We specify 4327 as the number of the port on which CICS is to listen for incoming HTTPS requests.

 	
 SSL

 	
 We specify YES so that CICS sends a server certificate.

 Further details about these TCPIPSERVICE attributes are in the CICS section of the IBM Knowledge Center:

 http://www.ibm.com/support/knowledgecenter/

 Configure Worklight Server for SSL

 To configure Worklight Server to use server-side SSL, complete these steps:

 1.	Download the CA certificate from the host.

 Transfer the CA certificate, contained in the aicCA.cer file, to the workstation where Worklight Studio is running.

 	
 Binary mode: Use binary mode for the file transfer.

 2.	Import the CA certificate into the Worklight keystore.

 Mobile applications often connect to multiple back-end systems, such as CICS. Some back-end systems require access through an HTTP adapter, and each back-end system can require a different SSL certificate for secure communication using HTTPS. These SSL certificates are stored in a keystore that is configured to the Worklight Server by using property keys.

 Worklight provides a default keystore. You can choose to use this default keystore or replace it with your own keystore.

 Example 11-24 shows the keytool command that we use to import the CA certificate into the Worklight keystore.

 Example 11-24 Import CA certificate into Worklight keystore

 [image:]

 keytool -importcert
-file "C:\Users\Administrator\Desktop\RedBookKeys\aicCa.cer"
-keystore "C:\Users\Administrator\workspace\GENAPPMobileSample\server\conf\GENAPP.jks"[image:]

 3.	Update the Worklight properties file.

 To configure the SSL certificate keystore in Worklight, we set the values of the property keys listed in Table 11-4.

 Table 11-4 JNDI environment entries for SSL certificate keystore

 	
 Property name

 	
 Value

 	
 Description

 	
 ssl.keystore.path

 	
 cics.jks

 	
 Path to the keystore relative to the server folder in the Worklight Project

 	
 ssl.keystore.type

 	
 jks

 	
 Type of keystore file

 	
 ssl.keystore.password

 	
 xxxxxxxx

 	
 Keystore password

 	
 Note: When you save the Worklight properties file, the Worklight application will be rebuilt automatically.

 4.	Edit the Worklight adapter configuration file.

 Configure the connection policy of the HTTP adapter XML file (located under GENAPPMobileSample\adapters\GENAPPInquire) to use HTTPS and to connect to port 4327, as shown in Example 11-25.

 Example 11-25 Configure Worklight adapter to use SSL

 [image:]

 <connectionPolicy xsi:type="http:HTTPConnectionPolicyType">

 	<protocol>https</protocol>

 	<domain>zt01.edu.ihost.com</domain>

 	<port>4327</port>			

 </connectionPolicy>

 [image:]

 Port 4327 is the port that is configured in the CICS TCPIPSERVICE in “Configure the CICS TCPIPSERVICE to use SSL” on page 326.

 Redeploy the Worklight adapter to activate the change. Figure 11-63 shows the GENAPPInquire adapter, configured to use HTTPS.

 [image:]

 Figure 11-63 GENAPPInquire adapter configured to use HTTP

 Test SSL between Worklight Server and CICS

 Test HTTPS connectivity in Worklight Studio by calling the getCustomerDetails procedure by using the Invoke Worklight Procedure feature (Figure 11-64).

 [image:]

 Figure 11-64 Invoking the Worklight procedure getCustomerDetails to test SSL

 11.6.4 Enable SSL mutual authentication

 Enable SSL mutual authentication between the Worklight Server and CICS and then test. These are the tasks we do:

 •Configure CICS for SSL mutual authentication

 •Configure Worklight Server for mutual authentication

 •Test SSL mutual authentication

 Configure CICS for SSL mutual authentication

 To configure CICS for SSL mutual authentication, we use these tasks:

 1.	Configure the CICS TCPIPSERVICE for SSL mutual authentication

 2.	Change the default transaction ID for the mobile request

 3.	Authorize Worklight Server to run the mobile transaction in CICS

 Configure the CICS TCPIPSERVICE for SSL mutual authentication

 To configure CICS to use SSL mutual authentication, change the TCPIPSERVICE resource definition.

 Table 11-5 shows the security attributes of the TCPIPSERVICE that we change to use SSL mutual authentication.

 Table 11-5 Security attributes in CICS TCPIPSERVICE for SSL mutual authentication

 	
 Attribute

 	
 Description

 	
 SSL

 	
 We specify CLIENTAUTH so that CICS requests a client certificate.

 	
 AUTHENTICATE

 	
 We specify AUTHENTICATE so that CICS uses the client certificate to determine the user ID under which CICS transactions will run.

 	
 Note: Authenticate(CERTIFICATE) can be used only with SSL(CLIENTAUTH), however, specifying CLIENTAUTH does not mandate the use of Authenticate(CERTIFICATE). You can have valid reasons for requiring a client certificate but not wanting to use it for authentication.

 Further details about these TCPIPSERVICE attributes are in the CICS section of the IBM Knowledge Center.

 http://www.ibm.com/support/knowledgecenter/

 Change the default transaction ID for the mobile request

 We want the GENAPP service requests to run under specific CICS transaction IDs, rather than the default transaction CPIH.

 This has several advantages:

 •We can control access to mobile-initiated transactions, for example, we can limit access to the Worklight Server that authenticates by using SSL mutual authentication.

 •We can collect CPU consumption data for mobile-initiated transactions that can be used with the Mobile Workload Pricing for z/OS.

 	
 Note: For more information about mobile pricing, see the announcement letter for the IBM Mobile Workload Pricing for z/OS:

 http://www.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/0/877/ENUSZP14-0280/index.html&lang=en&request_locale=en&ce=ISM0056&ct=swg&cmp=ibmsocial&cm=h&cr=crossbrand&ccy=us

 •We can collect statistics and monitor mobile-initiated transactions so we can asses the impact of the new mobile channel.

 •We can set Mobile Workload Pricing WLM service classes so that mobile-initiated transactions can be given an appropriate priority.

 We use the following steps to run requests for the getCustomerDetails JSON web service under the MGCD transaction ID:

 1.	Open the JCL member that was used to create the original JSON web service in Example 10-4 on page 177 and add the following extra parameter:

 TRANSACTION=MGCD

 2.	Submit this job to re-create the getCustomerDetails.wsbind file. This can be done using the z/OS Explorer perspective.

 3.	After a pipeline scan, our new Transaction parameter is now reflected in the URIMAP resource, as shown in Figure 11-65 on page 331.

 [image:]

 Figure 11-65 URIMAP definition with customized transaction ID

 4.	Make a copy of the CPIH transaction to create the MGCD transaction definition and install the resource.

 Authorize Worklight Server to run the mobile transaction in CICS

 Example 11-26 shows the RACF command that we use to permit the Worklight Server’s user ID (WKLTMOBP) to run the MGCD transaction.

 Example 11-26 RACF command to allow USERWS02 to run ORDS transaction

 [image:]

 PERMIT MGCD CLASS(TCICSTRN) ID(WKLTMOBP) ACCESS(READ)

 SETROPTS RACLIST(TCICSTRN) REFRESH

 [image:]

 Configure Worklight Server for mutual authentication

 To configure Worklight Server to use SSL mutual authentication, complete the following steps:

 1.	Download the Worklight Server client certificate from the host.

 Transfer the certificate, contained in aicWKLT.p12 file, to the workstation where Worklight Studio is running.

 	
 Binary mode: Use binary mode for the file transfer.

 2.	Import the Worklight Server client certificate into the Worklight keystore.

 Example 11-27 shows the keytool command that we use to import the certificate into the Worklight keystore.

 Example 11-27 Import Worklight Server client certificate into Worklight keystore

 [image:]

 keytool -importkeystore -srckeystore "C:\Users\Administrator\Desktop\RedBookKeys\aicWKLT.p12" -srcstoretype PKCS12 -destkeystore

 "C:\Users\Administrator\workspace\GENAPPMobileSample\server\conf\cics.jks" -deststoretype JKS

 [image:]

 	
 Passwords: To use this command, you must enter the keystore password and the password of the Worklight Server client certificate.

 Example 11-28 shows a partial listing of the Worklight Server client certificate (with alias insurancecompanyworklightserver) in the Worklight keystore.

 Example 11-28 Keytool listing of Worklight Server client certificate

 [image:]

 insurancecompanyworklightserver

 Creation date: 18 fTvr. 2014

 Entry type: PrivateKeyEntry

 Certificate chain length: 2

 Certificate[1]:

 Owner: CN=InsuranceCompanyWorklightServer, OU=itso, O=aic, C=US

 Issuer: CN=InsuranceCompany, OU=itso, O=aic, C=US

 Serial number: 5

 Valid from: Tue Feb 18 00:00:00 CET 2014 until: Thu Dec 31 23:59:59 CET 2020

 Certificate fingerprints:

 MD5: EC:20:69:A9:D5:67:E8:8F:B9:87:BF:02:78:15:D8:A4

 SHA1: 24:FE:B5:34:46:2C:C7:17:25:FC:47:D9:BB:C0:98:8F:FE:05:BB:4F

 SHA256:B6:C1:0F:65:58:84:11:42:BB:A0:68:D3:B6:CA:56:D9:45:8A:63:83:6F:

 22:7C:F7:2A:90:61:D3:A3:B5:D6:18

 Signature algorithm name: SHA256withRSA Version:3

 [image:]

 3.	Edit the Worklight adapter configuration file.

 Configure the connection policy of the HTTP adapter XML file (which is located under GENAPPMobileSample\adapters\GENAPPInquire) to an alias and password for the private key of the keystore where the Worklight Server client certificate is stored (see Example 11-29).

 Example 11-29 Configure Worklight adapter for SSL mutual authentication

 [image:]

 <connectionPolicy xsi:type="http:HTTPConnectionPolicyType">

 	<protocol>https</protocol>

 	<domain>zt01.edu.ihost.com</domain>

 	<port>4327</port>								<sslCertificateAlias>insurancecompanyworklightserver</sslCertificateAlias>			

 	<sslCertificatePassword>ZM0BILEW</sslCertificatePassword>			

 </connectionPolicy>

 [image:]

 The <sslCertificateAlias> subelement is set as follows, which is the alias of the certificate in the Worklight keystore:

 insurancecompanyworklightserver

 The <sslCertificatePassword> subelement is set to the password of the Worklight Server client certificate (created in “Create the Worklight Server client certificate” on page 324).

 	
 Passwords: The password that is specified in the ssl.keystore.password Worklight property is not the same password that is specified in <sslCertificatePassword>.

 •ssl.keystore.password is used to access the keystore itself.

 •<sslCertificatePassword> is used to access the certificate within the keystore.

 4.	Redeploy the Worklight adapter to activate the change.

 Test SSL mutual authentication

 Test SSL mutual authentication in Worklight Studio by invoking the getCustomerDetails procedure by using the Invoke Worklight Procedure feature (see Figure 11-64 on page 328).

 After invoking the getCustomerDetails procedure of the GENAPPInquire Worklight adapter (Example 11-30 on page 334). Task 1125 is running under transaction ID MGCD and user ID WKLTMOBP.

 Example 11-30 getCustomerDetails transaction running with Worklight Server user ID

 [image:]

 I TASK

 Tas(0001125) Tra(MGCD) Sus Tas Pri(001)

 Sta(U) Use(WKLTMOBP) Uow(CCBF6034CE040195) Hty(EDF)

 Tas(0001127) Tra(CEDF) Fac(0054) Sus Ter Pri(001)

 Sta(SD) Use(NIGEL) Uow(CCBF6034D3C09A14) Hty(ZCIOWAIT)

 														SYSID=MOBP APPLID=CICSMOBP

 RESPONSE: NORMAL 												TIME: 08.43.40 DATE: 02/21/14

 [image:]

 11.6.5 Optimize SSL performance

 SSL/TLS is a mature technology that has been optimized over a long period of time. There are ways of optimizing performance such as persistent TCP/IP connections and SSL session ID reuse. These optimizations mean that expensive security functions, such as SSL handshaking, can be avoided for service requests following the initial handshake.

 Consider these key factors for optimizing SSL performance:

 •Reuse of TCP/IP connections

 To minimize the number of SSL handshakes, persist the connections from the Worklight Server to the back-end systems.

 By default Worklight Server keeps the TCP/IP connection open after processing an HTTP adapter request. When connecting to CICS, the SOCKETCLOSE attribute of TCPIPSERVICE can be used to control the timeout of connections. For example, SOCKETCLOSE(30) means that CICS will close an idle socket after 30 seconds.

 •The SSL cipher suite that is used

 The ENCRYPTION SIT parameter controls the list of cipher suites that CICS uses for secure TCP/IP connections. ENCRYPTION can be set to WEAK, MEDIUM, or STRONG.

 Worklight Server uses a predefined set of cipher suites. Currently, altering the list of ciphers that Worklight Server uses for connecting to back-end systems is not possible.

 	
 Note: We found that SSL is not supported between Worklight Server and CICS if ENCRYPTION=WEAK is specified in CICS.

 If CICS and Worklight Server fail to negotiate a common cipher, CICS issues the message shown in Example 11-31 on page 335.

 Example 11-31 Failure to negotiate common cipher

 [image:]

 DFHSO0123 CICSMOBP Return code 402 received from function 'gsk_secure_socket_init' of System SSL. Reason: No common ciphers negotiated.

 [image:]

 Controlling the actual cipher that is negotiated between Workload Server and CICS is possible by using the CIPHERS attribute of the CICS TCPIPSERVICE resource definition, as shown in Example 11-32.

 Example 11-32 Specifying cipher suites for SSL

 [image:]

 CEDA ALTER GROUP(GENAWSRV) TCPIPSERVICE(GENATCP2)

 CIPHERS(05042F303132330A1613100D)

 [image:]

 CICS sockets Level 1 trace shows the results of the SSL handshake with Worklight Server (Example 11-33).

 Example 11-33 Results of the SSL handshake

 [image:]

 SO 0802 SOSE EXIT - FUNCTION(SECURE_SOC_INIT) RESPONSE(OK) GSK_RETURN_CODE(0) CERTIFICATE_USERID(WKLTMOBP) CIPHER_SELECTED(0A) CIPHER_NAME(TLS_RSA_WITH_3DES_EDE_CBC_SHA)

 [image:]

 We see that CICS selected cipher 0A, which is the first cipher that is specified in the TCPIPSERVICE. The chosen cipher, TLS_RSA_WITH_3DES_EDE_CBC_SHA, is one of the ciphers that Worklight Server supports. We also confirm that the Worklight Server has authenticated with a client certificate and that this certificate is associated with the ID WKLTMOBP user.

 •Use of hardware cryptographic devices

 SSL handshake processing uses both RSA encryption and digital signature functions. These are expensive functions when performed in software. For installations that have high volumes of SSL handshake processing, using the capabilities of the hardware can provide maximum performance and throughput, and also reduce CPU costs.

 For installations that are more concerned with the transfer of encrypted data than with SSL handshakes, moving the encrypt/decrypt processing to hardware will provide maximum performance. The encryption algorithm is determined by the SSL cipher suite. To use hardware cryptography, the chosen cipher suite algorithm must be available in hardware.

 When Worklight Server is deployed to Linux for System z, both the Workload Server and back-end z/OS subsystems, such as CICS, benefit from the cryptographic hardware.

 11.7 Conclusion

 In this chapter, we described the end-to-end security solution that we implemented for the GENAPP mobile application.

 We showed how to do these tasks:

 •Configure Worklight security policies such as LTPA-based user authentication and application authenticity checking.

 •Use DataPower as a reverse proxy for the GENAPP mobile application.

 •Secure the connection between the Worklight server and CICS.

 To deploy the solution into a highly available production environment, see Chapter 12, “Deploying the mobile app in to an HA infrastructure” on page 337.

[image:]
[image:]

Deploying the mobile app in to an HA infrastructure

 In this chapter, we describe how to implement a highly available infrastructure for the production mobile environment. We detail the configuration of the virtualized Linux and Worklight infrastructure and deployment of the mobile app.

 This chapter contains the following topics:

 •Introduction

 •Preparation

 •Installing and configuring the Worklight Server

 •Deploying the Worklight application to production

 •Validating the deployed mobile app on the infrastructure

 •Enabling System z hardware-based cryptographic acceleration

 •Workload management

 •A dynamically scalable and fault tolerant environment

 12.1 Introduction

 A highly available infrastructure is critical to our mobile application and to the general insurance company. In this chapter, we discuss the implementation details of the Linux virtual servers, Worklight Server, and supporting middleware in a highly available manner. We do not describe how to make DataPower or the z/OS infrastructure highly available, because that is discussed in depth in other publications.

