

ibm.com/redbooks

IBM WebSphere V4.0
Advanced Edition
Security

Peter Kovari
Victoria Amor
Marko Fuchs

Joanna Hodgson
James Roca

IBM WebSphere Application Server
security in detail

End-to-end security using Tivoli
Policy Director

Single Sign-On for
application servers

Front cover

IBM WebSphere V4.0 Advanced Edition Security

March 2002

International Technical Support Organization

SG24-6520-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (March 2002)

This edition applies to WebSphere Application Server Version 4.0.1 Advanced Edition for use with
Windows 2000, AIX 4.3.3, Sun Solaris 2.8; WebSphere Studio Application Developer V4.1 on
Windows 2000; Tivoli SecureWay Policy Director 3.8 on Windows 2000.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 521.

Contents

Preface . xi
The team that wrote this redbook. .xi
Notice . xiv
IBM trademarks . xiv
Comments welcome. xv

Part 1. Introduction . 1

Chapter 1. Introduction to security . 3
1.1 Security . 4

1.1.1 Physical security . 4
1.1.2 Logical security . 5
1.1.3 Security policy . 5

1.2 Security in use. 6

Chapter 2. Security fundamentals . 7
2.1 Authentication . 8
2.2 Authorization . 10
2.3 Delegation . 11

Chapter 3. Security certificates . 13
3.1 Public Key Infrastructure (PKI) . 14

3.1.1 Encryption . 14
3.1.2 Certificates . 17
3.1.3 Elements of a certification authority system 19
3.1.4 Tivoli SecureWay PKI . 20
3.1.5 Certification process . 21
3.1.6 Infrastructure . 23
3.1.7 Policies . 25

3.2 Smart cards . 25
3.2.1 Using smart cards . 27

3.3 Where to find more information . 28

Part 2. WebSphere security . 31

Chapter 4. IBM WebSphere Application Server security 33
4.1 WebSphere security model . 34

4.1.1 Security architecture . 34
4.2 IBM WebSphere Application Server security features 39
© Copyright IBM Corp. 2002 iii

4.2.1 How to secure an application . 39
4.2.2 WebSphere authentication model . 46
4.2.3 User registry . 50
4.2.4 Security Center . 52
4.2.5 Web Trust Association . 62
4.2.6 Securing only the Administrative Server . 63

4.3 WebSphere security and the operating environment 66
4.4 Performance considerations . 67
4.5 Other security features of WebSphere . 68

4.5.1 Encoded passwords . 68
4.5.2 Security interoperability with z/OS . 70

4.6 WebSphere Advanced Edition V4 ptf2 . 70

Chapter 5. The sample used in this book . 73
5.1 Sample application: Webbank. 74

5.1.1 Base Webbank application structure. 75
5.2 Importing the sample into WebSphere Studio Application Developer. . . . 77
5.3 Defining security roles . 81

5.3.1 Setting up users and groups in LDAP . 82
5.3.2 Security roles with Application Assembly Tool 83
5.3.3 Security roles with WebSphere Studio Application Developer 86

5.4 Installing the Webbank application . 89
5.4.1 Creating the application server . 90
5.4.2 Setting up the data source . 90
5.4.3 Installing the enterprise application. 91
5.4.4 Starting the application . 93

5.5 Security role mapping . 93
5.5.1 Security role mapping with the Security Center 93
5.5.2 Security role mapping during installation . 94
5.5.3 Security role mapping with the Application Assembly Tool 95
5.5.4 Security mapping with WebSphere Studio Application Developer . . 96

5.6 Domino Webbank sample . 98
5.7 Security samples . 103

Chapter 6. Securing Web components . 105
6.1 Static components served by a Web server . 106

6.1.1 How to secure HTTP basic authentication for IBM HTTP Server . . 106
6.1.2 Managing access to IBM HTTP Server using .htaccess 111

6.2 WebSphere Web module security . 112
6.3 Securing the Web components . 117

6.3.1 Static pages served by WebSphere Application Server 117
6.3.2 Servlets . 120
6.3.3 JavaServer Pages (JSPs) . 124
iv IBM WebSphere V4.0 Advanced Edition Security

6.4 Defining WebSphere Studio Application Developer security constraints 124
6.5 Configuring Web module security using WebSphere Studio Application

Developer . 127
6.6 Form-based and Custom Login facilities . 131

6.6.1 Form-based login . 131
6.6.2 Custom login . 132

Chapter 7. Securing EJBs . 135
7.1 Securing EJBs. 136
7.2 Assigning methods to roles . 137

7.2.1 Configuring method permissions using AAT 140
7.2.2 Configuring method permission with WebSphere Studio

ApplicationDeveloper . 143
7.3 Setting up security role references . 145
7.4 Configuring the delegation policy . 147

7.4.1 Setting up delegation policy (Run-As mode) using AAT 149
7.4.2 Setting up delegation policy (Run-As mode) using WebSphere Studio

Application Developer. 150
7.4.3 Run-As mapping using the Administrator’s Console 151
7.4.4 Run-As mapping during deployment . 152

7.5 Topology considerations . 153

Chapter 8. Securing J2EE clients . 155
8.1 J2EE clients. 156
8.2 The Secure Association Service (SAS). 156

8.2.1 SAS on the client side . 158
8.2.2 SAS on the server-side . 160

8.3 Programmatic login . 161
8.3.1 Client-side login. 161
8.3.2 Server-side login . 163

8.4 J2EE application client . 165
8.4.1 Webbank J2EE client . 165

8.5 Java thin application clients. 166
8.5.1 Running the WebbankThinClient sample . 167

8.6 Applet clients . 168
8.7 Authentication summary . 168

Chapter 9. Securing Web services. 171
9.1 Web services. 172
9.2 Securing WebSphere Web services . 172

9.2.1 Securing SOAP services. 174
9.3 SOAP signature components . 175

9.3.1 Web module . 175
9.3.2 Envelope Editor . 177
 Contents v

9.3.3 Signature Header Handler . 178
9.3.4 Verification Header Handler . 180

9.4 How to create secure Web services with WebSphere Studio Application
Developer . 183

9.4.1 Modifying the Webbank code . 183
9.4.2 Creating the secure Web service . 184
9.4.3 Testing the Web service . 190
9.4.4 Generated code . 191
9.4.5 The XML-SOAP Admin tool . 192
9.4.6 Running the Webbank Web services sample 193
9.4.7 Checking the log file . 194

9.5 Customizing the certificates for secure Web services 197
9.5.1 Certificates provided by WebSphere Studio Application Developer 198

9.6 Secure Web services samples in WebSphere V4 AE 199

Chapter 10. Programmatic security . 201
10.1 Programmatic security. 202
10.2 J2EE API . 203

10.2.1 EJB security methods . 203
10.2.2 Servlet security methods. 204

10.3 CustomRegistry SPI . 206
10.4 Trust Association Interceptor SPI . 213

Chapter 11. Administering WebSphere Security 215
11.1 WebSphere Global Security . 216

11.1.1 The Demo Keyring . 217
11.1.2 Option 1: self-signed certificate using the IBM ikeyman utility . . . 219
11.1.3 Option 2: certificate signed by a third-party CA. 224
11.1.4 Configuring WebSphere to use your own keyring 229
11.1.5 Modifying the sas.client.props file . 234
11.1.6 Enabling Global Security and securing the Administrative Server 235

11.2 Configuring the Web Server to support HTTPS 239
11.2.1 Generating a certificate to protect your Web Server 240
11.2.2 Configuring the IBM HTTP Server for SSL/HTTPS support 244
11.2.3 IBM HTTP Server (IHS) Cipher Support Strength. 248

11.3 Client-Side Certificates for Authentication. 253
11.3.1 Securing a Web Application to use client certificates 254
11.3.2 Obtaining a personal certificate. 255
11.3.3 LDAP advanced security settings . 258

11.4 Configuring SSL between Web server and WebSphere Application Server
270

11.4.1 Generating a self-signed certificate for the Web server plug-in . . 271
11.4.2 Generating a self-signed certificate for a Web Container 272
vi IBM WebSphere V4.0 Advanced Edition Security

11.4.3 Exchanging public certificates . 274
11.4.4 Modifying the Web server plug-in configuration file 275
11.4.5 Modifying the Web Container to support SSL 277

11.5 Restricting access to only HTTPS connections. 280
11.6 Securing WebSphere LTPA with SSL . 282

11.6.1 IBM SecureWay Directory Server . 282
11.6.2 Creating a self-signed certificate for the SecureWay LDAP peer . 284
11.6.3 Creating a key database for the WebSphere LDAP SSL peer . . . 286
11.6.4 Modifying the SecureWay LDAP Directory to use SSL. 287
11.6.5 Modifying WebSphere to use LDAP over SSL 290
11.6.6 Disabling SecureWay Anonymous LDAP searches 294
11.6.7 SSL and the Netscape iPlanet Alliance Directory Server 300
11.6.8 SSL Certificate creation with iPlanet Directory Server 301
11.6.9 Modifying iPlanet to support SSL/LDAPS 306
11.6.10 The iPlanet CA-signed certificate . 308
11.6.11 Modifying WebSphere to support LDAPS with iPlanet 310
11.6.12 Disabling iPlanet Anonymous LDAP searches 314
11.6.13 SSL and Lotus Domino LDAP. 317

Part 3. End-to-end security solutions . 331

Chapter 12. Security in Patterns for e-business . 333
12.1 Patterns for e-business . 334
12.2 Access Integration pattern. 335

12.2.1 Application patterns. 336
12.3 Runtime patterns . 338

12.3.1 Basic Runtime pattern . 341
12.3.2 Runtime pattern variation . 341
12.3.3 Single Sign-On Runtime patterns . 342

12.4 Product mappings . 346
12.4.1 Single Sign-On . 346
12.4.2 Centralized security. 349

12.5 More information . 350

Chapter 13. Policy Director. 353
13.1 End-to-end security solutions . 354
13.2 Using Tivoli Policy Director . 355

13.2.1 Using Tivoli WebSEAL . 355
13.2.2 Using Tivoli Policy Director to protect static pages 358
13.2.3 Using Tivoli Policy Director to protect WebSphere URIs 365
13.2.4 Policy Director LTPA authentication . 368
13.2.5 Web Trust Association . 381

Chapter 14. Single Sign-On . 393
 Contents vii

14.1 Single Sign-On . 394
14.2 WebSphere-Domino using SecureWay Directory 395

14.2.1 Enabling Single Sign-On for WebSphere 397
14.2.2 Enabling Single Sign-On for Domino . 400
14.2.3 Implementing the security to the Webbank.nsf database 409
14.2.4 Testing Single Sign-On between Domino and WebSphere 411

14.3 WebSphere-Domino using SecureWay LDAP with SSL 418
14.3.1 Enabling SSO to use SSL in WebSphere 419
14.3.2 Enabling SSO to use SSL in Domino . 420
14.3.3 Testing SSO between Domino and WebSphere using SSL 422

14.4 WebSphere-Domino using Domino LDAP . 423
14.4.1 Installing and configuring software products and examples 426
14.4.2 Enabling Single Sign-On for WebSphere Application Server 426
14.4.3 Enabling Single Sign-On for the Domino Server 427
14.4.4 Implementing security to the Webbank.nsf database 428
14.4.5 SSO WebSphere-Domino using Domino LDAP with SSL 430
14.4.6 Troubleshooting Single Sign-On . 432

Part 4. Appendixes . 435

Chapter 15. Problem determination. 437
15.1 The IBM HTTP Web Server . 438

15.1.1 First steps . 438
15.1.2 Problem determination . 439
15.1.3 Web Server trace example . 439

15.2 The WebSphere Web Server plug-in . 440
15.2.1 First steps . 441
15.2.2 Problem determination . 441
15.2.3 Web Server plug-in trace example . 442

15.3 The IBM WebSphere Application Server. 443
15.3.1 First steps . 444
15.3.2 Problem determination . 446
15.3.3 JVM trace arguments . 448
15.3.4 The Secure Association Service (SAS). 449
15.3.5 Post-analysis using the Log Analyzer . 450
15.3.6 IBM WebSphere Application Server trace example 451

Chapter 16. IBM WebSphere Application Server and LDAP 459
16.1 SecureWay Directory Server . 460

16.1.1 Installing and configuring the IBM SecureWay Directory 460
16.1.2 Populating data entries in the IBM SecureWay Directory 467
16.1.3 Configuring WebSphere to use the SecureWay Directory Server 478

16.2 Lotus Domino 5.0 . 482
16.2.1 Configuring the Domino Server to run the LDAP service 482
viii IBM WebSphere V4.0 Advanced Edition Security

16.2.2 Configuring WebSphere to use the Domino Directory 484
16.3 Netscape Directory Server . 490

16.3.1 Adding a new user . 490
16.3.2 Configuring WebSphere to use the Netscape Directory Server . . 496

16.4 Microsoft Active Directory . 499
16.4.1 Adding a new user . 499
16.4.2 Configuring WebSphere to use the Active Directory Server 504

Chapter 17. Using OpenSSL. 509
17.1 Open Source Software . 510
17.2 OpenSSL. 510
17.3 How to create certificates using OpenSSL . 511

17.3.1 Creating your own CA . 511
17.3.2 Client certificate. 513
17.3.3 Using the certificates. 514

Appendix A. Additional material . 515
Locating the Web material . 515
Using the Web material . 515

System requirements for downloading the Web material 516
How to use the Web material . 516

Related publications . 517
IBM Redbooks . 517

Other resources . 518
Referenced Web sites . 518
How to get IBM Redbooks . 519

IBM Redbooks collections. 519

Special notices . 521

Abbreviations and acronyms . 523

Index . 525
 Contents ix

x IBM WebSphere V4.0 Advanced Edition Security

Preface

This IBM Redbook provides IT Architects, IT Specialists, application designers,
application developers, application deployers and consultants with information to
design, develop and deploy secure e-business applications using WebSphere
Application Server V4 Advanced Edition.

Part 1, “Introduction” on page 1 provides a high-level overview of IT security, and
introduces the basic and most important security services for the e-business
applications.

Part 2, “WebSphere security” on page 31 focuses on IBM WebSphere
Application Server’s security features and services. It provides a detailed
overview of how to administer WebSphere security and how to secure Web
components, EJBs, Java clients and Web services.

Part 3, “End-to-end security solutions” on page 331 offers details about
end-to-end security solutions and application design. You will find an introduction
of Patterns for e-business, in which security is in focus. We will also address
Tivoli Policy Director and how to use it together with WebSphere Application
Server. Single Sign-On is discussed in detail between application servers such
as WebSphere and Lotus Domino.

The Appendixes on page 435 provide additional information on security, such as
problem determination, installation and configuration of WebSphere and different
LDAP servers, and how to use OpenSSL to run your own CA.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2002 xi

Figure 0-1 The IBM Redbook team (left to right: Marko Fuchs, Joanna Hodgson, James
Roca, Victoria Amor, Peter Kovari)

Peter Kovari is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about all areas of
WebSphere. His areas of expertise include e-business, e-commerce, security,
Internet technologies and mobile computing. Before joining the ITSO, he worked
as an IT Specialist for IBM in Hungary.

Victoria Amor is an IT Specialist in IBM WebSphere and Lotus Domino within
IBM Global Services in Spain. Her areas of expertise include IBM WebSphere
support, particularly the areas of security and administration, and design and
consultancy in Lotus Domino. She has worked within IBM for four years,
participating in remarkable e-business projects such as the Sydney Olympic
Games as the responsible of all Lotus Domino Servers in the Games System
Center. Currently, she is part of the IBM Center for e-business Innovation,
located in Madrid. In Raleigh, she was in charge of the execution of inbound
e-business projects for clients.

Marko Fuchs is an IT Specialist with Haitec AG, Munich (Germany), a business
partner of IBM. His areas of expertise include design and development of secure
distributed applications using Web technolgies, Enterprise Beans, Java
Cryptography Extensions (JCE) and databases. He is also an expert on the
e-business platform WebSphere Commerce Suite. Currently, he teaches the
xii IBM WebSphere V4.0 Advanced Edition Security

store programming and store design courses for WebSphere Commerce Suite
V5.1 in Germany and Austria. He holds a Diplom Informatiker (FH) degree from
the Fachhochschule Rosenheim (Germany) and a Bachelor of Computing
Science degree from Staffordshire University (UK).

Joanna Hodgson is an EMEA-level technical specialist in IBM WebSphere,
based in the United Kingdom. She has eight years of experience in software and
is an expert on IBM WebSphere, particularly the areas of security, integration
with MQSeries and messaging systems through JMS. Her other areas of
expertise include Java and OS/2. She has published a number of papers on
WebSphere and contributed to IBM Redbooks, including the OS/2 Debugging
Handbook. Joanna has a Bachelor of Sciences in Computer Science from
Glasgow University.

James Roca is an Advisory IT Specialist and a senior member of the IBM EMEA
IGS WebSphere Support Organization. He is tasked with providing the official
support escalation channel for WebSphere problems originating in Europe, both
defect and non-defect. He also provides on-site WebSphere consultation and
support, typically for banks and financial institutions across Europe. His other
areas of expertise include IBM AIX, Sun Solaris, IP networks and VPN firewalls.
He previously co-authored the WebSphere V3.5 Handbook.

A remote team member has also contributed to the redbook project:

Tibor Vermes is an IT Specialist in IBM Hungary. He has two years of
experience in the e-business field. His areas of expertise include PKI, smart card
development, electronic commerce, and object-oriented programming. He holds
an Msc. degree from the Technical University of Budapest.

Thanks to the following people for their contributions to this project:

Nataraj Nagaratnam, WebSphere Family Security Architect

Thanks to the following people from the International Technical Support
Organization, Raleigh Center

Cecilia Bardy
Gail Christensen
Mark Endrei
Michele Galic
John Ganci
Carla Sadtler
Linda Robinson
Margaret Ticknor
Jeanne Tucker
 Preface xiii

Thanks to the following IBM employees:

Jonathan Adams, SWG Technical Strategy - IT Consultant
Axel Buecker, ITSO Austin - Security expert
Jeff Crume, IT Security Architect
Sharon Dagan, IT Architect
Jim Davey, Software IT Architect - Security
Tom Hyland, Software Services
Isabelle Mauny, EMEA WebSphere Software Services
Keith B. Smith, WebSphere Performance/Security

Notice
This publication is intended to help IT Specialists, IT Architects, application
developers, application deployers and consultants to design, develop, deploy and
manage secure applications using WebSphere. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by WebSphere Application Server 4.0.1 Advanced Edition,
Tivoli SecureWay Policy Director 3.8. See the PUBLICATIONS section of the IBM
Programming Announcement for WebSphere Application Server 4.0.1 Advanced
Edition, Tivoli SecureWay Policy Director 3.8 for more information about what
publications are considered to be product documentation.

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

e (logo)®
IBM ®
AIX®
DB2®
DB2 Universal Database™
Domino™
Everyplace™
FAA®
IBM.COM™
Lotus®
MQSeries®

Redbooks™
Redbooks Logo
Notes®
OS/2®
RACF®
SecureWay®
SP™
Tivoli®
WebSphere®
z/OS™
xiv IBM WebSphere V4.0 Advanced Edition Security

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
 Preface xv

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xvi IBM WebSphere V4.0 Advanced Edition Security

Part 1 Introduction

Part 1
© Copyright IBM Corp. 2002 1

2 IBM WebSphere V4.0 Advanced Edition Security

Chapter 1. Introduction to security

Implementing and managing a secure e-business environment is one of the most
challenging tasks today. The security paradigm has changed rapidly and
nowadays it has influence on every aspect of an IT solution.

More and more businesses are running on an IT infrastructure or are supported
by IT solutions. Running a business in any environment means that it has to be
protected and secured completely.

Enabling security means enabling e-business, because users, customers and
companies all need to be sure that their data cannot be corrupted or misused.

Companies need to come up with their solutions quickly, but on the other hand
they also have to ensure a highly secure environment for operation.

This book will show you how to use WebSphere Application Server Advanced
Edition’s security features so as to satisfy the required security needs in an
e-business solution. It goes further and covers some of the end-to-end security
solutions tightly related to the WebSphere Application Server.

1

© Copyright IBM Corp. 2002 3

1.1 Security
This chapter is an introduction to basic security and provides no details or
WebSphere specific information.

As new business practices emerge, most enterprises are finding that their
existing security infrastructure is not capable of meeting the rapidly changing and
more rigorous demands of business over the Internet. The demands of network
security have now gone far beyond simply managing user accounts and
restricting access between internal and external networks. These demands now
require a sophisticated system that allows fine-grained access control to
resources, yet is manageable enough to be tailored to protect systems from
many types of security threats.

Security is a fairly vast topic; everything involves security to some extent, in a
certain format. There are two main areas which have to be discussed separately:

� Physical security
� Logical security

Systems have to be protected both from outsiders and insiders. Do not forget
that not every intrusion or attack is intentional; misuse of a system or improper
administration can also cause damage.

1.1.1 Physical security
Physical security means protection against physical actions. It involves every
physical element around:

� The machine(s) where the application is running.

� The room where the machines are operating.

� The building where the machines are installed.

� The site where the company is located.

The listed elements have to be secured against intrusion and damage, whether
intentional or not.

Physical security also includes the protection of communication channels:

� Ground lines

� Wireless connection

The communication network has to be protected against eavesdropping and
damage to the connection (cutting the line).
4 IBM WebSphere V4.0 Advanced Edition Security

The subject of physical security goes much further than the objective of this book
allows. This short section is only intended as a reminder of the concept of logical
security.

1.1.2 Logical security
Logical security is related to the IT solution: the IT architecture and applications,
including the business processes.

Communication
Network communication must be protected not only on a physical but on a logical
level as well. Most of the companies’ networks are connected to public networks.
Therefore, applications are accessible from the outside world. Network level
security must prevent unauthorized access.

Application
Securing an application is done on different levels. Security is designed from the
very beginning of the implementation, when the processes and flows are
designed.

� Securing the resources

This implies protecting the resources on an application level and exercising
the security features of the runtime platform (authentication and
authorization).

� Implementing the business processes securely

The processes have to be designed in a way that no weakness in logic can be
found.

1.1.3 Security policy
Security policies are guidelines for an organization; they can be part of a widely
accepted standard (ISO) or implemented by a certain organization or company.

Policies can define processes for different areas in an organization. Security
policies focus on security related processes, for example, how to request a new
password, how to renew a password, and so on.

These guidelines are very important in implementing a robust security for the
whole system organization-wide.
 Chapter 1. Introduction to security 5

1.2 Security in use
Since security is a complex and diversified topic, it is important to keep it simple.

The following list will show the basic security areas. These areas have to be
taken into account and their requirements must always be fulfilled.

� Authentication / Identification - Measures designed to protect against
fraudulent transmission and imitative communications by establishing the
validity of transmission, message, station or individual.

� Access Control - The prevention of improper use of a resource, including the
use of a resource in an unauthorized manner.

� Privacy / Confidentiality - Assurance that information is not made available
or disclosed to unauthorized individuals, entities, or processes.

� Integrity - The correctness of information, of the origin of the information, and
of the functioning of the system that processes it.

� Accountability / Non-repudiation - Assurance that the actions of an entity
may be traced uniquely to the entity. This ensures that there is information to
prove ownership of the transaction.

� Administration / Configuration - Methods by which security policies are
incorporated into the architecture and the functionality that the system
architecture needs to support.

� Assurance / Monitoring - Confidence that an entity meets its security
objectives; this is usually provided through an Intrusion Detection System.

� Security Management - Assurance that an entity meets its security
management objectives, processes and procedures.

If you keep this list in mind during design and development, security will be well
implemented.
6 IBM WebSphere V4.0 Advanced Edition Security

Chapter 2. Security fundamentals

This chapter will discuss three fundamental security services also supported by
WebSphere Application Server:

� Authentication

� Authorization

� Delegation

2

© Copyright IBM Corp. 2002 7

2.1 Authentication
Authentication is the process of establishing whether a client is valid in a
particular context. A client can be either an end user, a machine or an
application.

The authentication process involves gathering some unique information from the
client.

There are three major groups of secure authentication used to gather this unique
information:

� Knowledge-based - user name and password, for example.

� Key-based - physical keys, encryption keys, key cards.

� Biometric - finger prints, voice patterns or DNA.

Other authentication mechanisms can combine these; an example is digital
certificates, where key-based and knowledge-based authentication are
exercised.

Figure 2-1 Base authentication mechanisms

The following paragraphs will discuss some of the authentication mechanisms
used in IT systems.

key based

knowledge
based

biometric

digital certificates

harware key

user name/password

retinal images

voice password

finger print

symmetric encription

base
authentication
mechanisms
8 IBM WebSphere V4.0 Advanced Edition Security

User name and password
User name and password are the common method for authentication. The user
who wants to access the system provides a user name and a password for login,
which will be compared with the values stored in the system. The user name and
password are presented as strings, which means that they can travel as plain
text in the network. Sensitive information can be encoded, which is good for
avoiding obvious security vulnerabilities. The use of SSL protocol for encrypting
the user name and password represent an additional level of security.

Physical keys
Physical keys are objects that can be used to prove the identity of the object
holder. Physical keys can be a piece of metal used to unlock your computer, a
hardware device that is plugged into the computer to execute certain programs
or smart cards that have a memory or microprocessor embedded.

Biometric authentication
Biometric authentication is the use of physiological or behavioral characteristics
used to verify the identity of an individual. The biometric authentication consists
of comparing the physical characteristics of an individual against the values of
those characteristics stored in a system. The advantage of this type of
authentication is that the user cannot lend its identification values, as can be
done with a physical key, and cannot forget it like a password.

The disadvantages are that a biometric authentication system is expensive and
most of the biometric methods such as voice print, finger prints, retinal images or
facial images require that the user have a measurable characteristic.

Digital certificates
Digital certificates are based on public/private key technology. This technology
uses a pair of keys that work together. What the public key encrypts, only the
corresponding private key can decrypt and vice-versa. The public key is
available for other users that can use this key to encrypt information to send to
an individual. The private key is only accessible for one user, the key holder, and
can be used to decrypt messages encrypted with the public key sent by another
user or to encrypt messages that can only be decrypted with the corresponding
public key by the other communicating party.

The digital certificates are used to automate this process and can be installed on
the client or on the server machine. Certificates are usually issued by a
Certification Authority (CA) that guarantees that the owner of the certificate is
who he/she says he/she is.
 Chapter 2. Security fundamentals 9

2.2 Authorization
Authorization is the process of checking whether the authenticated user has
access to the requested resource. There are two fundamental methods for
authorization:

� Access Control List

Each resource has associated with it a list of users and what each can do with
the resource (for example: use, read, write, execute, delete or create).

Usually, an Access Control List specifies a set of roles allowed to use a
particular resource and also designates the people allowed to play these
roles.

For example, in a bank account object, we can have different methods
(transfer, deposit, getBalance, setInterest, etc.). The access right can be
granted on the basis of the roles of the users within the organization. A bank
teller can have access to the getBalance method but not to setBalance, while
a manager can access to both methods.

Table 2-1 Example of a Role Access Control List

� Capability list

Associated with each user is a list of resources and the corresponding
privileges held for the user.

In this case, the holder is given the right to perform the operation on a
particular resource.

In the previous example of the bank account object, the access right is
granted to the user if the resource is listed in the user’s capability list.

Table 2-2 Example of a capability list

Resources Bank teller role Manager role

getBalance method yes yes

setBalance method no yes

Roles getBalance method setBalance method

Bank teller role yes no

Manager role yes yes
10 IBM WebSphere V4.0 Advanced Edition Security

You will find the two tables shown above very similar, but the rows and the
columns are switched. Actually, this is the difference between the two
approaches. We have two sets: roles and resources. In the first case, roles are
mapped to resources, while in the second case resources are mapped to roles.

The access control list is exercised generally, because managing security for
certain resources is easier and more flexible than mapping resources to roles.

2.3 Delegation
Delegation is the ability to leave an intermediary to do the work initiated by a
client according to a delegation policy.

For example, in a distributed object environment, a client can request the method
of an object on Server A. The method request results in invoking another method
of an object in server B. Server A performs the authentication of the identity of
the client and passes the request to server B. Server B assumes that the client
identity has been verified by server A and responds to that request as shown in
Figure 2-2.

Figure 2-2 Delegation mechanism

Depending on the application environment, the intermediary can have one of the
following identities when making a request to another server:

� Client identity: the identity under which the client is making the request to the
intermediary.

� System identity: the identity of the intermediary server.

� Specified identity: identity specified through configuration.

Note: Delegation is not defined in the J2EE 1.2 specification.

Server A
authenticates

the client

Server B
authorizes

client's
request and
performs the

operation

request request

client
 Chapter 2. Security fundamentals 11

The most common case for delegation between EJBs is the Facade design
pattern. One implementation of the pattern is when a session EJB is provided to
handle the processes using entity EJBs. The session EJB is simply working as
an interface and hides the complexity of the entity EJBs (see Figure 2-3.)

Figure 2-3 Facade pattern realization with EJBs

To see another example of delegation in WebSphere, see the WebSphere
delegation model section in IBM WebSphere V4.0 Advanced Edition Handbook
SG24-6176.

transfer

branch
account

customer
account

entity EJB

session EJB

entity EJB

servlet
transferBranch2Customer(amount)

deposit(amount)

credit(amount)
12 IBM WebSphere V4.0 Advanced Edition Security

Chapter 3. Security certificates

This chapter will cover the possibilities of increasing security in e-business
systems.

The main motivation for developing more reliable security systems is the very
fast growth of the Internet. A huge amount of information must be transmitted
through the network. Internet security comes into play when the data we would
like to hold or transmit is confidential; typically, this situation arises during
banking or inter-enterprise business transactions, or in the course of electronic
commerce.

IT security has many aspects and levels. The lowest level involves the encryption
standards. These are based on very complex mathematical algorithms (for
example , the famous RSA algorithms). The security protocols (such as SSL) are
one level higher and also use the mentioned algorithms. These protocols are
developed to transmit data within an unreliable environment. The complex
security systems use many protocols and algorithms for user authentication and
data encryption.

3

© Copyright IBM Corp. 2002 13

3.1 Public Key Infrastructure (PKI)
This chapter provides a brief overview of Public Key Infrastructure (PKI). PKI is a
part of IT security and today‘s security needs bring it into focus.

3.1.1 Encryption
PKI is closely related to cryptography. Although it seems complicated, it is not.
We do not need to use low-level mathematical algorithms, but we do need to
understand the background involved.

During World War II, spies and army commanders used encrypted messages to
transmit their messages. The receiving party used a pattern to decode the
message. Nowadays, we do not use patterns to encrypt and decrypt messages,
but the methodology is the same. We have the confidential information in plain
text format and would like to hide this information from unauthorized users. We
need to encrypt the text. The result of encryption will be the cipher text. This is
information that is not readable without the encryption key. The receiving party
uses another key to decrypt the message. The encrypting and decrypting
functions are comprised of very difficult mathematical algorithms and the keys
are represented by large numbers.

Secret key cryptography
The secret key algorithms were invented earlier than were the public key
algorithms. They use one key to encrypt and decrypt the data.

Figure 3-1 Symmetric key encryption

Figure 3-1 illustrates the concept of symmetric key cryptography. The algorithms
used provide a great advantage: they are faster than the public key cryptography
introduced later. They have a considerable disadvantage as well: the same key is
needed for encryption and decryption, and both parties must have the same
keys. In today‘s cryptography, the secret keys do not belong to persons but to
communication sessions. At the beginning of a session, one of the parties
creates a session key and delivers it to the other party; they can then
communicate securely. At the end of the session, both parties delete the key and,
if they want to communicate again, they must create another key.

Plain text Encryption Cipher text Decryption Plain text
14 IBM WebSphere V4.0 Advanced Edition Security

The following section will discuss how to secure the delivery of the session key.

Public key cryptography
The first imperative of public key cryptography is the ability to deliver the session
keys securely. It has many more benefits than private key cryptography, as we
will see in the following sections.

Public key cryptography involves the use of different keys for encrypting and
decrypting functions. If you encrypt something with key 1, you can only decrypt it
with key 2, as shown in Figure 3-2.

Figure 3-2 Public key concept

This architecture allows the use of one of the keys as a private key. This means
that nobody can have access to this key except the owner. The other key can be
used as a public key. If a user wants to send an encrypted message to another
person, he or she will get the other person‘s public certificate, encrypt the
message and send it. The message can be decrypted only by the owner of the
private key.

Figure 3-3 Using private key cryptography

Plaintext Encryption Ciphertext Decryption Plaintext

Key 1 Key 2

Encrypted text
Plain text Plain text

Alice BobB B

Plain text
Plain text

Alice
Bob

AA
Encrypted text

1 3

public private

private public

2

 Chapter 3. Security certificates 15

Figure 3-3 shows a sample communication between two persons: Alice and Bob.

1. Alice wants to communicate with Bob but she does not want anybody to read
the messages. She will use Bob‘s public keyto encrypt the message.

2. Alice sends the message to Bob.

3. Bob uses his private key to decrypt the message.

If Bob wants to answer, he should use Alice‘s public key for encryption.