 In our scenario, the GENAPP application exists on z/OS CICS, LDAP, and DB2. It is a 3270 based interface and a web-enabled application with a web services interface. We extend the application to be mobile-enabled using a Worklight Server cluster. The Worklight Server cluster will be deployed on a highly available and virtualized Linux infrastructure. That infrastructure consists of a WebSphere Network Deployment cell and DB2 for Linux, UNIX, and Windows.

 12.2 Preparation

 Before the deployment of the Worklight Server and the mobile app, several other infrastructure components were installed and configured:

 •z/VM and virtual Linux servers.

 •IBM WebSphere Application Server Network Deployment.

 •IBM HTTP servers.

 •Two WebSphere Application Servers were deployed into a single cluster, with no applications.

 •Global security is enabled for WebSphere.

 •DB2 for Linux, UNIX, and Windows was deployed on two Linux virtual servers, but is not yet configured with high availability disaster recovery (HADR) or Tivoli System Automation for Multiplatforms.

 In preparation for installation and configuration of both the application and system infrastructure, we inventoried the software that we planned to use and recorded the key parameters that we needed to configure.

 12.2.1 Software checklist

 Table 12-1 is an overview of the individual components that we used to implement the high availability infrastructure. These components are shown by deployed platform. details about the configuration are in 12.2.2, “Definition checklist” on page 339.

 Table 12-1 Summary of software used in this configuration

 	
 z/VM and Linux

 	
 z/OS

 	
 DataPower

 	
 z/VM 6.3

 	
 z/OS V1.13

 	
 xi52.6.0.1.0

 	
 RHEL 6.5

 	
 CICS Transaction Server V5.1

 	

 	
 SLES 11 SP3

 	
 z/OS IBM Tivoli Directory Server 3.23

 	

 	
 WebSphere Network Deployment 8.5.5

 	
 DB2 for z/OS V10

 	

 	
 Worklight Sever 6.1

 	

 	

 	
 DB2 for Linux, UNIX, and Windows 10.5

 	

 	

 12.2.2 Definition checklist

 The CICS definitions that we used are listed in Table 12-2.

 Table 12-2 CICS settings used in the configuration

 	
 CICS TS setting

 	
 Value

 	
 IP name

 	
 zt01.edu.ihost.com

 	
 IP address

 	
 10.3.20.1

 	
 TCP/IP port

 	
 4327

 	
 Jobname

 	
 CICSMOBP

 	
 APPLID

 	
 CICSMOBP

 	
 TCPIPSERVICE

 	
 GENATCP2

 The LDAP configuration definitions that we used are listed in Table 12-3.

 Table 12-3 z/OS LDAP configuration

 	
 LDAP parameter

 	
 Value

 	
 LDAP IP

 	
 10.3.2.12

 	
 LDAP port

 	
 4636

 	
 Back-end type

 	
 LDBM

 	
 Base repository suffix

 	
 o=aic,c=us

 	
 Administrative user suffix

 	
 ou=users,o=aic,c=us

 	
 Mobile user suffix

 	
 ou=musers,o=aic,c=us

 The DB2 definitions that we used are listed in Table 12-4.

 Table 12-4 z/OS DB2

 	
 Parameter

 	
 Value

 	
 IP

 	

 	
 Location Name

 	
 MOPDB10

 	
 Subsystem ID

 	
 DB12

 The Linux virtual server definitions that we used are listed in Table 12-5.

 Table 12-5 Linux virtual servers

 	
 Host name

 	
 IP

 	
 Function

 	
 lxProdHttp1

 	
 10.3.20.29

 	
 HTTP 1

 	
 lxProdHttp2

 	
 10.3.20.35

 	
 HTTP 2

 	
 lxProdDeployManager

 	
 10.3.20.39

 	
 WebSphere Deployment Manager

 	
 lxProdWorklight1

 	
 10.3.2030

 	
 WebSphere Appserver 1

 	
 lxProdWorklight2

 	
 10.3.20.36

 	
 WebSphere Appserver 2

 	
 lxProdDB2_1

 	
 10.3.20.31

 	
 DB2 for Linux, UNIX, and Windows 1

 	
 lxProdDB2_2

 	
 10.3.20.37

 	
 DB2 for Linux, UNIX, and Windows 2

 	
 lxWorklightAnalytics

 	
 10.3.20.70

 	
 Worklight Analytics

 The Linux WebSphere cell definitions that we used are listed in Table 12-6.

 Table 12-6 Linux WebSphere cell

 	
 Application server parameter

 	
 Value

 	
 Cell name

 	
 ProdCell

 	
 Application server node name 1

 	
 lxProdWorklightNode01

 	
 Application server node name 2

 	
 lxProdWorklightNode02

 	
 App server 1 hostname

 	
 lxProdWorklight1

 	
 App server 2 hostname

 	
 lxProdWorklight2

 	
 App server name 1

 	
 wlpmem1

 	
 App server name 2

 	
 wlpmem2

 	
 Cluster name

 	
 prodCluster1

 	
 App Server 1 HTTPS inbound Port

 	
 9444

 	
 App Server 2 HTTPS inbound port

 	
 9444

 	
 Deployment Manager Console Port

 	
 9060

 	
 Deployment Manager Profile name

 	
 Dmgr01

 	
 Deployment Manager host name

 	
 lxProdDeployManager

 	
 Deployment Manager node name

 	
 ProdCellDmgr

 	
 Administrative console URL

 	
 http://lxprodDeployManager:9060/ibm/console

 	
 Administrative Security

 	
 Enabled

 	
 Application Security

 	
 Enabled

 	
 Realm name

 	
 o=aic,c=us

 	
 Realm definition

 	
 Federated Repository

 	
 Directory Type

 	
 z/OS Integrated Security Services LDAP

 	
 LDAP primary host name

 	
 10.3.20.12

 	
 LDAP port

 	
 4636

 	
 Require SSL communications

 	
 checked

 	
 Use specific SSL alias

 	
 selected

 	
 SSL alias selected

 	
 CellDefaultSSLSettings

 The Linux DB2 HADR definitions that we used are listed in Table 12-7.

 Table 12-7 Linux DB2 HADR Primary Node

 	
 Parameter

 	
 Value

 	
 HADR_TARGET_LIST

 	
 lxProdDB2_2:40003

 	
 HADR_REMOTE_HOST

 	
 lxProdDB2_2

 	
 HADR_REMOTE_SVC

 	
 40003

 	
 HADR_LOCAL_HOST

 	
 lxProdDB2_1

 	
 HADR_LOCAL_SVC

 	
 40003

 	
 HADR_SYNCMODE

 	
 SYNC

 	
 HADR_REMOTE_INST

 	
 db2inst1

 	
 HADR_TIMEOUT

 	
 120

 	
 HADR_PEER_WINDOW

 	
 120

 	
 LOGINDEXREBUILD

 	
 ON

 	
 LOGARCHMETH1

 	
 DISK:/home/db2inst1/logarch

 	
 LOGARCHMETH2

 	
 DISK:/home/db2inst1/logarch2

 The Worklight Server definitions that we used are listed in Table 12-8.

 Table 12-8 Worklight Server

 	
 Name

 	
 Value

 	
 32bit or 64 bit

 	
 64 bit

 	
 Target Installation Directory

 	
 /opt/IBM/Worklight

 	
 Install Application Center

 	
 Yes

 	
 Database Choice

 	
 IBM DB2

 	
 Database Host Name

 	
 lxProdDB2_1

 	
 Database Port

 	
 50001

 	
 JDBC Jar Path

 	
 /opt/IBM/db2/jcc/db2jcc4.jar

 	
 Application Center JDBC user ID

 	
 db2inst1

 	
 Application Center JDBC password

 Application Center database name

 	
 PAPPCNTR

 	
 Application Center database schema

 	
 db2inst1 (defaulted)

 	
 Create new or use existing database

 	
 Create new

 	
 Database instance name

 	
 db2inst1

 	
 Application Server Installation Directory

 	
 /opt/IBM/WebSphere/AppServer

 	
 WebSphere Application Server Profile

 	
 Dmgr01

 	
 Cell Name

 	
 ProdCell

 	
 Deployment Manager Node

 	
 ProdCellDmgr

 	
 WebSphere administrative user ID

 	
 wasadmin

 	
 WebSphere administrative password

 Scope

 	
 Cell

 	
 Application Center user ID

 	
 appcenteradmin

 	
 Application Center password

 Installation mode (multiple/single)

 	
 multiple users

 	
 User group name

 	
 adm

 The DataPower definitions that we used are listed in Table 12-9.

 Table 12-9 DataPower production domain

 	
 Name

 	
 Value

 	
 Front end IP

 	
 10.7.1.9

 	
 Front end Port

 	
 9080

 	
 LTPA Realm

 	
 WASLTPARealm

 	
 LTPA password

 LTPA key file

 	
 ltpa_websphere-ltpaRealm.file

 12.2.3 Preinstallation readiness activities

 Before we install the highly available and secure Worklight Server cluster, the following infrastructure activities were put in place.

 •Linux preparation

 We created seven Linux virtual servers and installed the prerequisite RPMs for each component target for that Linux. We also enabled the cryptographic acceleration hardware on each Linux instance.

 •DB2 Enterprise Server Edition preparation

 We installed DB2 V 10.5 Enterprise Server Edition, but the HADR configuration was not yet implemented. The Worklight database must exist before we can configure the HADR configuration.

 •WebSphere Network Deployment cluster preparation

 We installed a WebSphere Application Server V8.5.5 cell with a Deployment Manager, two application servers, and two HTTP servers. We enabled global security by using the directory server on z/OS for authentication of the WebSphere administrators.

 •Directory Server preparation

 We installed the IBM Tivoli Directory Server and configured it to use TLS. These cryptographic operations were configured to be hardware-accelerated. Two distinct parts of the directory tree were populated: one for mobile user authentication and another for WebSphere administrator authentication.

 •CICS Transaction Server

 The new GENAPP application was deployed into the CICS Transaction Server environment.

 •DataPower virtual appliance

 The appliance was already installed and configured to operate for other applications in the organization. We only needed to secure additional IP addresses for the new DataPower domain to service our application. This definition and configuration of this new domain is described in Chapter 11, “Enabling end-to-end security” on page 257.

 The state of the system infrastructure before the Worklight Server installation is depicted in Figure 12-1.

 [image:]

 Figure 12-1 Infrastructure state before Worklight Server installation

 12.3 Installing and configuring the Worklight Server

 We install and configure the IBM Worklight Server and also the Worklight Application Center. We then configure IBM DB2 for high availability using HADR. These are covered in the following topics:

 •Install Worklight Server

 •Configure the Worklight Server

 •Configure the Worklight Application Center

 •Enable DB2 HADR

 •Automate DB2 HADR takeover

 12.3.1 Install Worklight Server

 The graphical installation of the IBM Worklight Server uses the IBM Installation Manager software. Before installing the Worklight Server, the repository that contains the IBM Worklight Server binaries must be defined.

 1.	Start the IBM Installation Manager by opening a shell window in a VNC or X Windows session. Because WebSphere Application Server is already installed, the IBM Installation Manager is already installed in the default location (/opt/IBM/InstallationManager). Navigate to the Eclipse subdirectory and run the launcher program.

 2.	To add the Worklight 6.1 runtime repository to the configuration, File → Preferences in the initial IBM Installation Manager window (Figure 12-2).

 [image:]

 Figure 12-2 IBM Installation Manager home page

 3.	The next panel opens (Figure 12-3). Initially, no repositories are defined. To define your Worklight 6.1 installation repository, click Add Repository, navigate to the directory that contains your repository, and select the diskTag.inf file.

 [image:]

 Figure 12-3 IBM Installation Manager without repository defined

 Figure 12-4 shows the selected location of our Worklight installation repository on an NFS mount. We did not copy the installation binaries to each system; instead, we used NFS mounts to share one copy of the installation source.

 [image:]

 Figure 12-4 IBM Installation Manager with the Worklight Server repository defined

 4.	Click OK to return to the primary IBM Installation Manager home page (Figure 12-2 on page 346) and click Install.

 5.	Available installation packages are listed (Figure 12-5). The IBM Worklight Server 6.1.0 entry is listed. Click Next to proceed with the installation.

 [image:]

 Figure 12-5 IBM Worklight Server installation package selection

 6.	Read and accept the license agreement (Figure 12-6) to proceed. Then click Next.

 [image:]

 Figure 12-6 IBM Worklight Server license agreement acceptance

 7.	Figure 12-7 shows the specification of the Installation Directory for the Worklight Server and the Architecture Selection of the installation. We are using a 64-bit JVM and application server, so we select the 64-bit for the Architecture Selection. Click Browse to select a location for the Worklight Server. We selected the default location of /opt/IBM/Worklight. Click Next.

 [image:]

 Figure 12-7 Installation architecture and location selection

 8.	Select whether to install the IBM Application Center. We select Yes (Figure 12-8) because we plan to utilize the Application Center with our application. Click Next to continue.

 [image:]

 Figure 12-8 Select whether to install the IBM Application Center

 9.	Select a database type (Figure 12-9). For our production environment, we selected IBM DB2 Enterprise Server Edition. This database was already installed and is running. The HADR configuration does not happen until after the database is created. Click Next to continue.

 [image:]

 Figure 12-9 Select Database to use with IBM Worklight Server

 10.	Figure 12-10 shows the specification of the network settings to access our primary DB2 node in the HADR pair. This is the database that will store the Worklight Server configuration and is not the mobile “application” database itself. We supply the host name and port number of our primary DB2 node. We also specify the location of the DB2 JDBC driver. Remember, the license file for the JDBC driver must be in the same directory. Click Next to continue.

 [image:]

 Figure 12-10 Provide database connection details

 11.	The Database server additional properties opens (Figure 12-11). Select the Advanced mode in order to customize the name of the database. We provide the instance user ID (user name) and password to the database, and then select a database name, PAPPCNTR. We did not specify the schema name, so the name defaults to that of the user ID we specified, which, in this case, is db2inst1. Click Next to continue.

 [image:]

 Figure 12-11 Advanced mode database configuration

 12.	Select the Database instance, db2inst1, to create the new database (Figure 12-12). When you are ready to create the database. Click Next to start the database creation process.

 [image:]

 Figure 12-12 Create the database instance

 The database creation operation is shown in Figure 12-13. The operation can take several minutes to complete. When it is complete the status will be updated in the window on the same page automatically.

 [image:]

 Figure 12-13 Database instance creation

 13.	When the database creation complete, a message indicates success, as shown in Figure 12-14. On this page, no additional information needs to be supplied. Click Next to continue to the next page.

 [image:]

 Figure 12-14 Successfully created database instance

 14.	Select an application server type (Figure 12-15). For our production environment, we select WebSphere Application Server Network Deployment. Click Next to continue.

 [image:]

 Figure 12-15 Select the application server runtime environment

 15.	The selection of the installation directory for the WebSphere Application Server Deployment Manager is shown in Figure 12-16. The profile selection drop-down list is automatically populated with the correct installation directory. The WebSphere administrative user ID and password is specified and also the scope of the installation. You can specify the Application Center administrative user ID and password.

 	
 Record the values: The user ID and password are automatically generated, so be sure to record these values during the installation.

 Click Next to continue.

 [image:]

 Figure 12-16 WebSphere Application Server configuration details

 16.	Select single or multiple users (Figure 12-17). We selected a Multiple users installation and accepted the default of adm for the operating system user group. You may choose a different group, but it must already be defined to the system. Click Next to continue.

 [image:]

 Figure 12-17 Installation mode selection

 17.	Review the two items discussed on this page (Figure 12-18):

  –	Before you can start using the product you must deploy the Worklight Console. This is accomplished by deploying a WAR file from a Worklight project that is generated from Worklight Studio.

  –	All servers must be restarted after installation.

 Click Next to proceed to the installation summary page.

 [image:]

 Figure 12-18 Configuration complete

 18.	The disk storage requirement of 1 GB is listed for the Worklight Server (Figure 12-19). Also listed is the installation location for the server. The locations that are listed are the default locations. Click Install to begin the installation.

 [image:]In

 Figure 12-19 Installation phase

 19.	The page indicates the results of a successful installation (Figure 12-20). You may click the link to review the log file from the installation process or click Finish.

 [image:]

 Figure 12-20 Successful installation of IBM Worklight Server

 12.3.2 Configure the Worklight Server

 You can configure various aspects for your Worklight Server after the installation is completes successfully.

 	
 Before you continue: Be sure to back up the Worklight database. Also, put report tables in a separate database because they can become large.

 We do not perform these post configuration tasks at this time:

 •Tune the following Worklight Server characteristics:

  –	HTTP connections

  –	Back-end connections

  –	Worklight Server Internal configuration

  –	cluster.data.synchronization.taskFrequencyInSeconds

  –	deployables.cleanup.taskFrequencyInSeconds

  –	sso.cleanup.taskFrequencyInSeconds

 •Tune the Worklight Server databases.

 We do perform these post installation configuration tasks:

 •Set the Worklight Servers JVM Size.

 •Map the HTTP Servers to the Worklight ApplicationCenterConsole WAR.

 •Set the JDBC authentication alias on the JDBC resource reference.

 Complete the following steps:

 1.	Configure the JVM heap size to at least 2 GB initially (Figure 12-21). We do this for both of our application servers in the cluster. We also enable verbose garbage collection so we can better understand the initial JVM heap usage to determine whether we need to increase it beyond 2 GB, based on workload and application needs.

 [image:]

 Figure 12-21 WebSphere Application Server JVM configuration

 Consider that the 2 GB recommendation is an initial starting point, minimum only. If your requirements grow beyond the 2 GB, monitor your application serving environment to determine the optimal size for you environment. Make any modification, click OK, and then save your changes.

 2.	The next customization task begins with panel that is displayed in Figure 12-22. As shown, the HTTP servers are not associated with the ApplicationCenterConsole module. Select the ApplicationCenterConsole check box. In the “Clusters and servers” list, select the application server cluster and the HTTP servers. Click Apply on the lower right side of that list.

 [image:]

 Figure 12-22 Application is not mapped to the HTTP servers

 3.	The results are listed (Figure 12-23). The application server cluster and HTTP servers are now associated with the ApplicationCenterConsole module. Click OK and save your changes.

 [image:]

 Figure 12-23 Application mapped to include the HTTP servers

 4.	Our final post-installation customization task is shown in Figure 12-24. Here we set the authentication alias to be used with the JDBC resource reference for the ApplicationCenterServices module. The target resource JNDI name is completed automatically. We did not alter this value. Click Modify Resource Authentication Method to change the authentication data entry, as shown. The entry contains the credentials (user ID and password) to access the remote database server.

 [image:]

 Figure 12-24 Authentication alias mapping

 This step concludes our Worklight Server configurations.

 12.3.3 Configure the Worklight Application Center

 Initially, only the appcenteradmin user is configured to the appcenteradmin role as shown in Figure 12-25. We added two more user IDs to the role by selecting the appcenteradmin check box and clicking Map Users. In your environment, select users or groups that you want to grant administrative access to the menu.

 [image:]

 Figure 12-25 User mapping to applicationcenteradmin role

 12.3.4 Enable DB2 HADR

 To enable HADR, the database must already exist on the primary node of the HADR pair. A beneficial task is to keep the necessary commands in script files. Our examples in this section show the WRKLGHT database only, but we did enable all of our databases to operate in HADR mode. The general process is as follows:

 1.	Set the HADR parameters on the primary node.

 2.	Take a backup of the database from the primary node and restore it on to the secondary node.

 3.	Set the HADR parameters on the secondary node.

 4.	Start the databases in the proper HADR role.

 5.	Verify the mode of operation.

 No virtual IP address is configured in the HADR implementation. DB2 makes use of Automatic Client Reroute (ACR) to maintain network connectivity when the primary role is switched to an alternate database server.

 Example 12-1 shows our script to configure HADR on the secondary node.

 Example 12-1 Script to configure HADR on the secondary node

 [image:]

 db2inst1@lxProdDB2_1:~> cat hadr3a.sh

 #/bin/sh

 db2 update db cfg for WRKLGHT using LOGARCHMETH1 DISK:/home/db2inst1/logarch

 db2 update db cfg for WRKLGHT using LOGARCHMETH2 DISK:/home/db2inst1/logarch2

 db2 update db cfg for WRKLGHT using LOGINDEXBUILD on

 db2 update db cfg for WRKLGHT using indexrec restart

 db2 update db cfg for WRKLGHT using hadr_timeout 120

 db2 update db cfg for WRKLGHT using hadr_peer_window 120

 db2 "update db cfg for WRKLGHT using

 HADR_TARGET_LIST lxProdDB2_2:40003

 HADR_REMOTE_HOST lxProdDB2_2

 HADR_REMOTE_SVC 40003

 HADR_LOCAL_HOST lxProdDB2_1

 HADR_LOCAL_SVC 40003

 HADR_SYNCMODE sync

 HADR_REMOTE_INST db2inst1 "

 db2 connect to WRKLGHT

 db2 force application all

 db2 backup database WRKLGHT to /home/db2inst1/backups

 [image:]

 Example 12-2 shows the output we received from running the HADR configuration script on the secondary node.

 Example 12-2 Responses from HADR script execution on the secondary node

 [image:]

 db2inst1@lxProdDB2_1:~> ./hadr3a.sh

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 vDB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 Database Connection Information

 Database server = DB2/LINUXZ64 10.5.1

 SQL authorization ID = DB2INST1

 Local database alias = WRKLGHT

 DB20000I The FORCE APPLICATION command completed successfully.

 DB21024I This command is asynchronous and may not be effective immediately.

 Backup successful. The timestamp for this backup image is : 20140213103500

 [image:]

 Example 12-3 shows our script to configure HADR on the primary node.

 Example 12-3 HADR script for the primary node

 [image:]

 [db2inst1@lxProdDB2_2 ~]$ cat ./hadr3a.sh

 #/bin/sh

 db2 restore database WRKLGHT from /home/db2inst1/backups

 db2 update db cfg for WRKLGHT using LOGINDEXBUILD on

 db2 update db cfg for WRKLGHT using indexrec restart

 db2 update db cfg for WRKLGHT using hadr_timeout 120

 db2 update db cfg for WRKLGHT using LOGARCHMETH1 DISK:/home/db2inst1/logarch

 db2 update db cfg for WRKLGHT using LOGARCHMETH2 DISK:/home/db2inst1/logarch2

 db2 update db cfg for WRKLGHT using hadr_peer_window 120

 db2 "update db cfg for WRKLGHT using

 HADR_TARGET_LIST lxProdDB2_1:40003

 HADR_REMOTE_HOST lxProdDB2_1

 HADR_REMOTE_SVC 40003

 HADR_LOCAL_HOST lxProdDB2_2

 HADR_LOCAL_SVC 40003

 HADR_SYNCMODE sync

 HADR_REMOTE_INST db2inst1 "

 db2set DB2_HADR_ROS=ON

 db2set DB2_STANDBY_ISO=UR

 db2 deactivate database WRKLGHT

 db2 start hadr on database WRKLGHT as standby

 [image:]

 Example 12-4 shows the output we received from running the HADR configuration script on the primary node.

 Example 12-4 Responses from HADR script execution on the primary node

 [image:]

 [db2inst1@lxProdDB2_2 ~]$./hadr3a.sh

 DB20000I The RESTORE DATABASE command completed successfully.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

 SQL1363W One or more of the parameters submitted for immediate modification

 were not changed dynamically. For these configuration parameters, the database

 must be shutdown and reactivated before the configuration parameter changes

 become effective.

 DB20000I The DEACTIVATE DATABASE command completed successfully.

 DB20000I The START HADR ON DATABASE command completed successfully.

 [db2inst1@lxProdDB2_2 ~]$

 [image:]

 Example 12-5 shows the script that we used to start HADR on the primary node.

 Example 12-5 Final step, starting HADR on the primary node

 [image:]

 db2inst1@lxProdDB2_1:~> db2 start hadr on database WRKLGHT as primary

 DB20000I The START HADR ON DATABASE command completed successfully.

 db2inst1@lxProdDB2_1:~>

 [image:]

 Example 12-6 shows the command and output to display the HADR configuration on the primary node.

 Example 12-6 Displaying DB2 HADR configuration on primary node

 [image:]

 db2inst1@lxProdDB2_1:~> db2pd -db WRKLGHT -hadr

 Database Member 0 -- Database WRKLGHT -- Active -- Up 0 days 00:14:27 -- Date 2014-02-13-10.49.45.341147

 HADR_ROLE = PRIMARY

 REPLAY_TYPE = PHYSICAL

 HADR_SYNCMODE = SYNC

 STANDBY_ID = 1

 LOG_STREAM_ID = 0

 HADR_STATE = PEER

 HADR_FLAGS =

 PRIMARY_MEMBER_HOST = lxProdDB2_1

 PRIMARY_INSTANCE = db2inst1

 PRIMARY_MEMBER = 0

 STANDBY_MEMBER_HOST = lxProdDB2_2

 STANDBY_INSTANCE = db2inst1

 STANDBY_MEMBER = 0

 HADR_CONNECT_STATUS = CONNECTED

 HADR_CONNECT_STATUS_TIME = 02/13/2014 10:48:01.948624 (1392284881)

 HEARTBEAT_INTERVAL(seconds) = 30

 HADR_TIMEOUT(seconds) = 120

 TIME_SINCE_LAST_RECV(seconds) = 9

 PEER_WAIT_LIMIT(seconds) = 0

 LOG_HADR_WAIT_CUR(seconds) = 0.000

 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.001188

 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.011

 LOG_HADR_WAIT_COUNT = 9

 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 16384

 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380

 PRIMARY_LOG_FILE,PAGE,POS = S0000000.LOG, 12, 78375097

 STANDBY_LOG_FILE,PAGE,POS = S0000000.LOG, 12, 78374229

 HADR_LOG_GAP(bytes) = 0

 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000000.LOG, 12, 78374229

 STANDBY_RECV_REPLAY_GAP(bytes) = 0

 PRIMARY_LOG_TIME = 02/13/2014 10:49:35.000000 (1392284975)

 STANDBY_LOG_TIME = 02/13/2014 10:49:30.000000 (1392284970)

 STANDBY_REPLAY_LOG_TIME = 02/13/2014 10:49:30.000000 (1392284970)

 STANDBY_RECV_BUF_SIZE(pages) = 3452

 STANDBY_RECV_BUF_PERCENT = 0

 STANDBY_SPOOL_LIMIT(pages) = 25600

 STANDBY_SPOOL_PERCENT = 0

 PEER_WINDOW(seconds) = 120

 PEER_WINDOW_END = 02/13/2014 10:51:32.000000 (1392285092)

 READS_ON_STANDBY_ENABLED = Y

 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

 db2inst1@lxProdDB2_1:~>

 [image:]

 Example 12-7 shows the command and output to display the HADR configuration on the secondary node.

 Example 12-7 Displaying DB2 HADR configuration on secondary node

 [image:]

 [db2inst1@lxProdDB2_2 ~]$ db2pd -db WRKLGHT -hadr

 Database Member 0 -- Database WRKLGHT -- Active Standby -- Up 0 days 00:03:32 -- Date 2014-02-13-10.50.13.454102

 HADR_ROLE = STANDBY

 REPLAY_TYPE = PHYSICAL

 HADR_SYNCMODE = SYNC

 STANDBY_ID = 0

 LOG_STREAM_ID = 0

 HADR_STATE = PEER

 HADR_FLAGS =

 PRIMARY_MEMBER_HOST = lxProdDB2_1

 PRIMARY_INSTANCE = db2inst1

 PRIMARY_MEMBER = 0

 STANDBY_MEMBER_HOST = lxProdDB2_2

 STANDBY_INSTANCE = db2inst1

 STANDBY_MEMBER = 0

 HADR_CONNECT_STATUS = CONNECTED

 HADR_CONNECT_STATUS_TIME = 02/13/2014 10:48:01.949471 (1392284881)

 HEARTBEAT_INTERVAL(seconds) = 30

 HADR_TIMEOUT(seconds) = 120

 TIME_SINCE_LAST_RECV(seconds) = 7

 PEER_WAIT_LIMIT(seconds) = 0

 LOG_HADR_WAIT_CUR(seconds) = 0.000

 LOG_HADR_WAIT_RECENT_AVG(seconds) = 0.001193

 LOG_HADR_WAIT_ACCUMULATED(seconds) = 0.012

 LOG_HADR_WAIT_COUNT = 10

 SOCK_SEND_BUF_REQUESTED,ACTUAL(bytes) = 0, 19080

 SOCK_RECV_BUF_REQUESTED,ACTUAL(bytes) = 0, 87380

 PRIMARY_LOG_FILE,PAGE,POS = S0000000.LOG, 12, 78376833

 STANDBY_LOG_FILE,PAGE,POS = S0000000.LOG, 12, 78376833

 HADR_LOG_GAP(bytes) = 0

 STANDBY_REPLAY_LOG_FILE,PAGE,POS = S0000000.LOG, 12, 78376833

 STANDBY_RECV_REPLAY_GAP(bytes) = 0

 PRIMARY_LOG_TIME = 02/13/2014 10:50:05.000000 (1392285005)

 STANDBY_LOG_TIME = 02/13/2014 10:50:05.000000 (1392285005)

 STANDBY_REPLAY_LOG_TIME = 02/13/2014 10:50:05.000000 (1392285005)

 STANDBY_RECV_BUF_SIZE(pages) = 3452

 STANDBY_RECV_BUF_PERCENT = 0

 STANDBY_SPOOL_LIMIT(pages) = 25600

 STANDBY_SPOOL_PERCENT = 0

 PEER_WINDOW(seconds) = 120

 PEER_WINDOW_END = 02/13/2014 10:52:02.000000 (1392285122)

 READS_ON_STANDBY_ENABLED = Y

 STANDBY_REPLAY_ONLY_WINDOW_ACTIVE = N

 [db2inst1@lxProdDB2_2 ~]$

 [image:]

 Example 12-8 shows the commands and output to test the HADR configuration by using the TAKEOVER HADR command.

 Example 12-8 Testing a HADR takeover and verification of HADR_ROLE

 [image:]

 [db2inst1@lxProdDB2_2 ~]$ db2 TAKEOVER HADR ON DB WRKLGHT

 DB20000I The TAKEOVER HADR ON DATABASE command completed successfully.

 [db2inst1@lxProdDB2_2 ~]$ db2pd -db WRKLGHT -hadr

 Database Member 0 -- Database WRKLGHT -- Active -- Up 0 days 00:04:39 -- Date 2014-02-13-10.51.20.803723

 HADR_ROLE = PRIMARY

 REPLAY_TYPE = PHYSICAL

 HADR_SYNCMODE = SYNC

 STANDBY_ID = 1

 LOG_STREAM_ID = 0

 HADR_STATE = PEER

 HADR_FLAGS =

 PRIMARY_MEMBER_HOST = lxProdDB2_2

 PRIMARY_INSTANCE = db2inst1

 PRIMARY_MEMBER = 0

 STANDBY_MEMBER_HOST = lxProdDB2_1

 STANDBY_INSTANCE = db2inst1

 STANDBY_MEMBER = 0

 HADR_CONNECT_STATUS = CONNECTED

 [image:]

 Example 12-9 shows the command and output to display the HADR status of the primary node after using the TAKEOVER HADR command. You can see that the primary node is now demoted to a STANDBY role.

 Example 12-9 Verification of primary node HADR_ROLE

 [image:]

 db2inst1@lxProdDB2_1:~> db2pd -db WRKLGHT -hadr

 Database Member 0 -- Database WRKLGHT -- Standby -- Up 0 days 00:16:51 -- Date 2014-02-13-10.52.09.438172

 HADR_ROLE = STANDBY

 REPLAY_TYPE = PHYSICAL

 HADR_SYNCMODE = SYNC

 STANDBY_ID = 0

 LOG_STREAM_ID = 0

 HADR_STATE = PEER

 HADR_FLAGS =

 PRIMARY_MEMBER_HOST = lxProdDB2_2

 PRIMARY_INSTANCE = db2inst1

 PRIMARY_MEMBER = 0

 STANDBY_MEMBER_HOST = lxProdDB2_1

 STANDBY_INSTANCE = db2inst1

 STANDBY_MEMBER = 0

 HADR_CONNECT_STATUS = CONNECTED

 [image:]

 This concludes the basic setup and test of HADR for our database.

 12.3.5 Automate DB2 HADR takeover

 We used the Tivoli System Automation for Multiplatforms application, which is embedded in the DB2 for Linux, UNIX, and Windows installation, to handle our takeover automation. This configuration was performed with the db2haicu command utility in a two-step process:

 1.	The first step is done on the secondary node.

 2.	The second step is done on the primary node.

 Example 12-10 shows the command-line process steps to configure the automatic takeover on the secondary node.

 Example 12-10 Step 1 db2haicu command responses from secondary node

 [image:]

 [db2inst1@lxProdDB2_2 sqllib]$ db2haicu

 Welcome to the DB2 High Availability Instance Configuration Utility (db2haicu).

 You can find detailed diagnostic information in the DB2 server diagnostic log file called db2diag.log. Also, you can use the utility called db2pd to query the status of the cluster domains you create.

 For more information about configuring your clustered environment using db2haicu, see the topic called 'DB2 High Availability Instance Configuration Utility (db2haicu)' in the DB2 Information Center.

 db2haicu determined the current DB2 database manager instance is 'db2inst1'. The cluster configuration that follows will apply to this instance.

 db2haicu is collecting information on your current setup. This step may take some time as db2haicu will need to activate all databases for the instance to discover all paths ...