The example above is not suitable for the encryption of large amounts of data,
because public key algorithms are very slow. We use the private key algorithms
to transmit large amounts of data. The session keys must be delivered with the
public key algorithm and will be used during the communication.

Figure 3-4 provides a very simplified overview of keys delivery using Secure
Sockets Layer (SSL).

Figure 3-4 Delivering session keys using SSL

The process follows this pattern:

1. Communication is requested.

2. There is a response from the other party.

3. The partner (Y) sends the public key (KPU Y).

4. A session key (KS) is generated.

5. The session key (KS) is encrypted with Y’s public key and sent (KPU Y(KS)).

6. The data transfer can start; data is encrypted with the session key (KS(data)).

This protocol solves most of the problems involved in setting up and running a
secure communication. There are some other security problems which cannot be
solved simply with encryption.

X Y
"Hello"

Response

KPU Y

generate KS

KPU Y(KS)

KS(Data)

1

2

3

4

5

6

16 IBM WebSphere V4.0 Advanced Edition Security

The most significant security issues are:

� Authentication: this means that we can identify the other party; we can be
sure that they cannot pose as another person (or application).

� Data integrity: this means that no changes to the data are allowed during
transmission, or that the changes should be recognizable.

� Non-repudiation: the sender cannot deny being the source of the
information.

� Data confidentiality: only authorized persons can have access to the
information.

Following is a practical example of the possible security breaches on the
Internet:

The third step of the example mentioned in Figure 3-4 was that the sender sent
his public key. If a user can intercept this key, then that user can act as the
sender. He can remove the public key from the message and replace it with his
own public key. He is then able to monitor all the data. This problem is called the
“man in the middle” problem. It shows that it is not enough to encrypt messages;
we must be sure of whom we are communicating with.

3.1.2 Certificates
A certificate is a document from a trusted party which proves the identity of a
person. PKI certificates work in a similar fashion; if someone has a certificate
from a trusted party, we can make sure of his or her identity.

Signatures
Signatures also work as in everyday life. Signatures used in the PKI environment
work as follows: the information encrypted with a person’s (the sender) private
key will be unique to this person. Anybody can decode the message, and the
source will be identified, because only one public key can open the message: the
sender’s public key. This message is almost good enough to be used for a digital
signature; the only problem is that we would like to sign documents, and an
encrypted document is too long to be a signature.

Hash (digest) algorithms
The solution for the problem of the long document is the hash functions. These
algorithms are applied on plain text and the result will be a message digest.
These mathematical algorithms have the following characteristics:

� The length of a message digest is independent of the length of the input text.
We will get a fixed size output.

� The input of the function is not computable, knowing the output.
 Chapter 3. Security certificates 17

� One bit change in the input text will cause more than half of the output bits to
be changed: small changes can be noticed easily.

� The most popular hash algorithms are MD5 and SHA1.

Using hash algorithms, the creation of signatures will follow this procedure:

1. The sender gets the plain text and digests it. The result is a so-called message
digest.

2. The sender encrypts the message digest with his or her private key.

3. The sender sends the message and the signature to the receiving user.

The receiver should do the following at the verification phase:

1. Receive the message and the signature.

2. Decrypt the signature with the sender’s public key and get the message
digest.

3. Hash the message with the same method used by the sender and get the
message digest (let us call it digest2).

If message digest and message digest2 are identical, then the signature is
valid.

Signatures are not enough for identification. For example, if someone wants to
travel by air, a passport will have to be shown as proof of identification.

The certificate, similar to a passport, is issued by a trusted authority. It should
contain information about the owner and should be signed by the authority.

There is a standard defining the form of a certificate, called X.509. This standard
also defines the attributes of a certificate.

Some of the certificate extensions are:

� X.500 name
� Issuer X.500 name
� Distinguished name
� Issuer distinguished name
� Serial number
� Public key

From version 3 of the X.509 protocol, it is possible to include some specific
extensions into a certificate. The most significant extensions are:

� Key usage: this signs the purpose of the certificate, for example:

– Digital Signature
– Non-repudiation
18 IBM WebSphere V4.0 Advanced Edition Security

– Data encipherment
– Key encipherment

� Basic constraints: this relates to certification paths and designates the
subordinate Certificate Authority (CA) certificate number to the End-Entity
certificate.

� Certificate classes: this extension shows the class of the certificate (for
example: class1,class2, etc.). The value indicates the trust level and the
registration method of the certificate defined in the policy of the Certificate
Authority (CA).

3.1.3 Elements of a certification authority system
A PKI system completes the tasks related to public key cryptography. These
tasks should be separate, meaning that a PKI system should have some
well-defined units to execute the different tasks. In some cases, the PKI
implementation must separate the different functions physically (for example, in a
commercial CA system). In this case , the elements listed below are located on
different servers.

The logical elements of a PKI system are:

� Certificate Authority (CA)

� Registration Authority (RA)

� Certificate Repository (CR)

Certificate Authority (CA)
The CA component is the heart of a PKI system, it provides the “stamp” to the
certificate. In some implementations, the CA component is issued together with
the Registration Authority (RA) component. It stores its private key and can sign
the certificate requests with it. This private key should be kept in a very secure
place. If this key is corrupted, the whole certification tree will be unusable. It is
possible to store this key on separate hardware.

Note: IBM has a cryptographic co-processor (IBM 4758PCI) for storing the
private key and executing the cryptographic functions. This module is
designed to meet the FIPS PUB 140-1 level4 specification. The card is able to
keep the CA private key securely (any data tampering will be recognizable)
and to execute encryption algorithms. Therefore, the private key does not
need to leave the card and execution will be faster.
 Chapter 3. Security certificates 19

Registration Authority (RA)
This component is responsible for the registration process. It is an optional
component of a PKI system but, in most cases, it is implemented. The main RA
task is the verification of client requests.

Certificate Repository (CR)
This component is often called a certificate directory. The users of a PKI system
use the issued certificates to authenticate themselves. If someone receives a
signed message, the receiver will check the signature. If the signature was
issued by a trusted party the message will be considered a trusted message.
Otherwise, there is a problem. The certificate could have been revoked for
certain reasons (the owner left the company, owner’s private key was corrupted,
etc.). In this case, the certificate should not be considered to be a trusted one.
This problem is solved by publishing certificates in the certificate repository.
When a user receives a message with a certificate, the validity of the certificate
can be verified.

The list of revoked certificates is called Certificate Revocation List (CRL) and is
usually stored in the Certificate Repository (CR). The most common way of
implementing a CR is to use the Lightweight Directory Access Protocol (LDAP)
standard (RFC2587).

Certificate Revocation List (CRL)
The CRL is a list in which the revoked certificates are stored. The widely
accepted format of CRLs is PKIX X509 V2. The CRL should contain:

� The Certificate Revocation List (CRL) version ID
� The issuer’s signature algorithm
� The issuer’s name
� The update time and date
� The time and date of the next update
� Some extensions
� The signature of the issuer
� The serial number of revoked certificates

The time period for publishing the CRL is a parameter of the Certificate Authority
(CA).

3.1.4 Tivoli SecureWay PKI
Tivoli SecureWay PKI is a fully functional PKI system. The previous version was
called the IBM SecureWay TrustAuthority. One of the strengths of the system is
its modularity.
20 IBM WebSphere V4.0 Advanced Edition Security

Figure 3-5 Tivoli SecureWay PKI

The structure of the system is shown in Figure 3-5. It is possible to separate the
Certificate Authority (CA) and Registration Authority (RA) subsystems. The Trust
Authority (TA) Client allows the users to manage their own certificates.

Tivoli PKI has a Java-based element: RA Desktop. It is the configuration interface
for the system. RA administrators can manage the certificates using this
component.

There is also a highly scalable LDAP directory included: Tivoli SecureWay
Directory.

All events in the system are logged using the Audit Server component.

3.1.5 Certification process
Usually, there are two methods to issue certificates. The difference between the
processes is the location where the client’s private key will be generated.

In the first case, the client key pair is generated on the client side (on the client
machine). The client will create a certificate request. The certificate request
contains some information about the client (public key, name, e-mail address,
key usage, some optional extensions, etc.). The request is signed with the
 Chapter 3. Security certificates 21

private key of the client and sent to the server. The server identifies the client
before issuing the certificate. The first step is to verify whether or not the
signature at the end of the request is valid (the public key in the request can be
used for validation). If no error is encountered, then either the certificate can be
issued or another client validation process can be started. The most secure
method of client validation is for the client to appear personally and certify
themselves at the authority location. If the client certification is successful, the
certificate for the public key is created with the desired key usage. The client can
download the certificate into his/her browser registry or onto a smart card.
Figure 3-6 illustrates the data flow for the process.

Figure 3-6 Issuing certificates

The other way to issue certificates is to execute the key generation process on
the server side. This means that private keys should be created on the server
side. This solution presents some problems:

� The key generation requires a lot of computing power. There should be very
powerful computers applied as Certificate Authority (CA) machines or key
generation will be very slow (in case of multiple requests).

� The private key must be issued and sent to the client, creating a weak point in
the security.

There are situations when this method is better for issuing certificates. For
example, let us imagine a research institute with a few hundred employees. The
institute wants to make the entrance of the building more secure and also wants
the computers to be used by the right persons. The company considers using
smart cards for solving both problems. A PKI system can be implemented and
every employee can get a smart card with a certificate and a private key.
Obviously, the company will not establish a Web registration module for the
employees (because of the fixed and small number of certificates to issue), but it
will create the keys and certificates, install them on the cards and issue the cards

Send certificate REQUEST

Issue CERTIFICATE

ServerClient

Generate
keypair:Priv,Pub

Generate
certificate REQUEST=
(Pub,name,email)SIGN(Pub)

Verify
certREQUEST

Generate
CERTIFICATE

Install
CERTIFICATE

Smartcard Browser
registry

Publish
CERTIFICATE
22 IBM WebSphere V4.0 Advanced Edition Security

to the customers. This process does not have any weak points, because the
cards will be given personally to each proper person. Smart cards usually do not
allow the exporting of private keys, so they cannot be corrupted (unless the card
is stolen).

3.1.6 Infrastructure
A Public Key Infrastructure (PKI) system acts as a trusted third party
authentication system. It issues digital certificates for the communication parties
(for users and applications). Some of its tasks are:

� Issuing of certificates

� Revoking of certificates

� Renewal of certificates

� Suspension and resumption of certificates

� Management of issued certificates

� Issuing a list of revoked certificates

� Protection of the private key

Figure 3-7 Simple CA architecture

Figure 3-7 shows the concept of the PKI, where both users belong to the same
authority. The Certificate Authority (CA) issues certificates. The communication
partners can use the issued certificates to certify themselves. The authority
publishes the issued certificate in an accessible place.

User B

Certificate
Authorty

User A
Secured communication
 Chapter 3. Security certificates 23

Figure 3-8 Cross certification

Figure 3-8 shows the concept of cross certification. Cross certification is useful
when there is a need to build secure and authenticated communication between
different organizations. For example, some banks can agree to accept
transaction requests from users of other banks. In this situation, they must
identify the users of the foreign bank. The CA of the bank can get the certificate
of the user and will see that the certificate was issued by a trusted Certificate
Authority (CA), so it can grant the access.

Figure 3-9 Hierarchical model

Root
Certificate
Authorty

Root
Certificate
Authorty

Certificate
Authorty

"A"

Certificate
Authorty

"B"

Cross certification

Users of CA "A"
Users of CA "B"

State CA, root CA,
etc.

Root

Union Visa, MasterCard,
etc.

Bank2

Merchant

Bank1

Card owner Card owner

Transaction

Merchant
24 IBM WebSphere V4.0 Advanced Edition Security

The other method of connecting Certificate Authority (CA) systems is to have a
hierarchical architecture, as illustrated in Figure 3-9. For example, a bank can
have several branches (in different countries), these branches belonging to
different CAs. If the bank wants to introduce e-banking, it has to connect the
different CAs. Let us assume that the user is abroad and wants to use e-banking.
The user has to connect to the branch in the foreign country and perform the
transaction. The CA will try to verify the certificate. Since the systems belong to
the same root authority, and the certificate was issued by a trusted CA, it will be
considered a trusted certificate.

3.1.7 Policies
No Public Key Infrastructure (PKI) system can work without a supporting policy.
The policy describes the rules the system should follow. The policy should
describe the physical environment of the system, the administration roles of the
servers, the working processes, etc.

Usually, publicly used CAs publish a part of their policy called the Certificate
Practice Statement (CPS). The CPS describes all functions, rights and
processes related to certificates.

Verisign is one of the largest PKI providers. Verisign‘s CPS can be found at the
following site: http://www.verisign.com.

3.2 Smart cards
Smart cards are the most commonly used enhancements of the PKI systems.
They look like credit cards and are the same size.

What is the difference between credit cards and smart cards?

The widely used credit cards have a magnetic bar holding the information about
the owner. There is a more solid version of such cards: memory cards. They hold
the information in an EPROM chip. Smart cards hold the information and also
have computing capabilities; they can execute certain functions.

What parts does a smart card have?

A smart card has to have capabilities for holding the data and executing some
tasks relating to it. The file structure of a smart card is similar to that of the well
known personal system (for example: DOS).
 Chapter 3. Security certificates 25

http://www.verisign.com

Figure 3-10 Smart card file structure

The root directory is often called the Master File (MF). There is only one MF per
token (smart card). It can hold other directories, Dedicated Files (DF). The DFs
can contain files called Elementary Files. Elementary Files can be public or
secret keys, certificates, purse files (for banking purposes), etc. The most often
used file type in a PKI environment is the public key file. Files can be protected
against unauthorized access with PIN numbers; PIN numbers can be stored in
Elementary Files called Secret Code.

A public key file consists of a private key, a public key and some certificates.
Smart cards have two areas: one non protected and one protected. The non
protected area is for holding public keys and certificates, the protected area is for
holding private keys. There is a big difference between the behavior of the
private keys and other files. All files can be imported to the card, but the private
keys cannot leave the card. If you import a private key to the card and erase the
original one, the key will disappear. You can use only the crypto functions of the
card for encryption and signing.

What functions are available on the card?

The difference between memory cards and smart cards is related to the functions
smart cards can execute. These functions are:

� Decrypting and encrypting mechanisms

� Signing mechanisms

� Key generation mechanisms

Smart cards usually have a device, called a smart card reader, which can be
connected to computers. Most cards implement the PKCS11 standard interface
for communication with the card.

Root dir.

Dir Dir Dir

File1 File2 File3 ...
26 IBM WebSphere V4.0 Advanced Edition Security

What does a communication look like between a program and a smart card?

Figure 3-11 illustrates the method of signing:

Figure 3-11 Signing with a smart card

The process flows as described below:

1. The application transmits the hashed data to the card.

2. The card computes the signature from the private key stored on the card.

3. The signed data gets back to the calling application.

3.2.1 Using smart cards
There are several different levels of security in a PKI system. If smart cards are
not used, the generated private keys will be located for example in the Windows
registry or in the Netscape registry. This is enough for a medium security
application. If there is a need for establishing high-level security, this solution will
present some disadvantages. The biggest disadvantage is that a computer can
be used by another person, and he or she can get the private key easily.

After this, he or she can sign messages as the owner and can decrypt the
owner’s messages.

Note: Smart card readers can be connected to communications ports (COM)
or to USB ports. There are some types of cards which do not needa reader;
these can connect directly to the USB port.

Application
SmartCard Message

PrivateKey

Signed
Message

Sign

ReadKey

Sign

COM1

1

2 3
 Chapter 3. Security certificates 27

The situation is more secure if the private key is on a card and can never leave it,
because the owner can more easily keep the card physically secure.

Figure 3-12 Banking example

Figure 3-12 illustrates the use of smart cards in a banking environment. The
bank establishes a telebanking function over the Internet. The user can
communicate with the bank using SSL with client authentication, using his or her
keys.

3.3 Where to find more information
This chapter is a short introduction for PKI and related technologies. Obviously, it
cannot cover all features and parts of PKI systems and processes; further
information can be found in the following publications:

� Deploying Public Key Infrastructure, SG24-5512

� GPK Reference Manual (GemPlus 2001)

� Working with Business Process Objects for Tivoli PKI, SG24-6043

� Handbook of Applied Cryptography (A. Menzes, P van Oorschot, S. Vanstone
- CRC Press,1996)

Some useful Web sites:

� Tivoli’s Web site: http://www.tivoli.com

� Entrust’s Web site: http://www.entrust.com

� Baltimore’s Web site: http://www.baltimore.com

� RSA’s Web site: http://www.rsa.com

� VeriSign’s Web site: http://www.verisign.com

J. Schmidt

Internet

User

Bank

Account information,
$ transactions...
28 IBM WebSphere V4.0 Advanced Edition Security

http://www.tivoli.com
http://www.entrust.com
http://www.baltimore.com
http://www.rsa.com
http://www.verisign.com

� Gemplus’s Web site: http://www.gemplus.com

� Datakey’s Web site: http://www.datakey.com
 Chapter 3. Security certificates 29

http://www.gemplus.com
http://www.datakey.com

30 IBM WebSphere V4.0 Advanced Edition Security

Part 2 WebSphere
security

Part 2
© Copyright IBM Corp. 2002 31

32 IBM WebSphere V4.0 Advanced Edition Security

Chapter 4. IBM WebSphere Application
Server security

This chapter is an introduction to IBM WebSphere Application Server V4
Advanced Edition security.

It covers the security architecture and the basic security settings for the server,
and serves as a quick overview of all the security features and services within
WebSphere. Most of the features and options will be discussed in detail in the
following chapters.

4

© Copyright IBM Corp. 2002 33

4.1 WebSphere security model
The IBM WebSphere Application Server V4 is a J2EE 1.2 compliant Java
application server; it implements the required security services as they are
specified.

The security components are essential parts of the application server
architecture. The following description will give a high-level overview of these
components.

4.1.1 Security architecture
The application server includes these components related to application security:

� Security server
� Security Collaborator

– Web Collaborator
– EJB Collaborator

� Security Policies
� Security Information

Figure 4-1 Overview of the security architecture

Note that in Figure 4-1, DD stands for Deployment Descriptor.

Java
Client

Custom

OS

LDAP

Embedded HTTP Server

WebSphere Application Server

EJB
Container

Web
Container

HTTP
Server Plugin

EJB Modules

EJBs

Web Modules

Servlet, Static
Resources JSPs

Client Modules

Client Class

EJB Collaborator

Web Collaborator

Enterprise Archive (ear)

Admin Server

DD DD DD

Browser

Security Server

Authorization

A
ut

he
nt

ic
at

io
n

Security
Application

HTTP

IIOP

IIOP

HTTP

J

DD stands for Deployment Descriptor
34 IBM WebSphere V4.0 Advanced Edition Security

Security server
The Security server provides authentication services. It will, for example, use the
included LTPA server to authenticate a user and to obtain a credential that can
be used in the security context to represent a user identity. In this case, the
Security server is a trusted third party for security policy and control of the
applications.

The Security server provides the following services for Web containers and EJB
containers:

� Authentication

� Authorization

� Delegation policies

Security collaborators
The Security collaborators reside in the application server process and are the
major component for enforcing security constraints and attributes specified in the
deployment descriptors. The Security collaborators also delegate the task of
authentication to the Security server.

The following collaborators are identified:

� Collaborator in the Web container

� Collaborator in the EJB container

Web collaborator
The Web collaborator provides the following services:

� Checks the authentication if not provided

� Performs the authorization check

� Logs security tracing information

EJB collaborator
The EJB collaborator relies on the Secure Association Service (SAS) to
authenticate Java client requests to enterprise beans. SAS provides message
protection or encryption between clients and application server through IIOPS
(RMI/IIOP over SSL). The Security collaborator works with the Security server to
perform the following services for every remote method invocation of an
enterprise bean:

� Check authorization.

� Support user registries.

� Log security tracing information.
 Chapter 4. IBM WebSphere Application Server security 35

� Set the run-as identity based on the delegation policy. The delegation policy
determines the identity used when an enterprise bean invoke methods on
another enterprise bean. The information about the delegation policy is stored
in the Deployment Descriptor (ejb-jar.xml).

Security policies
Security attributes for enterprise beans and Web applications are specified in
their deployment descriptors, which are XML files. The XML files contain much
more than security information, but only security-related elements will be
discussed in this book.

The security attributes are:

� Role and method permission

� Run-as mode or delegation policy

� Login configuration or challenge type

� Data protection (confidentiality and integrity) settings

The following diagram shows the object mappings for security and the relations
between the objects. The * (asterisk) on one end of the relation means that many
objects can be connected to that end (as it is used in the context of relational
databases). For example, several users can be mapped to a group, and the
same user can be in several groups; consequently, the relation between users
and groups is many-to-many.

Users are assigned to roles directly or through groups. Methods are also
assigned to roles. The role itself defines a set of permissions to access particular
resources.

Figure 4-2 Role and method permission

Security information
Security information about WebSphere can be divided into two parts:

� Global security

� Application security

Groups Roles MethodsUser * * * * * *

* *
36 IBM WebSphere V4.0 Advanced Edition Security

Global security is set for all applications running on the application server. It
defines the type of registry and other security-related options. Global security
information is coupled with the system management facility and, therefore, all the
security information resides in XML configuration files (IBM WebSphere
Application Server V4.0 Single Server) and in the database.

Application security can be defined and specified for each application; this
means that the global settings can be overridden by application-specific settings.
Application security is customized using the Application Assembly Tool, the
Administrator’s Console and the WebSphere Control Program (WSCP) tool. The
Security server supplements the security runtime components (Security
collaborator). The security runtime components acquire the system security
configuration from the Security server; this includes such elements as the
authentication mechanism, the user registry, etc.

A sample application security configuration can be found in Example 4-1.

Example 4-1 web.xml - XML configuration file

...
<web-app id="WebApp">

<display-name>webbankWeb</display-name>
...

<security-constraint id="SecurityConstraint_1"> (1)
<web-resource-collection id="WebResourceCollection_1">

<web-resource-name>WebBank Transfer</web-resource-name>
<url-pattern>/</url-pattern>
<url-pattern>/webbank.html</url-pattern>
<url-pattern>/TransferServlet</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint id="AuthConstraint_1">

<description>All role for WebBank Transfer:+:</description>
<role-name>AllAuthenticated</role-name>

</auth-constraint>
<user-data-constraint id="UserDataConstraint_1">

<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>

</security-constraint>
<login-config id="LoginConfig_1"> (2)

<auth-method>FORM</auth-method>
<realm-name>WebBank</realm-name>
<form-login-config id="FormLoginConfig_1">

<form-login-page>login.html</form-login-page>
<form-error-page>login.html</form-error-page>

</form-login-config>
</login-config>
<security-role id="SecurityRole_1"> (3)

 Chapter 4. IBM WebSphere Application Server security 37

<description>A manager in the enterprise.</description>
<role-name>Manager</role-name>

</security-role>
<security-role id="SecurityRole_2">

<description>An employee in the enterprise.</description>
<role-name>Employee</role-name>

</security-role>
<security-role id="SecurityRole_3">

<description>All Authenticated in the enterprise.</description>
<role-name>AllAuthenticated</role-name>

</security-role>
<security-role id="SecurityRole_4">

<description>Everyone in the enterprise.</description>
<role-name>Everyone</role-name>

</security-role>
<security-role id="SecurityRole_5">

<description>Deny all access role</description>
<role-name>DenyAllRole</role-name>

</security-role>
<env-entry id="EnvEntry_1"> (4)

<description>the maximum limit the customer accounts
overdrafts</description>

<env-entry-name>webbank/OverdraftValue</env-entry-name>
<env-entry-value>5000</env-entry-value>
<env-entry-type>java.lang.Integer</env-entry-type>

</env-entry>
...
</web-app>

The following important tags are identified in the configuration file:

1. <security-constraint> - This defines a security constraint, meaning some
URL patterns (for example: / or /TransferServlet) which have a specific
method permission (for example: GET, POST) and can only be executed by a
specific role (for example: AllAuthenticated).

2. <login-config> - This defines the type of authentication (basic, certificate,
form based, digest).

3. <security-role> - This specifies the different security roles.

4. <env-entry> - A parameter is set which is not directly related to security but
can be used for programmatic security.

More details can be found in Chapter 6, “Securing Web components” on
page 105 and Chapter 7, “Securing EJBs” on page 135.
38 IBM WebSphere V4.0 Advanced Edition Security

4.2 IBM WebSphere Application Server security features
This section will discuss the IBM WebSphere Application Server security
features and the provided security services.

The following topics will be discovered in detail:

� How to secure an application

� The WebSphere authentication model

� User registry

� Security Center

� Web Trust Association

� Securing only the Administrative server

4.2.1 How to secure an application
Applications are the highest set of components running under the application
server. The process of securing an application with IBM WebSphere Application
Server is described below.

Table 4-1 helps to identify the storage locations (descriptors and configuration
files) for the different application elements; it also provides information about the
configuration tool.

Important: Editing the EAR file directly can have some serious
consequences, especially with respect to the security policy. In a server group
configuration, the security information in the deployment descriptors within the
EAR file may exist on more than one machine. You need to be very careful to
keep all of the EAR files in sync.

Important: The whole application is as secure as its weakest point; this
means that forgetting one step can have tremendous effects on security.
 Chapter 4. IBM WebSphere Application Server security 39

Table 4-1 Overview of security information, storage location and tools

Table 4-2 Creating the security constraints for Web resources

Table 4-3 Creating the method permissions for EJBs

In the above tables, AAT refers to Application Assembly Tool, AC refers to
Administrator’s Console, DD refers to Deployment Descriptor.

Security information Storage location Tool

Define business roles (whole application) application.xml AAT

Web resources WAR DD web.xml AAT

EJB resources EJB DD ejb-jar.xml AAT

Associate Principals EAR DD
ibm-application-bnd.
xmi;
Repository DB

AAT, AC

Configure global security authentication Repository DB AC

Security information Storage location Tool

Define Web component authentication WAR DD web.xml AAT

Define security constraints and assign it to roles WAR DD web.xml AAT

Optionally, define Role Reference WAR DD web.xml AAT,AC

Secure static resources delivered by the Web
server

Security information Storage location Tool

For each EJB, assign each of its methods to one
or more roles

EJB DD ejb-jar.xml AAT

Optionally, set up Security Role References EJB DD ejb-jar.xml AAT, AC

Configure the delegation policy - Run-As EJB DD
ibm-ejb-jar-ext.xmi

AAT

Run-As Mapping Repository DB AC
40 IBM WebSphere V4.0 Advanced Edition Security

WebSphere V4 Advanced Edition supports the multi-server environment, which
requires centralized management. Since each container on each server has its
own deployment descriptor (DD) in a file system, there is a need for a common
repository, which is a database in this case. The database and the deployment
descriptors are synchronized automatically by the system, but there are certain
situations where the modification in the deployment descriptor is not picked up by
the repository during runtime.

For example, the role mapping stored in the repository is based on the role
information in the deployment descriptors at the point of deployment. Adding new
roles after deployment can only be done by redeploying the application.

The following steps summarize how to assign security to an application using the
Application Assembly Tool (AAT).

1. Define business roles based on the rights of the people.

In Table 4-4, some roles other than the roles from the Webbank example are
defined, to make the role concept clear.

Table 4-4 Role definition

Roles created within the EJB module are also available in the Web module
and vice-versa.

Figure 4-3 shows the AAT with the defined roles.

Figure 4-3 AAT with defined roles

Role Description

Manager A manager can create an account and cancel a business
contract.

Employee An employee has access to the company resources, but
cannot make transfers above a certain amount.

Consultant A consultant has access to the application, can access
information, but cannot perform transfers.
 Chapter 4. IBM WebSphere Application Server security 41

2. Create the security constraints for Web resources.

3. Define the Web component authentication for the Web module (*.war). The
login authentication challenge type and constraints on transports are
specified at the Web application level. For more information about Web
component security, refer to Chapter 6, “Securing Web components” on
page 105.

4. Define security constraints and assign them to roles. Security constraints are
restrictions for resources of a specific URI pattern.

– Specify the URL patterns which belong to a Web resource collection
(Servlet, JSP, HTML...).

– Assign an HTTP method permissions (GET, POST...) to the Web
resources.

– Assign at least one role to the Web resources collection.

In Figure 4-4, we show you the structure of a Web module from a security
standpoint, using the Webbank sample application.

Figure 4-4 Security constraints in a Web module

Figure 4-5 shows the AAT with the defined security constraints.

Web Bank Web (Web Module)

Security Constraint

Webbank Access

 Webbank Access

/
/webbank.html

GET
POST

assign
roles

AllAuthanticated

assign
HTTP

method
permission

URL Pattern HTTP Methods Roles

assign
authentication

FORM
BASIC

Client
Cert

Digest

...Web Resource Collection

list of URLs allowed methods

assign
roles

URL Pattern HTTP Methods

roles listed here

Rolesassign
HTTP

method
permission

Name of the security constraint
42 IBM WebSphere V4.0 Advanced Edition Security

Figure 4-5 Security constraints (AAT)

5. Security Role References can be set up as an option. These elements allow
the Web resources to perform programmatic security checking, if this is
desired. These references are associated with local or internal role names
that developers might want to use in their code (for example: programmatic
security). An example allowing the CEO of a company special rights, which
are defined in the implementation.

6. You may also want to secure static resources (HTML, image, audio, video
files), which are delivered by the Web server. For more details, see Chapter 6,
“Securing Web components” on page 105.

7. Create the method permission for the EJBs. For more information about EJB
security, refer to Chapter 7, “Securing EJBs” on page 135.

Figure 4-6 depicts the structure of the EJB module from a security standpoint,
using the Webbank example.

Note: Most parameters in the web.xml, apart from <security-constraints>,
<security-role>, and <login-config> can be changed without restarting the
server.

Changing the listed parameters requires you to restart the server.
 Chapter 4. IBM WebSphere Application Server security 43

Figure 4-6 Method permission

8. Set up Security Role References as an option. These elements enable the
EJB to perform programmatic security checking, if this is desired. These
references are associated with local or internal role names that developers
might want to use in their code.

9. Configure the delegation policy (Run-As Mode) which determines the identity
to use if the Enterprise bean invokes methods on any other Enterprise bean.
The delegation policy is specified in the ejb-jar.xml deployment descriptor.
The following three options are available:

– Client identity, which is the identity of the caller.

– System identity, which is the identity of the intermediary.

– Specified identity, which is based on a particular role, named in the
delegation policy.

Figure 4-7 shows the AAT with the window where the application assembler
can define the Run-As Mode for the method.

Web Bank EJBs (EJB Module)

Method Permission

Manager
Employee

assign
roles

RoleMethods

* (every method)

Consultant

Methods Role
assign

role

Allow consultation

Allow All for Managers and Employees

getCustomerBalance()
getBranchBalance()
get methods...
44 IBM WebSphere V4.0 Advanced Edition Security

Figure 4-7 EJB Run-As Mode definition

10.Select the Run-As role from a specific Enterprise application and assign it to a
role from the user registry. This can be done using the Administrator’s
Console (Security Center -> Run As Role Mapping).

For more information, refer to Chapter 7, “Securing EJBs” on page 135.

11.Associate Principals, namely users and groups with roles. There are three
special roles besides the users and groups, called special subjects:
AllAuthenticated, Everyone and DenyAllRole.

12.Start the Administrator’s Console and open the Security Center.

13.Configure global security authentication. There are three different user
registries for authentication:

– LDAP
– OS
– Custom User Registry

If you have a certificate-based authentication (LDAP, Custom User Registry),
you may also want to provide your customer with a certificate; find more
details in “CustomRegistry SPI” on page 206.
 Chapter 4. IBM WebSphere Application Server security 45

14.Configure the SSL settings using the Administrator’s Console (AC). This
means using SSL:

– HTTPS is used between the Web server plug-in and the application server

– There is a secure ORB between the client ORB and the server ORB.

– LDAPS provides secure communication between the Administrative
Server and the LDAP registry used for authentication. This feature is
available only in IBM WebSphere Application Server Advanced Edition.

4.2.2 WebSphere authentication model
This section discusses the IBM WebSphere Application Server’s authentication
model. Usually, you apply security to a given user which has a user ID and
belongs to a group.

There are four possible authentication mechanisms defined in the servlet
specification. For details, see Java Servlet Specification V2.2 at
http://java.sun.com/products/servlet/2.2.

� HTTP Basic authentication

� HTTP Digest authentication (not supported in this release of IBM WebSphere
Application Server)

� HTTPS Client Certificate authentication

� Form-Based authentication

All authentication mechanisms except Client Certificate authentication have the
problem of target server authentication. The Form-Based and Basic
authentication have, in addition, the problem of the password not being
encrypted. Additional mechanisms are necessary to avoid authentication and
confidentiality problems; secure transport (SSL) can be used, but network-level
security such as IPSEC protocol or VPN can also work.