 When you use db2haicu to configure your clustered environment, you create cluster domains. For more information, see the topic 'Creating a cluster domain with db2haicu' in the DB2 Information Center. db2haicu is searching the current machine for an existing active cluster domain ...

 db2haicu did not find a cluster domain on this machine. db2haicu will now query the system for information about cluster nodes to create a new cluster domain ...

 db2haicu did not find a cluster domain on this machine. To continue configuring your clustered environment for high availability, you must create a cluster domain; otherwise, db2haicu will exit.

 Create a domain and continue? [1]

 1. Yes

 2. No

 1

 Create a unique name for the new domain:

 db2hadr

 Nodes must now be added to the new domain.

 How many cluster nodes will the domain 'db2hadr' contain?

 2

 Enter the host name of a machine to add to the domain:

 lxProdDB2_1

 Enter the host name of a machine to add to the domain:

 lxProdDB2_2

 db2haicu can now create a new domain containing the 2 machines that you specified. If you choose not to create a domain now, db2haicu will exit.

 Create the domain now? [1]

 1. Yes

 2. No

 1

 Creating domain 'db2hadr' in the cluster ...

 Creating domain 'db2hadr' in the cluster was successful.

 You can now configure a quorum device for the domain. For more information, see the topic "Quorum devices" in the DB2 Information Center. If you do not configure a quorum device for the domain, then a human operator will have to manually intervene if subsets of machines in the cluster lose connectivity.

 Configure a quorum device for the domain called 'db2hadr'? [1]

 1. Yes

 2. No

 1

 The following is a list of supported quorum device types:

 1. Network Quorum

 Enter the number corresponding to the quorum device type to be used: [1]

 Specify the network address of the quorum device:

 10.3.20.254

 Configuring quorum device for domain 'db2hadr' ...

 Configuring quorum device for domain 'db2hadr' was successful.

 The cluster manager found the following total number of network interface cards on the machines in the cluster domain: '8'. You can add a network to your cluster domain using the db2haicu utility.

 Create networks for these network interface cards? [1]

 1. Yes

 2. No

 2

 Retrieving high availability configuration parameter for instance 'db2inst1' ...

 The cluster manager name configuration parameter (high availability configuration parameter) is not set. For more information, see the topic "cluster_mgr - Cluster manager name configuration parameter" in the DB2 Information Center. Do you want to set the high availability configuration parameter ?

 The following are valid settings for the high availability configuration parameter:

 1.TSA

 2.Vendor

 Enter a value for the high availability configuration parameter: [1]

 Setting a high availability configuration parameter for instance 'db2inst1' to 'TSA'.

 Adding DB2 database partition '0' to the cluster ...

 Adding DB2 database partition '0' to the cluster was successful.

 Do you want to validate and automate HADR failover for the HADR database 'PAPPCNTR'? [1]

 1. Yes

 2. No

 1

 Adding HADR database 'PAPPCNTR' to the domain ...

 HADR database 'PAPPCNTR' has been determined to be valid for high availability. However, the database cannot be added to the cluster from this node because db2haicu detected this node is the standby for HADR database 'PAPPCNTR'. Run db2haicu on the primary for HADR database 'PAPPCNTR' to configure the database for automated failover.

 Do you want to validate and automate HADR failover for the HADR database 'WRKLGHT'? [1]

 1. Yes

 2. No

 1

 Adding HADR database 'WRKLGHT' to the domain ...

 HADR database 'WRKLGHT' has been determined to be valid for high availability. However, the database cannot be added to the cluster from this node because db2haicu detected this node is the standby for HADR database 'WRKLGHT'. Run db2haicu on the primary for HADR database 'WRKLGHT' to configure the database for automated failover.

 Do you want to validate and automate HADR failover for the HADR database 'SAMPLE'? [1]

 1. Yes

 2. No

 1

 Adding HADR database 'SAMPLE' to the domain ...

 HADR database 'SAMPLE' has been determined to be valid for high availability. However, the database cannot be added to the cluster from this node because db2haicu detected this node is the standby for HADR database 'SAMPLE'. Run db2haicu on the primary for HADR database 'SAMPLE' to configure the database for automated failover.

 All cluster configurations have been completed successfully. db2haicu exiting ...

 [db2inst1@lxProdDB2_2 sqllib]$

 [image:]

 Example 12-11 shows the command-line process steps to configure the automatic takeover on the primary node.

 Example 12-11 Step 2 db2haicu command responses from primary node

 [image:]

 db2inst1@lxProdDB2_1:~> db2haicu

 Welcome to the DB2 High Availability Instance Configuration Utility (db2haicu).

 You can find detailed diagnostic information in the DB2 server diagnostic log file called db2diag.log. Also, you can use the utility called db2pd to query the status of the cluster domains you create.

 For more information about configuring your clustered environment using db2haicu, see the topic called 'DB2 High Availability Instance Configuration Utility (db2haicu)' in the DB2 Information Center.

 db2haicu determined the current DB2 database manager instance is 'db2inst1'. The cluster configuration that follows will apply to this instance.

 db2haicu is collecting information on your current setup. This step may take some time as db2haicu will need to activate all databases for the instance to discover all paths ...

 When you use db2haicu to configure your clustered environment, you create cluster domains. For more information, see the topic 'Creating a cluster domain with db2haicu' in the DB2 Information Center. db2haicu is searching the current machine for an existing active cluster domain ...

 db2haicu found a cluster domain called 'db2hadr' on this machine. The cluster configuration that follows will apply to this domain.

 Retrieving high availability configuration parameter for instance 'db2inst1' ...

 The cluster manager name configuration parameter (high availability configuration parameter) is not set. For more information, see the topic "cluster_mgr - Cluster manager name configuration parameter" in the DB2 Information Center. Do you want to set the high availability configuration parameter?

 The following are valid settings for the high availability configuration parameter:

 1.TSA

 2.Vendor

 Enter a value for the high availability configuration parameter: [1]

 1

 Setting a high availability configuration parameter for instance 'db2inst1' to 'TSA'.

 Adding DB2 database partition '0' to the cluster ...

 Adding DB2 database partition '0' to the cluster was successful.

 Do you want to validate and automate HADR failover for the HADR database 'PAPPCNTR'? [1]

 1. Yes

 2. No

 1

 Adding HADR database 'PAPPCNTR' to the domain ...

 Adding HADR database 'PAPPCNTR' to the domain was successful.

 Do you want to validate and automate HADR failover for the HADR database 'WRKLGHT'? [1]

 1. Yes

 2. No

 1

 Adding HADR database 'WRKLGHT' to the domain ...

 Adding HADR database 'WRKLGHT' to the domain was successful.

 Do you want to validate and automate HADR failover for the HADR database 'SAMPLE'? [1]

 1. Yes

 2. No

 1

 Adding HADR database 'SAMPLE' to the domain ...

 Adding HADR database 'SAMPLE' to the domain was successful.

 All cluster configurations have been completed successfully. db2haicu exiting ...

 db2inst1@lxProdDB2_1:~>

 [image:]

 Example 12-12 shows the output for our completed HADR configuration status.

 Example 12-12 Display status after Tivoli System for Multiplatforms enabled

 [image:]

 db2inst1@lxProdDB2_1:~> db2pd -ha

 DB2 HA Status

 Instance Information:

 Instance Name = db2inst1

 Number Of Domains = 2

 Number Of RGs for instance = 4

 Domain Information:

 Domain Name = db2hadr

 Cluster Version = 3.1.4.4

 Cluster State = Online

 Number of nodes = 2

 Node Information:

 Node Name State

 --------------------- -------------------

 lxProdDB2_2 Online

 lxProdDB2_1 Online

 Resource Group Information:

 Resource Group Name = db2_db2inst1_db2inst1_SAMPLE-rg

 Resource Group LockState = Unlocked

 Resource Group OpState = Online

 Resource Group Nominal OpState = Online

 Number of Group Resources = 1

 Number of Allowed Nodes = 2

 Allowed Nodes

 lxProdDB2_1

 lxProdDB2_2

 Member Resource Information:

 Resource Name = db2_db2inst1_db2inst1_SAMPLE-rs

 Resource State = Online

 Resource Type = HADR

 HADR Primary Instance = db2inst1

 HADR Secondary Instance = db2inst1

 HADR DB Name = SAMPLE

 HADR Primary Node = lxProdDB2_1

 HADR Secondary Node = lxProdDB2_2

 Resource Group Name = db2_db2inst1_db2inst1_WRKLGHT-rg

 Resource Group LockState = Unlocked

 Resource Group OpState = Online

 Resource Group Nominal OpState = Online

 Number of Group Resources = 1

 Number of Allowed Nodes = 2

 Allowed Nodes

 lxProdDB2_1

 lxProdDB2_2

 Member Resource Information:

 Resource Name = db2_db2inst1_db2inst1_WRKLGHT-rs

 Resource State = Online

 Resource Type = HADR

 HADR Primary Instance = db2inst1

 HADR Secondary Instance = db2inst1

 HADR DB Name = WRKLGHT

 HADR Primary Node = lxProdDB2_1

 HADR Secondary Node = lxProdDB2_2

 Resource Group Name = db2_db2inst1_db2inst1_PAPPCNTR-rg

 Resource Group LockState = Unlocked

 Resource Group OpState = Online

 Resource Group Nominal OpState = Online

 Number of Group Resources = 1

 Number of Allowed Nodes = 2

 Allowed Nodes

 lxProdDB2_1

 lxProdDB2_2

 Member Resource Information:

 Resource Name = db2_db2inst1_db2inst1_PAPPCNTR-rs

 Resource State = Online

 Resource Type = HADR

 HADR Primary Instance = db2inst1

 HADR Secondary Instance = db2inst1

 HADR DB Name = PAPPCNTR

 HADR Primary Node = lxProdDB2_1

 HADR Secondary Node = lxProdDB2_2

 Resource Group Name = db2_db2inst1_lxProdDB2_1_0-rg

 Resource Group LockState = Unlocked

 Resource Group OpState = Online

 Resource Group Nominal OpState = Online

 Number of Group Resources = 1

 Number of Allowed Nodes = 1

 Allowed Nodes

 lxProdDB2_1

 Member Resource Information:

 Resource Name = db2_db2inst1_lxProdDB2_1_0-rs

 Resource State = Online

 Resource Type = DB2 Member

 DB2 Member Number = 0

 Number of Allowed Nodes = 1

 Allowed Nodes

 lxProdDB2_1

 Network Information:

 No network information found.

 Quorum Information:

 Quorum Name Quorum State

 ------------------------------------ --------------------

 db2_Quorum_Network_10_3_20_254:16_50_51 Online

 Success Offline

 Fail Offline

 Operator Offline

 db2inst1@lxProdDB2_1:~>

 [image:]

 	
 Critical aspects: We encountered two critical aspects when we ran db2haicu:

 •The host name responses must match it respect to all cluster members that return short host names or all return long host names.

 •All databases in the instance must either be active or be able to be activated by the db2haicu command script.

 When a DB2 HADR pair is managed by Tivoli System Automation for Multiplatforms, the command to switch which database is the primary is the same as when it is not managed by Tivoli System Automation for Multiplatforms. You must issue the db2 TAKEOVER HADR ON DB WRKLGHT command from the node you want to become the primary server for the database.

 This concludes the DB2 HADR configuration.

 12.4 Deploying the Worklight application to production

 The general process we use to deploy the application to production consists of these steps:

 •Import and customize the GENAPP project for production

 •Deploy the GENAPP WAR, app, and adapters

 •Configure CICS

 12.4.1 Import and customize the GENAPP project for production

 Before we can deploy the mobile app to the production server infrastructure, we must customize several configuration parameters in the Worklight project. At the Worklight adapter level, we set a connection-limiting policy so that an excessive number of connections cannot be obtained.

 For this, we customize the maxConcurrentConnectionsPerNode parameter. This is a mandatory parameter and the default is the maximum number of concurrent requests that can be performed for each server node of the back-end application. When deploying adapters to a cluster, we set the value of this attribute to the maximum required load, divided by the number of cluster members.

 Figure 12-28 on page 388 shows that we set the value to 200. This will allow for 400 connections in our two-member cluster from this one adapter. Other adapters are managed separately.

 Complete the following steps:

 1.	In Worklight Studio, select File → Import. In the Import dialog window (Figure 12-26), select Existing Projects into Workspace and click Next. In the next dialog, select the ZIP file that the application developer supplied to and that contains the project archive to import.

 [image:]

 Figure 12-26 Import the mobile app project archive

 2.	After the project is imported, expand the genapp project, the adapters folder, and the ClaimNotification and GENAPPInquire folders, as listed in the Project Explorer frame (Figure 12-27). Also open the server and conf folders, because you will make changes there also.

 [image:]

 Figure 12-27 View the contents in the Project Explorer

 3.	As Figure 12-28 shows, navigate to the Connectivity entry for the GENAPPInquire adapter. Increase the Max concurrent connections per node from 10 to 200. Specifying a value of 200 in this example is only an arbitrary number for illustrative purposes and not a recommendation.

 [image:]

 Figure 12-28 Adapter load constraints

 4.	Select Connection Policy (Figure 12-29). Set the Protocol, Domain, and Port fields to the CICS region host name and port number. We specify https in the Protocol field because we previously enabled SSL/TLS communications in the CICS region. At this time we also set the SSL certificate password.

 [image:]

 Figure 12-29 Adapter Connection Policy

 5.	At the Worklight adapter procedure level, two more parameters can be set at a level appropriate for your production workload:

  –	The requestTimeoutInSeconds parameter

 This is an optional parameter that specifies the timeout in seconds for waiting until receiving a response from the back end, including the time for opening the connection. The default is 30 seconds. However, because our adapter requests normally run in a subsecond duration, we can reduce this value to a smaller number. This helps to ensure the integrity of the infrastructure should an excessive surge in requests occur.

  –	An audit parameter

 Based on business requirements, an audit function can also be enabled. The audit parameter defines whether calls to the procedure are logged in the audit log. The log file has the following name:

 Worklight Project Name/server/log/audit/audit.log

 It is configured at the adapter procedure level (not the entire adapter), so you have a granular level of control over which procedures to audit. Figure 12-30 shows that we enable the audit function for the getCustomerPolices procedure and set the timeout to 5 seconds. (These are arbitrary values as examples and not recommendations for any specific environment).

 [image:]

 Figure 12-30 Adapter procedure customization

 6.	Update the console username and password in the worklight.properties file. Figure 12-31 shows that we set the console.username and console.password. These are specific to one mobile application, and not all mobile applications.

 [image:]

 Figure 12-31 Configure worklight.properties console customization

 7.	The final change to the worklight.properties file is shown in Figure 12-32. We modify the SSL keystore properties. The specified location is the file system location on the Worklight Server runtime Linux server where we saved a copy of the SSL keystore.

 [image:]

 Figure 12-32 Configure worklight.properties keystore customization

 8.	Notice the contents in Figure 12-33. The login.html and loginError.html modules will be injected later by using an Ant script. There is no way to include them in the WAR at this point in the process. Also the cookie domain is set to our domain name.

 [image:]

 Figure 12-33 Configure authenticationConfig.xml

 9.	Deploy both adapters in the project, one at a time. Right-click on an adapter, and select Run As → Deploy Worklight Adapter (Figure 12-34).

 [image:]

 Figure 12-34 Deploy Worklight Adapter

 10.	Configure the Worklight build and deploy target information. Begin by selecting the apps folder and the GENAPP subfolder in the Project Explorer frame. Right-click the GENAPP folder and select Run As → Build Settings and Deploy Target (Figure 12-35).

 [image:]

 Figure 12-35 Deploy target

 11.	Select the Build the application to work with a different Worklight server check box (Figure 12-36). Specify the URL to access the mobile app and the context path. The URL is the IP address or name that mobile devices use to access the Worklight Server.

 [image:]

 Figure 12-36 Configure deploy target

 12.	After the deploy target is set, right-click the GENAPP application again. From the pop-up menu, select Run As → Build All Environments (Figure 12-37).

 [image:]

 Figure 12-37 Build All Environments

 13.	When the build is completed, return to Project Explorer and expand the bin folder (Figure 12-38). This directory now contains the files that were generated by the build, as our results show.

 [image:]

 Figure 12-38 Artifacts created by the build operation

 We transfer these files to the Deployment Manager server in our WebSphere cell (as described in 12.4.2, “Deploy the GENAPP WAR, app, and adapters” on page 398).

 12.4.2 Deploy the GENAPP WAR, app, and adapters

 After the mobile app project customization for our production environment is completed, we deploy it as follows:

 1.	Deploy the .war file.

 2.	Deploy the .wlapp file or files.

 3.	Deploy the adapters.

 To do these tasks, we use the steps in the following topics:

 •Deploy the GENAPP WAR file using Ant scripts

 •After the GENAPP WAR file has been installed

 •Deploy the GENAPP mobile application through Ant

 •Deploy the GENAPP mobile app through Worklight Console

 •Deploy the GENAPP adapters using Ant

 •Deploy the GENAPP adapters using the Worklight Console

 Deploy the GENAPP WAR file using Ant scripts

 Sample Ant XML scripts are provided with Worklight in the following directory:

 <WORKLIGHT HOME>/ WorklightServer/configuration-samples

 Because we are running a clustered WebSphere ND environment with DB2 we select the configure-wasnd-cluster-db2.xml file and copy it to a user directory. Several fields in the file must be customized and are specific to the deployment environment and application.

 Example 12-13 shows the configuration changes (in bold) made to the configure-wasnd-cluster-db2.xml file to support the production infrastructure and GENAPP mobile application.

 Example 12-13 Customized configure-wasnd-cluster-db2.xml

 [image:]

 <?xml version="1.0" encoding="UTF-8"?>

 <!--

 Licensed Materials - Property of IBM

 5725-I43 (C) Copyright IBM Corp. 2011, 2013. All Rights Reserved.

 US Government Users Restricted Rights - Use, duplication or

 disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 -->

 <!-- Worklight: sample configuration of a WebSphere Application Server Network Deployment

 cluster with DB2 databases. -->

 <project basedir="." default="help">

 <!-- PROPERTIES, TO BE ADJUSTED BEFORE USE. -->

 <!-- The war file generated by IBM Worklight Studio for the project. -->

 <property name="worklight.project.war.file" value="/root/deploy genapp.war"/>

 <!-- Installation directory of IBM Worklight Server. -->

 <property name="worklight.server.install.dir" value="/opt/IBM/Worklight"/>

 <!-- The server on which to create or assume the DB2 databases. -->

 <property name="db2.databases.server" value="lxProdDB2_1"/>

 <!-- The user name used to access the DB2 databases. -->

 <property name="db2.databases.username" value="db2inst1"/>

 <!-- The password used to access the DB2 databases. -->

 <property name="db2.databases.password" value="password"/>

 <!-- The directory that contains the DB2 JDBC driver. -->

 <property name="db2.driver.dir" value="/opt/IBM/db2/jcc"/>

 <!-- The credentials of a DB2 administrator, used to create the DB2 databases. -->

 <property name="db2.databases.admin.username" value="db2inst1"/>

 <property name="db2.databases.admin.password" value="password"/>

 <!-- Installation directory of IBM WebSphere Application Server Network Deployment. -->

 <property name="was.nd.install.dir" value="/opt/IBM/WebSphere/AppServer"/>

 <!-- The name of the WAS ND deployment manager profile. -->

 <property name="was.nd.profile" value="Dmgr01"/>

 <!-- The name of the WAS ND cluster. -->

 <property name="was.nd.cluster.name" value="prodCluster1"/>

 <!-- The credentials of an administrator of the WAS deployment manager. -->

 <property name="was.nd.admin.username" value="wasadmin"/>

 <property name="was.nd.admin.password" value="topsecret"/>

 <!-- The context root to use for the deployed war file in the application

 server. By definition, this is the common prefix of the path of URLs that

 are directed to this war file, in particular of the path of the Worklight

 console URL. -->

 <property name="contextroot" value="/genapp"/>

 <!-- An identifier that distinguishes this deployed war file from different

 deployed Worklight project war files in the same WAS ND cell. -->

 <property name="id" value=""/>

 <!-- The directory in which to place shortcuts. -->

 <property name="shortcuts.dir" value="/tmp/shortcuts"/>

 <!-- The directory in which to place BIRT reports. -->

 <property name="reports.dir" value="/tmp/reports"/>

 <!-- END OF PROPERTIES. -->

 <taskdef resource="com/worklight/ant/defaults.properties">

 <classpath>

 <fileset dir="${worklight.server.install.dir}/WorklightServer">

 <include name="worklight-ant-deployer.jar"/>

 </fileset>

 </classpath>

 </taskdef>

 <target name="databases">

 <configuredatabase kind="Worklight">

 <db2 database="WRKLGHT" server="${db2.databases.server}" port="50001" user="${db2.databases.username}" password="${db2.databases.password}">

 <dba user="${db2.databases.admin.username}" password="${db2.databases.admin.password}"/>

 </db2>

 <driverclasspath>

 <fileset dir="${db2.driver.dir}">

 <include name="db2jcc4.jar"/>

 <include name="db2jcc_license_*.jar"/>

 </fileset>

 </driverclasspath>

 </configuredatabase>

 <configuredatabase kind="WorklightReports">

 <db2 database="WLREPORT" server="${db2.databases.server}" port="50001" user="${db2.databases.username}" password="${db2.databases.password}">

 <dba user="${db2.databases.admin.username}" password="${db2.databases.admin.password}"/>

 </db2>

 <driverclasspath>

 <fileset dir="${db2.driver.dir}">

 <include name="db2jcc4.jar"/>

 <include name="db2jcc_license_*.jar"/>

 </fileset>

 </driverclasspath>

 </configuredatabase>

 </target>

 <target name="install">

 <configureapplicationserver contextroot="${contextroot}" id="${id}"

 shortcutsDir="${shortcuts.dir}">

 <project warfile="${worklight.project.war.file}"/>

 <property name="serverSessionTimeout" value="10"/>

 <applicationserver>

 <websphereapplicationserver installdir="${was.nd.install.dir}"

 profile="${was.nd.profile}"

 user="${was.nd.admin.username}" password="${was.nd.admin.password}">

 <cluster name="${was.nd.cluster.name}"/>

 </websphereapplicationserver>

 </applicationserver>

 <reports todir="${reports.dir}"/>

 <database kind="Worklight">

 <db2 database="WRKLGHT" server="${db2.databases.server}" port="50001" user="${db2.databases.username}" password="${db2.databases.password}"/>

 <driverclasspath>

 <fileset dir="${db2.driver.dir}">

 <include name="db2jcc4.jar"/>

 <include name="db2jcc_license_*.jar"/>

 </fileset>

 </driverclasspath>

 </database>

 <database kind="WorklightReports">

 <db2 database="WLREPORT" server="${db2.databases.server}" port="50001" user="${db2.databases.username}" password="${db2.databases.password}"/>

 <driverclasspath>

 <fileset dir="${db2.driver.dir}">

 <include name="db2jcc4.jar"/>

 <include name="db2jcc_license_*.jar"/>

 </fileset>

 </driverclasspath>

 </database>

 </configureapplicationserver>

 </target>

 <target name="minimal-update">

 <updateapplicationserver contextroot="${contextroot}" id="${id}"

 shortcutsDir="${shortcuts.dir}">

 <project warfile="${worklight.project.war.file}"/>

 <property name="serverSessionTimeout" value="10"/>

 <applicationserver>

 <websphereapplicationserver installdir="${was.nd.install.dir}"

 profile="${was.nd.profile}"

 user="${was.nd.admin.username}" password="${was.nd.admin.password}">

 <cluster name="${was.nd.cluster.name}"/>

 </websphereapplicationserver>

 </applicationserver>

 <reports todir="${reports.dir}"/>

 <database kind="Worklight">

 <db2 database="WRKLGHT" server="${db2.databases.server}" user="${db2.databases.username}" password="${db2.databases.password}"/>

 <driverclasspath>

 <fileset dir="${db2.driver.dir}">

 <include name="db2jcc4.jar"/>

 <include name="db2jcc_license_*.jar"/>

 </fileset>

 </driverclasspath>

 </database>

 <database kind="WorklightReports">

 <db2 database="WLREPORT" server="${db2.databases.server}" user="${db2.databases.username}" password="${db2.databases.password}"/>

 <driverclasspath>

 <fileset dir="${db2.driver.dir}">

 <include name="db2jcc4.jar"/>

 <include name="db2jcc_license_*.jar"/>

 </fileset>

 </driverclasspath>

 </database>

 </updateapplicationserver>

 </target>

 <target name="uninstall">

 <unconfigureapplicationserver contextroot="${contextroot}" id="${id}"

 shortcutsDir="${shortcuts.dir}">

 <project warfile="${worklight.project.war.file}"/>

 <property name="serverSessionTimeout" value="10"/>

 <applicationserver>

 <websphereapplicationserver installdir="${was.nd.install.dir}"

 profile="${was.nd.profile}"

 user="${was.nd.admin.username}" password="${was.nd.admin.password}">

 <cluster name="${was.nd.cluster.name}"/>

 </websphereapplicationserver>

 </applicationserver>

 <reports todir="${reports.dir}"/>

 <database kind="Worklight">

 <db2 database="WRKLGHT" server="${db2.databases.server}" user="${db2.databases.username}" password="${db2.databases.password}"/>

 <driverclasspath>

 <fileset dir="${db2.driver.dir}">

 <include name="db2jcc4.jar"/>

 <include name="db2jcc_license_*.jar"/>

 </fileset>

 </driverclasspath>

 </database>

 <database kind="WorklightReports">

 <db2 database="WLREPORT" server="${db2.databases.server}" user="${db2.databases.username}" password="${db2.databases.password}"/>

 <driverclasspath>

 <fileset dir="${db2.driver.dir}">

 <include name="db2jcc4.jar"/>

 <include name="db2jcc_license_*.jar"/>

 </fileset>

 </driverclasspath>

 </database>

 </unconfigureapplicationserver>

 </target>

 <target name="help">

 <basename property="ant.file.basename" file="${ant.file}"/>

 <echo message="This ant project file can be used in three ways:"/>

 <echo/>

 <echo message="ant -f ${ant.file.basename} databases"/>

 <echo message="Configures the databases for use with a Worklight project."/>

 <echo/>

 <echo message="ant -f ${ant.file.basename} install"/>

 <echo message="Installs a Worklight project in the application server."/>

 <echo/>

 <echo message="ant -f ${ant.file.basename} minimal-update"/>

 <echo message="Updates an installed Worklight project's WAR file and runtime library in the application server."/>

 <echo/>

 <echo message="ant -f ${ant.file.basename} uninstall"/>

 <echo message="Uninstalls a Worklight project from the application server."/>

 <echo/>

 </target>

 </project>

 [root@lxProdDeployManager ~]#

 [image:]

 Two steps are involved in deploying the IBM Worklight Console WAR file:

 1.	Create and configure the databases.

 2.	Deploy the WAR file.

 Figure 12-39 shows export of the PATH variable for the Ant binaries and the invocation of ant with the customized XML file, specifying the databases task of the XML file.

 	
 # export PATH=/opt/IBM/Worklight/tools/apache-ant-1.8.4/bin:$PATH

 # source /opt/IBM/wasprofiles/bin/setupCmdLine.sh

 # ant -f configure-wasnd-cluster-db2.xml databases

 Figure 12-39 Setup and execution of Ant script for the server cluster database creation

 Example 12-14 shows a potential failure that can occur if your DB2 database uses a port other than 50000 and the port keyword and value is not coded in the ant XML file. By default, the port keyword does not exist in the sample XML file.

 Example 12-14 Potential configuration problem with database port other than 50000

 [image:]

 BUILD FAILED

 /root/configure-wasnd-cluster-db2.xml:74: Element <db2> inside <configureDatabase kind="Worklight">: attribute combination server, port is invalid: No database server at lxProdDB2_1:50000

 [image:]

 Example 14-3 shows a potential failure message if you use double quotation marks in the XML file. To resolve this problem, copy and paste existing quotation marks from within the sample file.

 Example 12-15 Potential data entry issue in updating the Ant scripts

 [image:]

 BUILD FAILED

 /root/configure-wasnd-cluster-db2.xml:75: Open quote is expected for attribute "port" associated with an element type "db2".

 [image:]

 Example 12-16 shows the ant installation of the WAR file and the output for the installation process. The message at the end of the output indicates that the WebSphere Application Servers must be restarted, according to the Worklight product messages.

 Example 12-16 Ant based Worklight Server WAR installation

 [image:]

 # ant -f configure-wasnd-cluster-db2.xml install

 .

 .

 .

 [chmod] Applied chmod to 1 file and 0 directories.

 [configureapplicationserver]

 [configureapplicationserver] cleanup:

 [configureapplicationserver]

 [configureapplicationserver] install-warning:

 [configureapplicationserver] [echo]

 [configureapplicationserver] [echo] *** INFO: ***

 [configureapplicationserver] [echo] The Worklight web application has been installed on some WAS ND servers,

 [configureapplicationserver] [echo] but it will not work until these servers have been restarted.

 [configureapplicationserver] [echo] You now need to restart those among the designated servers that are

 [configureapplicationserver] [echo] currently running.

 [configureapplicationserver] [echo] *************

 [configureapplicationserver] [echo]

 [configureapplicationserver]

 [configureapplicationserver] install:

 [configureapplicationserver]

 [configureapplicationserver] BUILD SUCCESSFUL

 [configureapplicationserver] Total time: 1 minute 7 seconds

 BUILD SUCCESSFUL

 Total time: 1 minute 12 seconds

 [image:]

 After the GENAPP WAR file has been installed

 This section examines the status of some of our components after the GENAPP WAR file is stalled.

 Figure 12-40 shows the new IBM Worklight Console, installed but not started. It is automatically started when the server cluster is restarted.

 [image:]

 Figure 12-40 Application status after Worklight WAR installation

 Figure 12-41 shows the module mapping of the Worklight module. In this example, we use HTTP servers and they must be mapped to the Worklight module. Select the check box next to the Worklight module and also all the entries in the Clusters and servers list window, and then click Apply.

 [image:]

 Figure 12-41 Initial module mappings after deployment

 Figure 12-42 shows the HTTP servers, now mapped to the Worklight module.

 [image:]

 Figure 12-42 Mapping HTTP servers to the console application

 Figure 12-43 shows the WebSphere Application Server web server plug-in configuration file update panel. With the new IBM Worklight Console mappings to the HTTP servers, we deploy a new plugin-cfg.xml file. We create a new file and propagate it to the HTTP servers.

 [image:]

 Figure 12-43 Rebuild the web server plug-in configuration file

 Figure 12-44 shows our next customization. We configured the following names to the values that the mobile device uses to connect to the application (through the front of the DataPower virtual appliance):

 •The publicWorklightHostname to be 10.7.1.9

 •The publicWorklightPort to be 443

 •The publicWorklightProtocol to be https

 [image:]

 Figure 12-44 Configure genapp Worklight Console Environment entries

 For security purposes, customized the default session timeout value to 5 minutes (Figure 12-45). Excessive session timeouts are potential security risks and also can increase resource consumption.

 [image:]

 Figure 12-45 Environment entries serverSessionTimeout

 Customize the SSL keystore for the Worklight adapters (Figure 12-46). This ssl.keystore.path is the location on the Linux application servers (Worklight Servers) where the JKS keystore is located.

 [image:]

 Figure 12-46 Environment entries for SSL keystore

 After the module mappings and environment entries are customized, the cluster can be restarted according to the Worklight Server instructions. Figure 12-47 shows that a ripplestart of the servers in the cluster is initiated.

 [image:]

 Figure 12-47 Restarting the entire WebSphere cluster

 After the cluster is restarted, navigate to the Enterprise Applications and verify that all three applications are started successfully, as shown in Figure 12-48.

 [image:]

 Figure 12-48 All three applications are started

 Figure 12-49 shows the IBM Worklight Console login (do not confuse this with the Application Center Console).

 [image:]

 Figure 12-49 Worklight Console available after deployment of WAR

 Figure 12-50 shows the contents of the Worklight Console after installation. At this time, the app is not deployed. That is the next step to be performed.

 [image:]

 Figure 12-50 Console has no app or adapter entries at this time

 Deploy the GENAPP mobile application through Ant

 Assuming that Java and Ant are still in the PATH for our shell, Example 12-17 shows the deployment of our GENAPP mobile app through Ant. The depapp.xml file was created and customized in advance of the ant invocation. See Example 12-18 on page 414 for details of the XML file.

 Example 12-17 Example mobile app deployment through Ant

 [image:]

 [root@lxProdDeployManager ~]# ant -f depapp.xml genapp

 Buildfile: /root/depapp.xml

 genapp:

 [echo] Worklight Ant Task version 6.1.0.00.20131126-0630

 [app-deployer] Feb 11, 2014 11:24:10 PM com.worklight.ant.deployers.AbstractDeployerTask logDeployResponse

 [app-deployer] SUCCESS: Application deployed successfully.

 BUILD SUCCESSFUL

 Total time: 7 seconds

 [image:]

 Example 12-18 shows the depapp.xml file that was used for the Ant deployment of our mobile app.