Basic authentication
In this authentication, the Web browser presents a dialog window requiring the
user to enter a user ID and password when attempting to access a protected
Web resource. After the user provides the ID and password, the security service
validates them against the user registry. Basic authentication is not a secure
protocol for authentication. The password is only encoded in simple base64 and
therefore not secure. The target server is not authenticated either, which also
poses a security risk. To avoid authentication and confidentiality problems,
secure transport (SSL) can be used in combination with network-level security
such as IPSEC protocol or VPN.
46 IBM WebSphere V4.0 Advanced Edition Security

http://java.sun.com/products/servlet/2.2

Example 4-2 web.xml - Basic authentication

<login-config id="LoginConfig_1">
 <auth-method>BASIC</auth-method>
 <realm-name>WebBank</realm-name>
</login-config>

Digest authentication
In Digest authentication, a user ID and password are transmitted as in Basic
authentication, but the password is encrypted. This mechanism is more secure
than the Basic authentication with base64 encoding. Currently, this
authentication is not widely used and the servlet containers are not required to
support it. Because of that, this authentication mechanism is not supported by
WebSphere. The developers can program additional security with JCE, but they
must support it themselves.

Example 4-3 web.xml - Digest authentication

<login-config id="LoginConfig_1">
 <auth-method>DIGEST</auth-method>
 <realm-name>WebBank</realm-name>
</login-config>

Client authentication
This authentication mechanism requires the client to possess a Public Key
certificate. The identity in the digital certificate is mapped to an entry in either the
LDAP registry or a custom user registry. Certificates are transmitted from
browser to Web server over HTTPS.

Example 4-4 web.xml - Client authentication

<login-config id="LoginConfig_1">
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>WebBank</realm-name>
</login-config>

Form-based authentication
This authentication mechanism permits a site-specific login through an HTML
page or a JSP form. The password is not encrypted and the target server is not
authenticated, which is also a security risk. To avoid authentication and
confidentiality problems, secure transport (SSL) should be used.

Important: The digest authentication method is not supported in this release
of IBM WebSphere Application Server.
 Chapter 4. IBM WebSphere Application Server security 47

Example 4-5 web.xml - Form-based authentication

<login-config id="LoginConfig_1">
<auth-method>FORM</auth-method>
<realm-name>WebBank</realm-name>
<form-login-config id="FormLoginConfig_1">

<form-login-page>login.html</form-login-page>
<form-error-page>error.html</form-error-page>

</form-login-config>
</login-config>

As in the defined servlet specification, the login form must contain fields for
entering a user ID and password. For more information about how to use
form-based login, refer to Chapter 6, “Securing Web components” on page 105.

The deployment should also contain the entry for the login form and the error
page which can be specified in Application Assembly Tool (AAT).

When a user accesses a protected Web resource, the container checks the user
authentication. If the user is not authenticated, the following steps are taken:

1. The login form, which is associated with the security constraint, is sent to the
client. The URL path which has triggered the authentication is stored by the
WebSphere servlet container.

2. The client sends the filled-out form back to the server and the container
attempts to authenticate the user by the defined registry.

a. If the authentication fails, then the error page provided earlier is sent and
the status code of the response is 401.

b. If the authentication succeeds, then the user is authorized and the
requested protected resource is transmitted to the client.

Form-based authentication also has the problems of plain text transmission and
target server authentication. Again, secure transport should be used.

Because the container supports Single Sign-On, the user does not need to
reauthenticate to other protected resources. For more information, refer to
Chapter 14, “Single Sign-On” on page 393.

Configuration using AAT
To define the login authentication challenge type, the data in web.xml is
configured using the Application Assembly Tool (AAT).

The application (application.xml) consists of Web modules (web.xml) and EJB
modules (ejb-jar.xml); the configuration can be found in the corresponding
deployment descriptor files.
48 IBM WebSphere V4.0 Advanced Edition Security

The authentication data of Web modules can be read at the Web module within
AAT. The authentication data of the Web modules can be configured using a
pull-down menu in the GUI, as shown in Figure 4-8.

Figure 4-8 AAT authentication data

Within the Authentication method listbox, the following choices are available:

� All methods
� Basic
� Digest
� Form
� Client cert

The child window shown in Figure 4-8 shows the deployment descriptor. The
login authentication challenge type and constraints on transports are specified at
the Web application level (WAR's Deployment Descriptor) inside the
<login-config> element.

The configuration using WebSphere Studio Application Developer (WSAD) is
documented in “Configuring Web module security using WebSphere Studio
Application Developer” on page 127.

The settings defined on the Web module are stored in the web.xml deployment
descriptor. Using the WebSphere Studio Application Developer for these settings
brings up the same result as using the Application Assembly Tool.
 Chapter 4. IBM WebSphere Application Server security 49

4.2.3 User registry
The user registry is a repository that contains users and groups. This applies to
both human users of the system and applications validated through the user
registry.

The administrator can have users or groups authenticated against the local
operating system user registry (such as Windows NT User Manager program) or
an LTPA (LDAP or Custom User Registry).

The following section shows the possible user registries for authentication
available in WebSphere. The local operating system and LDAP are fully
supported by WebSphere; the custom user registry is the developers’
responsibility. To provide an overlapping authentication mechanism (OS and
LDAP), the custom registry should be used.

The following list shows the available authentication mechanisms:

� Local operating system:

– Windows NT(Domain, WorkGroup)
– Windows 2000
– AIX
– Solaris
– HP-UX
– Linux

� Lightweight Third Party Authentication (LTPA):

– LDAP (only for Advanced Edition)

• Netscape Directory Server
• Domino 4.6, 5.0
• IBM Secure Way Directory
• Windows 2000 Active Directory

– Custom User Registry (only for Advanced Edition)

Operating systems support Basic and Form-based authentication, whereas
LDAP and Custom user registries support both password- (basic, form) and
certificate-based authentication. LTPA is not supported by OS registries.

Table 4-5 on page 51 summarizes the supported authentication possibilities for
the different user registries.
50 IBM WebSphere V4.0 Advanced Edition Security

Table 4-5 Authentication mechanisms in WebSphere

Table 4-6 shows the authentication mechanism emphasizing the type of the
client.

Table 4-6 Authentication for Web and Java clients

OS (Unix) OS (NT) LDAP Custom

Basic Authentication
using system
calls

Authentication
using security
Access
Manager
through
system calls

An LDAP
search is
performed.

A password
check is
performed
against the
custom registry.

Form-Based Authentication
using system
calls

Authentication
using security
Access
Manager
through
system calls

An LDAP
search is
performed.

A password
check is
performed
against the
custom registry.

Certificate N/A N/A The certificate
content is a
credential
mapped to an
LDAP entry
(based on trust
of the Web
server).

The certificate
content is a
credential
mapped to a
custom entry
(based on trust
of the Web
server).

Digest N/A N/A N/A N/A

Challenge type Authentication
mechanism

User registry Client

None None None Web / Java

Basic LTPA LDAP Web / Java

Custom Web / Java

OS OS Web / Java

Certificate LTPA LDAP Web

Custom Web
 Chapter 4. IBM WebSphere Application Server security 51

The Certificate-based challenge only has LTPA. At LTPA, you have the choice
between LDAP and Custom User Registry. If Basic authentication is used, the
LTPA and OS can be used from a Web client and a Java client, whereas a
certificate can only be used by a Web client.

4.2.4 Security Center
This section provides information about the Security Center, which is part of the
Administrator’s Console (AC).

General tab
Switch to the General tab to enable or disable security. To enable security, the
Enable Security checkbox must be selected, otherwise, other security settings
specified will be disregarded.

This page also contains an option for setting a security cache time-out. The
security system caches authentication lookup information it receives from the
user registry or directory service. This field specifies how long (in seconds) the
authentication information will be cached for performance reasons.

Figure 4-9 shows the General tab in the Security Center, where you can specify
the general security settings.

Form Login LTPA LDAP Web

Custom Web

OS OS Web

Challenge type Authentication
mechanism

User registry Client

Note: The global security settings (enabled/not enabled), authentication
mechanism, and user registry settings are stored in the Admin Repository.
52 IBM WebSphere V4.0 Advanced Edition Security

Figure 4-9 Security Center - General tab

The General tab provides an option: Default SSL Configuration, where the SSL
settings can be configured; for more information, refer to “Configuring
WebSphere to use your own keyring” on page 229.

Authentication tab
Switch to the Authentication tab in order to specify how to authenticate the
information presented by users trying to access an application or resources. The
information depends on the type of the registry.

The user ID under which the server runs, for security purposes, should point to a
valid user in the OS/LDAP/Custom user registry. The password must correspond
to the Security server ID. Additional information must be provided depending on
the user registry (see Figure 4-10 on page 54).
 Chapter 4. IBM WebSphere Application Server security 53

Figure 4-10 Different types of user registries

Note that the local operating system user registry is intended for single machine
and single application server environments.

As seen before, authentication can be customized using the Administrator’s
Console. In the following sections, each user registry is explained in detail.

Local operating system
The local operating system can be used to authenticate the application user. The
following important facts should be noted:

� Local registries are limited to single-machine or Windows NT
domain-controller environments and a single application server. IBM
WebSphere Application Server does not support multiple node, multiple
application servers or secure delegation when the Local registry is used as
the user registry.

� NT Domain and Workgroups are supported, not Trusted Domains.

� If a machine is a member of a Windows domain, both the domain user
registry and the machine’s local user registry are used for authentication and
security role mapping.

� The domain user registry takes precedence over the local user registry.

� Security roles should always be mapped to domain users and not to local
users.

Browser
Web

Server

SSL

SSL

LDAP

Domain

Browser
Web

Server
Custom

Domain

Browser
Web

Server
App. Serv.

Node 1
OS

Sec.

App. Serv.
Node 2

App. Serv.
Node 3

App. Serv.
Node 4

App. Serv.
Node 5
54 IBM WebSphere V4.0 Advanced Edition Security

� Do not use an account the name of which matches the name of your machine
or Windows domain.

� It is recommend that you use the user registry where WebSphere is local to
your node.

If a user is registered in the domain or locally with the same password, you may
encounter problems during the authentication.

How to set local operating system authentication mechanism:

Use the following steps to select the local operating system as the WebSphere
security authentication mechanism:

1. Create the local operating system user which should have access to the
administrative server within Windows 2000.

2. Open Computer Management in Windows.

3. Select the Users folder (System Tools -> Local and Users and Groups ->
Users folder).

4. Create a new user by selecting Action -> New User from the main menu.
Create the WebSphere application users and an administrator user for the
administrative server.

5. You might want to use groups instead of individual users for role mapping.
Assigning groups to roles is more flexible than assigning individual users. To
create a new user, select the Users folder (System Tools -> Local and
Users and Groups -> Users folder) then Action -> New User from the main
menu.

6. Figure 4-11 on page 56 shows Windows’s user management interface.
 Chapter 4. IBM WebSphere Application Server security 55

Figure 4-11 Creating a user in Windows 2000

7. Configure the Admin Server. Open the Administrator’s Console which is, by
default,found by selecting Start -> Programs -> IBM WebSphere ->
Application Server V4.0 AE -> Administrator’s Console.

8. Select Console -> Security Center. Switch to the Authentication tab and
choose Local Operating System as the Authentication Mechanism.

9. Set the Security server ID and password to the local operating system user ID
and password you want to use to access the administrative server. Verify the
user ID and password against the local operating system by clicking OK.
56 IBM WebSphere V4.0 Advanced Edition Security

Figure 4-12 User Registry Operating System

10.Make sure that security is enabled at the general tab.

11.Restart the administrative server by right-clicking the node in the
Administrator’s Console, then select Restart.

LDAP
WebSphere supports two LTPA authentication mechanisms: LDAP and Custom
User Registry. This section discusses the LDAP option. The following important
facts should be noted:

� This is not available for WebSphere Single Server Edition.

� The user should not be a root DN or administrator DN because it is
unnecessary to expose the root password.

� You may want to secure the connection between the application server and
LDAP.

LDAP authentication can be set to use one of the following authentication
mechanisms:

� Password based Authentication

� Client Certificate Authentication

Password-based

Refer to Section 16.1.3, “Configuring WebSphere to use the SecureWay
Directory Server” on page 478.

Certificate-based

This section discusses the authentication mechanism using LDAP with client
side certificates.
 Chapter 4. IBM WebSphere Application Server security 57

Figure 4-13 depicts the security flow using client side certificates with IBM
WebSphere Application Server.

Figure 4-13 Security flow using certificates

The security flow of client authentication using certificates is as follows:

1. The request for the IncServlet servlet comes from the browser user to the
Web server.

2. The Web server determines that the request is for a resource that requires
client certificate authentication, so it challenges the browser to return a
certificate.

3. The browser recognizes the challenge and returns the certificate.

4. The Web server authenticates the client certificate. It then determines that it
does not control the servlet request, so it passes the client certificate along
with the request to the application server.

5. The application server determines that it controls the servlet and, through the
security collaborator, determines that the servlet is secure.

6. The application server, through the security collaborator, determines that the
required authentication method is a client certificate.

7. Using the security collaborator, which in turn works with the security
application, the application server determines the credentials of the
certificate. The LTPA server component of the security application works with

Web client

EJS

EJS

Application
Server

EJS

Administrative
Server

Web Server

Security
Application LTPA Server

Web Container

IncServlet

1

3

2

4

Security
Collaborator

WebSphere
Repository

8765

LDAP
Server

7

9

58 IBM WebSphere V4.0 Advanced Edition Security

the LDAP server to perform a credential mapping of the certificate to the
contents of the LDAP directory.

8. Using the security collaborator, the application server determines that the
user is authorized to access the servlet being requested.

9. The application server invokes the servlet for the user.

For more information about certificates, refer to Chapter 3, “Security certificates”
on page 13; for information on how to set up security using certificates, refer to
Chapter 11, “Administering WebSphere Security” on page 215.

Custom User Registry
This section describes the case when LTPA is set and a Custom User Registry is
used for client authentication.

The following important facts should be noted:

� This is not available for Advanced Single Server Edition.

� You may want to secure the connection between the application server and
the Custom User Registry.

Using a custom registry is not natively supported by IBM WebSphere Application
Server. The application server needs a class that implements the custom registry
interface by providing code for each required method. User and group
information can be stored in databases, files, directory servers, etc.

Configuration using the Administrator’s Console
The following steps will guide you through the process of configuring your
Custom User Registry for WebSphere:

1. Open the Administrator’s Console and select Console -> Security Center.

2. Switch to the Authentication tab and choose Lightweight Third Part
Authentication (LTPA) as the authentication mechanism.

3. The authentication panel will change. Choose Custom User Registry; the
window will show the settings for this type of registration.

4. Set the security server id and password to the user ID and password you
want to use to access the administrative server. The following settings have to
be entered as well:

a. Custom User Registry Classname: the name of the class file which
implements the custom registry code.

Note: The following sample application should only show the features of the
custom registry. The provided sample application should never be used in
production, for performance and scalability reasons.
 Chapter 4. IBM WebSphere Application Server security 59

b. You may also want to set Special Custom Settings, where you can specify
settings for the Custom User Registry. In our example, the users.props
and groups.props file had to be configured, as shown in Figure 4-14.

5. Click Apply in the Security Center.

6. Make sure that security is enabled under the General tab.

7. Restart the administrative server by right-clicking the node in the
Administrator’s Console, then select Restart.

Sample Custom Registry

This sample will use the File Registry sample provided in the WebSphere
Advanced Edition V4 Infocenter at
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/
index.html under Section 5.2, “Introduction to custom registries.” You can find
the entire description of the sample in the mentioned section together with the
source code. Follow the steps from the Infocenter to create the necessary files
and compile the required code for the sample.

Figure 4-14 on page 61 depicts the Security Center with the settings for Custom
User Registry and a child window, in which Special Custom Settings are
specified.
60 IBM WebSphere V4.0 Advanced Edition Security

http://ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/index.html
http://ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/index.html

Figure 4-14 Custom Registry

The settings for the sample are:

1. Security server ID: bob

2. Security server Password: bob1

3. Custom User Registry Classname: FileRegistrySample

4. Click Special Custom Settings, then add the following two lines:

Table 4-7 Property files

5. Click OK in the Specify Custom Settings child window.

6. Click Apply in the Security Center.

7. Make sure that security is enabled under the General tab.

Name Value

groupFile d:\was\properties\groups.props

usersFile d:\was\properties\users.props
 Chapter 4. IBM WebSphere Application Server security 61

8. Restart the administrative server by right-clicking the node in the
Administrator’s Console, then select Restart.

For more information about Custom User Registry SPI, refer to “CustomRegistry
SPI” on page 206.

4.2.5 Web Trust Association
IBM WebSphere Application Server can authenticate incoming user requests, as
we have seen before. In some scenarios, such as with Web-based applications,
it is often desirable to delegate this work to another process. This process is
typically a Reverse Proxy Security Server (RPSS).

In order to perform the delegation, a trusted relationship between the application
server and the proxy must exist. This means that the proxy server authenticates
the client and the application server accepts this because it trusts the proxy. IBM
WebSphere Application Server applies its authorization policies to the requests.

Enabling Web Trust Association
The following steps will show you how to enable Web Trust Association in
WebSphere.

1. Open the Administrator’s Console and select Console -> Security Center.

2. Switch to the Authentication tab

3. Select the checkbox Enable Web trust association in the LTPA Settings
pane (see Figure 4-15).

4. Click Apply in the Security Center.

5. Make sure that security is enabled under the General tab.

6. Restart the administrative server by right-clicking the node in the
Administrator’s Console, then select Restart.
62 IBM WebSphere V4.0 Advanced Edition Security

Figure 4-15 Enabling Web Trust Association

Usually, the user ID and password are sent in the HTTP header. By setting the
flag, the user ID and password from iv_user and iv_password are used. If the flag
is not set, then the authentication data is ignored, because the WebSEAL ID and
password are used.

For more information about the Web Trust Association, refer to “Trust Association
Interceptor SPI” on page 213; for information on Web Trust Association in
relation with Tivoli Policy Director, refer to Chapter 13, “Policy Director” on
page 353.

4.2.6 Securing only the Administrative Server
This section will provide information about how to secure the Administrative
server within WebSphere without securing all the application servers.

1. Start the Security Center and enable security (General tab)

2. Restart the Administrative Server so that changes may take effect.

3. The next time the Administrator’s Console opens, the administrator will be
prompted to log in, using the user ID and password.
 Chapter 4. IBM WebSphere Application Server security 63

When you enable WebSphere security, only the Administrative Server (see step
6 in “How to secure an application” on page 39) is protected. The application
server(s) on the node is also protected if security constraints are defined. With
WebSphere V4.0, you can turn off security for selected application servers on a
node. This feature can be used to protect the Administrative Server by avoiding
the overhead of secure encryption on application server communications. This is,
of course, only suitable for application servers that do not require WebSphere
security protection.

Disabling security in the Administrative Server
Security information (global security settings (enabled/not enabled),
authentication mechanism, user registry settings) is stored in the Admin
Repository. By resetting the information, the Administrative Server is made
accessible again, which could be used for password recovery, for example. The
followings steps will help to disable security in the Administrative Server.

1. Open the sas.server.props file under the <WebSphere install path>\properties
directory in a text editor. According to the type of registry that has been
chosen, the following settings are shown in the file:

In the case of LDAP registry:

Example 4-6 LDAP Registry in the sas.server.props file

com.ibm.CORBA.principalName=itsohost.ral.ibm.com \:389/wasadmin
com.ibm.CORBA.securityEnabled=true
com.ibm.CORBA.loginUserid=wasadmin
com.ibm.CORBA.authenticationTarget=LTP

In the case of Custom User Registry:

Example 4-7 Custom User Registry in the sas.server.props.file

com.ibm.CORBA.principalName=customRealm/wasadmin
com.ibm.CORBA.securityEnabled=true
com.ibm.CORBA.loginUserid=wasadmin
com.ibm.CORBA.authenticationTarget=LTPA

Note: You should always use the Administrator’s Console Security Center to
disable security.
64 IBM WebSphere V4.0 Advanced Edition Security

In the case of Local Operating System Security:

Example 4-8 Operating System Security in the sas.server.props.file

com.ibm.CORBA.loginPassword={xor}Pg\=\=
com.ibm.CORBA.principalName=WTRNTDM/wasadmin
com.ibm.CORBA.securityEnabled=true
com.ibm.CORBA.loginUserid=wasadmin
com.ibm.CORBA.authenticationTarget=LOCALOS

2. Stop the Administrative Server.

3. Delete the sas.server.props.future file in the <WAS_HOME>\properties\
directory.

4. Open the sas.server.props in the <WAS_HOME>\properties\ directory and set
the com.ibm.CORBA.securityEnabled entry to false; then set
com.ibm.CORBA.securityEnabled to false also.

5. Update EJSADMIN.SECURITYCFG_TABLE in the administrative repository
to set security to 0 (zero).

The following is a script showing how to set the value in the database to 0
(zero).

Example 4-9 Database script to disable security

db2cmd
db2 connect to was401 user db2admin using db2admin
db2 update ejsadmin.securitycfg_table set securityenabled=0

Note: If this file is present when the server restarts, information in the
sas.server.props.future file is copied into the sas.server.props file, overwriting
your changes.

Important: Secure the application immediately after the recovery.

Note: To recover the password, the user directory (for example: LDAP) could
also be used. If your user directory is not accessible, then this approach will
not help. The sas.server.props file is not secured in the file system. You may
want to secure the file system to avoid having someone set the file to false:
com.ibm.CORBA.securityEnabled=false.
 Chapter 4. IBM WebSphere Application Server security 65

Additional administrators to access the Administrative Server
Only one user specified in the Administrator’s Console has access to the
Administrative Server, by default. Usually, there are more administrators who
need access to the system.

1. Start the Administrator’s Console and open the Security Center.

2. In the Security Center, select the Administrative Role tab.

3. Select AdminRole, click Select; a new window opens where you can select
the checkbox Select Users and Groups.

4. Now you can supply a pattern and search for users and groups in your user
registry (defined in Authentication); for example, * (asterisk) will show all the
users and groups.

5. Choose, in the left pane, one of the users you want to add (for example,
wasadmin) as an administrator. Click Add (you will see the added user in the
right pane).

6. Close the Select Users/Groups child window by clicking OK.

7. Click Apply in the Security Center.

8. Restart the Administrative Server by right-clicking the node in the
Administrator’s Console, then select Restart.

9. Check the settings by closing the Administrator’s Console then restarting it
and logging in as a new administrator.

4.3 WebSphere security and the operating environment
In this section, we discuss how WebSphere security relates to the security
provided by your operating system and by Java.

IBM WebSphere Application Server security sits on top of your operating system
security and the security features provided by other components, including the
Java language, are shown in Figure 4-16.

� Operating system security is used to secure sensitive files in the
WebSphere product installation and to authenticate users using the operating
system user registry.

� Java language security is provided through the Java Virtual Machine (JVM)
used by WebSphere and the Java security classes.

� CORBA security is used for inter-application communication between secure
ORBs invoked using the Secure Association Service (SAS).
66 IBM WebSphere V4.0 Advanced Edition Security

� J2EE security uses the security collaborator to enforce J2EE-based security
policies and support J2EE security APIs.

� WebSphere security relies on and enhances all of the above. It enforces
security policies and services in a unified manner for Web and EJB
resources.

Figure 4-16 WebSphere security layers

4.4 Performance considerations
This section briefly discusses some performance considerations to keep in mind
when using WebSphere security.

First, enabling WebSphere security has a performance cost of 10% to 20%. This
performance hit can be eliminated by disabling security, of course. However, it
may be more appropriate to consider other alternatives, such as:

� Disabling security on selected application servers.

� Using an HTTPS transport between the Web server and application server
without enabling application server security (see “Configuring SSL between
Web server and WebSphere Application Server” on page 270).

HTML
Servlets/JSPs
EJBs

WebSphere Resources

JVM (1.3)

Java 2 Security

CORBA Security

J2EE Security
API

WebSphere
Security

Operating System Security

WebSphere Security

Java Security

Platform Security

access control
 Chapter 4. IBM WebSphere Application Server security 67

Another option is to tune the Security Cache Timeout, set using the WebSphere
Security Center, as shown in Figure 4-9 on page 53. Security information related
to EJBs, permissions, and credentials is cached. When the cache timeout
expires, all cached information becomes invalid. Subsequent requests for the
information result in a database lookup. Sometimes, acquiring the information
requires invoking an LDAP-bind or native authentication, both of which are
relatively costly operations in terms of performance.

In a simple 20 minute test run, raising the Security Cache Timeout from the
default of 600 seconds to 6000 seconds avoided a timeout and resulted in a 40%
performance improvement. Of course, the performance impact of tuning this
property will depend on the specifics of your application, such as average
session duration.

Finally, the SSLV3Timeout property specifies the time interval after which SSL
sessions are renegotiated. The default of 9600 seconds is relatively high, so it
should not impact performance, but should be reviewed in light of the specific
application with which you are working.

The Secure Association Service (SAS) feature establishes an SSL connection
only if it goes out of the ORB (to another ORB). Therefore, if all the beans are
co-located within an ORB, then the SSL used by SAS is not expected to hinder
performance.

Modify the SSLV3Timeout and other SAS properties by editing the
sas.server.props and sas.client.props files. The files are located in the
<WebSphere install directory>\properties directory.

4.5 Other security features of WebSphere
There are several other security features within IBM WebSphere Application
Server V4, including the encoding of passwords and security interoperability with
z/OS.

4.5.1 Encoded passwords
WebSphere stores passwords for:

� Accessing the administration repository

� The Administration ID to access the Administrator’s Console

� Accessing key stores and trust stores
68 IBM WebSphere V4.0 Advanced Edition Security

These passwords are stored in an encoded form. This is not a secure way of
storing passwords in itself, but it does hide the passwords from a casual user
who might get access to the system. The files which contain these passwords
should still be secured from unauthorized access using the relevant file system
policies.

If the passwords in these files need to be changed for any reason, then simply
replace the hashed version (including the encoding tag, {XOR}) with plain text.
When the WebSphere Administrative Server is restarted, the passwords will be
rehashed.

The following table lists the files that contain passwords:

Table 4-8 Administration files which contain passwords

There is a tool for encoding the passwords in properties files, especially in SAS
properties files. The tool is <WebSphere install
directory>\bin\PropFilePasswordEncoder.bat. Change your directory where the
SAS properties file is located, then use the following command to encode the
passwords in the sas.client.props file:

PropFilePasswordEncoder sas.client.props -SAS

File name Password types File location

admin.config Admin repository
password

C:\WebSphere\AppServer\
bin

sas.server.props
sas.server.props.future
sas.client.props (1)

WebSphere Administrator
Key and trust store
passwords

C:\WebSphere\AppServer\
properties

initial_ssl.properties (2) Key and trust store
passwords

C:\WebSphere\AppServer\
properties

Note: The key and trust store passwords in the sas.client.props are not
encoded.

Note: The passwords in the initial_ssl.properties file are encoded, but if you
replace them with plain text passwords, they will not be re-encoded. This is
because this file is loaded only once when the admin service is started for the
first time. Any changes to the SSL configuration should be made through the
Administrator’s Console and not through this file.
 Chapter 4. IBM WebSphere Application Server security 69

User names and passwords are also shown in XMLConfig exports of the
configuration. Again, the passwords are exported in the encoded format.

4.5.2 Security interoperability with z/OS
IBM WebSphere Application Server Advanced Edition supports interoperability
between application servers running on UNIX or NT platforms and application
servers running on the z/OS platform. This support allows application servers on
the UNIX or NT side to authenticate to the application server on the z/OS side
and communicate securely. Unauthenticated requests from the UNIX- or
NT-based application servers are rejected. Authentication is supported between
application servers, not individual applications.

For more information about WebSphere and z/OS interoperability, refer to the
WebSphere InfoCenter.

4.6 WebSphere Advanced Edition V4 ptf2
The ptf2 for WebSphere Advanced Edition V4 has been released; download it
from the IBM WebSphere Web site at:
http://www.ibm.com/software/websphere.

It is highly recommended that you install this ptf level. It will also update the
security features of WebSphere. The following list, distributed together with the
ptf2 archive, shows the security changes in 4.0.2:

� PQ56055 - Spaces in LDAP user name problem

� PQ54156 - Administrative Console takes 10 minutes to come up when using
LTPA

� PQ53688 - Trust file type does not correctly default

� PQ54789 - Potential authentication performance issues occur if user belongs
to one or more groups with large memberships

� PQ55804 - InvalidTokenException results in authentication failure

� PQ51442 - sas.server.props should not be truncated

� PQ54124 - Authorization fails from unsecure to secure resource

� PQ56053 - LDAP does not accept special characters

� PQ56057 - Performance degradation LTPA token

� PQ51442 - Correct various security problems

� 110556.1 - Invalid Handling of invalid LTPA password on XML Import
70 IBM WebSphere V4.0 Advanced Edition Security

http://www.ibm.com/websphere

� 110491 - The Remove action for dynamic properties does not work

� 100432 - Detailed exceptions during security initialization

� 112783 - isUserInRole() API throws an exception with JSP:forward tag

� 110911 - Trust Association does not work with WebSEAL 3.7.

� 116822 - Cannot enable crypto support at global level

� 110214 - When migrating from AEs to AE, a security realm name error occurs

� 110467 - Key File Name not required when using crypto card

� 110296 - Improve warning message when native code does not load
 Chapter 4. IBM WebSphere Application Server security 71

72 IBM WebSphere V4.0 Advanced Edition Security

Chapter 5. The sample used in this
book

This chapter discusses the sample (Webbank) used in this book. The Webbank
application has been introduced in the WebSphere V4 Advanced Edition
Handbook, SG24-6176.

The original Webbank application has been extended with several security
features, and with additional code.

The sample is provided as additional material together with this redbook; see
Appendix A, “Additional material” on page 515 for details.

5

© Copyright IBM Corp. 2002 73

5.1 Sample application: Webbank
The sample used in this book, Webbank, is taken from the WebSphere V4
Advanced Edition Handbook, SG24-6176. The goal of this sample is to introduce
all the security features documented in the book and also to provide examples
and reusable code for programmers.

The following sections will go into the details of the sample application.

� First, the application structure will be shown.

� In order to reproduce the development environment for Webbank, we provide
step-by-step guidelines on how to import the Webbank assets into the
WebSphere Studio Application Developer (WSAD).

� The security roles are application-specific definitions. A whole section will be
devoted to showing how to define these roles using the Application Assembly
Tool (AAT) or WebSphere Studio Application Developer (WSAD).

� A very important part of this chapter deals with how to install (deploy) the
Webbank application. We will run through the installation step by step.

� Security role mapping is related to the roles, described before the installation,
but role mapping can be performed during or after the installation. There is an
exception: role mapping can be defined from the WebSphere Studio
Application Developer (WSAD).

� The Single-Sign On capabilities of WebSphere are exercised using a Lotus
Domino example. This example requires a small Domino application, which
will be described.

� At the end of this chapter, the extensions to the base Webbank application will
be introduced. These extensions are described in later chapters of this book.

Two versions of the Webbank sample code are shipped with this redbook. One is
webbank6520_null.ear and the other is webbank6520.ear. The first is the base
code, without any security definitions or functional extensions. The second one
includes all security features defined and all function extensions implemented.

Thus, anyone can start from the base code and enhance it following the steps
described in this book. The fully developed code is always there for you to check
or reuse some of the elements.
74 IBM WebSphere V4.0 Advanced Edition Security

5.1.1 Base Webbank application structure
The following diagram shows the elements of the basic Webbank enterprise
application.

Figure 5-1 Site map for the Webbank application

The login.html page is the entry point for the application in case form-based login
has been selected as the authentication mechanism. The sample code shipped
with the redbook is set to use form-based login by default.

The webbank.html page is the first page the user sees once he or she is
authenticated. It is a query page, where the user can set up a transaction from a
branch account to a customer account or vice-versa. Figure 5-2 on page 76
shows an excerpt from webbank.html.

webbank.html

login.html

TransferServlet

message.jsp

BranchAccount
entity EJB

CustomerAccount
entity EJB

J2EE
client

Transfer
session EJB

Consultation
session EJB
 Chapter 5. The sample used in this book 75

Figure 5-2 Webbank application: transfer page

The TransferServlet servlet controls the application flow and makes the
connection between presentation and business logic. It initiates the transfer
using a session Enterprise Java Bean (EJB) to access the data.

The Transfer EJB is a session EJB which handles the real transaction between
the accounts. It plays an interface role for the two entity EJBs.

BranchAccount EJB and CustomerAccount EJB are two entity EJBs representing
the account data. The account data is persisted in a database, and the entity
EJBs are the connection to the database and to the accounts.

Consultation EJB is a session EJB which handles queries of the accounts; it
basically calls the Read methods of the entity beans.

J2EE client is a stand-alone Java application running on the client. It uses a
session Enterprise Java Bean (EJB) to access the data and retrieve the required
information.

Once the transaction has been performed, whether or not it was successful, a
result page will be shown to the end user. The result page is generated by the
message.jsp.
76 IBM WebSphere V4.0 Advanced Edition Security

5.2 Importing the sample into WebSphere Studio
Application Developer

The sample code distributed with this book is comprised of several pieces. The
sample was developed using WebSphere Application Studio Developer (WSAD)
V4.02. If you want to perform the development within this IDE, the following steps
will guide you through importing all the assets into the development environment.

The following steps will show you how to import the fully developed Webbank
sample.

1. The best way to handle a new project is to create a new directory for the
whole project, for example: c:\projects\webbank.