 Example 12-18 depapp.xml contents used in Ant deployment

 [image:]

 [root@lxProdDeployManager ~]# cat depapp.xml

 <?xml version="1.0" encoding="UTF-8"?>

 <project basedir="." default="genapp">

 <taskdef resource="com/worklight/ant/defaults.properties">

 <classpath>

 <pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar" />

 </classpath>

 </taskdef>

 <target name="genapp">

 <app-deployer deployable="/root/GENAPP-all.wlapp"

 worklightServerHost="https://10.3.20.29:443/genapp"

 userName="wlAdmin" password="xxxxxxx" />

 </target>

 </project>

 [image:]

 Deploy the GENAPP mobile app through Worklight Console

 When no applications are deployed, the Worklight Server console is displayed as shown in Figure 12-51. To deploy an application by using the console click Browse and select a .wlapp file. Click Submit to deploy the mobile application.

 [image:]

 Figure 12-51 Worklight Server console with no applications

 The results of the deployment are shown in Figure 12-52. Near the top of the panel, a message indicates that the deployment was successful. The application status and related information are displayed.

 [image:]

 Figure 12-52 Worklight Console with GENAPP deployed (without the adapters)

 Deploy the GENAPP adapters using Ant

 Example 12-19 shows the ant command with the depadapter.xml file to install both of our GENAPP mobile app adapters. Example 12-20 shows the contents of the depadapter.xml file that was used.

 Example 12-19 Install the GENAPP adapters

 [image:]

 [root@lxProdDeployManager ~]# ant -f depadapter.xml all

 Buildfile: /root/depadapter.xml

 all:

 [echo] Worklight Ant Task version 6.1.0.00.20131126-0630

 [echo] Worklight Ant Task version 6.1.0.00.20131126-0630

 BUILD SUCCESSFUL

 Total time: 5 seconds

 [image:]

 Example 12-20 depadapter.xml file used for adapter deployment

 [image:]

 [root@lxProdDeployManager ~]# cat depadapter.xml

 <?xml version="1.0" encoding="UTF-8"?>

 <project basedir="." default="all">

 <taskdef resource="com/worklight/ant/defaults.properties">

 <classpath>

 <pathelement location="/opt/IBM/Worklight/WorklightServer/worklight-ant-deployer.jar" />

 </classpath>

 </taskdef>

 <target name="all">

 <adapter-deployer deployable="deploy/GENAPPInquire.adapter"

 worklightserverhost="https://10.3.20.29:443/genapp"

 userName="wlAdmin" password="xxxxxxxx" />

 <adapter-deployer deployable="deploy/ClaimNotification.adapter"

 worklightserverhost="https://10.3.20.29:443/genapp"

 userName="wlAdmin" password="xxxxxxxx" />

 </target>

 </project>

 [image:]

 Deploy the GENAPP adapters using the Worklight Console

 Deployment of the Worklight adapters are similar to the deployment of the application. Click Browse, select the adapter file you want to deploy, and then click Submit. Figure 12-53 shows the results.

 [image:]

 Figure 12-53 GENAPPInquire deployed

 Next, deploy the second Worklight adapter in a similar fashion to the first adapter. This time, after the deployment is complete, click Show details link, which is expanded for both adapters (Figure 12-54).

 [image:]

 Figure 12-54 ClaimNotification adapter deployed

 Configuration of Worklight is complete. Now, we focus on CICS.

 12.4.3 Configure CICS

 The CICS systems of the insurance company run as part of a CICSplex environment, and CICSPlex SM is used for CICS workload management. This provides high availability and increased capacity beyond that of a single CICS region.

 CICS systems that accept incoming web service requests from the cluster of Worklight Servers are designated as terminal owning regions (TORs). The requests are then routed to application owning regions (AORs) that run the GENAPP COBOL and Java programs.

 Sysplex Distributor is used to distribute IP connections from the Worklight Servers across the cloned CICS TORs that are running on different IP stacks (usually on different LPARs). Sysplex Distributor is based on the virtual IP address (VIPA) technology in the z/OS Communications Server.

 Figure 12-55 shows the CICS high availability infrastructure for the GENAPP mobile application.

 [image:]

 Figure 12-55 CICS high availability infrastructure

 	
 More information: We did not configure a CICSplex for this book. However, if you want to learn more about this topic, see CICS Web Services Workload Management and Availability, SG24-7144.

 CICS mobile workload prioritization

 To set response time goals for web services, specific requests are associated with transaction identifiers that use URIMAP resource definitions (see “Change the default transaction ID for the mobile request” on page 330). These transactions are then classified by MVS WLM and assigned to a service class with a defined performance goal. In this way, the number of transactions and response times for mobile-initiated CICS GENAPP services to be monitored.

 High availability for claim events

 The CICS GENAPP COBOL application is enabled to emit an event when a motor vehicle policy claim is processed. After CICS captures the claim event, it sends an HTTP request, containing the customer and policy details, to the Worklight Server. The host name and port for the target Worklight Server is specified in the CICS URIMAP resource definition named NOTIFY2 (see Example 10-16, “A URIMAP definition for our Worklight server” on page 226).

 To enable high availability for processing claim events, a virtual IP address can be configured for the Worklight Server host name in CICS NOTIFY2 URIMAP so that claim events are routed across the cluster of Worklight Servers.

 12.5 Validating the deployed mobile app on the infrastructure

 After the mobile app is deployed, verify its operation in several ways:

 •At the Mobile device

 •Using a DataPower probe

 •In the HTTP server access logs

 •On the Worklight Server console

 •Using the Worklight embedded Analytics

 •Using the CICS Explorer

 We want to validate the function of the application, the access path that is taken, and that the correct infrastructure components are being used.

 12.5.1 Mobile device

 From the mobile device interface (Figure 12-56) we log in first with an invalid password for customer number 2 and see the Authentication failed pop-up. With this, we validate that we are unable to proceed with the invalid credentials.

 [image:]

 Figure 12-56 Validating a bad password denies access

 Next we validate that the correct password successfully logs customer 2 in to the application (Figure 12-57).

 [image:]

 Figure 12-57 Validating a successful login

 12.5.2 DataPower probe

 Figure 12-58 shows the results of a DataPower probe of the login process. See that the HTTP header for the communication is between the mobile device and the Worklight server and verify that all data flows as expected.

 [image:]

 Figure 12-58 DataPower Probe capture of login

 12.5.3 HTTP Server access log

 Example 12-21 on page 424 shows the Apache log data for the GENAPP mobile app request. The login sequence is occurring during the iphone/init requests. The HTTP 401 response code represents an unauthorized HTTP request and the credentials must be validated by the DataPower virtual appliance. The iphone/query requests represent the retrieval of the users data,

 Example 12-21 Apache HTTP log data of mobile app access

 [image:]

 10.3.20.92 - - [28/Feb/2014:11:24:42 +0100] "GET /genapp/apps/services/reach HTTP/1.1" 200 2

 10.3.20.92 - - [28/Feb/2014:11:24:42 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/init HTTP/1.1" 200 473

 10.3.20.92 - - [28/Feb/2014:11:25:19 +0100] "POST /genapp/apps/services/j_security_check HTTP/1.1" 200 15

 10.3.20.92 - - [28/Feb/2014:11:25:19 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/init HTTP/1.1" 401 166

 10.3.20.92 - - [28/Feb/2014:11:25:19 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/init HTTP/1.1" 200 4144

 10.3.20.92 - - [28/Feb/2014:11:25:20 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/query HTTP/1.1" 200 503

 10.3.20.92 - - [28/Feb/2014:11:25:20 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/query HTTP/1.1" 200 677

 10.3.20.92 - - [28/Feb/2014:11:25:23 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/notifications HTTP/1.1" 200 70

 10.3.20.92 - - [28/Feb/2014:11:25:23 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/notifications HTTP/1.1" 200 25

 10.3.20.183 - - [28/Feb/2014:11:27:56 +0100] "GET /genapp/console/api/ui/serverVersion?_=1393583584527 HTTP/1.1" 200 96

 10.32.12.33 - - [28/Feb/2014:11:30:35 +0100] "GET /genapp/console/api/ui/serverVersion?_=1393583739770 HTTP/1.1" 200 96

 10.3.20.92 - - [28/Feb/2014:11:36:39 +0100] "GET /genapp/apps/services/api/GENAPP_Mobile/iphone/init HTTP/1.1" 200 473

 10.3.20.92 - - [28/Feb/2014:11:36:57 +0100] "GET /genapp/apps/services/reach HTTP/1.1" 200 2

 10.3.20.92 - - [28/Feb/2014:11:36:57 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/init HTTP/1.1" 200 473

 10.3.20.92 - - [28/Feb/2014:11:37:12 +0100] "POST /genapp/apps/services/j_security_check HTTP/1.1" 200 15

 10.3.20.92 - - [28/Feb/2014:11:37:13 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/init HTTP/1.1" 401 166

 10.3.20.92 - - [28/Feb/2014:11:37:13 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/init HTTP/1.1" 200 4144

 10.3.20.92 - - [28/Feb/2014:11:37:14 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/query HTTP/1.1" 200 503

 10.3.20.92 - - [28/Feb/2014:11:37:15 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/query HTTP/1.1" 200 677

 10.3.20.92 - - [28/Feb/2014:11:37:15 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/notifications HTTP/1.1" 200 70

 10.3.20.92 - - [28/Feb/2014:11:37:15 +0100] "POST /genapp/apps/services/api/GENAPP_Mobile/iphone/notifications HTTP/1.1" 200 25

 [image:]

 12.5.4 Worklight Server Console

 Before authenticating with user ID 2 on our mobile device, we noted the active devices in the Worklight Server Console (Figure 12-59). Initially no iPhone device is listed for user 2. We observe that change in the next figure (Figure 12-59), after GENAPP is used on an iPhone with user ID 2.

 [image:]

 Figure 12-59 Worklight Server Console before device logged in to mobile app

 After successfully authenticating customer number 2 using the iPhone, the Worklight Server Console (Figure 12-60) depicts the iPhone device that was added for user ID 2.

 [image:]

 Figure 12-60 Worklight Server Console after mobile device logged in

 12.5.5 Worklight embedded operational analytics

 We are also able to use our analytics data to verify that the device used our infrastructure. Figure 12-61 shows the statistics before the mobile device logged in to the application.

 [image:]

 Figure 12-61 Number of App Opens before device login

 After successfully authenticating, the number of AppOpens increases by a value of one (Figure 12-62).

 [image:]

 Figure 12-62 App Opens after device login

 Figure 12-63 shows the statistics regarding which app was used, which environment was used, and which adapter was called.

 [image:]

 Figure 12-63 Usage counts before device login

 Figure 12-64 shows the increased App Usage statistic. You can also see the changed statistics by mobile platform (in this case iPhone) and the number of hits on an adapter for an application.

 [image:]

 Figure 12-64 Usage counts after device login

 In addition to seeing the calls per application, you can also see the specific procedures being called and in which server the calls are running (Figure 12-65). This can be helpful in a clustered environment if you are trying to understand the distribution of requests. The counts displayed in this figure are showing the counts before the mobile application was accessed.

 [image:]

 Figure 12-65 Calls before device login

 Figure 12-66 shows that the counts increased (from the previous figure) after we made some application requests from the mobile device.

 [image:]

 Figure 12-66 Calls after device login

 12.5.6 CICS Explorer

 Figure 12-67 shows that the Use Count for the getCustomerDetails web service was increased to 1. This confirms that our mobile application executed the correct service in the correct region.

 [image:]

 Figure 12-67 CICS Explorer validation of the getCustomerDetails invocation

 12.6 Enabling System z hardware-based cryptographic acceleration

 Depending on your corporate or organizational security policy, you may enable some or all of the infrastructure components to use encryption. System z has two separate hardware components that can accelerate cryptographic operations and allow the environment to scale:

 •CryptoExpress cards: The CryptoExpress hardware can accelerate the SSL/TLS handshakes.

 •CPACF coprocessors: The CPACF can accelerate the symmetric key encryption after the handshake. GSKIT code can automatically attempt to use the CPACF when it is made available.

 Figure 12-68 shows the layers of the cryptographic hardware and software stack. There are significant numbers of potential users of this hardware and software ranging from open source programs, commercial middleware, to your own application programs. Our production environment focuses on using the clear key acceleration in the infrastructure for Java and WebSphere Application Server, the IBM HTTP Server, and DB2 JDBC.

 [image:]

 Figure 12-68 Linux cryptographic hardware software stack

 Figure 12-69 shows the SSL/TLS network connections that can use some amount of hardware-based cryptographic acceleration.

 [image:]

 Figure 12-69 Hardware-based SSL/TLS acceleration possibilities

 12.6.1 Make the cryptographic hardware available to Linux

 The CPACF hardware exists in every process. An enabling feature code must be installed on the central processor complex (CPC). That is the only step required to make the CPACF hardware available to the Linux virtual server.

 CryptoExpress cards require a z/VM user directory entry to make the hardware available to the Linux virtual server. Because we are using only clear key acceleration, we used the CRYPTO APVIRT directory entry.

 12.6.2 Enable Linux to exploit the cryptographic hardware

 The steps to enable the Linux operating system to use the System z cryptographic hardware are summarized as follows:

 1.	Install the required libica and openCryptoki packages.

 2.	Verify the availability of the CPACF with the icainfo command.

 3.	Start and enable to start upon boot the z90crypt and pkcsslotd services.

 4.	Validate the availability of CryptoExpress devices from /proc/drivers/z90crypt.

 5.	Set the security officer and user PINs with the pkcsconf command.

 6.	Validate the readiness of the hardware token with the pkcsconf -t command with status flag 0x44D.

 12.6.3 Enable Java and WebSphere Application Server to use the cryptographic hardware

 The steps to enable Java and WebSphere Application Server to use the cryptographic hardware are summarized as follows:

 1.	Update Java policy files, which are in the following location, to be unrestricted:

 /opt/IBM/WebSphere/AppServer/java/jre/lib/security

 2.	Set WebSphere JVM custom properties. Set the following property to true:

 com.ibm.ws.security.ltpa.forceSoftwareJCEProviderForLTPA

 3.	Create a hardware token file and point to the hardware token label you created and set the security officer and user PINs and the slot number.

 4.	Update the java.security file IBMPKCS11Impl entry to point to the hardware token file.

 5.	Customize the WebSphere cipher suite to use high-grade ciphers that can be offloaded by the cryptographic acceleration hardware.

 6.	Make relevant user IDs (those that use the CryptoExpress hardware) part of the pkcs11 group.

 7.	Validate the use of the hardware by checking /proc/drivers/z90crypt and the number of open handles. Validate usage of the CPACF with the icastats command.

 12.6.4 Enable IBM HTTP Server to exploit cryptographic hardware

 The steps to enable IBM HTTP Server (IHS) for hardware cryptographic acceleration are summarized as follows:

 •Generate the certificate and key pair in to the pkcs11 cryptographic token with the gskit command.

 •Create a stash file with the user PIN.

 •Add the IHS user ID to the pkcs11 group.

 •Update the httpd.conf file to include the SSLServerCert keyword with the cryptographic token label and certificate label and the PKCS11 API library. Also add a LoadFile for the libcrypto library.

 •Validate you can obtain an SSL/TLS session with a browser and validate that the certificate is used. Again, check the usage of the CPACF with the icastats command and the cryptoExpress with /proc/drivers/z90crypt.

 12.7 Workload management

 Workload management must be investigated for the following components:

 •DataPower layer

 •z/VM hypervisor

 •HTTP server layer

 •WebSphere and Worklight Server layer

 •z/OS Workload Manager

 •CICS

 •z/OS Directory Services

 12.7.1 DataPower layer

 The WebSphere DataPower Virtual Edition offers all of the same workload management capabilities as the physical appliance. The Virtual Edition can provide security, content filtering and transformation, routing, load balancing, logging, and monitoring services. Configurations that are developed on other DataPower platforms can run unchanged on the virtual appliance.

 12.7.2 z/VM hypervisor

 The z/VM hypervisor can manage priorities of the virtual servers in several ways. Share values can be used to set the resource priority for the Linux virtual servers. Relative shares, absolute shares, soft caps, and hard caps are some of the available tools. The z/VM VMRM can be used to automatically adjust share values in a policy-based manner. A rich set of tools is available to monitor the resource usage in z/VM such as the z/VM Performance toolkit and IBM Tivoli Monitoring Omegamon XE.

 Also in a z/VM Single System Image with Live Guest Relocation capability, you have the opportunity to dynamically move the workload to where extra resources might exist. For planned maintenance you may also move Linux virtual servers to another z/VM instance to ensure maximum availability and capacity.

 12.7.3 HTTP server layer

 At the HTTP server layer, workload management of HTTP requests is handled by the WebSphere plug-in. By default, we are distributing requests across both application server cluster members. The policy can be configured in another manner.

 12.7.4 WebSphere and Worklight Server layer

 Workload arrives at the application server and Worklight Server through the WebSphere plug-in in the HTTP server. The DB2 JDBC request go to the primary member of the HADR pair. In our application, all work runs in the J2EE web container and the JSON or SOAP adapters route request to the IP and ports addresses that are specified in them. Normally these are a Sysplex distributed Virtual IP address availability and z/OS workload management.

 12.7.5 z/OS Workload Manager

 z/OS Workload Manager (WLM) can prioritize request for many aspects of the operating system and subsystem based on various criteria and to the individual request level in many instances.

 12.7.6 CICS

 The z/OS WLM component passes workload management onto CICS to route work requests. CICS uses CICSPlex and SM WLM to handle this. In any CICSplex, several CICS regions are defined to process work requests. These are known as target regions. Because our GENAPP requests are using TCP/IP services, more than likely a set of web owning regions exists. These handle the workload, catering to unplanned outages and maintenance windows.

 12.7.7 z/OS Directory Services

 The Directory Services that are provided on z/OS can be configured in multiple ways. One option is to use a TDBM back-end with a Parallel Sysplex DB2. Multiple LDAP instances can be started on multiple members of the Sysplex cluster. The virtualized IP address that is used to access the directory server can be distributed, where WLM information and traffic policies can direct requests to a cluster member with the most available capacity. Loss of any one directory server no longer means our mobile users must incur an outage. Another option is directory replication. Because most directories are low-update in nature, this tends to work well, but when you have multiple copies of data, you introduce the possibility of inconsistencies between the replicas. Obviously with a single instance of the data, a copy of it cannot possibly be out of sync and inconsistent.

 12.8 A dynamically scalable and fault tolerant environment

 What is always important is to test all components of the highly available infrastructure to ensure it continues to operate as expected in case any component or group of components fail. Also important is to retest this capability when changes are made to the operating environment or application. Sometimes changes that are external to your Worklight Server infrastructure can affect the ability to transparently recover from a component or site failure.

 12.8.1 Dynamic scalability and manageability

 The zEnterprise infrastructure is one of the most scalable and manageable platforms that is available to run your apps on. At each layer of the infrastructure, dynamically adding processor, memory, and I/O resources is possible.

 The zEC12 machine supports over 100 of some of the fastest general purpose processor cores and up to 3 TB of memory that are available to customers to run their business workloads. You can start small and dynamically add both processor, memory, and I/O resource to the zEnterprise hardware, virtualization hypervisor (z/VM) and virtual server operating systems (Linux).

 12.8.2 Fault tolerance

 Fault tolerance can be achieved for the following components:

 •IBM zEnterprise EC12 (zEC12) hardware

 zEnterprise mainframe hardware is known for being one of the most available and fault tolerant general compute platforms and tends to be the standard; other platforms hope to achieve “mainframe-like” levels of availability. Processor, memory, and I/O aspects of the hardware are designed with redundancy, error-checking and correction, and dynamic sparing or failover of components. If a processor unit or disk storage I/O path fails, another will dynamically stand in. Many aspects of the hardware can also be serviced concurrently.

 •Virtualization hypervisor

 The virtualization hypervisor provides virtualized access to the zEnterprise processor, memory, and I/O resources for our Linux virtual servers. It can do this while maintaining or improving upon the availability aspects of the hardware components. For example, processor sparing capabilities are maintained but, with other aspects such as networking, the virtual switch technology can increase the network availability to a virtual server by transparently using multiple network adapters. To the virtual server, the virtualization hypervisor appears as one Ethernet interface but in reality it might be supported by multiple network interfaces that might even actively connect to multiple external network switches with our link aggregation capabilities. Disk storage resources can be virtualized and transparently multipathed to the virtual server also. If a path to a storage device is lost, alternative paths will continue to be transparently used. The hypervisor can also be clustered and, in a planned fashion, live-migrate virtual servers to other members of the cluster. The virtualization technology even has a function to transparently live-swap an entire enterprise disk storage subsystem for another by using the IBM HyperSwap® technology.

 •Linux on zEnterprise

 Although the Linux that runs on a zEnterprise or other System z hardware is vastly the same Linux that runs on other hardware architectures, like every other Linux, it has a small layer that interfaces with and uses the underlying hardware. This hardware interface layer is also constructed to use the aspects of the underlying hardware and provide fault tolerance. For example, although the hardware and virtualization layer can provide multiple paths to a disk storage device, the Linux operating system must still use them. This is handled in the disk storage device and requires no special configuration on the part of the administrator. If virtualization hypervisor owns a SCSI LUN this multipathing is not apparent to the Linux virtual server.

 •HTTP Server

 Our environment has multiple HTTP servers; requests arriving from a mobile device are typically front-ended by a secure proxy platform. This platform is responsible for distributing workload to the HTTP servers and, if any one HTTP server fails, requests are transparently rerouted to the remaining HTTP servers.

 •Worklight Mobile Server

 We deployed the GENAPP application to a WebSphere Application Server cluster. If any one cluster member fails, the workload will be redirected to the remaining application servers. In our scenario, the WebSphere plug-in, which operates in the HTTP servers, directs the request to the application servers. In our scenario, we used memory-to-memory replication of the session data. This session data can also be persisted to a DB2 database. Even with the loss of an application server, an application does not need to reauthenticate. The mobile user is unaware that the request was moved to a different server.

 •Database

 The DB2 for Linux, UNIX, and Windows databases in the scenario mostly contain configuration for the Worklight runtime environment and usage information pertaining to the mobile devices. These databases are protected by DB2 High Availability Disaster Recovery (HADR) and Tivoli System Automation for Multiplatforms. The database information is replicated and, if a failure occurs, the replicated copy is made available for use. Depending upon business requirements other solutions exist to provide other resiliency capabilities, such as IBM InfoSphere® Q Replication, which can provide in-region or out-of-region active/active access to database server data. If your corporate standard is Oracle, we can provide a clustered database solution with Oracle RAC to meet your business resiliency requirements.

 •z/OS Parallel Sysplex and data sharing capabilities

 The z/OS part of our solution can use z/OS Parallel Sysplex, z/OS DB2, and CICS data sharing clustering technologies. The sysplex virtual IP technology provides virtualized network access to members of our compute cluster. Database and transaction processing can also be clustered so the loss of any one member does not need to cause an outage for our mobile user community.

 12.9 Conclusion

 In this chapter, we installed and configured the Worklight Server, and deployed the mobile app to the highly available infrastructure. The System z cryptographic hardware was made available to accelerate our encryption operations. Each database was made highly available after the database was defined. An important step, which was not shown in detail, was to ensure that each component of the infrastructure can fail over in the time and manner that are expected.

[image:]
[image:]

Mobile analytics

 After you develop a mobile application and distribute it through an app store, either publicly or by using the IBM Worklight Application Center store, you can quickly determine the number of times the application is downloaded. However, perhaps you want more information about how often the application is used, how your adapters are used, in what environment the application is used, and so on. The IBM Worklight Analytics Platform, embedded with the IBM Worklight Server, can provide you with a great overview about the utilization of your applications.

 In this chapter, we describe the Worklight operational analytics feature that is provided by the IBM Worklight Server. We list the steps to implement analytics in your mobile application and in IBM Worklight Server and then show how we use Worklight analytics to monitor the use of the GENAPP mobile app.

 This chapter contains the following topics:

 •IBM Worklight operational analytics

 •IBM Worklight Analytics Platform implementation

 13.1 IBM Worklight operational analytics

 The IBM Worklight Analytics Platform is a scalable operational analytics platform that can collect logs and events from both mobile applications and back-end servers. You can do the following tasks across mobile operating systems:

 •Search collected information with easy-to-use natural query language.

 •Create a custom dashboard to search for patterns, determine problems, and summarize the various statistical measures of platform usage, such as new users, returning users, and usage frequency.

 13.1.1 Comparison with the reports feature

 With the introduction of the IBM Worklight Analytics Platform, you can continue using the reports feature, use it in combination with the operational analytics feature, or use only the operational analytics feature.

 The data that is collected by the reports database feature is a subset of the total data that is collected as part of the operational analytics feature. You can use the reports database and the operational analytics feature simultaneously, but using both in a production environment is redundant. Use the reports feature in cases where you want direct access to the reports database to run custom queries.

 13.1.2 Analytics flow

 IBM Worklight includes IBM SmartCloud Analytics Embedded, which is the engine that drives the IBM Worklight Analytics Platform. This component is designed for the following challenges, which are introduced by the big data that is accumulated in a mobile environment:

 •Volume: Mobile transactions continue to grow as more traffic comes from the mobile channel.

 •Velocity: Mobile interactions arrive quickly from different areas, depending on user mobility patterns.

 •Veracity: Increased volume yields an increase in noise.

 •Variety: With increasing variation in mobile usage patterns, apps, physical device sizes, operating systems, and networks, collected data becomes increasingly varied.

 Figure 13-1 illustrates the high-level topology of the operational analytics feature components.

 [image:]

 Figure 13-1 Analytics flow

 Apps that are developed with IBM Worklight send collected analytics data to the IBM Worklight Server. Depending on the origin of the data, it can be buffered on the client side before it is sent. In doing so, it can preserve battery life and network usage. IBM Worklight Server forwards this data to IBM SmartCloud Analytics Embedded by using HTTP POST. If this connection experiences socket timeouts or other failures, the data is discarded.

 In a production environment, the IBM Worklight Server queues analytics data before it sends it to IBM SmartCloud Analytics Embedded. This behavior means that a delay can occur before the analytics data that is sent by the Worklight Client is visible on IBM SmartCloud Analytics Embedded.

 In the Worklight Studio development environment where you use the Worklight Development Server, the analytics data is not queued by default. So no delay occurs before the analytics data is visible on IBM SmartCloud Analytics Embedded.

 13.2 IBM Worklight Analytics Platform implementation

 To run the operational analytics features, install IBM SmartCloud Analytics Embedded, and enable analytics on the Worklight Server part and on the mobile application part.

 13.2.1 Analytics server installation

 The operational analytics feature requires installation of IBM SmartCloud Analytics Embedded, which is included in the IBM Worklight Server installation. The preferred practice is to install this component on a separate system other than your IBM Worklight Server and IBM Application Center Server to offload the necessary storage and analytics workload from these critical IBM Worklight production systems. For more information about installing this component, see the IBM Worklight V6.1 Information Center:

 https://pic.dhe.ibm.com/infocenter/wrklight/v6r1m0/index.jsp?topic=%2Fcom.ibm.help.doc%2Fwl_home.html

 13.2.2 Enabling analytics

 To enable the operational analytics feature, use these two processes:

 1.	Configure Worklight Server for analytics

 2.	Configure your app for analytics

 Configure Worklight Server for analytics

 To use the operational analytics feature, you must configure IBM Worklight Server to forward analytics data to IBM SmartCloud Analytics Embedded:

 1.	On a WebSphere Liberty server running IBM Worklight Server, add lines to the server.xml file, as shown in Example 13-1.

 Example 13-1 server.xml jndiEntry

 [image:]

 <!-- Declare the JNDI properties for the IBM Worklight Console. -->

 ...

 <jndiEntry jndiName="genapp/wl.analytics.url" value='"http://10.3.20.70:9080/analytics/data"'/>

 <jndiEntry jndiName="genapp/wl.analytics.queue.size" value='"1"'/>

 ...

 [image:]

 2.	On another WebSphere environment, update the web module JNDI entry as shown in Example 13-1.

 The line of code (apart from the comments) points the IBM Worklight Server to the analytics server (installed in 13.2.1, “Analytics server installation” on page 444).

 The next line sets the number of individual analytics events that each queue can hold. The total number of analytics events that the server can hold at one time before it begins to drop data is as follows:

 (wl.analytics.queues multiplied by wl.analytics.queue.size)

 In a production environment, the default value is 10. In the Worklight Studio development environment when you use the Worklight Development Server, the default value is 1 as Example 13-1 on page 444 shows.

 Configure your app for analytics

 The operational analytics feature is optional in IBM Worklight V6.1.0. To use it, enable it by modifying the application-descriptor.xml file of your application in IBM Worklight Studio as shown on Example 13-2.

 Example 13-2 The application-descriptor.xml analytics enabled

 [image:]

 <features>

 ...

 	<Analytics/>

 ...

 </features>

 [image:]

 By default, the code snippet is populated into a new IBM Worklight application in the initOptions.js, as shown in Example 13-3.

 Example 13-3 initOptions.js in the common/js folder of the mobile application

 [image:]

 var wlInitOptions = {

 //Other key/value pairs not related to Analytics

 analytics : {enabled: false}

 };

 [image:]

 The default value of analytics.enabled is false. To enable sending captured application crash data, and analytic data recorded by WL.Analytics.log function call, you must either set the option to true or call the WL.Analytics.enable function.

 Now that all the components are configured and in the IBM Worklight Console, the Analytics tab is now available.

 13.2.3 Analytics tab in the IBM Worklight Console

 As mentioned, after you redeploy the .wlapp file of the app on the IBM Worklight Console, and modify the JNDI entry of the IBM Worklight Server, the Analytics tab is available (Figure 13-2). Use this tab to research analytics data and see results from your IBM Worklight system.

 [image:]

 Figure 13-2 The Dashboard view is in the Analytics tab 6.1 of the IBM Worklight Console

 The Analytics tab offers a range of analytics features that are available in various views, each accessible from a tab as Figure 13-2 on page 446 shows. In addition to seeing a summary of your mobile and web application analytics, you can search on the following sources:

 •Server logs

 •Client activities

 •Captured client crash data

 •Any additional data that you explicitly provide through client and server-side API function calls that feed into the IBM WebSphere Analytics Platform

 13.3 Conclusion

 With the operational analytics feature of the IBM Worklight Server, you can search across apps, services, devices, and other sources to collect data about usage or to detect problems. The analysis of this information for the GENAPP mobile app can help you better understand how the app is being used and, in particular, provides important information about the use of the GENAPP Worklight adapters that enable the integration between the mobile app and the back-end CICS services.

 In this second part of our book, we used a scenario for a fictional insurance company to demonstrate how a mobile solution can be deployed on System z. By deploying Worklight Server on Linux for System z, you can benefit from the co-location of the GENAPP mobile application with the existing CICS GENAPP COBOL application. Also, you can take advantage of the security, availability, and scalability strengths of the System z platform.

[image:]
[image:]

Additional material

 This book refers to additional material that can be downloaded from the Internet as described in the following sections.

 Locating the web material

 The web material that is associated with this book is available in softcopy on the Internet from the IBM Redbooks web server:

 ftp://www.redbooks.ibm.com/redbooks/SG248215

 Alternatively, you can go to the IBM Redbooks website:

 ibm.com/redbooks

 There, you select Additional materials and open the directory that corresponds with the IBM Redbooks form number, SG248215.

 Using the web material

 The additional web material that accompanies this book includes these files:

 File name	Description

 authenticationConfig.xml	WebSphere configuration file

 sampleWASLTPARealm.js	LTPA sample realm configuration

 WASLTPARealmChallengeHandler.js	Scenario based LTPA realm configuration

 login.html	WebSphere login file

 loginError.html	WebSphere login error handling file

 updateWAR.xml	Ant script

 Downloading and extracting the web material

 Create a subdirectory (folder) on your workstation, and extract the contents of the web material .zip file into this folder.

 Related publications

 The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this book.

 IBM Redbooks

 The following IBM Redbooks publications provide additional information about the topic in this document. Note that some publications referenced in this list might be available in softcopy only.