2. Start WebSphere Studio Application Developer (WSAD) with the following
parameter: -data c:\projects\webbank.

wsappdev.exe -data c:\projects\webbank

You can also create a shortcut for WebSphere Studio Application Developer
with this parameter on the desktop.

WebSphere Studio Application Developer will start in a minute with a new,
empty project.

Import the Webbank enterprise application project:

3. Open the J2EE perspective if it is not the already open.

4. Select File -> Import from the menu, then select the EAR file from the list.
Click Next.

5. In the next window, browse for the webbank6520.ear file in the EAR File
text-box. Type in the Enterprise Application project name: webbank. Click
Next.

6. In the next window, check that every module has every dependent module
selected, then click Next.

7. In the EAR Modules window, click Finish.

8. There will be errors after importing the EAR file, because of the missing Java
libraries. Switch to the Navigator view, open the .classpath file under the
WebbankWeb folder, and add the following lines to the end of the file (prior to
the <classpathentry kind=”outpu”... /> tag). There are nine (9) new
classpath variables, so make sure that you do not mistype them, because if
the XML structure is invalid and you save the file, the project will crash.

<classpathentry kind="var" path="SOAPJAR"/>
<classpathentry kind="var" path="SOAPSECJAR"/>
<classpathentry kind="var" path="XERCESJAR"/>
 Chapter 5. The sample used in this book 77

<classpathentry kind="var"
path="SERVERJDK_PLUGINDIR/jre/lib/ext/ibmjceprovider.jar"/>
<classpathentry kind="var"
path="SERVERJDK_PLUGINDIR/jre/lib/ext/ibmjsse.jar"/>
<classpathentry kind="var" path="WAS_PLUGINDIR/lib/ejbcontainer.jar"/>
<classpathentry kind="var" path="WAS_PLUGINDIR/lib/ujc.jar"/>
<classpathentry kind="var" path="WAS_PLUGINDIR/lib/iwsorb.jar"/>
<classpathentry kind="var" path="WAS_PLUGINDIR/lib/security.jar"/>

You may also have to add the following classpath variables. Open the
preferences window from the menu by selecting Window -> Preferences.
Select the node by clicking Java -> Classpath Variables, then add the
following entries (replace the <WSAD install path> with your path):

SOAPJAR <WSAD install
path>/plugins/com.ibm.etools.webservice/runtime/soap.jar
SOAPSECJAR <WSAD install
path>/plugins/com.ibm.etools.websphere.runtime/lib/soap-sec.jar
XERCESJAR <WSAD install path>/plugins/org.apache.xerces/xerces.jar

Click OK to close the Preferences window.

Import the CustomRegistry Java project:

9. Open the Java perspective, and create a new Java project called
CustomRegistry.

10.Select File -> Import from the menu; the Import wizard appears, select the
Zip file from the list, then click Next.

11.Browse for the CustomRegistry.zip file from the Zip file text-box; select the
CustomRegistry folder from the Folder text-box, then click Finish.

12.During the import, a message box will ask about overwriting the .classpath
file; select Yes.

Import the WebbankClientApp Java project just as you did for the
CustomRegistry Java project:

13.Create a new Java project called WebbankClientApp.

14.Start the Import wizard, then import WebbankClientApp.zip into the
WebbankClientApp folder; do not forget to overwrite the .classpath file when
prompted.

Import the WebbankWebserviceClient Java project just as you did
previously:

15.Create a new Java project called WebbankWebserviceClient.

16.Start the Import wizard, then import the WebbankWebserviceClient.zip into
the WebbankWebserviceClient folder; do not forget to overwrite the
.classpath file when prompted.
78 IBM WebSphere V4.0 Advanced Edition Security

Import the Domino sample:

17.Create a new simple project, with the name WebbankDomino.

18.Start the Import wizard, then import the WebbankDomino.zip into the
WebbankDomino folder. It will import two files: Webbank.ntf and a new
transfer page for the Webbank application: webbank.html.

Create the server for the WebSphere Test Environment:

19.Open the Server perspective in WebSphere Studio Application Developer.

20.Select File -> New -> Server Instance and Configuration from the menu;
the Server Configuration wizard is started.

21.In the first window, type in the server name: Webbank server, and specify the
Folder in the text-box: Servers; then select the Server instance type:
WebSphere Servers -> WebSphere V4.0 Test Environment (see the result
in Figure 5-3). Click Next.

Figure 5-3 Creating a new server instance and configuration

22.A message box will prompt you: Do you want to create a new server
project with the name Servers? Click Yes.

23.The next window asks for the HTTP port number for the test server; the
default value is 8080. You can leave the port number at 8080, or if you are not
using the machine only for development, then it is more convenient to set the
port number to 80.
 Chapter 5. The sample used in this book 79

24.Click Finish. The new server instance and configuration will be generated.
You can find more information about server instances and server
configurations in the WebSphere Studio Application Developer help
resources.

25.You now need to add the webbank project to the server configuration. In the
lower left-hand corner is the Server configuration window. Right-click Server
Configurations -> Webbank server and select Add Project -> webbank.
You will get the following result:

Figure 5-4 Server configuration for Webbank

26.You will next define the data source for the sample application. Double-click
Server Configurations -> Webbank server under the Server Configuration
window. An editor appears for the server configuration.

27.Switch to the Data source tab, then select the Db2JdbcDriver from the
JDBC driver list.

28.Click Add next to the Data source defined in the JDBC driver selected above
listbox.

29.Define the datasource by specifying the following (these are case sensitive):

Name: webbank

JNDI name: jdbc/webbank

Database name: webbank

Default User ID: webbank

Default user password: webbank

30.Save and close the configuration file.
80 IBM WebSphere V4.0 Advanced Edition Security

After these steps are performed, the development and test environment is set for
the Webbank sample application. If everything was correct in the setup and
configuration, only one warning should appear in the task list:

� Description: /webbank/j_security_check - Broken link.

Resource: login.html.

� Description: /webbank/ibm_security_logout - Broken link.

Resource: webbank.html

5.3 Defining security roles
In this section, we will define five security roles for the Webbank application:

� Manager

Only users in this group will be allowed to transfer more than $5000 in a single
transaction. This check is done programmatically within the Webbank
application.

� Employee

Employees can transfer funds between customer and branch accounts, and
can view account balance information. WebSphere security handles access
to the resources to which users in this role have access.

� Consultant

Consultants have access to the Webbank application and can provide
consulting services to the customers, but they cannot perform a transfer.

� AllAuthenticated

All authenticated users can view the balance of an account. This role uses a
special subject which is predefined in WebSphere.

� Everyone

This is a special role used to allow access to resources when no security
challenge has been put forth. We will define this role to the Webbank
application for demonstration purposes, but it will not be used.

� DenyAllRole (this will be automatically defined during installation, unless you
want to predefine it)
 Chapter 5. The sample used in this book 81

Once you have protected one of an EJB’s methods, then all of the others are
automatically protected. By assigning a role to that method, you allow the
users associated with that role access to the method. No one will have access
to any other methods that do not have a role assigned to them. WebSphere
does this by using DenyAllRole. This is a special role which is automatically
defined and can be assigned to resource methods which have not been
protected. No users or groups are associated with this role.

There are two special subjects defined in WebSphere and the Application
Assembly Tool: All authenticated users and Everyone. These special subjects are
a quick way to configure a set of users to a security role without having to
individually select users and groups.

The All authenticated users subject grants all users defined in your user registry
access to the resources associated with the role. The Everyone subject grants all
users access to the role whether or not they are in your registry, that is, they do
not need to be authenticated to be given access to the resources associated with
the role.

Security roles for an enterprise application can be defined in three places:

� At the Enterprise application level

� In an EJB module

� In a Web module.

A security role can be defined in any of these places and will be available in all of
the other places too: if you define a security role to the WAR file, for example, it is
also configured to the EAR and the JAR. However, if you want to assign
particular users to the role, then you must do this at the Enterprise application
(EAR) level.

5.3.1 Setting up users and groups in LDAP
This section will provide information about the users and groups you can register
in a directory service for the sample application. This section will not document
how to set up these users and groups; for more information about registering
new items for a directory service, look for the native help or administration guide
of the directory server.

Create the following users:

� Bob
� John
� Steve
� Andrew
82 IBM WebSphere V4.0 Advanced Edition Security

Do not forget to set the password and the user ID for each user.

Create the following groups with the users included:

� Employee: Bob
� Manager: John
� Consultant: Steve

These users will have different privileges in the sample application; try the
application with all users.

5.3.2 Security roles with Application Assembly Tool
We will first create a new security role for our Web module called Manager. Load
the Webbank archive into the AAT.

1. Expand Webbank -> Web modules -> webbankWeb, and select Security
Roles.

Figure 5-5 Web module security roles window

2. Right-click Security Roles and select New. You will be presented with the
New Security Role window.
 Chapter 5. The sample used in this book 83

Figure 5-6 New Security Role window

3. Enter the Name: Manager and the Description: A manager in the enterprise.
Click OK. You will now see your new security role displayed in the list in the
right-hand pane.

Now expand EJB Modules -> webbankEJBs and select Security Roles. You
will see the new Manager role in the list here as well.

Now define the role Employee and Consultant. Use the instructions above with
the following field values:

Table 5-1 Field values for Employee and DenyAllRole roles

Name Description

Employee An employee in the enterprise

Consultant A consultant in the enterprise

Note: It is possible to assign individual users and groups to these roles
through the AAT. However, because the AAT does not interface with your user
registry, it is up to you to make sure that you enter the names exactly as they
are in the registry. Obviously, there is a risk of typographical errors. This is why
we have chosen to leave this until the application is deployed into WebSphere.
WebSphere can search the registry and you can choose the users and groups
from a list.
84 IBM WebSphere V4.0 Advanced Edition Security

Now we will define the last two roles, AllAuthenticated and Everyone. For these
roles, we will also assign a special subject.

1. In the AAT, collapse all sections, leaving just the Webbank application
expanded.

2. Right-click Security Roles and select New. You will be presented with the
New Security Role window.

Figure 5-7 Enterprise application New Security Role window

3. Enter the Name: AllAuthenticated and the Description: All authenticated
users in the enterprise. Switch to the Bindings tab.

4. Next to the Special subjects pane, click Add. You will be presented with the
Add Special Subjects window.

Figure 5-8 Special subjects for role binding

5. Select All authenticated users and click OK.

6. Click OK in the new Security Role window. You will now see your new security
role displayed in the list in the right-hand pane.

Note: We are defining these roles at the Enterprise application level, rather
than within a Web module or EJB module, because we are going to assign
users to these roles through the special subjects.

Note: This time, you will see that there are two tabs in this panel: General
and Bindings.
 Chapter 5. The sample used in this book 85

Now define the role Everyone. Use the instructions above with the following field
values:

Table 5-2 Field values for Everyone role

5.3.3 Security roles with WebSphere Studio Application Developer
We will now show how you can configure the security roles from WebSphere
Studio Application Developer (WSAD). Using WebSphere Studio Application
Developer rather than the AAT allows your deployers to use the same tool and
team environment as the developers and Web designers in the same project.

The following instructions have results similar to those achieved using the
instructions for the AAT. The key differences are that you cannot assign special
subjects to roles and that roles defined to one module are not automatically
visible to the others.

1. Start WebSphere Studio Application Developer with the Webbank project.

2. Switch to the J2EE perspective or open this perspective if it is not open
already.

3. Select the Navigator view and expand the webbankWeb folder, then the
webApplication and the WEB-INF folders.

4. Double-click the web.xml file. On the right-hand side, you will see the Web
application deployment descriptor configuration pane. Select the Security
tab.

Field name Values

Name Everyone

Description Everyone in the enterprise

Special subject Everyone
86 IBM WebSphere V4.0 Advanced Edition Security

Figure 5-9 Security pane for application deployment descriptor

5. In the right-hand pane, next to Security Roles, click Add. You will see (New
Security Role) appear in the Name column of the Security Roles section.

Figure 5-10 Adding a new security role

6. Select this new role and change the name to Manager. Add a description of A
manager in the enterprise.

7. Now repeat steps 5 and 6 and add the roles Everyone, Employee,
Consultant and AllAuthenticated. Use the following field values.
 Chapter 5. The sample used in this book 87

Table 5-3 Roles

8. Save the changes you have made to the Web module deployment descriptor
by pressing the keys Ctrl and S simultaneously, then close the file.

9. Now expand the webbankEJBs folder, then the ejbModule and META-INF
folders. Double-click ejb-jar.xml to load the EJB module deployment
descriptor configuration window. If you now select the Security tag, you will
see that none of the roles you defined to the Web module are visible from
here.

10.Create roles called AllAuthenticated, Everyone, Employee, Manager and
Consultant as before, but this time for the EJB module. You will notice that the
process is slightly different, as you are prompted with an window requesting
the Name and Description.

Figure 5-11 EJB security roles entry window

11.Click OK and you will see the new role in the EJB descriptor window on the
right-hand side. Save the new settings, then close the file.

12.In the left-hand panel, expand the Webbank folder, then the META-INF folder.
Double-click the application.xml file to load the enterprise application
descriptor into the right-hand panel. Select the Security tab.

13.Notice again that none of the roles is visible from here. Click Gather Roles
from Modules. This will look for all the roles that have been defined in any
Web or EJB modules, and populate the Enterprise application window with

Role name Role description

AllAuthenticated All authenticated users in the enterprise

Everyone Every user

Employee An employee in the enterprise

Consultant A consultant in the enterprise

Note: Unlike in the Application Assembly Tool, you must o add the roles to the
EJB module and to the Enterprise application, it will not happen automatically.
88 IBM WebSphere V4.0 Advanced Edition Security

them. Notice that any roles with the same name are consolidated into a single
role.

Figure 5-12 Populated Enterprise application security roles list

14.Save the settings by pressing the keys Ctrl and S, and close the file.

5.4 Installing the Webbank application
This section will describe how to install and deploy the Webbank application
under WebSphere Application Server V4 Advanced Edition. We will look at:

� Creating the application server

� Setting up the data source

� Installing the enterprise application

For more information about the original Webbank application and application
deployment, refer to the WebSphere Advanced Edition V4 Handbook,
SG24-6176.
 Chapter 5. The sample used in this book 89

5.4.1 Creating the application server
The following steps will guide you through the process of creating an application
server for the Webbank sample application.

1. Right-click WebSphere Administrative Domain, then click Nodes -> <your
server> -> Application Servers, then select New.

2. The Create Application Server window appears. Under the General tab, type
in the application server name: Webbank server, and change the module
visibility to Application.

3. Click OK.

4. Wait until a message box appears appears saying: Command
“EJBServer.create” completed successfully, then click OK.

5.4.2 Setting up the data source
The following steps will show you how to create the datasource for the Webbank
application.

1. Create a user for the webbank database with the operating system.

The user we created for the sample was webbank with the password
webbank.

2. We need to create the database and populate it with the sample data. Make
sure that DB2 is running on your system, then open the DB2 Command
window, or change to the DB2 user in UNIX.

3. Attach to the DB2 instance: db2 attach to db2 user db2admin using
db2admin, where db2 is the instance name and db2admin is the user name and
the password; use your own settings for this command.

4. Create the database for the Webbank application: db2 create database
webbank.

5. Connect, then modify the access permissions:

db2 connect to webbank

db2 grant connect, createtab on database to user webbank

db2 disconnect current

6. Connect with the webbank user this time: db2 connect to webbank user
webbank using webbank.

7. Run the following script from the database directory to create the tables: db2
-tf table.ddl. The table.ddl was extracted from the EJB .jar file distributed
within the enterprise archive.

8. This next script will populate the database: db2 -tf insert.ddl.
90 IBM WebSphere V4.0 Advanced Edition Security

9. The database is ready now; enter db2 disconnect current.

The following steps will create the datasource under WebSphere Application
Server.

1. Start the WebSphere Administrator’s Console.

2. Right-click WebSphere Administrative Domain, then click Resources ->
JDBC Providers -> Sample DB Driver -> Data Sources, then select New.

3. The Data Source Properties window appears. Fill out the required fields (the
values are case sensitive):

Name: webbank

JNDI name: jdbc/webbank

Database name: webbank

User ID: webbank

Password: password

Confirm password: password

4. Click OK.

5. Wait until a message box appears saying: Command “Datasource.create”
completed successfully, then click OK.

In this sample, we have just used the Sample DB Driver, which was already set
up under WebSphere; in a production environment, you might want to set up your
own database driver.

The user and password were chosen for this sample; make sure that the
database user and the password for the datasource are kept secret.

5.4.3 Installing the enterprise application
In order to install the Webbank enterprise application, follow these next steps.

1. Select Console -> Wizards -> Install Enterprise Application from the
menu. The Install Enterprise Application Wizard starts in a new window.

2. Leave the install application (*.ear) option selected, then select the
webbank6520.ear file using the Browse button, then click Next.

3. A message may appear saying: This application contains method
permissions. Do you wish to deny access to all unprotected methods?
Click Yes.

4. The Mapping Users to Roles window appears. You will see all the roles listed
here. You can do the mapping from here (refer to “Security role mapping
 Chapter 5. The sample used in this book 91

during installation” on page 94 for details), or you can change the settings
made by the AAT or WebSphere Studio Application Developer. Click Next.

5. The Mapping EJB RunAs Roles to Users window appears next. You can
perform the Run-As mapping for the application from here (refer to
Section 7.4.4, “Run-As mapping during deployment” on page 152). Click
Next.

6. The Binding Enterprise Beans to JNDI Names window appears next. The four
EJBs should be already binded; click Next.

7. The Mapping EJB References to Enterprise Beans window appears next. The
mappings should be already finished; click Next.

8. The Mapping Resource References to Resources window appears next. There
is nothing to do here, so click Next.

9. The next window is titled Specifying the Default Datasource for EJB Modules.
Select webbankEJBs, then click Select Datasource. Select the previously
created webbank datasource, then click OK. Go to the next window by
clicking Next.

10.The Specifying Data Sources for Individual CMP Beans window appears
next. The data sources should be already assigned to the CMP beans, click
Next.

11.The Selecting Virtual Hosts for Web Modules window comes next. The
webbankWeb module is already mapped to the default_host; if you want to
use a different host, use the Select Virtual Host button.

12.The next window is titled Selecting Application Servers. Two modules are
listed here: webbankEJBs and webbankWeb. Select the two entries using the
Shift key for multiple selection, then click Select Server. Select the Webbank
server created previously, click OK, then click Next to get the next window.

13.In the final window, Completing the Application Installation Wizard, click
Finish.

14.A final question appears: Regenerate code? Click No.

15.Wait until a message box appears saying: Command “EnterpriseApp.Install”
completed successfully. Then click OK.

Note: If user mapping was done using WebSphere Studio Application
Developer, some changes need to be performed. Unfortunately, there is a
bug present: the special roles, AllAuthentcatedUsers and Everyone, are
written improperly.

You should select these roles and do the mapping using the Select...
button.
92 IBM WebSphere V4.0 Advanced Edition Security

5.4.4 Starting the application
Follow these next steps to start the Webbank application.

1. Right-click WebSphere Administrative Domain, then click Nodes -> <your
server> . Select Regen Webserver Plugin. After regeneration, it will take 60
seconds, by default, until the new settings are available.

2. Right-click Webbank server under the Application Servers folder
(WebSphere Administrative Domain -> Nodes -> <your server> ->
Application Servers folder), then select Start.

3. Wait until a message box appears saying: Command “Webbank server.start”
completed successfully, then click OK.

4. Click WebSphere Administrative Domain -> Enterprise Applications, then
right-click the webbankApplication server and select Start.

5. Wait until a message box appears saying: Command “Webbankapplication
.start” completed successfully, then click OK.

5.5 Security role mapping
The defined Enterprise Application roles must be mapped to the user registry.
This can be done with the Administrator’s Console using the Security Center or
during the installation of the enterprise application.

5.5.1 Security role mapping with the Security Center
The following steps will guide you through the process of setting up role
mappings using the Security Center.

1. Launch the Administrator’s Console, then select Console -> Security Center
from the menu.

2. Switch to the Role Mapping tab, select the enterprise application
(webbankApplication), then click Edit Mappings....

3. A new window appears; select the desired role, then click Select.

4. There are three options at this point.

a. You can select the special role Everyone (no authentication) for the role.

b. All authenticated users(*) is the other available option.

c. Select users/groups is the last option on the list.

Selecting either of the first two does not require further configuration; click
OK, then continue the role mapping or close the Security Center.
 Chapter 5. The sample used in this book 93

Selecting the third option, as we do in our example, requires further steps:

5. Select the checkbox Select Users/Groups and search for users using a *
(asterisk) in the Search field, then click Search.

6. A number of users and groups will appear in the list Available Users/Groups.

7. Assign the desired users and groups you want to add to the role by selecting
them, then adding them (using the Add>> button) to the Selected
Users/Groups list.

8. Confirm the settings in every window by clicking OK.

9. Close the Security Center.

5.5.2 Security role mapping during installation
Application deployers can also perform role mapping for the enterprise
applications during installation with the Administrator’s Console Enterprise
Application Installation Wizard.

After the wizard is started, the first window will ask for the Enterprise archive
(.ear) file. The next window is titled Mapping Users to Roles, it allows you to map
users and groups to the roles (see Figure 5-13).

Figure 5-13 Role mapping during installation

The roles defined in the application are listed in the window. Select the role you
want to map, then click the Select button. This will bring up the same selection
window for mapping (see Figure 5-14).
94 IBM WebSphere V4.0 Advanced Edition Security

Figure 5-14 Select Users/Groups window

Select the type of user or users you want to map to the role, then click OK.

After all the roles has been mapped, click Next in the installation wizard.

5.5.3 Security role mapping with the Application Assembly Tool
This section will show you how to use the Application Assembly Tool (AAT) to
perform role mapping for an Enterprise application.

1. Start AAT and open the Webbank application.

2. Click the Security Roles node; the security roles appear in the upper right
list.

3. Select the first role: AllAuthenticated, then switch to the Bindings tab below.

4. You will find three list-boxes for the mapping: Groups, Users and Special
subjects. For the AllAuthenticated role, click Add next to the Special subjects
list-box. A new window appears; select AllAuthenticatedUser, then click OK.

5. Click Apply at the bottom of the panel.

6. Select the next role: Manager; for this one, you must assign a group from the
registry.

7. Switch to the Bindings tab again, then click Add next to the Groups list-box.

8. A new window appears, in which you must specify the Name for the group;
type in Manager.

9. Click Apply at the bottom of the panel.
 Chapter 5. The sample used in this book 95

10.Perform the mapping for each role one after the other using the following
table:

Table 5-4

11.Save the EAR file.

5.5.4 Security mapping with WebSphere Studio Application
Developer

The following steps will guide you through the process of setting up security
mappings using WebSphere Studio Application Developer.

1. Select the J2EE perspective in WebSphere Studio Application Developer,
then switch to the Navigator view.

2. Click webbank -> META-INF folder, then double-click the file
ibm-application-ext.xmi. The application extension editor should open.

3. Switch to the Security Bindings tab on the editor (see Figure 5-15).

Figure 5-15 Application Extension Editor - Security bindings

4. Under Security roles are listed the roles from the application.

Role Bindings type Bindings

Employee Group Employee

Everyone Special subjects Everyone

Consultant Group Consultant

Note: Use the common name (cn) for the bindings instead of the fully
distinguished name (dn).
96 IBM WebSphere V4.0 Advanced Edition Security

5. Select the roles one by one, then bind the roles to users or groups. The
following options are available:

– Everyone

– All authenticated users

– Users/Groups

If Users/Groups is selected, the Users and the Groups window will be
available. Developers and application assemblers can add users and groups
clicking the Add button. The new entries are: (UserName) and (GroupName), by
default. The entries can by edited by double-clicking them.

Bind the following users and groups to the roles from Table 5-5.

Table 5-5 Security bindings

Security role Mapped to

AllAuthenticated All authenticated users

Manager Users/Groups,
Group: Manager

Employee Users/Groups,
Group: Employee

Everyone Everyone

DenyAllRole (Do not assign anything)

Important: There is a problem with defining role mappings for an Enterprise
application. Each role assignment has a wrong attribute in the
<specialSubjects> tag. You must remove the accessId=”” attribute from each
tag. If you do not do thist, WebSphere will not pick up the role mapping during
the installation and you will have to do it manually again, either from the
Security Center or during the installation.
 Chapter 5. The sample used in this book 97

5.6 Domino Webbank sample
To test the Single Sign-On (SSO) example included in this book, it is necessary
to customize the following elements in the sample applications, by:

– Modifying the URLs included in the Webbank Comments Application
template (webbank.ntf).

– Creating the Webbank Comment Application database from the template.

– Modifying the URLs included in the webbank.html page.

For more details about SSO, refer to Chapter 14, “Single Sign-On” on page 393.

Modifying the URLs included in the Webbank Comments
Application template

The Webbank Comments Application database is a Lotus Domino application
used in the example of SSO between WebSphere and Domino.

The application contains the URLs to connect to WebSphere from Domino. The
purpose of this section is to explain how to deploy the Domino application in the
Domino Server and how to modify these URLs to fit your environment.

To deploy the application, follow these next steps:

1. Copy the webbank.ntf template to the Domino Server data directory.

2. Start the Domino Administration Client, logged in as a user with administrative
privileges, and open the Domino Server from the left server bookmark pane;
click the Files tab.

3. Select Templates only in the Show me field to display all the templates
located in the Domino data directory, as shown in Figure 5-16.

Important: There is a bug in WebSphere Studio Application Server which may
cause a problem when mapping special roles. The role Everyone is mistyped
in the deployment descriptor as everyone. AllAuthenticatedUsers is also
improperly typed using all lowercase: allauthenticatedusers. Correct these
entries in ibm-application-bnd.xmi using the AAT or during installation, or edit
the deployment descriptor directly. The correct values are:

� Everyone
� AllAuthenticatedUsers
98 IBM WebSphere V4.0 Advanced Edition Security

Figure 5-16 Selecting Webbank application template

4. Select the Webbank Comment Application Template and open the
Database toolbar located on the right side of the tools pane, then select
Sign....

5. A new Dialog box appears. Leave the default parameters selected and click
the OK button (see Figure 5-17).
 Chapter 5. The sample used in this book 99

Figure 5-17 Sign Database dialog box

6. A new dialog box will appear stating ”Your Name and Address Book does not
contain a cross certificate for this organization” (for example: ITSO).
Click Yes to create a new cross certificate.

7. All the design elements of the database will be signed with the actual ID.
When the process is completed, a dialog box shows the number of databases
processed and the number of errors that occurred (if any).

Also, you can check that the process has completed successfully by looking
for the following message at the bottom of the Domino Administrator window:

Sign...Successfully processed SSODomino/ITSO webbank.ntf

To modify the URLs included in the Comments form, follow the next steps:

1. Start Lotus Domino Designer and log in with the notes ID that you used
before to sign the webbank.ntf database.

2. Select File -> Database -> Open. The new open database dialog box is
displayed.

a. Select the server where the webbank.ntf template is located.

b. Select the Webbank Comments Application template from the
drop-down database/templates list and click the Open button.

3. Click Forms in the Design window and then double-click the Comments form
to open it, as shown in Figure 5-18.
100 IBM WebSphere V4.0 Advanced Edition Security

Figure 5-18 Webbank Comments form in Domino Designer

4. Place the cursor on top of the www.itsowebbank.com link and click the right
mouse button. Point to HotSpot Properties....

5. A new HotSpot Properties dialog box appears. Select the Content section
and type in the full URL address for your public WebSphere site in the Value
field as http://<your WebSphere server>/webbank. Close the dialog box (see
Figure 5-19).

Figure 5-19 Changing the URL value
 Chapter 5. The sample used in this book 101

6. Repeat the same procedure to change the full address to your secure
WebSphere URL: https://<your WebSphere server>/webbank.

7. Save the Comments form.

Creating the Webbank Comment Application database from
the template

To create a new Webbank application database for use in the SSO example,
follow these steps:

Start the Domino R5 Administration client with a notes administrator ID and then,
from the Domino Administrator menu:

1. Choose File -> Database -> New. The new database Dialog Box is displayed.

2. Select the server where you want to create the new database.

3. Enter a title for the database, for example: Webbank Comments Application.

4. Enter a file name for the database, for example: webbank.NSF

5. Click the Template Server... button, select the Domino server that stores the
Webbank Comments Application template (webbank.ntf) and highlight it.

6. Make sure that Inherit future design changes is selected, then click OK.

These settings are illustrated in Figure 5-20.

Figure 5-20 Creating a new webbank database from the template
102 IBM WebSphere V4.0 Advanced Edition Security

Modifying the URLs in the webbank.html page
Once you have created the Webbank Comments Application Database, it will
also be necessary to modify the URLs included in the webbank.html page to go
from WebSphere to Domino with the URLs that fit your environment.

To do this, follow these steps:

1. Open the webbank.html with a text editor.

2. Locate the tag and change to the Domino URLs for your
environment, as shown below.

Please, send your comments (public)</h4>

Please, send your comments (secure)</h4>

At this point, you are ready to test the SSO example. For more details, refer to
Chapter 14, “Single Sign-On” on page 393.

5.7 Security samples
The following sections will summarize the function extensions to the base
Webbank example.

Securing Web service
In Chapter 9, “Securing Web services” on page 171, a very simple Web service
will be developed from one of the EJBs. This Web service will be secured using
WebSphere’s Web service security features.

Securing J2EE clients
In Chapter 8, “Securing J2EE clients” on page 155, three different J2EE clients
will be shown. They are:

� A servlet: the servlet authenticates itself on the server-side to the EJB
container.

� A Java thin client: it connects to an EJB and authenticates itself on the
client-side.

� The J2EE client has the full J2EE runtime environment and the developer
does not need to deal with authentication, since the runtime environment will
take over that task.
 Chapter 5. The sample used in this book 103

CustomRegistry sample
The custom registry sample is explained in a short section in Chapter 10,
“Programmatic security” on page 201, where three different registry
implementations will be introduced (see Section 10.3, “CustomRegistry SPI” on
page 206). The following registries can be found there:

� File-based Custom Registry sample from the WebSphere InfoCenter

� Using DB2

� Using MQ Series
104 IBM WebSphere V4.0 Advanced Edition Security

Chapter 6. Securing Web components

In this chapter, we will discuss how to configure security for Web components
such as servlets, JSPs and static resources.

Static resources can be secured by WebSphere Application Server or by the
Web server. In “Static components served by a Web server” on page 106, we will
show you how to configure authentication and authorization of static resources
belonging to a Web server.

In ““WebSphere Web module security” on page 112,” we explain how to
configure security for static and dynamic resources belonging to WebSphere. We
will demonstrate how to do this using the Application Assembly Tool that comes
with WebSphere, and using WebSphere Studio Application Developer.

6

© Copyright IBM Corp. 2002 105

6.1 Static components served by a Web server
WebSphere Application Server can only secure resources that it owns.
Therefore, any static pages served by the Web server and that you want to
secure will need to be protected by a means other than WebSphere.

Most Web servers are able to secure the files that they serve. For example, IBM
HTTP Server can protect its own resources, using:

� HTTP basic authentication

� HTTP digest authentication

� Digital certificate authentication

In “How to secure HTTP basic authentication for IBM HTTP Server” on page 106,
we provide an example of how to configure IBM HTTP Server to secure static
content with HTTP basic authentication. In “Managing access to IBM HTTP
Server using .htaccess” on page 111, we explain how access to these static
resources can be managed using .htaccess.

For more information on how to configure security for IBM HTTP Server, see the
product documentation.

It is also possible to use external security products to protect the Web server
resources, such as IBM Tivoli Policy Director. See Section 13.2.2, “Using Tivoli
Policy Director to protect static pages” on page 358 for more details.

6.1.1 How to secure HTTP basic authentication for IBM HTTP Server
In this section, we are going to enable security for all the static documents in the
C:\IBM HTTP Server\htdocs directory. We will test this using http://localhost.

It is possible to configure HTTP basic authentication for IBM HTTP Server (IHS)
using the following user registries:

� Files: group names, user names and encrypted passwords are stored in files.

� Database: DBM and DB type database files are supported.

� LDAP: users and groups are defined in an LDAP server, such as IBM
SecureWay Directory Server. This can be the same LDAP server that
WebSphere uses for its user registry.

For our example, we will use LDAP, IBM SecureWay Directory Server, to store
the users’ information. The following instructions assume that you already have
an LDAP server set up and populated with users. See “SecureWay Directory
Server” on page 460 for details on how to do this.
106 IBM WebSphere V4.0 Advanced Edition Security

If your LDAP server is remote from your Web server, you will need to install the
SecureWay client on the Web server machine. The client can be installed on its
own from the IBM SecureWay Directory Server 3.2.1 download, available from
http://www-4.ibm.com/software/network/directory/downloads/. Make sure
that you have configured the client to connect to your remote LDAP server.

The following steps will show you how to enable LDAP authentication for IHS.

To enable HTTP basic authentication with LDAP, we need to perform the
following steps:

1. Create a configuration file for the Web server to use to connect to the LDAP
server, including the authentication type.