 •CICS and SOA: Architecture and Integration Choices, SG24-5466

 •CICS Web Services Workload Management and Availability, SG24-7144

 •End-to-end Automation with IBM Tivoli System Automation for Multiplatforms, SG24-7117

 •IBM CICS and the JVM server: Developing and Deploying Java Applications, SG24-8038

 •Mobile Design Patterns: Push, Don't Pull, REDP-5072

 •Securely Adopting Mobile Technology Innovations for Your Enterprise Using IBM Security Solutions, REDP-4957

 •Securing Your Mobile Business with IBM Worklight, SG24-8179

 •WebSphere Application Server V8.5 Concepts, Planning, and Design Guide, SG24-8022

 You can search for, view, download or order these documents and other Redbooks, Redpapers, Web Docs, draft and additional materials, at the following website:

 ibm.com/redbooks

 Online Resources

 These websites are also relevant as further information sources:

 •IBM MobileFirst Solution Brief:

 http://public.dhe.ibm.com/common/ssi/ecm/en/wss14156usen/WSS14156USEN.PDF

 •IBM MessageSight:

 http://www.ibm.com/software/products/us/en/messagesight/

 •IBM Mobile Application Platform Management Services:

 http://www.ibm.com/services/us/en/it-services/mobile-application-platform-management.html

 •WebSphere DataPower SOA Appliances:

 http://www.ibm.com/software/products/en/datapower/

 •BM Security AppScan:

 http://www.ibm.com/software/products/en/category/application-security

 •IBM Security Access Manager for Mobile:

 http://www.ibm.com/software/products/en/access-mgr-mobile

 •IBM Interactive Experience:

 http://www.ibminteractive.com/index.html

 •IBM Mobile Infrastructure Strategy and Planning Services:

 http://www.ibm.com/services/us/en/it-services/mobile-infrastructure-strategy-and-planning.html

 •IBM Mobile Application Development from the Cloud:

 http://www.ibm.com/services/us/gbs/mobileconsulting/rapid-mobile-app-development.html

 •IBM Mobile Application Management Services:

 http://www.ibm.com/services/us/gbs/application-management/

 •IBM Mobile Enterprise Services for managed mobility:

 http://www.ibm.com/services/us/en/it-services/managed-mobility-services.html

 •High Availability Architectures for Linux on IBM System z:

 http://ibm.co/1sKIpqv

 •Managing WebSphere DataPower SOA Appliance configurations for high availability, consistency, and control:

 https://www.ibm.com/developerworks/websphere/library/techarticles/0801_rasmussen/0801_rasmussen.html

 •IBM Mobile Workload Pricing for z/OS:

 http://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=AN&subtype=CA&htmlfid=899/ENUSLP14-0279

 •Infrastructure protection:

 http://www.ibm.com/software/products/en/category/infrastructure-protection

 •Security intelligence and compliance analytics:

 http://www.ibm.com/software/products/en/category/security-intelligence

 •DataPower high availability:

 http://www.ibm.com/developerworks/websphere/tutorials/1207_mohith/

 •Download GENAPP SupportPac (CB12):

 http://www.ibm.com/support/docview.wss?uid=swg24031760

 •Differences between XML and JSON as payload options:

 http://www.json.org/xml.html

 •CICS Transaction Server Feature Pack for Mobile Extensions:

 http://www.ibm.com/software/htp/cics/mobile/

 •The curl command-line tool:

 http://curl.haxx.se/

 •CICS Explorer update site:

 http://public.dhe.ibm.com/software/htp/zos/2/1/0

 •Download GENAPP Mobile SupportPac (CA0D):

 http://www.ibm.com/support/docview.wss?uid=swg24035181

 •Worklight getting started:

 http://www.ibm.com/developerworks/mobile/worklight/getting-started.html

 •Worklight Security and LTPA overview:

 http://pic.dhe.ibm.com/infocenter/wrklight/v6r1m0/topic/com.ibm.worklight.deploy.doc/admin/c_security_ltpa_overview.html

 Help from IBM

 IBM Support and downloads

 ibm.com/support

 IBM Global Services

 ibm.com/services

 IBM System z in a Mobile World: Providing Secure and Timely Mobile Access to the Mainframe

 IBM System z in a Mobile World

 Providing Secure and Timely Mobile Access to the Mainframe

 Understand the business benefits of mobility

Integrate IBM System z into your mobile strategy

Explore an integrated and secure mobile application

 Today, organizations engage with customers, business partners, and employees who are increasingly using mobile technology as their primary general-purpose computing platform. These organizations have an opportunity to fully embrace this new mobile technology for many types of transactions, including everything from exchanging information to exchanging goods and services, from employee self-service to customer service. With this mobile engagement, organizations can build new insight into the behavior of their customers so that organizations can better anticipate customer needs and gain a competitive advantage by offering new services.

 Becoming a mobile enterprise is about re-imagining your business around constantly connected customers and employees. The speed of mobile adoption dictates transformational rather than incremental innovation.

 This IBM Redbooks publication has an end-to-end example of creating a scalable, secure mobile application infrastructure that uses data that is on an IBM mainframe. The book uses an insurance-based application as an example, and shows how the application is built, tested, and deployed into production. This book is for application architects and decision-makers who want to employ mobile technology in concert with their mainframe environment.

 Back cover

 Acrobat bookmark

OPS/images/2-27-2014_3-07-25_AM.png
L 30

2@ ¢ LE

New
Go Into

Show In

Copy

Copy Qualified Name

Paste

Delete

Build Path

Move...

Rename...

Import..

Export...

Refresh

Create Application Component..
Add/Remove Application Components..
Validate

Profile As

Debug As

Run As

Compare With

Restore from Local History...

Team
Source

Properties

Alt+Shift=W >
Ctri+C

Ctri+V
Delete
»

F2

F5

Alt+Enter

1 Run on Workiight Development Server
= 2 Build All Environments

@ 3 Preview

4 Build Settings and Depl% Target...

Run Configurations...

OPS/images/2-27-2014_3-08-05_AM.png
© Configure Workiight Build and Deploy Target ==

Configure Worklight Build and Deploy Target @

Specify handling of Worklight web resources during the build. Specify the Worklight
Server to deploy the application

Build optimization (applicable to Mobile web app and Desktop Browser web page environments only):

[] Use minification to reduce the size of JavaScript and CSS files

[] Use concatenation to reduce the number of JavaScript and CSS files

Worklight server to test applications:

Server: [Workiight Development Server ~ | [Add server...

Context path: /genapp

Build the application to work with a different Worklight server
Server: httpy//107.19

Context path: /genapp

OPS/images/2-27-2014_3-08-29_AM.png
L 30

2@ ¢ LE

New
Go Into

Show In

Copy

Copy Qualified Name

Paste

Delete

Build Path

Move...

Rename...

Import..

Export...

Refresh

Create Application Component..
Add/Remove Application Components..
Validate

Profile As

Debug As

Run As

Compare With

Restore from Local History...

Team
Source

Properties

Alt+Shift=W >
Ctri+C

Ctri+V
Delete
»

F2

F5

Alt+Enter

1 Run on Worklight Development Server
= 2 Build All Environments &

@ 3Preview

4 Build Settings and Deploy Target...

Run Configurations...

OPS/images/2-27-2014_3-12-19_AM.png
&

[Project Explorer 22 B
4 79 genapp
» Eh Java Resources
= JavaScript Resources
» € adapters
b § apps
4 & bin
ClaimNotification.adapter
GENAPP-allwlapp
GENAPP-android-6.11wlapp
GENAPP-common.wlapp
GENAPP-iphone-611wlapp
genapp.war
GENAPPInquire.adapter
> g2 server
& services
» & Worklight Development Server

OPS/images/2-27-2014_3-05-37_AM.png
L 30

2@ ¢ LE

Show In
Open

Open With

Copy

Copy Qualified Name

Paste

Delete

Build Path

Move...

Rename...

Import..

Export...

Refresh

Create Application Component..
Add/Remove Application Components..
Validate

Profile As

Debug As

Run As

Compare With

Replace With

Team
JPA Tools
Source

Properties

»

Alt+Shift=W >
F3
»

Ctri+C

Ctri+V
Delete

F2

F5

Alt+Enter

@ 1 Deploy Workiight Adapter
%% 2 Invoke Worklight Procedure %
8 3 Run on Server

Run Configurations...

Alt+Shift+X, R

OPS/images/2-27-2014_2-56-12_AM.png
s *GENAPPInquirexml 22 =B

Adapter Editor

Overview © Details
type filter text ~ Load Constraints
4 s Adapter "GENAPPInquire” Add, Max concurrent connections per node*: 200

4| Connectivity|

& Connection Policy
@ Procedure "addEndowmentPolicy’ | | Up
@ Procedure "addHomePolicy”
@ Procedure "addMotorPolicy”
@ Procedure "deleteMotorPolicy”
@ Procedure "editCustomerDetails”
® Procedure "getBusinessPolicy”
@ Procedure "getCustomerDetails™
@ Procedure "getCustomerPolicies”
@ Procedure "getEndowmentPolicy”
@ Procedure "getHousePolicy”
@ Procedure "getMotorPolicy”
@ Procedure "resetDemo”
@ Procedure "startMotorPolicyClaim”

The maximum number of concurrent requests that can be performed
on the back-end application

Down

Design| Source |

OPS/images/2-27-2014_4-25-23_AMD.png

OPS/images/2-27-2014_2-57-14_AM.png
s *GENAPPInquirexml 22
Adapter Editor
Overview
type filter text

4 @y Adapter "GENAPPInquire”
4 5 Connectivity
& Connection Policy
@ Procedure "addEndowmentPolicy”
@ Procedure "addHomePolicy”
@ Procedure "addMotorPolicy”
@ Procedure "deleteMotorPolicy”
@ Procedure "editCustomerDetails”
@ Procedure "getBusinessPolicy”
@ Procedure "getCustomerDetails”
@ Procedure "getCustomerPolicies”
@ Procedure "getEndowmentPolicy”
@ Procedure "getHousePolicy”
@ Procedure "getMotorPolicy”
@ Procedure "resetDemo”
@ Procedure "startMotorPolicyClaim”

Add,

Down

Display name:

Description: =

Audit

Defines whether calls to the procedure should be logged in the audit
log or not. Refer to the Information Center for the location of the log
file. Valid values are:

- checked: Calls to the procedure will be logged in the audit log

- unchecked: (default)
Connect as: server v

Defines how to create a connection to the back-end for invoking the
retrieve procedure. Valid values are:

- server: (default) The connection to the back end will be created
‘according to the connection policy defined for the adapter

- endUser: The connection to the back end will be created with the
user's identity, as authenticated by the authentication realm

Timeout in seconds: 5

The timeout in seconds for waiting until a receiving response from
the back end, including the time for opening the connection. The
default s 30 seconds

I

Design| Source |

OPS/images/2-27-2014_2-52-48_AM.png
Select

Create new projects from an archive file or directory.

Select an import source:

\ type filter text
& Existing Projects into Workspace |
(5, File System
[Import XML Transform Source
L Preferences

=4

3=43]

v & Git

4 & Install
1 From Existing Installation

i [wewr J0 mmn [conca]

OPS/images/2-27-2014_2-55-12_AM.png
&

[Project Explorer 2 B
4 79 genapp
» Eh Java Resources
» B JavaScript Resources
4 & adapters
4 & ClaimNotification
» B ClaimNotification-impljs
s ClaimNotificationxml
4 & GENAPPInquire
» B GENAPPInquire-impljs
s GENAPPInquirexml
b § apps
» & bin
4 = server
4 & conf
[authenticationConfig.xm|
defaultkeystore
[loginhtml
¥ SMSConfigxml
worklight.properties
> & java
& lib
& services
» & Worklight Development Server

OPS/images/2-13-2014_7-29-46_AM.png
Catalog Devices Push Notifications

[—

There are no deployed applications or adapters.

' © Copyright IBM Corp. 2006, 2013. All Rights Resenved

OPS/images/2-11-2014_5-13-09_AM.png
IBM Worklight Console Welcome, wlAdmin | Logout | About

Catalog Devices Push Notifications

‘There are no deployed applications or adapters.

* [—

OPS/images/2-11-2014_3-36-57_AM.png
= Messages

[The ripple start operation on cluster prodCluster1 has been initiated. Each cluster member will be
stopped and started in sequence. It may take several minutes for this operation to complete.

WebSphere application server dusters

Use this page to change the configuration settings for a cluster. A server duster consists of a group of application servers. If one of the member
servers fais, requests will be routed to other members of the dluster. Learmn more about this task in a quided activity. A guided activity provides a
list of task steps and more general information about the topic.

Preferences

| New... || Delete | Start | Stop | Ripplestart || Immediatestop |

Select | Name & Status ()

You can administer the following resources:

prodClustert. P

Total 1

OPS/images/2-11-2014_3-41-07_AM.png
Cell=ProdCell, Profile=Dmgro1

tion:

Enterprise Appl

Enterprise Applications
Use this page to manage installed applications. A single application can be deployed onto multiple servers.

Preferences

| start || stop || Install || uninstall || Update || Rollout Update | Remove File || Export || Export DDL || Export File

Select | Name £ Application Status €

You can administer the following resources:

IBM Application Center Console 5518120737 >
IBM Application Center Services 5518120737 >
IBM_Workiight_Console >

Total 3

OPS/images/2-11-2014_4-52-22_AM.png
1BM Worklight

Password

©2006, 2012 1BM Corporation. Trademark

OPS/images/2-11-2014_3-58-03_AM.png
Cell=ProdCell, Profile=Dmgr01

pdate global plug-in configuration

Update global Web server plug-in configuration

Use this page to create or update a global plug-in configuration file for a cell. The settings in this configuration file are based on the topology of
the cell. The web server plug-in configuration file controls whether an application server or the web server handles user requests. You must
regenerate this global plug-in configuration file whenever you change the configuration settings for an application server, duster, web container
transport, or virtual host alias that is contained in the cell. You must also regenerate this file whenever you add a new application server, cluster,
web container transport, or virtual host alias to the cell. The global plugin-cfg.xmi fie is placed in the %was_profile_home%/config/cells directory.
This configuration file includes the URIS for all of the applications that are deployed in this cell. If your web server is located on a remote machine,
you must manually move this plug-in configuration file to that machine.

Click OK to update, or click Overwrite to generate a new plug-in configuration file.

View or download the current Web server plug-in configuration file

OPS/images/2-27-2014_3-48-33_AM.png
the same cluster.

Default: HTTP.
i i g [S e s]
Worklight | 1nE/web.xmi CENEEESAIIIETR StINg | timeout in minutes. Default: 10.
e ing el |
Worklight | 1 e /iweb. xmi (D StING| (¢re/false). Default: false.
[OPTIONAL] Shows whether
genapp.war, WEB- ng| Go08le GCM must be accessed | [
Worklight | 1nE/web.xmi push geipioxy snabied SN | through a proxy. Defauit is
false.
g [OPTIONAL] GCM proxy host.
Workight| JEBPPIBEMES: | L o, o host o e P L |
- port.
[OPTIONAL] GCM proxy port.
war, WEB- .
P = P ypp—— tring| bae 1t for the defaut yore, | [
INF/web.xmi o
genapp.war, WEB- ng| [OPTIONAL] Can be efther hitp | [———————————
Workighe | JenePP war: push.gcm.proxy.protocol string| [O7TION
[OPTIONAL] Proxy user name, if
e g | . o]
Worklight | 1nE/web.xmi CIERGE T ATESr SN | authentication. Empty user
name means no authentication.
g [OPTIONAL] Proxy password, if
Workight | Set=PPMe\WES” | s gemproxy password String | the proxy requires |
- authentication.
enap A WEB- [OPTIONAL] Shows whether
Workight | 2e1PE oo push.apns.proxy.enabled String | APNS must be accessed [
web.xml through a proxy. Default: false
Workight | Se1PP-War\WES™ | push.apns.proxy.host String| [OPTIONAL] APNS proxy host | [|
Workight | 98NaPD-War, WEB- | 55 apns proxy.port String| [OPTIONAL] APNS proxy port | []

INF/web.xml

OPS/images/2-27-2014_3-49-08_AM.png
genapp.war, WEB-

[OPTIONAL] The password to

Workight| Se1aPPWerWES” | wi.ca key.alias.password string | oo In he keystore.]
o [OPTIONAL] SSL certificate
Wworklight lgrf;‘;""t;"““l ssl.keystore.path string | keystore location. Default: Jopt/certs/cics.jks
web.xml conf/default.keystore.
[OPTIONAL] SSL certificate
genapp.war, WEB- . keystore type. Valid keystore T
Worklight | 1 e /iweb. xmi elEREERlEe St ¢y nes: jks, PKCS12. Default: ks
Jks.
o [OPTIONAL] SSL certificate
Workight | SeTPE-var ssl.keystore.password String| keystore password.Default:
web.xml worklight.
[OPTIONAL] Applications and
Workiight 19:;‘;‘356":"""""55' duster.data.synchronization. taskFrequencylnSeconds | String ‘S‘;’:c"ffs)’smga“;;ﬁ'"“’?;wl |
Default: 2.
o [OPTIONAL] Deployables folder
Workiight | §enapp.war, deployables.cleanup.taskFrequencyInSeconds string | cleanup task interval (in [

INF/web.xml

seconds). Default: 86400.

OPS/images/2-11-2014_3-36-07_AM.png
Cell=ProdCell, Profile=Dmgr01

Enterpri

Appl

Enterprise Applications

Use this page to manage installed applications. A single application can be deployed onto multiple servers.

Preferences

| start || stop || Install || uninstall || Update || Rollout Update | Remove File || Export || Export DDL || Export File

Select | Name £ Application Status €
You can administer the following resources:
IBM_Application_Center Console 5518120737 >
IBM_Application_Center Services 5518120737 >
IBM_Worklight Console ®

Total 3

OPS/8215cover.jpg
IBM System zin a
Mobile World

Providing Secure and Timely Mobile Access to the Mainframe

Understand the business benefits
of mobility

Integrate IBM System zintoyour
mobile strategy

““Explore an integrated and
secure mobile application

Axel Buecker Wilhelm Mild
Aymeric Atouard David Shute
Andy Armstrong Peter Siddell
Raymond Chiang ~ Frank Van Der Wal
Tony Duong Nigel Williams
Richard Gamblin Richard Young

ibm.com/redbooks REdbOOks

OPS/cover.xhtml

 [image: Cover image]