2. Add the LDAP module to the Web server configuration file.

3. Set the scope of the authentication:

a. Test that you can access the Web server. Make sure that the HTTP Server
service is started, then from a Web browser, enter http://localhost. You
should not be prompted for a user name and password.

b. Decide which user name and password with which you want the Web
server to connect to the LDAP server. Now store an encoded version of
the password in a stash file. From a command prompt, enter:

C:\IBM HTTP Server\ldapstash <password> C:\IBM HTTP
Server\ldap.sth

c. Now create an LDAP configuration file for the Web server called C:\IBM
HTTP Server\conf\ldap.prop. There is a sample file, ldap.prop.sample, in
the same directory, which explains what each of the directives means. For
basic authentication, the following entries are included.

Example 6-1 LDAP directives

ldap.realm=LDAP Realm
ldap.URL=ldap://9/24/105/98/o=webbank (a)
ldap.transport=TCP
ldap.application.authType=Basic
ldap.application.DN=cn=Joanna Hodgson,c=US,o=webbank (b)
ldap.application.password.stashFile=ldap.sth
ldap.user.authType=Basic
ldap.group.name.filter=(&(cn=%v1)(|(objectclass=groupofnames)(objectclass=g
roupofuniquenames)))
lcap.group.memberAttributes=member uniquemember
ldap.idleConnection.timeout=600
ldap.waitToRetryConnection.interval=300
ldap.search.timeout=10
ldap.cache.timeout=600
 Chapter 6. Securing Web components 107

http://www-4.ibm.com/software/network/directory/downloads/

where

i. ldap.URL is of the form ldap://<hostName>/<BaseDN>

ii. ldap.application.DN is the DN by which the Web server authenticates
itself to the LDAP Server.

d. Now add the LDAP module to the Web server configuration. From a Web
browser, go to the IHS server configuration. Go to http://localhost then
select Configure server. When prompted, enter your Web server
administration ID and password.

e. Select Basic Settings -> Module Sequence. Make sure that the Scope is
set to <GLOBAL>, then select ibm_ldap (IBMModuleLDAP.dll) and click
Add.

Note: If you have not set up an administration ID, then from a command
prompt, enter:

C:\IBM HTTP Server\htpasswd -c C:\IBM HTTP
Server\conf\admin.passwd <adminName>

When prompted, enter your chosen password and verify it.

Stop and restart both Web server services to make the changes effective.
108 IBM WebSphere V4.0 Advanced Edition Security

Figure 6-1 Configuring the LDAP module for IBM HTTP Server

f. Click Submit.

g. Next, set the scope and type of authentication. We urge you to secure all
the documents in the C:\IBM HTTP Server\htdocs directory. From the Web
server administration console, select Access Permissions -> General
Access. Click the Scope button and select <Directory C:\IBM HTTP
Server\htdocs>.

Figure 6-2 Choosing the authentication scope
 Chapter 6. Securing Web components 109

h. Now select LDAP as the authentication type and enter the name of the
configuration file you created in step b above, C:\IBM HTTP
Server\conf\ldap.conf. Enter an authentication realm name; we used
LDAP Realm.

Figure 6-3 Finalizing the LDAP configuration

i. Now click Submit.

j. Restart the Web server, clicking the Restart Server button (see
Figure 6-4).

Figure 6-4 Restart server button

k. Now close the browser in which you were administering the Web server.
Restart the browser and got to http://localhost. This time, you should
be prompted for a user name and password. Enter any valid user in your
LDAP registry.
110 IBM WebSphere V4.0 Advanced Edition Security

6.1.2 Managing access to IBM HTTP Server using .htaccess
By default, the Web server configuration is handled only by the Web
administrator. The IHS configuration file, httpd.conf, explicitly enforces this with
the following directive:

 <Directory "C:/Program Files/Apache Group/Apache/htdocs">
 AllowOverride None
 Options None
 </Directory>

There are occasions when this is a bit limiting. First, it means that all
configuration changes require a restart of the server to be effective. Second, you
might want to give an individual user or group of people the ability to configure
their own area of a Web site. This is not possible with the default settings.

IBM HTTP Server can be configured to provide different levels of access on a
per-directory basis, overriding directives in the server configuration defined in
httpd.conf. This is done using configuration files called .htaccess within each
directory over which you want to have this control.

When using these .htaccess files, note that for each request for a file, IHS will
check to see whether there are any .htaccess files in the directory tree. These
files can exist in multiple directories in the tree. In this case, the directives in the
.htaccess file of the subdirectory take precedence over the directives in the
parent directory.

Because IBM HTTP Server checks for the .htaccess files upon each request for a
page, there is no need to restart the server for the configuration changes to take
effect.

Note: The configuration changes you made through the Web server
administration tool added the following lines to the C:\IBM HTTP
Server\conf\httpd.conf

LoadModule ibm_ldap_module modules/IBMModuleLDAP.dll
LDAPConfigFile “c:/ibm http server/conf/ldap.prop”
AuthName “LDAP Realm”
AuthType basic
Require valid-user
 Chapter 6. Securing Web components 111

There are a number of directives that can be overridden. When dealing with
security, we are interested in the AuthConfig category of directives. To override
this category, change the directive in the httpd.conf file to:

 <Directory "C:/Program Files/Apache Group/Apache/htdocs">
 AllowOverride AuthConfig
 Options None
 </Directory>

For more information on how to use .htaccess see the Apache tutorial at
http://apache-server.com/tutorials/ATusing-htaccess.html.

6.2 WebSphere Web module security
A Web module is made up of static resources (such as HTML files, images,
sound files, etc.), servlets and JSPs. A description of how to configure security
for each of these specific resource types can be found in the following sections.
There are also some security settings applicable to all of these resources which
are defined at the Web module level.

The Application Assembly Tool (AAT) is used to configure security for a Web
module. Using it, you can configure:

� Security roles

The security roles for our Webbank application were defined in Section 5.3,
“Defining security roles” on page 81. As noted there, security roles defined to
a Web module are visible at the Enterprise application level; similarly, all roles
defined to the application are also available to the Web module.

� Security constraints

A security constraint is a mapping between a security role and a set of
resources. A resource can be a URL, in the case of static content, an entire
servlet or JSP, or methods of a set of servlets or JSPs. There can be several
security constraints for each Web module. If global security is enabled, then
once a security constraint is set for a particular resource, it is secured.

� Authentication method

WebSphere supports three authentication methods:

– Basic authentication

The user name and password are encoded by the browser and included in
the HTTP request. To secure the user information during transmission, this
channel should be encrypted.
112 IBM WebSphere V4.0 Advanced Edition Security

http://apache-server.com/tutorials/ATusing-htaccess.html

– Client certificate authentication

The client certificate is transported across an SSL encrypted channel to
the Web server. The Web server then extracts the credentials from the
certificate and forwards them to WebSphere along with the request.

– Form-based authentication

By default, the values that the end user supplies in the form are
transmitted in clear text as parameter values in the HTTP request. To
secure the user information during transmission, this channel should be
encrypted.

The Application Assembly Tool (AAT) also has an option for digest authentication,
but this option is not supported by WebSphere.

If a security constraint has been set but no authentication method for a Web
module has been configured, the default is to use basic authentication.

The Webbank application will work with each of the authentication methods, as
the Web module (webbankWeb) contains an HTML file for form-based
authentication.

It is possible to configure each Web module, within an enterprise application, to
use a different authentication method. This way, you could configure one Web
module to use client certificates for your intranet users, for example, and another
module to use basic authentication for your Internet users.

If you configure an authentication method default for all Web modules, then any
Web modules that have not already been configured will inherit this setting.

The authentication method is configured from the AAT; the following steps will
guide you through our example:

1. Load the Webbank application file into the AAT.

2. Expand Webbank -> Web modules, and select the webbankWeb module. In
the right-hand pane, select the Advanced tab.
 Chapter 6. Securing Web components 113

Figure 6-5 Authentication method pane

3. Select the Login configuration checkbox. This will enable the
Authentication method drop-down menu. Now select the method you want
to use : Basic, Form or Client cert.

4. Enter a Realm name; in our example we used Webbank Realm.

5. If you selected Form for the authentication method, you now need to define
the Login and Error pages that you will use for this.

First, select the second Login configuration checkbox. Now enter the file
names. For our Webbank application, enter:

– Login page: /Login.html

– Error page: /Login.html (in case the login failed, the user is redirected to
the login page again)

Definition: A realm is a security domain. Each application server resides
within a realm.

Note: These files must be included in a Web module.
114 IBM WebSphere V4.0 Advanced Edition Security

6. Click Apply for the changes to take effect.

Figure 6-6 Completed Form login pane

You can now use these instructions to configure any other Web modules that you
have in your enterprise application. If you have multiple Web modules for which
you want the same authentication method, you can follow these instructions, but
first select Web Modules, then the Advanced tab, and continue from step 2
above.

Below are the screen shots of the different types of authentication. To launch the
application, point your browser to http://<hostname>/webbank.

The basic authentication challenge is shown in Figure 6-7.

Note: You must not include the context root for the Web module here, as it
is assumed.

Note: <hostname> should be the fully qualified host name of the WebSphere
server, and not localhost or the IP address.
 Chapter 6. Securing Web components 115

Figure 6-7 Basic authentication challenge

The form-based authentication challenge is shown in Figure 6-8.

Figure 6-8 Form-based authentication challenge
116 IBM WebSphere V4.0 Advanced Edition Security

6.3 Securing the Web components
The following sections will describe the methods you can use to secure your Web
components (static pages, servlets, JavaServerPages) with WebSphere
Application Server.

6.3.1 Static pages served by WebSphere Application Server
WebSphere Application Server can secure static resources that it owns, that is,
which reside on the Application Server and not on the Web server. According to
the J2EE specification, these static resources must be packaged within a Web
module (Web ARchive file). The static resources are then served up to the
browser by the File Serving Servlet running inside the WebSphere Web
container.

Figure 6-9 WebSphere serving a static file

For information on how to create a Web module to include static resources, see
the WebSphere InfoCenter, section 6.3.1, “Assembling modules.” To ensure that
file serving is enabled, see “Static pages served by WebSphere Application
Server” on page 117.

In our Webbank sample application, we have several static resources, including
several image files, the HTML files for the Form login, and the entry HTML page
to our application (webbank.html).

Important: You must never secure the pages for the Form login, as you will be
effectively securing a page with itself!

http://was01.ibm.com/
webapp/index.html

WebSphere Application Server

Browser

WAR File

index.html
image.gif

sound.wav

File Serving
Servlet
 Chapter 6. Securing Web components 117

The following instructions show how to secure a static resource by setting a
security constraint. Here we will configure webbank.html so that all authenticated
users have access to it.

1. Load the Webbank archive file into the AAT.

2. Expand Webbank -> Web modules -> webbankWeb and select Security
Constraints. Right-click Security Constraints and select New. You will be
presented with the New Security Constraint entry window.

3. Enter the Security constraint name: Webbank access.

4. In the Authorization Constraints pane, next to Roles, click Add. You will be
presented with a dialog box listing all the security roles that are defined for
your application.

5. Select the AllAuthenticated role and click OK.

Figure 6-10 Completed New Security Constraint window
118 IBM WebSphere V4.0 Advanced Edition Security

6. Click OK to save the security constraint. You will now see your new security
constraint (Webbank access) listed in the constraints window.

7. Expand the new constraint and select Web Resource Collections.
Right-click Web Resource Collections and select New. You will be
presented with the New Web Resource Collection entry window.

8. Enter the Web Resource Name: Webbank access.

9. Next to URLs, click Add. You will be presented with the Add URLs entry box.

10.Add the URL pattern / (forward slash on its own), then click OK. Now add a
second URL pattern: /webbank.html.

Note: The User Data Constraint section of this window allows you to configure
a Transport guarantee which forces connections from a browser to come in
only over an encrypted channel, that is, HTTPS. This only affects the
connection between the browser and the Web server.

There are three options you can choose from:

� None

No constraint is applied. Requests from a browser can come in over HTTP
or HTTPS.

� Integral

This ensures that data cannot be changed in transit. In practice, this means
that a request must be transmitted over an SSL encrypted channel.

� Confidential

This ensures that data cannot be viewed in transit. In practice, this means
that the request must be transmitted over an SSL encrypted channel.

See “Configuring the Web Server to support HTTPS” on page 239 for more
information on configuring SSL.
 Chapter 6. Securing Web components 119

Figure 6-11 Completed Web Resource Collection window

11.Click OK to finish.

6.3.2 Servlets
WebSphere can secure its dynamic resources, such as servlets, using the
method type. For example, the POST method of a servlet can be part of a
different security constraint than the GET method. The full list of predefined
methods that can be secured is:

� GET
� POST
� PUT
� DELETE
� HEAD
� OPTION
� TRACE

You might want to use this method if you had some dynamic content
(HTTP_GET) that all authenticated Internet users can view and also had some
administration function that you only wanted your staff to be able to perform
(HTTP_POST). In this case, you would choose to define separate security
constraints for the two methods.

If no methods are explicitly defined in the constraint, then all methods are
secured.
120 IBM WebSphere V4.0 Advanced Edition Security

For our Webbank example, we will configure one constraint for the
TransactionServlet which defines both the GET and POST methods. We will
assign this constraint to the Employee and Manager roles. First, load the
Webbank application file into the AAT, then:

1. Expand Webbank -> Web modules -> webbankWeb and select Security
Constraints. Right-click Security Constraints and select New. You will be
presented with the New Security Constraint entry window.

2. Enter the Security constraint name: Webbank Transfer.

3. In the Authorization Constraints section pane, next to Roles, click Add. You
will be presented with a dialog box listing all the security roles that are defined
for your application. Select the Employee and the Manager roles and click
OK.

4. Click OK to save the security constraint. You will now see your new security
constraint (Webbank Transfer) listed in the Constraints pane.

Figure 6-12 Security constraint for TransferServlet

5. In the left-hand pane, expand the new constraint and select Web Resource
Collections. Right-click Web Resource Collections and select New. You will
be presented with the New Web Resource Collection entry window.

6. Enter the Web Resource Name: Webbank transfer.
 Chapter 6. Securing Web components 121

7. Next to HTTP methods, click Add. You will be presented with the Add HTTP
methods entry box.

8. Add the HTTP method: GET then click OK. Now add a second HTTP method:
POST.

9. Next to URLs, click Add. You will be presented with the Add URLs entry box.
Add the URL pattern: /TransferServlet, then click OK.

Figure 6-13 Completed Web resource collection window for TransferServlet

10.Click OK to finish.

Security role references for servlets
You can set up security role references for the servlets. These references help to
separate the development from the deployment. Application developers can use
any name for the roles, then, during deployment, the application deployers can
make the link between the role name used in the source code and the role name
used for the enterprise application.

Security role references can be defined using the Application Assembly Tool
(AAT):

1. Start the Application Assembly Tool (AAT), then open the enterprise
application archive, for example: webbank.

2. Select the node: webbankApplication -> Web modules -> webbankWeb ->
Web components -> TransferServlet -> Security Role References.
122 IBM WebSphere V4.0 Advanced Edition Security

3. Right-click the node, then select New.

4. A window pops up with the settings. Name is the name of the role used in the
source code; type in Employee.

5. The Link is a selection list where you can select the roles defined for the Web
module. Select Employee.

6. You can write a description for the entry if you need to.

7. Click OK.

Figure 6-14 Security role references for servlets

You can also set security role references using the WebSphere Studio
Application Developer (WSAD).

1. Start WebSphere Studio Application Developer with the Webbank project,
switch to the J2EE perspective, select the J2EE view, then double-click the
Web modules -> webbankWeb entry.

2. The web.xml editor comes up; switch to the Servlets tab.

3. There is a list-box called Authorized roles. Click Edit next to the list-box.

4. Select the Employee role.

This performs the reference a bit differently than the Application Assembly
Tool (AAT); in this case, the name in the source code and the link to the
application roles will automatically be the same: Employee. You can check the
entry in the web.xml source by searching for the following tag:
<security-role-ref>.

5. Save and close the web.xml file.
 Chapter 6. Securing Web components 123

6.3.3 JavaServer Pages (JSPs)
As for servlets, WebSphere can secure JSPs using the method type. JSPs which
are defined as Web components in your Web module can be configured in
exactly the same way as for servlets (see Section 6.3.2, “Servlets” on page 120).

In a classic Model-View-Controller application architecture, JSPs will return
dynamic content as part of the presentation layer, not control the application flow
or contain any business logic. The information presented by the JSP can only be
accessed by first calling a servlet. In this scenario, it may not be necessary to
protect your JSPs, even if the servlet is protected.

If the Model-View-Controller application architecture has not been followed or
you want to secure your JSPs anyway, then take care not to secure any error
pages that you would want to display to non-authenticated users.

The Webbank application has a single JSP used to report the result of a bank
transfer. As this application conforms to the Model-View-Controller architecture,
we will not apply any constraints to the JSP itself. Access to the Web application
is controlled through TransferServlet, and no result will appear on the JSP
accessing it directly.

6.4 Defining WebSphere Studio Application Developer
security constraints

This section will show you how to define security constraints for the Web module
using WebSphere Studio Application Developer. The security constraint settings
are the same as in “Securing the Web components” on page 117.

1. Start WebSphere Studio Application Developer with the Webbank project.

2. Open or select the J2EE perspective, and switch to the J2EE view.

3. Open the Web Modules folder, then double-click the webbankWeb item.

4. Switch to the Security tab.

5. Define a new security constraint: click the Add button under the Security
constraints list-box; a new item appears in the box, and one under the Web
resource collection.

Note: the security role references were not tested for servlets at the time this
book was written.
124 IBM WebSphere V4.0 Advanced Edition Security

6. Select the new entry under the Web resource collection, then click Edit on the
right side of the list-box; a new window appears.

7. In the Web Resource Collections window, select the GET and PUT methods
under the HTTP Methods list. Then add the following URL pattern:
/TransferServlet. Click OK to close the window.

Figure 6-15 Web Resources Collection window

8. Now add the roles to this security constraint. Click Edit next to the Authorized
Roles list-box; a new window appears with the defined roles.

9. Select the Employee and Manager roles. Fill out the Description field. This is
tricky, as the security constraint name is stored in this description field. The
Application Assembly Tool (AAT) can recognize the name and the description
part. The security constraint name has to be the first string, and has to end
with the following sequence: :+: (colon, plus sign, colon). So in the
description field, type the following: Webbank Transfer:+:. Click OK to close
the window.

Note: It is not necessary to fill out the description field, or to specify a
name for the security constraint. Without specifying a name, the security
constraint will appear in AAT as <name not specified>.
 Chapter 6. Securing Web components 125

Figure 6-16 Select Auth Constraints window

10.Also set a security constraint for the webbank.html static page. Follow the
previous steps 5 to 9, using the following values:

Security constraint name: Webbank access

Web resource collection name: Webbank access

Web resource collection - URL Patterns: / , /webbank.html

Web resource collection - HTTP Methods: GET

Authorized roles: AllAuthenticated

11.The result should look like that shown in Figure 6-17 on page 127.
126 IBM WebSphere V4.0 Advanced Edition Security

Figure 6-17 web.xml - Security window

12.Save the changes, then close the web.xml document.

6.5 Configuring Web module security using WebSphere
Studio Application Developer

In this section, we will show how you can configure the authentication method
and the security constraints using WebSphere Studio Application Developer.

1. Start WebSphere Studio Application Developer with the Webbank project.

2. First, we will define the authentication method. In the left-hand pane, select
the Navigator view and expand the webbankWeb folder, then the
webApplication and the WEB-INF folders.

3. Double-click the web.xml file. In the right-hand pane, you will see the Web
application deployment descriptor configuration panel. Select the Pages tab.
 Chapter 6. Securing Web components 127

Figure 6-18 Authentication method pane

4. In the Login area, select the Authentication method drop-down menu and
choose the method you want to use. The choices are Basic, Digest, Form and
Client-Cert. For deployment into WebSphere, do not choose Digest.

5. Now enter a Realm name; in our example, we used Webbank Realm.

6. If you selected Form for the authentication method, you will have noticed that
this enabled the Login page and the Error page input fields. You now need to
define the pages you will use for this. The pages you choose must already be
part of the Web module. Use the buttons to the right of each field to select:

– Login page: /Login.html

– Error page: /Login.html

Figure 6-19 Completed form based login information

Now we will define a security constraint for the static file webbank.html and a
second one for TransferServlet.

1. In the right-hand pane, switch to the Security tab.

2. Under the Security constraints area, click Add. You will see a new security
constraint and a new Web resource collection created for you.
128 IBM WebSphere V4.0 Advanced Edition Security

Figure 6-20 New security constraint

3. Select New Web Resource Collection and change the name to Webbank
access.

4. Next to the resource collection area, click Edit. You will be presented with the
Web Resource Collections entry window.

5. Next to URL Patterns, click Add. A new URL pattern will appear in the list.
Select it and change it to / (forward slash on its own). Add a second URL
pattern: /webbank.html.

Figure 6-21 Completed Web Resource Collection window

6. Click OK to save the changes.

7. Now select the Edit button next to Authorized roles. You will be presented with
the Select Auth Constraints entry window. Enter a description of Webbank
access and select the role AllAuthenticated.
 Chapter 6. Securing Web components 129

Figure 6-22 Webbank access role assignment

8. Click OK to save the changes.

9. For the TransferServlet, we will add a new security constraint and resource
collection. Follow steps 8 to 13, using the following values from Table 6-1.

Table 6-1 Transfer Servlet security constraint information

10.Save your changes to the Web module deployment descriptor, then close the
file. The completed configuration should look like that shown in Figure 6-23
on page 131.

Field name Value

Web Resource Collection name Webbank transfer

URL pattern /TransferServlet

HTTP methods GET, POST

Security Constraint description Webbank Transfer constraint

Authorized roles Employee, Manager
130 IBM WebSphere V4.0 Advanced Edition Security

Figure 6-23 Completed Web security constraints

6.6 Form-based and Custom Login facilities
Customizeable login facilities are available in WebSphere Application Server;
form-based and custom login methods will be discussed here.

6.6.1 Form-based login
Form-based login, as described above, is defined by the Servlet 2.2 specification
and is a requirement for J2EE 1.2 compliance. When a user requests a protected
resource, they are first redirected to a login form. The user enters the details and
submits the form; this triggers the WebSphere FormLoginServlet , which
performs the authentication. If the authentication is successful, the user is
presented with the originally requested page.

This form-based login is very simple. There are two entry fields and one Post
action which must exist in the login form:

� j_username must be the field name for the user name.

� j_password must be the field name for the password.

� j_security_check must be the Post action for the Submit button.
 Chapter 6. Securing Web components 131

The form used in the Webbank application is shown below.

Example 6-2 Login.html for Webbank application

<HTML>
<HEAD>
<TITLE></TITLE>
</HEAD>
<BODY background="background.gif">
<P align="center"><IMG src="CL-Logo.gif" width="358" height="53"
border="0">

You have been redirected to this page because the resource you try to access is
protected. Please supply a userid and password below. After successful login,
you will be automatically redirected to the page you originally requested.</P>
<FORM method="POST" action="j_security_check">

<TABLE border="0">
 <TBODY>
 <TR>
 <TD>Userid :</TD>
 <TD><INPUT size="10" type="text" name="j_username" maxlength="25"></TD>
 </TR>
 <TR>
 <TD>Password: </TD>
 <TD><INPUT size="10" type="password" name="j_password" maxlength="25"></TD>
 </TR>
 </TBODY>
</TABLE>

<INPUT type="submit" name="action" value="Login"> <INPUT type="reset"
name="reset" value="Clear">
</FORM>
</BODY>
</HTML>

Logout
The Servlet 2.2 specification does not provide a logout facility. WebSphere
extends the specification by providing a form-based logout facility. After logging
out, the user is required to reauthenticate to gain access to protected pages. This
logout form can be an HTML or a JSP page which has the Post action
ibm_security_logout. This form must exist within the same Web application to
which the user gets redirected after logging out. See the webbank.html file for the
source code.

6.6.2 Custom login
In previous versions, WebSphere supported a Custom Login function which
allowed you greater control over how the user is logged in. This allowed you to
choose what information to receive from the customer and also what additional
checks should be performed before authenticating the user. For example, it may
132 IBM WebSphere V4.0 Advanced Edition Security

have been useful to verify that the user’s subscription to your Web site had not
expired before authenticating the user against your user registry. By providing a
login helper class that could be extended, you were able to modify the default
behavior of WebSphere during the authentication stage. In WebSphere V4, this
facility is deprecated.
 Chapter 6. Securing Web components 133

134 IBM WebSphere V4.0 Advanced Edition Security

Chapter 7. Securing EJBs

In this chapter, EJB security is discussed in detail. We will show how to use the
Application Assembly Tool and the WebSphere Studio Application Developer to
set security for the EJBs.

The following topics will be discussed:

� Method level permissions and role mapping

� Delegation policy settings and Run-As mode mapping

7

© Copyright IBM Corp. 2002 135

7.1 Securing EJBs
Enterprise Java Beans are essential parts of an enterprise application. EJBs
implement the business and most of the application logic. They have access to
sensitive data, and it is very important to understand the security applied to these
enterprise resources. Apart from the Web resources, EJBs should also be
carefully secured.

If global security is enabled and the EJBs have no methods at all configured with
security, then the default is to grant access to the EJBs’ methods. If global
security is enabled and at least one method has a security constraint, then the
request to the EJBs is denied. This kind of behavior is different from that of the
Web modules’ components. The following table summarizes this:

Table 7-1 Securing EJBs

For more information on how to secure EJBs’ method permissions specified in
the EJB specification 1.1, refer to the following URL:
http://java.sun.com/products/ejb/docs.html.

Figure 7-1 depicts the User-Group-Role-EJB Method mapping. Roles can
include users and/or groups; groups can include users, and roles are then
mapped to EJB Methods.

Security enabled
No method permission

EJB granted

Security enabled
One method is protected, the other has a
default configuration

EJB denied
136 IBM WebSphere V4.0 Advanced Edition Security

http://java.sun.com/products/ejb/docs.html

Figure 7-1 Method mappings

The following table summarizes the EJB security settings, the place where the
settings are stored and the tools to use to change the settings.

Table 7-2 Creating the method permissions for EJBs

7.2 Assigning methods to roles
The EJB method permission maps one or more security roles to one or more
methods that a member of the role can invoke.

You may want to use the table shown in Figure 7-2 for assistance.

Security Information Storage Tools

For each EJB, assign each of its methods to
one or more roles

EJB DD ejb-jar.xml AAT

Optionally, set up Security Role References
(Run-As Mapping)

EJB DD ejb-jar.xml AAT, AC

Configure the delegation policy, Security
Identity (Run-As Mapping)

EJB DD
ibm-ejb-jar-ext.xmi,
Repository DB

AAT, AC

Users Groups

Roles

EJB Methods
 Chapter 7. Securing EJBs 137

The first column defines the methods implemented in the EJB, and the headers
above the other columns list the roles which can access the EJB methods. The
cells in the table specify whether or not the role has access to a certain method.
In order to determine the authorization for a method, find the row for the method,
then find the column for the role name. If the cell in the intersection is empty, then
the role cannot run that method, but if the cell is checked (�) then the role can
run the method.

Figure 7-2 Method permissions for Webbank

The security roles must be defined, and the methods must be in the enterprise
bean's remote or home interface.
138 IBM WebSphere V4.0 Advanced Edition Security

Figure 7-3 Method Permission

Two Method Permissions are defined in Figure 7-3: Allow Teller to Perform
Transaction and Allow Manager to Handle Accounts.

To assign methods to roles, the roles must exist. The following user roles should
be defined:

� Manager
� Employee
� Consultant

beside the special roles:

� All Authenticated
� Everyone
� DenyAllRoles (this will be automatically defined during installation, unless you

want to predefine it)

Web Bank EJBs (EJB Module)

Method Permission

Manager
Employee

assign
roles

RoleMethods

* (every method)

Consultant

Methods Role
assign

role

Allow consultation

Allow All for Managers and Employees

getCustomerBalance()
getBranchBalance()
get methods...
 Chapter 7. Securing EJBs 139

7.2.1 Configuring method permissions using AAT
The following screen capture shows the roles in the Application Assembly Tool
(AAT), required for the Webbank sample application.

Figure 7-4 Security roles

Security roles must be defined for the EJBs; the roles can be defined in the EJB
module or on the application level.

The following steps will show how to set up a role in the EJB module using the
Manager role as an example.

1. Launch WebSphere’s Application Assembly Tool (AAT) and open the
Webbank application.

2. Expand the EJB Modules -> webbankEJBs folder under
webbankApplication.

3. Right-click Method Permissions and select New. The following window
appears (see Figure 7-5 on page 141).
140 IBM WebSphere V4.0 Advanced Edition Security

Figure 7-5 New method permission

A permission needs a name and description for the methods which are
allowed to be executed.

4. Provide the details for this entry:

Method permission name: Allow all for Managers and Employee

Description: Managers and Employee can perform any transaction without
restriction

5. Click Add beside the methods list; a new window appears listing all the EJBs
and their methods. Select the methods that the role is allowed to execute.
Notice that the * (asterisk) represents all methods which belong to that group.

Note: You can select multiple methods by using the Control key on the
keyboard together with the left mouse button.

You can select a range of methods by using the Shift key on the keyboard
combined with the left mouse button. Select the first entry, then hold down the
Shift key and select the last entry.
 Chapter 7. Securing EJBs 141

Figure 7-6 Selecting EJB methods

Methods for this role are:

• BranchAccount(*)
• Consultation(*)
• CustomerAccount(*)
• Transfer(*)

6. Finally, add the Role by clicking Add on the left side of the roles list. A new
window appears with all the roles; select the Manager and Employee roles.
Click OK.

Note: You can implement multiple selections when selecting the items for
the method permissions, by combining the left mouse button with the Ctrl
key.
142 IBM WebSphere V4.0 Advanced Edition Security

Figure 7-7 Selecting the role

These are the steps necessary in order to assign authentication to methods.
Another method permission is required for consultation:

Method permission name: Allow read for consultants

Description: Allows the read methods for the consultants.

Roles assigned: Consultant

For a detailed list of roles, see Figure 7-2 on page 138. The rightmost column of
the table shows the permitted methods for the Consultant role.

7.2.2 Configuring method permission with WebSphere Studio
ApplicationDeveloper

WebSphere Studio Application Developer (WSAD) supports setting security
during development time. The application developer can set all the method
permissions for the EJBs in WebSphere Studio Application Developer, though
the process is a bit different than with the Application Assembly Tool (AAT).

The following steps will show you how to set the method permissions for the
EJBs.

1. Launch WebSphere Studio Application Developer with the Webbank project.

2. Switch to the J2EE view, or open it from the menu (Perspective open ->
J2EE).

3. Select EJB Modules -> webbankEJBs then switch to the Security tab. In
the upper table, the security roles are listed, while in the lower table are the
method permissions defined for the EJB methods.
 Chapter 7. Securing EJBs 143

Figure 7-8 WebSphere Studio Application Developer method permission

4. Select the EJB in the lower table for which you want to add a method
permission, then click Add next to the table.

5. A new window appears: Add Method Permission. Select the method type,
select the method, then select the desired role and click OK. A new entry will
appear below the EJB with the chosen method name and method type, and
the permissions will be shown as checkboxes in the role columns.

6. In order to change method permissions for a given method, you must select
the line with the method name, then give or remove permission by selecting or
deselecting the checkbox below the roles, as in Figure 7-9.

Figure 7-9 Method permission in detail
144 IBM WebSphere V4.0 Advanced Edition Security

7. Assign the listed methods from Figure 7-2 on page 138 to the roles; you
should see the same result as in the table.

8. Save the changes using File -> Save EJB Editor or Save all, then close the
file.

7.3 Setting up security role references
Security role references are used to shield the developer from all deployment
details. A security role reference links the name of a role used in a module to the
corresponding name of a role in the encompassing application. The application
assembler performs the mapping of the role reference defined in the source code
to the role name defined in the enterprise application role by using the role link
tag in the deployment descriptor.

Example 7-1 Sample for isCallerInRole method

public Object doTransfer(EJBContext con) {
//obtain the user name
if (con.isCallerInRole(“Employee”) && transferAmount>allowedAmount) {

// do the transfer
} else

// send alert message that the amount is not allowed
}

}

The programmer has defined the role Employee during development. The
deployer maps Employee to the organizational structure of the bank where
Employee was once defined.

The following step-by-step guide is only for demonstration purposes and has no
effect on the application.

1. Launch AAT, then open the webbank application.

2. Expand the TransferSessionBean folder (webbankApplication -> EJB
Modules -> Session Beans -> TransferSessionBean folder).

3. Right-click Security Role Reference, then select New and type in the
following details in the New Security Role Reference window (see Table 7-3 on
page 146).
 Chapter 7. Securing EJBs 145

Table 7-3 Security Role Reference

The two roles are linked through the name and the provided link; for clarity, a
description can be provided. The panel should look like that shown in
Figure 7-10.

Figure 7-10 Security role reference in AAT

4. Confirm with Apply or OK.

The Employee (Source Code) is mapped to the Employee (Enterprise
Application) and later on the Employee is mapped to the role defined in the user
registry, as shown in Figure 7-11.

Field name Field value

Name Employee

Link Employee

Description This role cannot do a transfer higher than
a specified value
146 IBM WebSphere V4.0 Advanced Edition Security

Figure 7-11 Security role reference overview

The security role reference is configured in AAT, whereas the role mapping is
performed using the Administrator’s Console.

7.4 Configuring the delegation policy
The delegation policy determines the identity under which the method should be
executed. If a downstream method call is necessary, it occurs in this identity. The
delegation security information is stored in the deployment descriptor and can be
changed with AAT. Because this information is stored in the deployment
descriptor, there is no need to access the repository, because the information is
loaded into the memory at runtime.

Admin ServerEnterprise Application Roles
Employee
Manager
All Autenticated

WebSphere Application Server

EJB Source Code
Role reference: Employee

Servlet Source Code
Role reference: Employee

User RegistrySecurity
Role

Reference

Role
Mapping

Employee
 Chapter 7. Securing EJBs 147

Figure 7-12 Delegation

The delegation specifies the security identity under which the EJB method will be
executed. This identity can be that of either the caller, the EJB server, or it can be
a specified identity.

The following sample shows the three methods with three different delegation
modes. In the case of “use identity specified,” a specific role must be used.

Table 7-4 Delegation flow

Looking at Figure 7-12, let us assume that the user, who is in the Manager role,
accesses an EJB (Object B) from a servlet (Object A), which is a kind of interface
to another EJB (Object C).

� If the manager calls the method getAccountBalance, the delegation mode is
set to caller’s identity; Object C is then called with the identity of the
manager.

� If the manager calls the method doTransaction as manager and the
delegation mode is set to system, then Object C is called with the EJBServer
identity, which is Server B.

� If manager calls getBankNews, the specified identity (CacheManage) is
used to run the method.

Method Delegation Mode Specified Role

getAccountBalance use identity of the caller -

doTransaction use identity of the system -

getBankNews use identity specified CacheManager

Object A

Object A

Object A

Object B

Object B

Object B

Object C

Object C

Object C

use identity of the caller

use identity of a specified role CachedManager

use identity of the EJB Server

Manager

Manager

Manager

Manager

ServerB

CacheManager

EJB Server Id: ServerB

EJB Server Id: ServerB

EJB Server Id: ServerB
148 IBM WebSphere V4.0 Advanced Edition Security

These are requirements you may need for applications that need a consistent
return value of getCallerPrinicpal() across a chain of calls between EJBs. You
may also want to use these requirements for performance aspects by calling
using always the same ID.

7.4.1 Setting up delegation policy (Run-As mode) using AAT
The following step-by-step guide is only for demonstration purposes and has no
effect on the application.

1. Launch AAT, and open the webbank application.

2. Expand webbankApplication -> EJB Modules -> webbankEJBs ->
Session Beans -> ConsultationSessionBean, then select Method
Extensions.

3. Select the desired method on the right side of the list at the top.

4. Select the Advanced tab, enable Security Identity, then choose from one of
the following options for the Run-As mode:

– Use Identity of caller (this is the default setting)

– Use Identity of EJB Server

– Use Identity assigned to a Specific Role and choose one of the roles in the
pull-down menu

For our example, configure the following delegation policy as shown in
Table 7-5.

Table 7-5 Security role reference

Note: If you set Run-As mode to use identity specified then the identity must
be defined through the Run-As mapping.

Name Value

Bean ConsultationSessionBean

Method getCustomerBalance

Security Identity enabled

Run As Use Identity assigned to a Specific Role

Role Manager

Description This call is always made in the role
Manager for performance reasons
 Chapter 7. Securing EJBs 149

Figure 7-13 shows a screen capture from AAT including the delegation policy set
for the getCustomerBalance method of the ConsultationSessionBean.

Figure 7-13 Delegation policy set in AAT

The application will require that you set the Run-as mapping either during the
deployment or using the Security Center from the Administrator’s Console. You
will find the steps used to do this in “Run-As mapping using the Administrator’s
Console” on page 151.

7.4.2 Setting up delegation policy (Run-As mode) using WebSphere
Studio Application Developer

J2EE application developers can also define Run-As mode mappings using the
WebSphere Studio Application Developer.The steps you must follow to obtain the
same results as in the previous section, using AAT, are described below.

1. Launch WebSphere Studio Application Developer with the webbank project.

2. Switch to the J2EE perspective, then select the J2EE View tab.

3. Expand the EJB modules folder, right-click the webbankEJBs item, then
select Open with -> EJB Extension Editor.
150 IBM WebSphere V4.0 Advanced Edition Security

4. The EJB Extension Editor document appears in the right-hand pane; switch
to the Methods view (you do not have to switch if you have just opened the
window, because it is the default tab upon opening).

5. Expand the Remote Methods folder (webbankEJBs -> Consultation ->
Remote Methods folder), then select the getCustomerBalance(....) method.
On the right-hand side panel, you will find all the settings for this method, as it
was described in the previous section under the AAT.

6. Set the Run as mode to Use identity assigned to specific role (below).

7. Then set the Role name to Manager using the drop-down menu.

8. Save the document, then close it.

Figure 7-14 Setting up the Run-As mode using WebSphere Studio Application Developer

The application will require you to set the Run-as mapping either during
deployment or by using the Security Center from the Administrator’s Console.
You will find these steps described in “Run-As mapping using the Administrator’s
Console” on page 151.

7.4.3 Run-As mapping using the Administrator’s Console
The Run-As mode was assigned in the AAT tool; the mapping must be performed
using the Administrator’s Console. At this point, the application role is mapped to
a specific user in the user registry.
 Chapter 7. Securing EJBs 151

Figure 7-15 Delegation

The delegation calls an object with a specific enterprise role manager. To do so,
the role must be mapped to a role from the user registry (manager).

1. Open the Security Center by clicking Console -> Security Center. In the
Security Center, switch to the Run As Role Mapping tab.

2. Select your Enterprise Application (webbankApplication) and click Edit
Mappings.... A new window appears .

For a specific enterprise application, the Run-As role mapping must be
customized.

3. Select the role on the left, then click Select.

4. A window appears, prompting for a user name and password for mapping.
The user must be defined in the selected role, or must be a member of a
group which is defined in the selected role. Enter the user name and the
password, then click OK. In our example in Figure 7-15, Manager John must
be in the Manager role.

5. Click OK to finish the mapping.

Once the specified identity (role) Run-As mode has assigned one of the methods
in an EJB, the Run-As mapping must be defined for the specified role.

7.4.4 Run-As mapping during deployment
The configurations previously discussed were performed during application
assembly and development time, but these configurations can also be set at
deployment time. The following description will illustrate the step from the
enterprise application installation when Run-As mapping occurs.

Object

Admin ServerEnterprise Application
EJB call Run-As
Enterprise Role Manager

WebSphere Application Server

User Registry

Run-As
Mapping

managers

Run-As
specified

Role

Manager
John
152 IBM WebSphere V4.0 Advanced Edition Security

Once you have selected the enterprise application archive file, the second
window, Mapping EJB RunAS Roles to Users, will ask for the Run-As mappings,
as shown in Figure 7-16.

Figure 7-16 Run As role mapping during EAR installation

At this point, everything works the same way as when using the Administrator’s
Console for Run-As mapping (see “Run-As mapping using the Administrator’s
Console” on page 151).

7.5 Topology considerations
Enterprise beans and their clones (a number of application server instances)
have separate identities. To avoid security breaches, every bean must be
protected by configuring resource security for the bean and including it in a
secured enterprise application.
 Chapter 7. Securing EJBs 153

154 IBM WebSphere V4.0 Advanced Edition Security

Chapter 8. Securing J2EE clients

This chapter discusses security for the different types of Java clients. By Java
clients we mean clients that implement EJB clients, which then connect to the
application server.

First, we will explore the Secure Association Service, which is a fundamental
element of WebSphere Application Server security.

Next, we will describe the programmatic login, which is tightly related to Java
clients.

Finally, we will discuss the different types of clients which may be involved.

8

© Copyright IBM Corp. 2002 155

8.1 J2EE clients
J2EE clients is a general term which describes a broad range of clients (not just
specific ones) connecting to J2EE applications.

The simplest way to describe the clients would be to say that they are programs
which implement EJB clients in order to connect to EJBs.

There are three different application clients which can be identified:

� J2EE application client

� Applet client

� Java thin application client

Others, such as servlets, JSPs, or even EJBs, can also implement EJB clients.

For more information about Java clients, please refer to the WebSphere
Infocenter’s section 4.7 (Java clients) at:
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/
index.html.

8.2 The Secure Association Service (SAS)
The requests from clients to Enterprise JavaBeans are sent as RMI/IIOP
messages, using the Object Request Broker (ORB), to the server that hosts the
Enterprise beans. As part of every such request and response, the ORB invokes
the Secure Association Service (SAS) on both the client and the server sides.

Figure 8-1 shows the interaction between an EJB client and the EJB when global
security is enabled.
156 IBM WebSphere V4.0 Advanced Edition Security

http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/

Figure 8-1 SAS interception

As part of every request and response, the ORB invokes the SAS on both the
server and client sides. SAS intercepts the request coming from the client,
collects the security credentials and attaches those to the request, then sends
the request. On the server side, SAS intercepts the request again, extracts the
security context, authenticates the client, then sends the request to the EJB
container. The EJB container authorizes the request, then serves the EJB
request. The response goes back along the same route through the SAS
interceptors. The communication between the two ORBs is secured by SSL.

How does the application know about security?
The clients do not have to handle security; they can implement a programmatic
login, but security must function without any written code. In order to use security,
the client must know the security settings for the ORB. These settings are stored
in the SAS properties file (sas.client.properties). You can specify the file for the
JVM using the following directive:

com.ibm.CORBA.ConfigURL=URL of the properties file

which should look like this in your case:

java -Dcom.ibm.CORBA.ConfigURL=file://properties/sas.client.props
itso.webbank.client.WebbankThinClient

The properties for the ORB will be picked up from the specified file; the client can
then make the secure connection.

ORB

ORB

intercept request

intercept request

SASRMI/IIOP

EJB client

EJB container

EJB
 Chapter 8. Securing J2EE clients 157

When should SAS programming be used?
SAS programming is useful when applications must log in programatically or if
they have to manipulate the credentials at runtime. Manipulating the credentials
is necessary when specific methods require credentials different from the ones
originally owned by thread. The SAS programming interfaces are based on the
CORBA Security Service specification; for more information, refer to the OMG
Web site at http://www.omg.org and obtain the CORBA Security Service
specification. Programmatic login is covered in “Programmatic login” on
page 161.

8.2.1 SAS on the client side
When an EJB client invokes a remote method, SAS interceptors are called to
perform the following process:

1. Establish an SSL connection between the two ORBs.

2. Establish a secure association between the client and the server.

3. Send the request to the server.

4. Receive the response from the server.

Two information sources are used to establish the SSL connection between
ORBs:

� The Interoperable Object Reference (IOR)

� The SAS properties file on the client side

The server’s IOR provides the following information:

� Server TCP/IP address
� Server TCP/IP port
� Server SSL port
� Server security name; for a local operating system, this follows the format

DOMAIN/server_id . For LTPA, the format is
LDAP_HOST_AND_PORT/server_id.

� Quality of protection (QOP) required: high, medium or low.
158 IBM WebSphere V4.0 Advanced Edition Security

http://www.omg.org

The properties file
The configuration file for SAS on the client side is the sas.client.props file.

A short list of client’s SAS settings follows:

� com.ibm.CORBA.securityDebug - used to enable/disable debugging for SAS;
valid values are true or false.

� com.ibm.CORBA.securityTraceOutput - the file which holds the debug trace
for SAS, for example: logs/sas_client.log.

� com.ibm.CORBA.standardPerformQOPModels - this is Quality of Protection;
the valid values are high (default), medium, and low. These values entail
different key bit lengths (high=128-bit, medium=40-bit, low=no encryption).

� com.ibm.CORBA.loginSource - the source of the user ID and password
strings; the valid values are prompt (default), properties, keyfile, stdin, and
none.

� com.ibm.CORBA.loginTimeout - the timeout, after which SAS removes the
login prompt; the value is set in seconds and the default is 300 seconds. After
timeout, SAS removes the login prompt and the request is handled with no
security.

� com.ibm.CORBA.authenticationTarget - this value determines the
authentication method used to establish credentials. The valid values are
basicauth, localos, and ltpa. For a pure Java client, only the basicauth is
supported.

� com.ibm.CORBA.securityEnabled - this indicates the security enabled status;
it should be set to true.

� com.ibm.ssl.keyStore - this defines the key store file for SAS, for example:
keys/DummyClientKeyFile.jks. By default, it uses the dummy key store
provided with WebSphere. In a production environment, it is strongly
recommended to replace the dummy key store and trust store files with new
store files.

� com.ibm.ssl.trustStore - this defines the trust store file for SAS, for example:
keys/DummyClientTrustFile.jks.

Note: Only a few settings are documented here; for more information about
SAS properties, refer to the WebSphere Infocenter, section 5.7.5 (SAS
properties reference) at:
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocent
er/index.html, or read the comments in the SAS properties files provided
within WebSphere Application Server AE V4.
 Chapter 8. Securing J2EE clients 159

http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/

The login information can be collected using several methods; the method is
specified in the SAS client properties file with the com.ibm.CORBA.loginSource
setting. The following authentication mechanisms are available:

� prompt - this provides a graphical window on the screen to collect the user ID
and password. Pure Java clients must call System.exit(0) at the end of the
program to properly finish the process.

� standard input (stdin) - only supported for pure Java clients, the program
prompts for user ID and password using a non-graphical console prompt.

� properties - the user ID and password are retrieved from the following two
properties: com.ibm.CORBA.loginUserid, and
com.ibm.CORBA.loginPassword. With this method, the client also has to
specify the realm. You can specify the realm using one of the following
settings:

a. com.ibm.CORBA.loginUserid=userid

com.ibm.CORBA.principalName=REALM/userid

b. com.ibm.CORBA.loginUserid=REALM/userid

Where REALM and userid are set for the client.

� key file - the user ID specified in the com.ibm.CORBA.loginUserid property
and the realm name from the IOR are used to extract the user ID and
password from the key file specified in the com.ibm.CORBA.keyFileName
property.

� none - this is only available if programmatic login is used in the client code.

8.2.2 SAS on the server-side
When an EJB client invokes a remote method on the server, the following
happens on the server side:

1. SAS intercepts the request and performs the necessary security checks.

2. The user is authenticated.

3. The server invokes the method.

4. The response is sent back to the client.

On the server side, it is also necessary to configure the SAS runtime. The
settings from the administration server are propagated to the repository, then
eventually to the SAS server properties file (sas.server.props).

Note: for information about how to replace the dummy key store and trust
store files, refer to the Section 11.1.1, “The Demo Keyring” on page 217.
160 IBM WebSphere V4.0 Advanced Edition Security

The properties file
The configuration file for SAS on the client side is the sas.server.props file; it can
be found in <WebSphere install directory>\properties. The SAS properties for the
server are very similar to the client properties, except for some server-specific
settings. The SAS settings for the server are very well documented in the
WebSphere Infocenter , found at
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/
index.html. More information can be found in the SAS properties file, as
comments provided within WebSphere Application Server AE V4.

For more information about SAS tracing, refer to “The Secure Association
Service (SAS)” on page 449.

8.3 Programmatic login
Please note that though programmatic security and programmatic login are
closely related, they are two different topics. The other closely related topic is that
of Single Sign-On, which is covered in Chapter 14, “Single Sign-On” on
page 393.

The EJB client application must collect information about the clients to
authenticate them. User authentication can be performed in two separate ways:

� Client-side login

� Server-side login

Clients are also required to log in when accessing Web resources in the Web
module. It is also possible to use a customized login form, page or servlet for
user authentication. Customized login for the Web module is covered in
Chapter 10, “Programmatic security” on page 201.

8.3.1 Client-side login
Client-side login is useful when the client needs to log a user into the security
domain, but does not need to use the authentication data itself. Client-side login
collects the login information and sends it to another program for actual
authentication. Practically thin Java application clients, J2EE application clients,
Java applets, where the client is running on the client side, all use client-side
login.

Note: No authentication occurs unless WebSphere global security is enabled.
 Chapter 8. Securing J2EE clients 161

http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/

The client-side login process flow is as follows:

1. The user invokes a request with the client.

2. The client collects the login information (user ID, password) from the user.

3. The client places the user’s authentication data into the ORB-related data
structure called the security context.

4. The client invokes a method on the server by sending a request.

5. The server processes the request and extracts the authentication data from
the security context.

6. The next step is based on the result of the authentication:

a. If the authentication was successful, the server grants the request and
returns the security credentials for further use.

b. If the authentication was unsuccessful, the server denies service.

The key in this process is that the client sets the security context for the ORB.

The following code excerpt includes some of the steps described above.

Example 8-1 Client-side login from WebbankClient.java

...
String userid = args[2]; (2)
String password = args[3];
...
LoginHelper loginHelper = new LoginHelper();
try {

org.omg.SecurityLevel2.Credentials credentials = loginHelper.login(userid,
password); (3)

loginHelper.setInvocationCredentials(credentials); (6a)
...
} catch (...)
...

Note: Steps 1, 4 and 5 are not shown in the code example because they are
hidden from the developers.

Step 1 is a user interaction.

Step 4 is performed by the _LoginHelper provided by the ORB security
support class.

Step 5 is performed on the server.
162 IBM WebSphere V4.0 Advanced Edition Security

For more information about the LoginHelper class, refer to the WebSphere
Infocenter, found at
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/
index.html.

There is a client-side programmatic login sample provided with the redbook; for
more information about this sample, refer to “Client-side login” on page 161.

8.3.2 Server-side login
Server-side login is used when the application has to log the users into the
security domain and must use the authentication data itself. The server-side login
collects the authentication data and performs the authentication. Server-side
programs, servlets, JSPs, where the program is running on the server, all use the
server-side login.

The server-side login process flow runs as follows:

1. The user request triggers a servlet.

2. The servlet collects the user authentication data (user ID, password); this can
happen in many different ways.

3. The servlet presents the request to the server.

4. The server processes the request, then extracts the authentication data from
the context and performs authentication.

5. The next step is based on the result of the authentication:

a. If the authentication was successful, the server grants the request.

b. If the authentication was unsuccessful, the server denies service.

The key in this process is that the code on the server side (servlet) performs the
authentication. Furthermore, the authentication is performed for each request; no
credentials are stored for further use.

The server program is responsible for extracting the authentication data,
inserting it into the CORBA data structure and authenticating the user.
WebSphere provides a utility class, ServerSideAuthenticator, which helps to
perform the programmatic login. For more information about the
ServerSideAuthenticator class, refer to the WebSphere Infocenter, found at
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/
index.html.
 Chapter 8. Securing J2EE clients 163

http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/

The following code excerpt includes some of the steps described above.

Example 8-2 Server-side login from WebbankServletClient.java

...
String userid = request.getParamete(“userid”); (2)
String password = request.getParameter(“password”);
...
boolean forceAuthentication = true;
ServerSideAuthenticator serverAuth = new ServerSideAuthenticator();
try {

org.omg.SecurityLevel2.Credentials credentials = serverAuth.login(userid,
password, forceAuthentication); (4)
...
} catch (...)
...

Running the WebbankServletClient sample
The WebbankServletClient is a very simple EJB client embedded in a servlet.
This example will use server side authentication. The following steps will show
how to use the sample:

1. Access the Webbank application with a Web browser, using http://<server
name>/webbank.

2. The application will ask for the user ID and password. Type in a user ID and a
password for an employee (the user must be in the Employee group).

3. Access the following page with the Web browser: http://<server
name>/webbank/webbankservletclient.html.

4. Fill out the form fields:

– The user name should be that of a user in the Manager group.

– The password is the password for the user.

– The server’s address is the IP address for the WebSphere Application
Server. You can also specify the port number.

– The new balance is a number which will be set for the branch account.

Note: Steps 1, 3, 5 are not shown in the sample code, because they are
hidden from the developers.

Step 1 is a user interaction.

Step 3 is performed by the core servlet code.

Step 5 is performed by the server.
164 IBM WebSphere V4.0 Advanced Edition Security

Make sure that you are using a different user than the one you have used to
login the webbank application.

The purpose of this sample is to show that the server will use a different user ID
from the original one to access the EJB. Normally, a user from the Employee
group cannot change the branch account balance, but with this sample the
servlet picks up a new user ID and accesses the EJB with it, which has the
proper privileges.

8.4 J2EE application client
J2EE application clients are simple Java applications running in a J2EE
environment. The J2EE application launcher provides all the necessary elements
for the runtime, including the security features.

The Java application does not require any special programming from the security
point of view; this is provided by the J2EE runtime environment.

8.4.1 Webbank J2EE client
The Webbank sample application uses a simple Java application with a graphical
interface which can get the balance for the accounts. If you check the code, you
will find that the application does not use any special code or API to access EJBs
or to perform security.

Following are the additional steps the user has to follow in order to establish
security:

1. Use the following command to launch the J2EE client:

launchclient webbank6520.ear -CCBootstrapHost=<WebSphere AE server>

2. When security is set for the enterprise application, the first window on the
client will ask for user authentication (see Figure 8-2).

Figure 8-2 J2EE client challenge
 Chapter 8. Securing J2EE clients 165

3. Type in the user ID and password; this only requires a user from the
Employee group, because it will only invoke a Read method.

4. Click OK.

5. From this point on, security is established and everything works as without
security.

The client launcher sets the security properties for the application and specifies
the SAS properties. The default property for login is a prompt for a user ID and
password, so the SAS interceptor pulls up a window for these fields. The
launcher behaves as a shell and provides all the necessary functions required for
a J2EE client, in our case, the security features.

8.5 Java thin application clients
A very simple EJB client application is provided with the book, focusing only on
introducing the Java thin application client’s security features.

The application is called WebbankThinClient. It uses the LoginHelper class
provided with WebSphere V4.

LoginHelper is a supplemental class, implementing several methods to help
programmatic login; these methods are:

� org.omg.SecurityLevel2.Credentials login(String userid, String password)

This sets the authentication data on the thread of execution.

� void setInvocationCredentials(org.omg.SecurityLevel2.Credentials
invokedCreds)

This method sets the specified credentials as the invocation credentials. Any
method invoked after this will be executed under the authority of the
credentials.

Note: The unauthorized access to the server’s objects throws an exception.
Exception handling for the unauthorized access has not been implemented, so
you will see the classic Java stack trace on your console where you are trying
to log on with the wrong user name and password.
166 IBM WebSphere V4.0 Advanced Edition Security

� org.omg.SecurityLevel2.Credentials getInvocationCredentials()

This method retrieves the credentials under which the current method is being
executed.

� String getUserName(org.omg.SecurityLevel2.Credentials creds)

This returns a human-readable user name attribute of the specified
credentials.

For more information about the LoginHelper, refer to the WebSphere Infocenter,
found at
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/
index.html.

Other resources are also required to support security for thin application clients:

� The file sas.client.props defines the security settings for SAS on the client
side. The file can be found under the properties directory. It is a copy of the
original file from the <WebSphere instal directory>/properties directory.

� Key store files and trust store files are also required for the SSL connection
over IIOP. The two files are copies from the <WebSphere instal directory>/etc
directory: DummyClientKeyFile.jks, DummyClientTrustFile.jks.

� The log file under the logs directory is available for tracing security if
necessary. The debugging option is disabled by default in the sas.client.props
file.

8.5.1 Running the WebbankThinClient sample
The client can be executed with two different sets of parameters:

1. Running without programmatic login, only one parameter is required: the
WebSphere server’s address, for example was01.itso.ral.ibm.com:900:

webbankthinclient was01.itso.ral.ibm.com manager:900 password

2. Using client side programmatic login, the following parameters should be
defined:

a. WebSphere’s server address, for example: was01.itso.ral.ibm.com:900.

b. The user ID, for example: manager

c. The password, for example: password

webbankthinclient was01.itso.ral.ibm.com manager password

The result in each case should be the branch account balance of the user,
Sophia, for example:

Result: balance: 1000
 Chapter 8. Securing J2EE clients 167

http://www.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/index
http://www.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/index

Try to run the application with different user IDs, one that has access to the
BranchAccount EJB methods and one that does not, and observe the results.

8.6 Applet clients
Applet clients are similar to both the thin Java applications and J2EE application
clients. WebSphere provides a special plug-in for Web browsers to enhance
them in order to run J2EE clients.

For more information about the applet clients, refer to the WebSphere Infocenter,
found at
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/
index.html.

8.7 Authentication summary
The following diagram is a summary of the authentication mechanism for the
different kind of clients (clients here is used as the most general term).

Figure 8-3 Authentication mechanisms overview

At the bottom of this diagram are the different types of clients. These programs
can implement EJB clients to access the EJBs.

browser
J2EE

application
client

Thin Java
application

Java
applet

servlet
JSP

EJB

40
1

pr
om

pt

ce
rt

ifi
ca

te

fo
rm

 lo
gi

n

cu
st

om
 s

er
vl

et

se
cu

rit
y

pr
ox

y

tr
us

t a
ss

oc
ia

tio
n

Web container EJB container

cl
ie

nt
 s

id
e

lo
gi

n

pr
op

er
tie

s
fil

e

st
an

da
rd

 in
pu

t

pr
om

pt

se
rv

er
 s

id
e

lo
gi

n

se
rv

er
-s

id
e

lo
gi

n

ke
y

fil
e

WebSphere Application Server

de
le

ga
tio

n

S
in

gl
e

S
ig

n-
O

n

168 IBM WebSphere V4.0 Advanced Edition Security

http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/

At the top of the diagram are two containers provided by the application server:
the Web container and the EJB container. The clients try to access the assets
served by the containers (HTML pages, servlet, JSPs, EJBs).

At the center of the diagram are the authentication mechanisms.

The clients can use authentication mechanisms listed in the center to reach the
appropriate container.
 Chapter 8. Securing J2EE clients 169

170 IBM WebSphere V4.0 Advanced Edition Security

Chapter 9. Securing Web services

This chapter will show how to secure Web services with WebSphere V4 AE. Web
services security is based on messaging security.

Web services are an emerging technology, and companies are starting to use it
widely. The need for secure messaging with Web services has grown since Web
services have access to sensitive enterprise processes and resources.

This chapter will discuss basic Web services secure messaging, as well as the
theory and the practice behind it. It will also show how to create a secure Web
service from a session EJB using WebSphere Studio Application Developer.

9

© Copyright IBM Corp. 2002 171

9.1 Web services
This book does not intend to introduce the concept of Web services. From a
security point of view, all that it is necessary to know is that Web services are
based on two fundamental technologies: HTTP (the transport protocol for the
Web) and XML (the universal markup language).

A correct definition and technical explanation of Web services can be found in
the following IBM Redbook: Web Services Wizardry with WebSphere Studio
Application Developer SG24-6292.

The reader will find that Web services are nothing new from a technical point of
view; this technology uses other technologies that have already been
implemented for some time. However, it does bring up a new concept of
distributed applications and services into the World Wide Web. The underlying
technologies are well known, so in order to understand the concept of Web
services and to recognize each component discussed here, it is strongly
recommended that you read the book mentioned above.

9.2 Securing WebSphere Web services
WebSphere Application Server V4 provides a runtime environment for Web
services. Moreover, it provides an early implementation of security for Web
services, though this is not yet standardized.

The implementation is based on a W3C document: SOAP Security Extensions:
Digital Signature, published February 6th, 2001. The document can be found at
the following URL: http://www.w3.org/TR/SOAP-dsig/. The document proposes
a standard way to use the XML Digital Signature Syntax to sign SOAP 1.1
messages.

The XML-Signature Syntax and Processing proposed by W3C on August 20th,
2001 is located at the following URL: http://www.w3.org/2000/09/xmldsig.

Numerous other proposals and recommendations have been published and
address the security issues left open in the SOAP specification. These
documents can also be found at the following URL: http://www.w3.org/.
172 IBM WebSphere V4.0 Advanced Edition Security

http://www.w3.org/TR/SOAP-dsig/
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/

Figure 9-1 Secure Web service component diagram

Figure 9-1 depicts a simple client-server model with the SOAP client and the
SOAP server.

The SOAP client sends a request to the RPC router servlet, running within the
Web container of the application server, over HTTP.

The RPC router servlet picks up the request, then routes the message to the
appropriate pluggable provider, which runs the SOAP service to perform the
task.

When the response message is generated, the RPC router servlet sends back
the message to the SOAP client.

Please note that the previous example is a simplified realization of Web services.
From a security point of view, nothing beyond the SOAP client, the HTTP
connection and the RPC router is relevant at this point.

SOAP
client

SOAP server

RPC
router
servlet

Pluggable
provider

SOAP
service

Java class
EJB
script
...other

Web
container

HTTP

SOAP
messages

Service
manager
 Chapter 9. Securing Web services 173

9.2.1 Securing SOAP services
There are three options to secure Web services with WebSphere Application
Server:

� HTTP basic authentication

� SSL (HTTPS)

� SOAP signature

These options can be exercised together or can be combined in one
implementation.

HTTP basic authentication
The HTTP basic authentication secures access to the Web service itself. Since
the Web services are using HTTP as the transfer protocol, the HTTP basic
authentication can be applied to the SOAP transfer connection also.

This method is not tightly related to Web services; only the authentication
procedure have to be implemented in the SOAP client code.

SSL (HTTPS)
The SSL (HTTPS) secure transfer protocol ensures security during the
communication time. It takes advantage of the HTTP and uses the widely
accepted SSL to secure the connection between the client and the server.

SOAP signature
SOAP signature secures the message itself with the content inside. Unlike the
other two security methods, this is closely related to SOAP messaging.

SOAP signatures will be discussed in detail in the following section.
174 IBM WebSphere V4.0 Advanced Edition Security

9.3 SOAP signature components
The SOAP signature is based on the XML signature proposal from W3C. It
specifies the procedure of how the SOAP messages should be signed using
server and client certificates.

Figure 9-2 Secure transport of SOAP messages

The transport hook is called the EnvelopeEditor. The PluggableEnvelopeEditor
is provided to plug in the security components, as shown in Figure 9-2.

The message from client to server follows this procedure:

1. The client application sends a message.

2. The message is signed, then sent to the RPC Router Servlet.

3. The servlet verifies the message and passes it to the server application. The
verifier component also has a logging function to log the verified messages.

The response message from server to client follows this procedure:

4. The server application prepares the response message and sends it back.

5. The message is signed on the server side then sent to the client.

6. The client verifies the message, then processes the response.

9.3.1 Web module
Web services require two servlets at the application server in order to run. These
servlets are defined in the Web modules’s deployment descriptor, in the web.xml
file. The servlet configuration part of the deployment descriptor can be found in
Example 9-1 on page 176.

SOAP Transport

C
lie

nt
 a

pp
lic

at
io

n

S
er

ve
r

ap
pl

ic
at

io
n

RPCRouterServlet

Envelope Envelope

Sign

Verify and Log

Verify and Log

Sign

1 2 3

456
 Chapter 9. Securing Web services 175

Example 9-1 web.xml

...
<servlet>

<servlet-name>rpcrouter</servlet-name> (1)
<display-name>Apache-SOAP RPC Router</display-name>
<description>no description</description>
<servlet-class>

com.ibm.soap.server.http.WASRPCRouterServlet
</servlet-class>
<init-param>

<param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value>

</init-param>
</servlet>
<servlet>

<servlet-name>messagerouter</servlet-name> (2)
<display-name>Apache-SOAP Message Router</display-name>
<description>no description</description>
<servlet-class>

com.ibm.soap.server.http.WASMessageRouterServlet
</servlet-class>
<init-param>

<param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>rpcrouter</servlet-name>
<url-pattern>servlet/rpcrouter</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>messagerouter</servlet-name>
<url-pattern>servlet/messagerouter</url-pattern>

</servlet-mapping>
...

The following two servlets are defined for the Web service under the
webbankWeb Web module:

1. RPC Router Servlet

2. Message Router Servlet

The servlets are provided by IBM WebSphere Application Server; they are part
of the application server’s library.
176 IBM WebSphere V4.0 Advanced Edition Security

9.3.2 Envelope Editor
The Envelope Editor defines the pluggable security components by specifying
the configuration files for the outbound and inbound message handlers.

Example 9-2 shows the Envelope Editor configuration file for the client from the
Webbank application.

Example 9-2 cl-editor-config.xml

<?xml version="1.0" standalone="yes"?>
<SOAPEnvelopeEditorConfig

xmlns="http://www.ibm.com/xml/soap/#EnvelopeEditor">
<incoming class="com.ibm.xml.soap.security.dsig.SOAPVerifier"> (1)

<init-param>
<param-name>filename</param-name>
<param-value>conf/cl-ver-config.xml</param-value>

</init-param>
</incoming>
<outgoing class="com.ibm.xml.soap.security.dsig.SOAPSigner"> (2)

<init-param>
<param-name>filename</param-name>
<param-value>conf/cl-sig-config.xml</param-value>

</init-param>
</outgoing>

</SOAPEnvelopeEditorConfig>

Two configuration elements have been defined in the envelope editor descriptor.

1. <incoming> - this defines the verifier class for the client and the configuration
file for verification of the message.

2. <outgoing> - this defines the signer class for the client and the configuration
file for signing the message.

The server configuration file, sv-editor-config.xml, looks the same, with the
exception of the configuration file names.

Removing the digital signature from inbound messages
Since these security components are pluggable, it is possible to remove security
from either the inbound or the outbound message flow.

In order to remove the digital signature from the response, remove:

� The outgoing element from the sv-editor-config.xml file, and

� The incoming element from the cl-editor-config.xml file.

The server will not sign the response message, and the client will not verify the
incoming message from the server.
 Chapter 9. Securing Web services 177

9.3.3 Signature Header Handler
The Signature Header Handler inserts a digital signature header into a SOAP
envelope. The following section will show how to configure the signature for
SOAP messages.

Signature component
Example 9-3 is an excerpt from the Webbank application. It shows the client’s
signature header handler configuration file.

Example 9-3 cl-sig-config.xml

<?xml version="1.0"?>
<!DOCTYPE SOAPSignerConfig SYSTEM "sig-config.dtd">
<SOAPSignerConfig
 xmlns="http://www.ibm.com/xml/soap/#SOAPSignature"
 xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12">

<KeyStore (1)
type="jks"
path="key\SOAPclient"
storepass="client"

/>
<Policy> (2)

<PrivateKey alias="soaprequester" keypass="client"/> (3)
<PublicKey> (4)

<IncludeKeyName flag="yes"/>
<IncludeKeyValue flag="yes"/>
<IncludeX509Data flag="yes"/>

</PublicKey>
<Template> (5)

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo Id="sig">

<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>

<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<Reference URI="">
<Transforms>

<Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

</Transforms>
<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue></DigestValue>

</Reference>
<Reference URI="#timestamp"

Type="http://www.w3.org/2000/09/xmldsig#SignatureProperty">
<Transforms>
178 IBM WebSphere V4.0 Advanced Edition Security

<Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

</Transforms>
<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue></DigestValue>

</Reference>
</SignedInfo>
<SignatureValue></SignatureValue>
<Object> (6)

<SignatureProperties>
<SignatureProperty SOAP-SEC:id="timestamp" Target="#sig">

<ValueOfTimestamp
xmlns="http://www.ibm.com/xml/soap/#SOAPSignature"/>

</SignatureProperty>
</SignatureProperties>

</Object>
</Signature>

</Template>
</Policy>

</SOAPSignerConfig>

The following important elements are defined in the configuration file:

1. <KeyStore> - this tag defines the keystore file, which holds the signing key for
the message. The jks indicates that this is a Java Key Store type of keystore.
You can manage these keystores with the IBM Key Management Tool
(iKeyman). The path refers to the SOAPclient file, which is created for the
secure Web service. The same SOAPclient keystore is provided with every
secured Web service generated with the WebSphere Studio Application
Developer; in a production environment, developers are urged to replace it
with their own keystores and certificates.

2. <Policy> - this defines the policies regarding secure messaging. This tag
encapsulates the details of the messaging.

3. <PrivateKey> - this tells the application which private key should be used to
sign the message on the client side.

4. <PublicKey> - this specifies the information that should be in the
<ds:KeyInfo> element in the verification header handler’s configuration file.

5. <Template> - this element specifies the details for the XML signature,
including:

a. Canonicalization algorithms

b. Signature algorithms

c. Transformation algorithms
 Chapter 9. Securing Web services 179

d. Digest algorithms

e. The portion of the SOAP envelope to be signed

6. <Object> - this specifies additional authentication information. In this
example, only a timestamp is defined.

9.3.4 Verification Header Handler
The Verification Header Handler validates a signature header in a SOAP
envelope. This section will show how to configure the signature verification for
SOAP messages.

Verification component
Example 9-4 shows part of the Webbank application: the configuration file for the
client’s verification header handler.

Example 9-4 cl-ver-config.xml

<?xml version="1.0"?>
<!DOCTYPE SOAPVerifierConfig SYSTEM "ver-config.dtd">
<SOAPVerifierConfig

xmlns="http://www.ibm.com/xml/soap/#SOAPSignature"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12">
<AllowedAlgorithms> (1)

<Algorithm type="DigestMethod"
URI="http://www.w3.org/2000/09/xmldsig#sha1"/>

<Algorithm type="Encoding"
URI="http://www.w3.org/2000/09/xmldsig#base64"/>

<Algorithm type="SignatureMethod"
URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<Algorithm type="CanonicalizationMethod"
URI="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>

<Algorithm type="Transform"
URI="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

</AllowedAlgorithms>
<RequiredAuthenticatedParts> (2)

<Reference part="root"/>
</RequiredAuthenticatedParts>
<DefaultVerificationKeys> (3)

<ds:KeyInfo>
<ds:X509Data>

<ds:X509Certificate>
MIIDFjCCAn+gAwIBAgICAQEwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCSlAxETAPBgNVBAgT
CEthbmFnYXdhMQwwCgYDVQQKEwNJQk0xDDAKBgNVBAsTA1RSTDEQMA4GA1UEAxMHSW50IENBMjAe
Fw0wMTAyMTEwNzAxNTNaFw0wMjAyMTEwNzAxNTNaMFMxCzAJBgNVBAYTAkpQMREwDwYDVQQIEwhL
YW5hZ2F3YTEMMAoGA1UEChMDSUJNMQwwCgYDVQQLEwNUUkwxFTATBgNVBAMTDFNPQVBQcm92aWRl
cjCBnjANBgkqhkiG9w0BAQEFAAOBjAAwgYgCgYBXvYvhlJY9RxMMial781jNQKtSrzxzCKcSw5JW
180 IBM WebSphere V4.0 Advanced Edition Security

nK32dxYfL9WITTaoFOyG2DkoOQCNWVqoJ3OlAYP/WgteQmmSZOgYyJeVc/GBykBWi7NBENs+pv8q
5ogEXVSFfrN4wyYIkHBCykbs9J/8tvM8dR1NLCGYIOlvTlZdplUF70BWoQIDAQABo4H+MIH7MAkG
A1UdEwQCMAAwCwYDVR0PBAQDAgXgMCwGCWCGSAGG+EIBDQQfFh1PcGVuU1NMIEdlbmVyYXRlZCBD
ZXJ0aWZpY2F0ZTAdBgNVHQ4EFgQU8VbxAKrtbZmXBp0Z2iByIMvkbugwgZMGA1UdIwSBizCBiIAU
PUXsOarK5B2FhajR4+jc0B4NAlGhbKRqMGgxCzAJBgNVBAYTAkpQMREwDwYDVQQIEwhLYW5hZ2F3
YTEPMA0GA1UEBxMGWWFtYXRvMQwwCgYDVQQKEwNJQk0xDDAKBgNVBAsTA1RSTDEZMBcGA1UEAxMQ
U09BUCAyLjEgVGVzdCBDQYICAQEwDQYJKoZIhvcNAQEFBQADgYEAq1M4JoOPT17ME8mzoQ7IxEKI
C4GjERCNwl4JPXMaZuC3emIlkpKhKy0Z27PdTg9xAfPZS7Mk7Kdj6rNhGVAW6CjBx8tMSvsuGIyR
JxG2Wo8WWexc6nDT+gynkMGEVWOXuKT0ssWWtsmyRqVJGD2ZkrD1muepJ7US2piqNmMp2Hs=

</ds:X509Certificate>
</ds:X509Data>

</ds:KeyInfo>
</DefaultVerificationKeys>
<Log> (4)

<SOAPDSigLogger
class="com.ibm.xml.soap.security.dsig.SOAPDSigLoggerImpl">
<LogFile target="all" path="log/SOAPVHH-all-cl.log" append="yes"/>

</SOAPDSigLogger>
<SOAPDSigLogger

class="com.ibm.xml.soap.security.dsig.SOAPDSigLoggerImpl">
<LogFile target="fail" path="log/SOAPVHH-fail-cl.log" append="yes"/>

</SOAPDSigLogger>
</Log>
<PKIXParameters> (5)

<TrustedRootList>
<TrustedRoot>

<KeyStore
type="jks"
path="key\SOAPclient"
storepass="client"/>

</TrustedRoot>
</TrustedRootList>
<InitialPolicies>

<CertificatePolicy>2.4.1.2.3</CertificatePolicy>
<CertificatePolicy>2.5.1.2.3</CertificatePolicy>
<CertificatePolicy>2.5.1.7.3</CertificatePolicy>

</InitialPolicies>
<PolicyMappingInhibited flag="no"/>
<ExplicitPolicyRequired flag="no"/>
<RevocationEnabled flag="no"/>
<TargetKeyUsage>

<KeyUsage>DIGITAL_SIGNATURE</KeyUsage>
</TargetKeyUsage>
<TargetExtendedKeyUsage>

<ExtendedKeyUsage>EKU_TIME_STAMPING</ExtendedKeyUsage>
</TargetExtendedKeyUsage>
<CertStoreList>

<LDAPCertStore provider="IBMCertPath">
<LDAPServer host="localhost" port="389"/>
 Chapter 9. Securing Web services 181

</LDAPCertStore>
</CertStoreList>

</PKIXParameters>
</SOAPVerifierConfig>

The following important elements are defined in the configuration file:

1. <AllowedAlgorithms> - all the algorithms supported by the verification
header handler must be listed in this element. It should be consistent to some
degree with the algorithms specified in the signature header handler’s
<Template> element.

2. <RequiredAuthenticatedParts> - this specifies which parts of the SOAP
envelope need to be authenticated through the SOAP-SEC:Signature header.
Currently, two values are supported:

– root - the whole envelope must be signed.

– body - the SOAP-ENV:Body element in the SOAP envelope must be
referenced in the signature; that element must then be signed.

3. <DefaultVerificationKeys> - when <KeyInfo> is missing in the signature, then
the information in this element will be used to perform the verification. It is
useful when the communicating parties know each other, because they do not
have to exchange certificates; the communication data volume can therefore
be reduced.

4. <Log> - this specifies the logging behavior; the following settings are
available:

– target="all" - all verification attempts are logged.

– target="success" - only successful verification are logged.

– target="fail" - only unsuccessful verification are logged.

The logging Java class and the log file are also defined for each logging
facility.

5. <PKIXParameters> - the policies for PKIX certificate verification are
specified in this element. Since the digital signatures for SOAP messages are
an early implementation in WebSphere Application Server V4 AE, not all of
the entries are meaningful in this release. Currently, the Verification Handler
supports X.509/PKIX certificates only.
182 IBM WebSphere V4.0 Advanced Edition Security

9.4 How to create secure Web services with WebSphere
Studio Application Developer

The Webbank Web application will be enhanced with a new service to provide
information about the accounts through a Web service.

In this book, the same Webbank application was used as in the WebSphere V4
Advanced Edition Handbook (SG24-6176).

9.4.1 Modifying the Webbank code
The original Webbank code requires some modification in order to be enabled for
Web services.

The EJB key classes do not implement the setter and getter methods for the
primary key fields. The bean serializer class for SOAP messaging requires these
methods to pass the object as a parameter.

The BranchAccountKey and CustomerAccountKey objects need to be modified
as documented below.

Add the following two methods to the BranchAccountKey.java (see
Example 9-5).

Example 9-5 Additional code for the BranchAccountKey.java

...
public void setBranchID(String argBranchID) {

branchID = argBranchID; }
public String getBranchID() {

return branchID; }
...

Add the following four methods to the CustomerAccountKey.java (see
Example 9-6).
Example 9-6 Additional code for the CustomerAccountKey.java

public void setCustomerID(String argCustomerID) {
customerID = argCustomerID; }

public String getCustomerID() {
return customerID; }
 Chapter 9. Securing Web services 183

public void setAccountNumber(String argAccountNumber) {
accountNumber = argAccountNumber; }

public String getAccountNumber() {
return accountNumber; }

Now the two key objects are enabled to access the primary key field identifiers.

9.4.2 Creating the secure Web service
In this section, a new secure Web service will be added to the Webbank Web
application; for development, WebSphere Studio Application Developer (WSAD)
is used.

1. Switch to the J2EE perspective in WebSphere Studio Application Developer
(see the icon on the left side of Figure 9-3).

2. Switch to the J2EE view (see the tab at the bottom of Figure 9-3).

3. Select the Information bean under the Consultation bean (EJB Modules >
webbankEJBs > Consultation bean).

Developers can also select the item to enable Web service through the Web
service wizard. By selecting the artifact prior to running the wizard, only the
steps for selection will be skipped.

Figure 9-3 Consultation EJB

Note: if you do not modify the code and try to use the objects as parameters
for messaging, the Web service will fail. The server will get the object as a
parameter; it will not be null, but the fields will be empty.
184 IBM WebSphere V4.0 Advanced Edition Security

4. Select File > New > Other from the menu to create a new Web service in
WebSphere Studio Application Developer.

Figure 9-4 Creating a new Web service

5. Select Web services in the left-hand pane, then select Web service in the
right-hand pane. Click Next to start the Web services wizard.

Figure 9-5 Selecting the Web project for the Web service

6. The first window will ask for the Web project where the Web service will be
implemented. Select webbankWeb from the drop-down menu, as shown in
Figure 9-5.
 Chapter 9. Securing Web services 185

7. Leave the check boxes as they are on the picture, then click Next.

Figure 9-6 Selecting the EJB for the Web service

8. The selected EJB (Consultation) pops up in the Web Service EJB
Configuration window, as shown in Figure 9-6. This is why we selected the
EJB before we started the wizard. Make sure that all the fields are filled out
with the appropriate value, then click Next..
186 IBM WebSphere V4.0 Advanced Edition Security

Figure 9-7 Java Bean Identity

9. The Web Service Java Bean Identity window provides the files for the
necessary descriptors, such as the ISD and WSDL files. This window also
contains the Use secure SOAP (WebSphere only) checkbox, which is very
important from a security point of view.

10.Make sure that the Use secure SOAP (WebSphere only) checkbox is
selected (see Figure 9-7), then click Next..
 Chapter 9. Securing Web services 187

Figure 9-8 Exposed Java Bean methods

11.The Web Service Java Bean Methods window shown in Figure 9-8 lists all the
accessible methods from the remote interface of the Consultation EJB. Here,
the developers can select those methods which they want to expose for the
Web service.

Make sure that the necessary methods are selected, then click Next.

Figure 9-9 Binding Proxy Generation window

12.Figure 9-9 shows the Web Service Binding Proxy Generation window; make
sure that SOAP Binding and Use secure SOAP (Websphere Only) are
selected, then click Next.
188 IBM WebSphere V4.0 Advanced Edition Security

Figure 9-10 Launch Test client

13.The Web Service Test Client window shown in Figure 9-10 asks whether the
developer wants to launch the Test client for the Web service after the Web
service is generated. Leave the box unselected, then click Next.

Figure 9-11 Generating the sample

14.The next window, shown in Figure 9-11, will help to generate a sample for the
Web service. Select the Generate sample checkbox to generate the sample
code automatically, then click Next.

Generating a sample is a good way to test the Web service either in the
development environment or in the runtime environment.

The sample code is also useful for developing the client code. The sample
includes all the necessary code that is required for a SOAP client. It provides
a good skeleton for coding.
 Chapter 9. Securing Web services 189

Figure 9-12 Web service publication

15.The Web Service Publication window is the last window of the wizard. Since
we will not publish this Web service (the Web service will be accessed
directly, so there is no need to publish it), leave the Launch the UDDI
Explorer to publish this Web service checkbox unselected, then click
Finish.

After completing the last window of the wizard, it will take a couple of minutes for
WebSphere Studio Application Developer to generate all the code. Once it has
finished, the WebSphere Test Environment in WebSphere Studio Application
Developer will start automatically.

9.4.3 Testing the Web service
After generating the code, you may want to test the code.

1. Open the Server perspective or switch to it if you have it already opened.

2. Find the following Consultation folder by clicking webbankWeb ->
webApplication -> sample -> Consultation.

Important: there is a small typographical error in one of the files generated for
the secured Web services.

Open the file conf/ver-config.dtd and search for the following tag:

<!ATTLIST RetrievalMethod
URI CDATA #REQUIRED
Type CDATA #IMPLIED >

Then add the ds namespace to the RetrievalMethod to get the following:

<!ATTLIST ds:RetrievalMethod
URI CDATA #REQUIRED
Type CDATA #IMPLIED >

Save the file, then close it.
190 IBM WebSphere V4.0 Advanced Edition Security

3. Right-click the TestClient.jsp file, then select Run on Server. A Web browser
opens with the requested URL.

A window appears with three frames. In the leftmost frame, the following
methods should be listed:

– setEndPoint

– getEndPoint

– getEnvelopeEditorConfigURL

– getEnvelopeEditorConfigURL

– setEnvelopeEditorHomeDirectory

– getEnvelopeEditorHomeDirectory

– getBranchBalance

– getCustomerBalance

4. Click the getBranchBalance link.

5. The upper-right frame changes: a text field appears for you to input the
branch ID. Type Sophia into the field, then click Invoke.

6. After invocation, the result frame changes and, after a couple of seconds and
several messages on the console, the result should appear in the frame.

7. Check the getCustomerBalance method also, with the following parameters:

– Customer ID: Isabelle
– Account number: A1

If the code is working, you should see the proper numbers under the result frame
after invoking the methods with the parameters.

9.4.4 Generated code
After generating the code for the Web service, the following files will appear in
the project:

Table 9-1 Files created for the secure Web service

File name Purpose

admin/* Administering the Web services

conf/sig-config.dtd DTD for the signature header handler

conf/ver-config.dtd DTD for the verification header handler

conf/cl-editor-config.xml Client’s envelope editor descriptor

conf/cl-sig-config.xml Client’s signature header handler
 Chapter 9. Securing Web services 191

For more information about Web services and developing Web services, read the
IBM Redbook Web Services Wizardry with WebSphere Studio Application
Developer, SG24-6292.

9.4.5 The XML-SOAP Admin tool
The Web services Admin tool is provided for the sample Web services and is
generated automatically with the code. Start a browser, then enter the following
URL:

http://<your_server>/webbank/admin/index.html

Click the list all services link to see all the available services for this sample; you
should see the picture shown in Figure 9-13 on page 193.

conf/cl-ver-config.xml Client’s verification header handler

conf/sv-editor-config.xml Server’s envelope editor

conf/sv-sig-config.xml Server’s signature header handler

conf/sv-ver-config.xml Server’s verification header handler

key/SOAPclient Client’s keyring file in JKS

key/SOAPserver Server’s keyring file in JKS

key/sslserver.p12 Keyring file for the SSL connection in
PKCS12 format

log/dummy.log Dummy file in the log directory

sample/Consultation/* Sample application for testing purposes

wsdl/Consultation-binding.wsdl WSDL binding configuration file

wsdl/Consultation-service.wsdl WSDL binding service file

dds.xml Deployment descriptor for all the services

soap.xml SOAP server configuration file

WEB-INF/classes/proxy/soap/itso/webba
nk/ejbs/ConsultationProxy.class

Servlet for the sample application

WEB-INF/isd/java/itso/webbank/ejbs/Con
sultation.isd

Deployment descriptor for the particular
service

WEB-INF/lib/* Java libraries required for Web services

File name Purpose
192 IBM WebSphere V4.0 Advanced Edition Security

Figure 9-13 XML-SOAP Admin

The service listing shows one service available: urn:ConsultationEJB.

The services can be stopped or started under the related links within the
XML-SOAP Admin tool.

9.4.6 Running the Webbank Web services sample
A Java client is provided with the webbank6520.ear sample together with this
redbook.

The syntax for running the sample is:

consultation.bat RPC_URL web_application_path [branch branchID | customer
customerID account_number]

There are two options: requesting information about the branch or about the
customer, depending on the parameters passed to the Java application.

After running the application, the following output is generated in the console.

Example 9-7 Console output

[Monday, November 12, 2001 10:39:10 AM EST] main "EditorComponent class name: c
om.ibm.xml.soap.security.dsig.SOAPVerifier"
[Monday, November 12, 2001 10:39:10 AM EST] main "{EnvelopeEditorHome=e:/projec
ts/webbankd/webbankWeb/webApplication, filename=conf/cl-ver-config.xml}"
 Chapter 9. Securing Web services 193

[Monday, November 12, 2001 10:39:10 AM EST] main "conf/cl-ver-config.xml"
[Monday, November 12, 2001 10:39:14 AM EST] main "EditorComponent class name: c
om.ibm.xml.soap.security.dsig.SOAPSigner"
[Monday, November 12, 2001 10:39:14 AM EST] main "{EnvelopeEditorHome=e:/projec
ts/webbankd/webbankWeb/webApplication, filename=conf/cl-sig-config.xml}"
[Monday, November 12, 2001 10:39:14 AM EST] main "conf/cl-sig-config.xml"
[Monday, November 12, 2001 10:39:29 AM EST] main "Core validity=true"
[Monday, November 12, 2001 10:39:29 AM EST] main "Signed info validity=true"
[Monday, November 12, 2001 10:39:29 AM EST] main "Signed info message=null"
[Monday, November 12, 2001 10:39:29 AM EST] main "Ref[0](validity=true, message
=Ok., uri=, type=)"
[Monday, November 12, 2001 10:39:29 AM EST] main "Ref[1](validity=true, message
=Ok., uri=#timestamp,
type=http://www.w3.org/2000/09/xmldsig#SignatureProperty)"

customer balance:900

You will see a message generated by the SOAP library, and the result at the end
of the output.

9.4.7 Checking the log file
At the same time, logs are generated about the secure messaging. The log files
can be found at the following location: <WebSphere install
directory>\installedApps\webbank6520.ear\webbankWeb.war\log. The following
log files are generated:

� SOAPVHH-all-cl.log
� SOAPVHH-all-sv.log
� SOAPVHH-fail-cl.log
� SOAPVHH-fail-sv.log

These files are specified in the verification header handler configuration files. The
logs with the tag all in the middle contain all the logs for verifying the messages,
while the logs with the fail tag in the middle only contain the errors for
unsuccessful message verifications.

The following example is an excerpt from the SOAPVHH-all-sv.log, after
requesting information about a customer account.

Example 9-8 SOAPVHH-all-sv.log entry

Friday, November 9, 2001 12:39:16 PM EST "SUCCESS" <?xml version="1.0"
encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Header>
194 IBM WebSphere V4.0 Advanced Edition Security

<SOAP-SEC:Signature SOAP-ENV:actor="" SOAP-ENV:mustUnderstand="1"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12"><Signature
xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo Id="sig">
<CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
<SignatureMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI=""> (1)

<Transforms>
<Transform

Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>o3o3yZgI1PrODGqSll0j6VCzr3Y=</DigestValue>
</Reference>
<Reference Type="http://www.w3.org/2000/09/xmldsig#SignatureProperty"

URI="#timestamp"> (2)
<Transforms>

<Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>2NTb7lQEEo6lgR1fX3+B8lGc0Ls=</DigestValue>
</Reference>

</SignedInfo>
<SignatureValue> (3)

 leDbZpyiI0c9dmxEQExACLDKoJENvseNeEwXVqxF/XVLki9tpF1sn2p+Pa2bPFwjL0NaLa7t
 bjaXEIjzzo7+ZSLLF4NMLjSGcDqcsJOd4YYvZ+1F4X4u5y5tWWUGS9HbTvcOj/w7Yd4PbhQR
 kHG7uFt9XjqZdC20Z8mJqAKOEmI=

</SignatureValue>
<KeyInfo> (4)

<KeyName>soaprequester</KeyName>
<KeyValue>

<RSAKeyValue>
<Modulus>

 zjspoHS04ywIpewNdbLMzkoae6vREk9MCvSchey+MavBe64V4BZWt6G/MOKauHRRaY
 4uUA4vPurj5b50KsUOtwLaJxYPZOZqKyA8w1/xpiMGbCsMKkop8fJsCmMpX07ixiNy
 njmXwHfXM5K5U5HOZinzQwtVM5L4AJh26cXsgkc=

</Modulus>
<Exponent>AQAB</Exponent>

</RSAKeyValue>
</KeyValue>
<X509Data>

<X509Certificate>
MIIDGDCCAoGgAwIBAgICAQAwDQYJKoZIhvcNAQEFBQAwTjELMAkGA1UEBhMCSlAxETAPBgNVBAgT
CEthbmFnYXdhMQwwCgYDVQQKEwNJQk0xDDAKBgNVBAsTA1RSTDEQMA4GA1UEAxMHSW50IENBMjAe
Fw0wMTAyMTEwNzAxNDRaFw0wMjAyMTEwNzAxNDRaMFQxCzAJBgNVBAYTAkpQMREwDwYDVQQIEwhL
 Chapter 9. Securing Web services 195

YW5hZ2F3YTEMMAoGA1UEChMDSUJNMQwwCgYDVQQLEwNUUkwxFjAUBgNVBAMTDVNPQVBSZXF1ZXN0
ZXIwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAM47KaB0tOMsCKXsDXWyzM5KGnur0RJPTAr0
nIXsvjGrwXuuFeAWVrehvzDimrh0UWmOLlAOLz7q4+W+dCrFDrcC2icWD2TmaisgPMNf8aYjBmwr
DCpKKfHybApjKV9O4sYjcp45l8B31zOSuVORzmYp80MLVTOS+ACYdunF7IJHAgMBAAGjgf4wgfsw
CQYDVR0TBAIwADALBgNVHQ8EBAMCBeAwLAYJYIZIAYb4QgENBB8WHU9wZW5TU0wgR2VuZXJhdGVk
IENlcnRpZmljYXRlMB0GA1UdDgQWBBSsFkUm1rJnoRNjVzSE5saqj3UbPTCBkwYDVR0jBIGLMIGI
gBQ9Rew5qsrkHYWFqNHj6NzQHg0CUaFspGowaDELMAkGA1UEBhMCSlAxETAPBgNVBAgTCEthbmFn
YXdhMQ8wDQYDVQQHEwZZYW1hdG8xDDAKBgNVBAoTA0lCTTEMMAoGA1UECxMDVFJMMRkwFwYDVQQD
ExBTT0FQIDIuMSBUZXN0IENBggIBATANBgkqhkiG9w0BAQUFAAOBgQA5KACyCidMn4VRuUNAsNOH
Vn7D9JLDY3Y+Knf7V/EE0IGhryuLf+pwvnxibyKZXlC2mwZVVYE/lMhwlIWDku56VqUh/XGfbDUe
O1ZYYDqRhW6Op7ghmmnAINmZ6q725xjHwNO1JdcZRJdgZyk6io6/Vs1IXfayVh1+8omY9f8Shw==

</X509Certificate>
</X509Data>

</KeyInfo>
<Object>

<SignatureProperties>
<SignatureProperty SOAP-SEC:id="timestamp" Target="#sig">

<timestamp>Fri Nov 09 12:39:15 EST 2001</timestamp> (5)
</SignatureProperty>

</SignatureProperties>
</Object>
</Signature></SOAP-SEC:Signature>

</SOAP-ENV:Header>

<SOAP-ENV:Body> (6)
<ns1:getCustomerBalance

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ns1="urn:ConsultationEJB">

<customeraccountkey
xmlns:ns2="http://www.consultation.com/schemas/ConsultationRemoteInterface"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:type="ns2:itso.webbank.ejbs.CustomerAccountKey">

<customerID xsi:type="xsd:string">Isabelle</customerID>
<accountNumber xsi:type="xsd:string">A1</accountNumber>

</customeraccountkey>
</ns1:getCustomerBalance>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
196 IBM WebSphere V4.0 Advanced Edition Security

The following important elements are defined in the configuration file:

1. <Reference URI=""> - this includes the digest value for the message, using
the transformation algorithm specified within this element.

2. <Reference URI="#timestamp"> - this includes the generated digest value
for the timestamp, using the transformation algorithm specified within this
element.

3. <SignatureValue> - this contains the signature value for the message.

4. <KeyInfo> - this includes the values for the key: key name, RSA key modulus
and the certificate.

5. <timestamp> - the time when the message was transmitted.

6. <SOAP-ENV:Body> - the message body with the message itself.

The log in the SOAPVHH-all-cl.log file, which contains the logs for the client, is
very similar to the one previously introduced.

9.5 Customizing the certificates for secure Web
services

In a production environment, it is strongly recommended that you use your own
certificates: certificates from a trusted certificate authority or self-signed
certificates based on the nature of the business where Web services are
exercised.

The certificates provided with the WebSphere Application Server or the
WebSphere Studio Application Developer are useful for development and testing
purposes, but not for production.
 Chapter 9. Securing Web services 197

9.5.1 Certificates provided by WebSphere Studio Application
Developer

The original certificates provided with the generated secure Web service are
depicted in Figure 9-14.

Figure 9-14 Certificates provided with the generated Web service

In Figure 9-14, three different files with certificates are shown. Each keystore
contains a group of personal certificates and a group of signer certificates.

The tree shows the hierarchy of the certificates according to the certificate
signers. The top level certificate (SOAP 2.1 Test CA) is the root certificate signed
by itself. The other certificates are signed by the ones above them.

Note: The certificates provided with the WebSphere secure Web services
samples are the same as those provided with WebSphere Studio Application
Developer.

SOAPRequester

SSLClient

Int CA2

Int CA1

SOAP 2.1 Test CA

sslserver

SOAPclient SOAPserver

sslserver.p12

SOAPProvider Int CA1

Int CA2

SOAP 2.1 Test CA

sslserver

Int CA1sslserver

SOAP 2.1 Test CA

Signer CertificatesPersonal Certificates Signer CertificatesPersonal Certificates

Signer CertificatesPersonal Certificates
SOAP 2.1 Test CA

Int CA1 Int CA2

sslserver SSLClient

SOAPRequester SOAPProvider
198 IBM WebSphere V4.0 Advanced Edition Security

9.6 Secure Web services samples in WebSphere V4 AE
WebSphere Application Server V4 Advanced Edition is shipped with a sample
enterprise application which demonstrates Web services. The sample includes
the secure and the non-secure Web services in one archive, under separate Web
archives.

The .ear file is in the <WebSphere install directory>/installableApps directory
called soapsamples.ear.

For more information about deploying an enterprise application, refer to the
WebSphere V4 Handbook, SG24-6176.
 Chapter 9. Securing Web services 199

200 IBM WebSphere V4.0 Advanced Edition Security

Chapter 10. Programmatic security

In this chapter, we will look at programmatic security. First, we will establish when
the security infrastructure provided by WebSphere may ned to be enhanced.
Then we will look at three ways in which you can implement programmatic
security:

� Security in the J2EE APIs

� CustomRegistry SPI

� TrustAssociationInterceptor SPI

10
© Copyright IBM Corp. 2002 201

10.1 Programmatic security
WebSphere is able to provide method level security. That is, you can control who
can call which methods using the WebSphere administration tools. However, this
is not always enough. For example, with our Webbank application, we configured
security so that only managers and employees could transfer funds, but anyone
could check their balance. However, there is no check performed to ensure that
the balance that is being requested actually is for an account that belongs to the
user.

This scenario requires a finer grained level of security and that is provided by the
WebSphere security infrastructure. You need row-level security, that is, you need
to check that the user is allowed to access the data in a particular row of the
database. This check can be performed at different points.

If the only purpose of logging into your Web site is to get personal information,
then it makes sense to perform this check during the login stage.

If your Web site offers personal information but most of the information is
general, you might want to perform this check just in time for the personal
information to be presented. In this case, before the getBalance method was
called, you would validate that the user was trying to access his or her own
account. This would be a valid scenario for our Webbank application, since the
account of which to display the balance is shown after login.

There are other reasons why you might want to use programmatic security, such
as:

� Limiting the number of invalid password attempts

� Checking that the user’s subscription has not expired

� Logging information about a user’s visit

Programmatic security puts a burden on your developers. This is why
WebSphere security provides a security infrastructure, thanks to which the
programmer does not have to be concerned with security. However, if
WebSphere does not provide everything that you need for your Web site, you do
have the ability to code for this. This has an effect on your project, as your code
needs to be modified and the security code maintained. Always separate the
security logic from your business logic to make it easy to maintain and to give
you the flexibility to plug in other security products and features where available.
202 IBM WebSphere V4.0 Advanced Edition Security

10.2 J2EE API
WebSphere provides a security infrastructure for application security which is
transparent to the application developer. That is, the developer does not need to
code for security, since it will all be handled at deployment and runtime.

Having said that, when developing servlets and EJBs, there are a few security
calls available if the developer wants greater control of what the end user is
allowed to do than is provided by the infrastructure.

10.2.1 EJB security methods
The EJB 1.1 specification defines two methods that allow programmatic access
to the caller’s security context, javax.ejb.EJBContext.

� java.security.Principal getCallerPrincipal()

The getCallerPrincipal method allows the developer to get the name of the
current caller. To do this, you need to call getName() on the
java.security.Principal object returned.

EJBContext ejbContext;
...
// get the caller principal
java.security.Principal callerPrincipal =
ejbContext.getCallerPrincipal();
// get the caller’s name
String callerName = callerPrincipal.getName();

The Principal.getName() method returns the login name of the user.

� Boolean isCallerInRole(String roleName)

The isCallerInRole method allows the developer to make additional checks
on the authorization rights of a user which are not possible, or more difficult,
to perform through the deployment descriptor of the EJB.

EJBContext ejbContext;
...
if (ejbContext.isCallerInRole("Supervisor"))

// Perform some fuction
else

// Throw a security exception

The isCallerInRole(String role) method returns true if the user is in the
specified role, and false if it is not. The role name specified in the method is
really a security role reference, not a role. If the security role reference is not
defined for the EJB, the method will return null.

See the EJB 1.1 specification for more details on EJB programmatic security.
 Chapter 10. Programmatic security 203

A typical use of programmatic security with EJBs is logging. If security logs are
required in the applications, requiring information like: Who? When? and Which
method was running? then the logging facility can get the user information and
write it out to the log.

Programmatic security sample for EJBs
The Transfer session EJB implements a short code, which checks the user’s role
and will not let an Employee transfer more than $1000 from the branch to the
customer (it will, however, allows the transaction to flow other way around: from
the customer to the branch).

Two environment variables are defined for the Transfer session EJB, which are
local to this EJB (the namespace where they are defined is not available only
from the EJB where they were set). The code checks to see whether the user
falls into the role defined in the RestrictedUser environment variable, and will not
let the user perform the transfer if the amount is higher than the OverdraftValue
environment variable’s value.

Since the EJB security API can only check the role mappings through a security
role reference, the following entry has to be added to the ejb-jar.xml file, into the
body of the <session id=”Session_1”> </session> tag.

<security-role-ref id="SecurityRoleRef_1">
<role-name>Employee</role-name>
<role-link>Employee</role-link>
</security-role-ref>

The security role reference feature is not implemented in WebSphere Studio
Application Developer; you must add the entry manually or use the Application
Assembly Tool (AAT). For more information on how to define a security role
reference for an EJB, see “Setting up security role references” on page 145.

10.2.2 Servlet security methods
The Servlet 2.2 specification defines three methods that allow programmatic
access to the caller’s security information of HttpServletRequest interface.

� String getRemoteUser()

The getRemoteUser method returns the user name that the client used to log
in.

String user = request.getRemoteUser()
204 IBM WebSphere V4.0 Advanced Edition Security

� Boolean isUserInRole(String roleName)

The isUserInRole method allows the developer to perform additional checks
on the authorization rights of a user which are not possible, or more difficult,
to perform through the deployment descriptor of the servlet.

For example, in our Webbank application, we have defined a Manager role
which can transfer funds of more than $5000. This is not possible to define
using the deployment descriptor alone, so the developer has coded in a check
to make sure that the user is a member of the appropriate role.

Example 10-1 Programmatic login sample for servlets

if (amount > 5000) {
String message = null;
if (request.isUserInRole("Manager")) {

message = TransferHelper.singleton().makeTransfer(
customerID, accountID, branchID, amount, transferType);

} else {
message = "You are not a Manager");

}
req.setAttribute("Message", message);

}

� java.security.Principal getUserPrincipal()

The getUserPrincipal method allows the developer to get the name of the
current caller. To do this, you need to call getName() on the
java.security.Principal object returned.

See the Servlet 2.2 specification for more details on servlet programmatic
security.

Programmatic security sample for servlets
The TransferServlet uses a simple code which checks for the user role and the
transferable amount. If the user falls into the role specified in the Web module’s
environment (RestrictedUser), then the amount of the transfer is compared to
another environment variable defined in the Web module’s environment
(OverdraftValue).

The environment variables are local for the Web module. In our example, any
user who is in the Employee group cannot transfer more than $5000 at once. See
TransferServlet.java for more details.

Important: The methods getRemoteUser() and getUserPrincipal() return
null as a result even if the user is logged in, unless the servlet or the JSP
itself is secured.
 Chapter 10. Programmatic security 205

10.3 CustomRegistry SPI
The custom registry facility in WebSphere allow you to use any system you like to
store the users and groups. The only requirement is that there must be a Java
interface for it. Some examples of products that could be used as a custom
registry are:

� A database, such as DB2

� An integration product, such as MQSeries

� A combination of multiple registries, such as LDAP and RACF

In the case of MQSeries, you would need to implement the CustomRegistry
interface and also write an MQ application on the receiving end which interfaced
to some back-end repository, such as a mainframe registry.

Figure 10-1 MQ Series example

There are three steps to implementing a custom registry:

1. The application developer needs to implement the methods in the
CustomRegistry interface, part of the com.ibm.ejs.security.registry package.
This layer of code interacts with the actual registry.

2. In the Security Center of the WebSphere Administrator’s Console, the
administrator selects the Custom pluggable registry option and specifies
the class that was created in step 1. For details on how to configure this, see
“User registry” on page 50.

3. The WebSphere Security Server calls the CustomRegistry methods to
perform authentication for applications.

WebSphere

Network

Mainframe
MQ

Application

Security
Server

Custom Registry
Implementation
206 IBM WebSphere V4.0 Advanced Edition Security

Figure 10-2 Custom Registry

There is an implementation of the CustomRegistry interface shipped with
WebSphere. It is a simple file system-based implementation, designed as an
example, not to be implemented in a production system. It has not been
designed to scale or to perform well.

For more information about this example registry, see Section 5.2 of the
InfoCenter. The source code listing for the sample is also in the InfoCenter in
Section 5.2.4.1.1 (The FileRegistrySample.java file).

The CustomRegistry interface supports two types of registry entry, and three
pieces of information for each:

� Users

– User name: user identifier

– Unique identifier: must be unique within the registry

– Display name: optional description of the user

� Groups

– Group name: group identifier

– Unique identifier: must be unique within the registry

– Display name: optional description of the group

There are twenty methods in the CustomRegistry interface. An implementation of
this interface must include an implementation for all of these methods.

WebSphere

LTPA
Authentication

Layer

Local OS
Authentication

Layer

Pluggable
Custom
Layer

Local OS
User

Registry

Custom
User

Registry

Custom

Custom
Provided

WebSphere
Provided

LDAP
User

Registry

Authentication
Calls

Security
Server
 Chapter 10. Programmatic security 207

Table 10-1 CustomRegistry required general methods

The following table lists the user-related methods.

Table 10-2 CustomRegistry required user-related methods

Method signature (General methods) Use

Public void initialize(java.util.Properties props)
throws CustomRegistryException

Initializes the custom registry.

Public String getRealm() throws
CustomRegistryException

Returns the name of the security
realm. If null, defaults to
customRealm.

Method signature (user-related methods) Use

Public boolean isValidUser(String userName)
throws CustomRegistryException

Determines if the supplied user name
exists in the registry.

Public List getUsers() throws
CustomRegistryException

Returns the list of all users in the
registry.

Public List getUsers(String pattern) throws
CustomRegistryException

Returns the list of all users matching
a pattern in the registry. Includes
wildcards.

Public String getUniqueUserId(String
userName) throws CustomRegistryException,
EntryNotFoundException

Returns the unique identifier for the
named user.

Public String getUserSecurityName(String
uniqueUserId) throws
CustomRegistryException,
EntryNotFoundException

Returns the user name given the
unique identifier.

Public String getUserDisplayName(String
securityName) throws
CustomRegistryException,
EntryNotFoundException

Returns the description for the
named user.

Public List getUsersForGroup(String
groupName) throws
CustomRegistryException,
EntryNotFoundException

Returns a list of the users belonging
to the named group.

Public List getUniqueUserIds(String
uniqueGroupId) throws
CustomRegistryException,
EntryNotFoundException

Returns all the unique identifiers for
users belonging to the named group.
208 IBM WebSphere V4.0 Advanced Edition Security

Table 10-3 lists the group-related methods.

Table 10-3 CustomRegistry required group-related methods

Method signature (group-related methods) Use

puBlic boolean isValidGroup(String
groupName)
throws CustomRegistryException

Determines if the supplied group
name exists in the registry.

Public List getGroups() throws
CustomRegistryException

Returns the list of all groups in the
registry.

Public List getGroups(String pattern) throws
CustomRegistryException

Returns the list of all groups
matching a pattern in the registry.
Includes wildcards.

Public String getUniqueGroupId(String
groupName) throws
CustomRegistryException,
EntryNotFoundException

Returns the unique identifier for the
named group.

Public String getGroupSecurityName(String
uniqueGroupId) throws
CustomRegistryException,
EntryNotFoundException

Returns the group name given the
unique identifier.

Public String getGroupDisplayName(String
groupName) throws
CustomRegistryException,
EntryNotFoundException

Returns the description for the
named group.

Public List getGroupsForUser(String
userName) throws CustomRegistryException,
EntryNotFoundException

Returns a list of the groups that the
named user belongs to.

Public List getUniqueGroupIds(String
uniqueUserId) throws
CustomRegistryException,
EntryNotFoundException

Returns all the unique identifiers for
groups that the named user belongs
to.
 Chapter 10. Programmatic security 209

Table 10-4 shows the CustomRegistry required authentication methods.

Table 10-4 CustomRegistry required authentication methods

To illustrate some of the different possible implementations, we have chosen one
method from this interface, getUsers(), and will show three implementation
examples:

� File-based registry (the implementation supplied in the InfoCenter)

� Database registry

� MQSeries (which, in turn, interfaces to a remote registry)

Example 10-2 shows the getUsers() method for the Custom Registry using the
file for user registry.

Example 10-2 File-based registry implementation of getUsers()

/* Returns names of all the users in the registry.
* @return a List of the names of all the users.
* @exception CustomRegistryException if the registry is "bad".
**/
public List getUsers() throws CustomRegistryException {

String s;
BufferedReader in = null;
List allUsers = new ArrayList();
try {

in = fileOpen(USERFILENAME);
while ((s=in.readLine())!=null) {

if (!s.startsWith("#")) {
int index = s.indexOf(":");
allUsers.add(s.substring(0,index));

}
}

} catch (Exception ex) {
throw new CustomRegistryException(ex.getMessage());

} finally {
fileClose(in);

Method signature (Authentication methods) Use

Public String checkPassword(String
userId,String password) throws
PasswordCheckFailedException,
CustomRegistryException

Returns the user name if the
password supplied matched the
password in the registry entry.

Public String mapCertificate(X509Certificate
cert) throws
CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException

Takes an X.509 certificate as the
argument and returns a valid user.
210 IBM WebSphere V4.0 Advanced Edition Security

}
return allUsers;

}

In Example 10-3, the method implements the getUsers() method using a
database registry.

Example 10-3 Database registry implementation of getUsers()

/* Returns names of all the users in the registry.
* @return a List of the names of all the users.
* @exception CustomRegistryException if the registry is "bad".
**/
public List getUsers() throws CustomRegistryException {

return internalGetAllIds(SQL_GET_ALL_USERIDS);
}
private List internalGetAllIds(final String statement)

throws CustomRegistryException {
IRetryBlock rb = new RetryBlock() {

public void doRun() throws Exception {
m_preparedStatement = m_connection.prepareStatement(statement);
m_resultSet = m_preparedStatement.executeQuery();
List list = new ArrayList();
while(m_resultSet.next())

list.add(m_resultSet.getString(1));
setReturnValue(list);

}
}
m_retryHandler.execute(rb);
Object rc = rb.getReturnValue();
if(rb.isSuccessful() == false)

throw new CustomRegistryException();
return (List) rb.getReturnValue();

}

In Example 10-4, the method implements the getUsers() method using MQSeries
to access the registry.

Example 10-4 MQSeries implementation of getUsers()

/* Returns names of all the users in the registry.
* @return a List of the names of all the users.
* @exception CustomRegistryException if the registry is "bad".
**/
public java.util.List getUsers()

throws com.ibm.websphere.security.CustomRegistryException {
String inMessage = "getUsers:";
List replyList = requestReplies(inMessage);
return replyList;
 Chapter 10. Programmatic security 211

}
/* Generic method that takes a string and returns a list of strings.
* @return a List of strings.
* @exception CustomRegistryException if the registry is "bad".
**/
private List requestReplies(String name) throws CustomRegistryException {

Message inMessage = null;
try {

boolean transacted = false;
try {

// Create a QueueReceiver
QueueSession session = connection.createQueueSession(transacted,

Session.AUTO_ACKNOWLEDGE);
QueueSender queueSender = session.createSender(sendQueue);
TextMessage jmsMessage = session.createTextMessage();
jmsMessage.setText(name);
queueSender.send(jmsMessage);
//Get the correlation ID of the message
String jmsCorrelationID = jmsMessage.getJMSCorrelationID();
String selector = "JMSCorrelationID = '" + jmsCorrelationID + "'";
// Create a QueueReceiver using the correlation ID
QueueReceiver queueReceiver = session.createReceiver(receiveQueue,

selector);
inMessage = queueReceiver.receive(500);
queueReceiver.close();
queueSender.close();
session.close();
session = null;

} catch (JMSException jmse) {
jmse.printStackTrace();

}
} catch (Exception ex) {

throw new CustomRegistryException(ex.getMessage());
}
// Convert received message into a List object
List allItems = new ArrayList();
if (inMessage instanceof TextMessage) {

String replyString = null;
try {

replyString = ((TextMessage) inMessage).getText();
} catch (JMSException jmse) {

jmse.printStackTrace();
}
int i = 0;
int j = replyString.indexOf(":");
while (j >= 0) {

allItems.add(replyString.substring(i, j));
i = j + 1;
j = replyString.indexOf(":", i);
212 IBM WebSphere V4.0 Advanced Edition Security

}
allItems.add(replyString.substring(i));
return allItems;

} else
return null;

}

10.4 Trust Association Interceptor SPI
The TrustAssociationInterceptor in WebSphere allows third-party products to
provide the authentication services to WebSphere. Reverse Proxy Security
Servers (RPSS) can be plugged into WebSphere by implementing this service
provider interface.

WebSEAL is an example of an RPSS and WebSphere includes an
implementation for this proxy. If you want to use a different RPSS with
WebSphere, then this interface needs to be implemented for that specific
product. See “Web Trust Association” on page 381 for details on how to configure
WebSEAL with WebSphere using Trust Association.

WebSphere provides two ways for you to implement the interceptor class:

� Using the interface
com.ibm.websphere.security.TrustAssociationInterceptor

This defines three methods that you must implement:

– public boolean isTargetInterceptor(HttpServletRequest req) throws
WebTrustAssociationException;

This verifies that the proxy making the request is the proxy server that has
been configured as the interceptor.

– public void validateEstablishedTrust(HttpServletRequest req)
throws WebTrustAssociationException;

This determines whether or not the proxy that made the request is trusted.
One way to do this is to authenticate the proxy user name and password
against the LDAP registry. This is how the WebSEAL interceptor works.

– public String getAuthenticatedUsername(HttpServletRequest req)
throws WebTrustAssociationException;

This extracts the client’s user name from the HTTP head so that
WebSphere can authorize the user for the requested resource.
 Chapter 10. Programmatic security 213

� Sub-classing the class
com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor

If you want to be able to configure the interceptor, using a configuration that is
read by the class, then you need to use this method. Additionally, you need to
implement two further classes:

– abstract public int init(String propsfile);

– abstract public void cleanup();

The configuration file is specified in the trustedservers.properties file with the
following syntax:

com.ibm.websphere.trustassociation.<proxyname>.config

See “Using Tivoli Policy Director” on page 355 for details about the
trustedservers.properties file used with WebSEAL.

For more information about the TrustAssociationInterceptor SPI, see Section 5.6
of the InfoCenter at
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/
index.html.

For information about programmatic login, refer to “Programmatic login” on
page 161.
214 IBM WebSphere V4.0 Advanced Edition Security

http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter

Chapter 11. Administering WebSphere
Security

Complementing the WebSphere Advanced Edition Handbook, this chapter
describes in further detail the steps necessary to configure secure
communication between the various components in a WebSphere deployment.

The topics discussed in this chapter include:

� WebSphere Global Security and Demo Keyring replacement

� Configuring the Web Server to support HTTPS

� Client-Side Certificates for authentication

� Configuring SSL between the Web Server plug-in and WebSphere

� Restricting Client requests to HTTPS

� Securing WebSphere LTPA queries with SSL

The documentation is based on WebSphere AE running on the AIX 4.3.3
platform. The certificates were acquired from the Thawte test CA at:
http://www.thawte.com.

11
© Copyright IBM Corp. 2002 215

http://www.thawte.com

11.1 WebSphere Global Security
Enabling Global Security is the first step in protecting resources served by
WebSphere. Fundamentally, this step also secures the WebSphere internal
communications mechanism. Here, the Object Request Broker (ORB)
requirements associated with the WebSphere Administration Server are
endorsed by the Secure Association Service (SAS). This in turn provides the
authentication and authorization process, by which client credentials are
substantiated.

It is, however, with the adoption of the Secure Socket Layer (SSL) transport
mechanism that WebSphere achieves secure communication. As such, the
various SSL implementations found in a typical WebSphere environment are
illustrated in Figure 11-1 below, and include the HTTPS, LDAPS and IIOP with
SSL protocols.

Figure 11-1 Secure protocols adopted in WebSphere V4

One of the features of the Secure Socket Layer (SSL) transport mechanism is the
reliance placed upon digital certificates. The use of such certificates permits the
authentication and encryption required between peers when establishing a
secure connection. By default, WebSphere ships with a set of generic SSL
certificates that allow Global Security to be quickly configured and enabled. For
this reason, in the section that follows, we explore the tasks and options available
for replacing the out-of-the-box SSL certificates.

Web
Container

Managed App
Server

LDAP Directory
Server

HTTP/ HTTPS

Web Server

ORB

ORB

Web
Server
Plug-in

IIOP/ IIOPS

Web
Container

ORB

IIOP/ IIOPS

IIOP/ IIOPS

Managed App
Server

LDAP/ LDAPS

WebSphere V4.0
Admin Server

EJB Client
(Admin Client)

IIOP/ IIOPS

HTTP/ HTTPS

Web Client
(browser)
216 IBM WebSphere V4.0 Advanced Edition Security

11.1.1 The Demo Keyring
It is strongly advised that the Demo Keyring be replaced with either a new
self-signed certificate key pair or a certificate signed by a third-party Certificate
Authority (CA) prior to enabling WebSphere Global Security in a production
environment. The CA option, while valid, is perhaps not of any extra benefit as
the trust association offered by the CA is of minimal concern to WebSphere
internally. We will, however, demonstrate both methods for the sake of
completeness.

Failing to replace the Demo Keyring may compromise your overall security
integrity, as the same private/public key pair is generically distributed on all
shipments of the WebSphere install media. This may prove to be the Achilles’
heel of your implementation, if you have spent a considerable amount of time
configuring the other elements of WebSphere security.

Prior to WebSphere V4, the Demo Keyring was shipped as a single Java class:
the DummyKeyring.class. Now, the Demo Keyring is referenced by WebSphere
by its inclusion in the DummyServerKeyFile.jks Java Key Store (JKS). For
migration and recovery purposes, the Demo Keyring is also included in the
DummyKeyring.jks file. Both files are found in the WebSphere etc directory.

Figure 11-2 JSSE KeyFile.jks and TrustFile.jks relationship

With WebSphere adopting the Java Secure Sockets Extension (JSSE) standard,
the concept of separate certificate databases for storing keys and trusted keys is
used. The relationship of these two certificates databases or keyfiles is shown in
Figure 11-2. Here, the server’s KeyFile.jks contains a private/public certificate
key pair, signed by a third party Certificate Authority (CA). The TrustFile.jks

KeyFile.jks

WebSphere V4.0 Client

Signing CA

Private
Key

Private
Key

KeyFile.jks

Signing CA

Private
Key

Public
Key

Signing CASigning CA

TrustFile.jks

Signing CA

Private
Key

Public
Key

KeyFile.jks

WebSphere V4.0 Server

Signing CA

KeyFile.jks

Signing CA

Private
Key

Private
Key

Signing CA

TrustFile.jks
 Chapter 11. Administering WebSphere Security 217

associated with the server can then be used to contain only signer certificates
from trusted peers. The reverse is true for any client, hence the client’s
KeyFile.jks and client’s TrustFile.jks files. It also remains possible to use a single
file for both tasks.

The JSSE SSL authentication mechanism in WebSphere V4.0, however, has the
requirement shown in Figure 11-3 for replacing the Demo Keyring. Note that the
public certificate of the signing Certificate Authority (CA) is present in the client’s
KeyFile.jks keyfile and not the client’s TrustFile.jks keyfile.

Figure 11-3 WebSphere keystores when using a third-party CA

Furthermore, if you opt to create a self-signed certificate and sign it yourself, the
public key must be installed back into the server’s KeyFile.jks keyfile as a trusted
signer and not only into the server’s TrustFile.jks keyfile. This is shown in
Figure 11-4.

All other trusted client certificates can and should be installed into the
WebSphere server’s TrustFile.jks keyfile, as depicted in Figure 11-2 on page 217,
if you elect to use the Global Default SSL configuration settings. One example of
a client certificate is the public certificate used by the IBM SecureWay LDAP
Directory Server, that allows WebSphere to communicate over LDAPS. In this
case, the public certificate is required in the server’s TrustFile.jks keyfile (only if
you opt to use the default SSL settings when configuring LDAPS).

Signing CA

ClientKeyFile.jks

WebSphere V4.0 Client

Signing CA

ClientTrustFile.jks

Signing CA

Private
Key

Public
Key

ServerKeyFile.jks

WebSphere V4.0 Server

Signing CA

ServerTrustFile.jks

sas.server.props sas.client.props
218 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-4 WebSphere keystores when using a self-signed certificate

The client’s KeyFile.jks and client’s TrustFile.jks keyfiles are used by the
WebSphere Administration Client and other J2EE clients. Such clients reference
the sas.client.props file in the WebSphere properties directory for authentication.

The following options are discussed here:

1. Self-signed certificate using the IBM ikeyman utility
2. Certificate signed by a third-party CA

11.1.2 Option 1: self-signed certificate using the IBM ikeyman utility
The IBM ikeyman tool offers the WebSphere administrator the ability to create
and manage digital certificates. WebSphere ships with an updated JSSE
ikeyman that supports the Java Key Store format (JKS). In the example that
follows, we will use ikeyman to create a private/public key pair self-signed
certificate to replace the Demo Keyring present in the DummyServerKeyFile.jks
keyfile.

The server’s KeyFile.jks certificate database
Create a new server keyfile using the WebSphere V4.0 JSSE ikeyman tool:

1. Launch the JSSE ikeyman tool by invoking it directly from the WebSphere bin
directory; on Unix platforms, invoke ikeyman.sh. On Windows, the tool can be
launched from the Start menu.

2. From the ikeyman menu bar, select Key Database file -> New.

Ensure that the Key database type is set to JKS.

ClientKeyFile.jks

WebSphere V4.0 Client

ClientTrustFile.jks

Private
Key

Public
Key

ServerKeyFile.jks

WebSphere V4.0 Server

ServerTrustFile.jks

sas.server.props sas.client.props

Public
Key

Public
Key

Public
Key
 Chapter 11. Administering WebSphere Security 219

3. The file name can be any arbitrary name, but for clarity it is recommended
that you standardize your naming convention. In Figure 11-5, the name
WASV4ServerKeyFile.jks is used. Later on, we will be creating three more
associated keyfiles:

WASV4ServerTrustStore.jks
WASV4ClientKeyFile.jks
WASV4ClientTrustStore.jks

Figure 11-5 New WASV4ServerKeyFile.jks

4. Click OK when you are finished.

5. Enter a password when prompted.

The password strength is governed by the randomness of the characters you
select. Click OK.

6. Although this is optional, we suggest that you delete all of the Root Certificate
Authority (CA) certificates found under the Signer Certificates menu in
ikeyman.

As we will be creating a self-signed certificate to secure a peer-to-peer
connection, there is no requirement to authenticate against the public key of a
trusted third-party Certificate Authority (CA).

7. If you have decided to delete the certificates, then select the certificates one
by one and click Delete. Repeat this step until all Root Certificate Authorities
have been deleted.
220 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-6 IBM Key Management window

8. Next, create a new self-signed certificate key pair. From the JSSE ikeyman
tool, select Create > New Self-Signed Certificate.

9. Set the Key Label name to WASV4IntSec or a similar identity. We suggest that
you not use any spaces in the name.

10.The certificate Version and Key Size can remain unmodified at X509 V3 and
1024, respectively.

11.The first two fields of the Subject Name or Distinguished Name are
mandatory and must be completed. Likewise, the Country code and Validity
Period must be set. For completeness, you should, howeve,r fill in all the
fields.

12.Click OK when you are finished.
 Chapter 11. Administering WebSphere Security 221

Figure 11-7 Create New Self-Signed Certificate window

13.Extract the newly created public key.

As we will be wanting to perform authentication against the newly created
private/public self-signed certificate, we must first extract the public key from
the WASV4ServerKeyFile.jks keystore.

14.Select the previously created certificate under the ikeyman Personal
Certificates drop-down menu and click the Extract Certificate button.

15.Ensure that the Data type is set to Base64-encode ASCII data for adherence
to the Internet RFC 1421 standard and set the extracted Certificate file name
to WASV4IntSecPubCert.arm or a similar value; this is the location where the
file was saved, in our case, /usr/WebSphere/AppServer/etc. Click OK.

16.Finally, add the extracted public key as a trusted signer back into the keyfile.

For self-authentication, the previously extracted public key must be imported
back into the WASV4ServerKeyFile.jks keyfile as a trusted signer. This is
equivalent to being your own Certificate Authority (CA).

17.Select Signer Certificates from the JSSE ikeyman drop-down menu and
click the Add button.

18.Ensure that the Data type is set to Base64-encode ASCII data for
compatibility and select the file containing the public key previously extracted,
WASV4IntSecPubCert.arm or the file name of your choice, to the location:
/usr/WebSphere/AppServer/etc.

19.Click OK when you are finished.
222 IBM WebSphere V4.0 Advanced Edition Security

20.You will then be prompted to enter a Label Name for the newly installed
trusted signer certificate, in our example: internalsecurity. This can be any
arbitrary name, without any spaces, except that of an already existing label
name.It cannot be the same name as the name of the personal certificate
originally created.

21.Click OK when you are finished.

At this point, it is a good idea to create the three additional certificate
databases/keyfiles that are needed in the implementation.

The server’s TrustFile.jks certificate database
You may choose to create a Server trust file at this point. However, there is no
requirement to place any certificates into the certificate database/keyfile.

1. Create a new keyfile using the WebSphere V4 ikeyman tool.

Repeat steps 1 to 7 from “The server’s KeyFile.jks certificate database” on
page 219 as used for creating the WASV4ServerKeyFile.jks keyfile, but
instead name the keyfile WASV4ServerTrustFile.jks.

2. When this is completed, close the empty certificate database.

The client’s KeyFile.jks certificate database
To enable the WebSphere Administration Client or any other J2EE Client to
securely communicate with the WebSphere Administration Server, install the
previously extracted public self-signed certificate WASV4IntSecPubCert.arm as
a trusted signer into the Client certificate database/keyfile.

1. Create a new Client Keyfile using the WebSphere 4 ikeyman tool.

Repeat steps 1 through 7 from“The server’s KeyFile.jks certificate database”
on page 219 as used for creating the WASV4ServerKeyFile.jks, but instead
name the keyfile WASV4ClientKeyFile.jks.

2. Then, in the Signer Certificates ikeyman drop-down menu, click the Add
button.

3. Ensure the Data type is set to Base64-encode ASCII data for compatibility
and select the file containing the public key previously extracted,
WASV4IntSecPubCert.arm or the file name of your choice.

Important: We found that under certain circumstance, SSL handshaking will
fail if the label name for the certificate contains any spaces.
 Chapter 11. Administering WebSphere Security 223

4. You will then be prompted to enter a Label Name for the newly installed
trusted signer certificate. This can be any arbitrary name, without any spaces,
except that of an already existing label name.

5. When this is completed, close the certificate database/keyfile.

The client’s TrustFile.jks certificate database
For completeness, you can choose to create a certificate database to represent
the Client trust file, similar to what was created for the Server trust file: simply
follow the steps documented for creating the server’s TrustFile.jks above, but
instead name the certificate database WASV4ServerTrustFile.jks.

You should now have the following four certificate databases/keyfiles:

WASV4ServerKeyFile.jks
WASV4ServerTrustFile.jks
WASV4ClientKeyFile.jks
WASV4ClientTrustFile.jks

11.1.3 Option 2: certificate signed by a third-party CA
As discussed previously, it is quite acceptable to use a certificate key pair signed
by a third-party Certificate Authority (CA) to replace the Demo Keyring present in
the DummyServerKeyFile.jks file.

In the example that follows, we demonstrate how it is possible to generate an
SSL certificate suitable for signing by a CA, using the Java keytool command line
utility. If you prefer to use the IBM ikeyman tool for this step, ensure that you use
the Java Key Store (JKS) compatible version that ships with WebSphere and
follow the instructions for configuring a Web server certificate detailed in Chapter
21 of the WebSphere V4.0 Handbook, SG24-6176.

It is suggested that you name the keyfile WASV4ServerKeyFile.jks, to maintain
consistency with the example detailed in this section. Additionally, there is no
requirement to save the keyfile password to a stash file when using the JKS
compatible ikeyman tool.

Before proceeding with the Java command line keytool, set the environment to
ensure that the keytool executable is in the PATH. Then change to the directory
where you wish to generate the keyfile and associated files.

Note: The steps are identical for creating the certificate, even though you are
not securing a Web server or using the IBM ikeyman tool that supports the
CMS keystore format.
224 IBM WebSphere V4.0 Advanced Edition Security

As such, on AIX:

#export PATH=$PATH:/usr/WebSphere/AppServer/java/jre/bin/
#cd /usr/WebSphere/AppServer/properties/com/ibm/websphere/etc/itso

Generating your server’s KeyFile.jks certificate database
The following steps will guide you through the process of generating the server’s
KeyFile.jks certificate database.

1. Generate a self-signed Key.

The command shown in Example 11-1 generates a private/public self-signed
certificate key pair, where the owner (or entity) and issuer (signer) are the
same. As the signer algorithm is based on the key algorithm, specifying RSA
for the private key ensures that MD5withRSA will used, rather than
SHA1withDSA (the default). This was found to be a necessary option to
successfully import any public certificate key generated with keytool into the
IBM GSKIT ikeyman tool that ships with the IBM HTTP Server (IHS) and the
IBM SecureWay LDAP Directory Server.

Example 11-1 Keytool key generation

#keytool -genkey -keyalg RSA -dname "cn=WebSphere V4 Internal Security, OU=IBM
EMEA WebSphere Support Team, o=IBM, c=GB" -alias WSV4IntSec -keypass websphere
-keystore WSV4ServerKeyFile.jks -storepass websphere -validity 365

The Subject Name or Distinguished Name in the above example is set as
follows:

cn=WebSphere V4 Internal Security, OU=IBM EMEA WebSphere Support Team,
o=IBM, c=GB

Care should be taken when specifying the Distinguished Name, as the
Common Name (CN) field is often misinterpreted. For example, VeriSign
Server IDs are specific to the CN and must be based on a fully qualified host
name. VeriSign also stipulates that the State/Province field be completed, in
which case you should ensure that the CN takes the following format, when
using VeriSign as your chosen CA (this was not found to be an issue when
requesting a test certificate from Thawte Consulting):

cn=rs617001.itso.ral.ibm.com, OU=IBM EMEA WebSphere Support Team, o=IBM,
c=GB

Finally, an alias of WSV4IntSec is associated with the newly created
private/public certificate key pair. You also need to set the password
associated with the private key (keypass) and the password protecting the
actual keystore (storepass). The validity is set to 365 days and, because no
keysize is specifically set, the default of 1024 is used.
 Chapter 11. Administering WebSphere Security 225

2. Generate a Certificate Signing Request for submission to a third party CA.

The next step is to produce a Certificate Signing Request (CSR) based on the
previously created self-signed certificate. This will create a CSR ready for
submission to a CA, in the BASE64-encoded ASCII data format.

Example 11-2 keytool CSR generation

#keytool -v -certreq -alias WSV4IntSec -file WSV4IntSecReq.csr -keypass
websphere -keystore WSV4ServerKeyFile.jks -storepass websphere

In the above example, the Certificate Signing Request (CSR) is saved to a file
named WSV4IntSecReq.csr, in the current working directory. It is this file
which, when viewed, can be cut and pasted into the CA online signing tool. As
such, your resulting CSR will look similar to that as shown in Example 11-3,
using the following command: more WSV4IntSecReq.csr

Example 11-3 WSV4IntSecReq.csr example

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIBrjCCARcCAQAwbjELMAkGA1UEBhMCR0IxDDAKBgNVBAoTA0lCTTEoMCYGA1UECxMfSUJNIEVN
RUEgV2ViU3BoZXJlIFN1cHBvcnQgVGVhbTEnMCUGA1UEAxMeV2ViU3BoZXJlIFY0IEludGVybmFs
IFNlY3VyaXR5MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCI4mlBLZ8xn5PQHDu+LE0FroyL
JXOMsUv0UvKcOie6q/z4GqnJzCWOejbDTAbrPUTrWXkSxo4T5vMkI0dsEEbvNvNyAGIh1J6wE1r7
DaQ/DhxLadDUTHH2+zclcSTFCoC0eb7g7Nl4/RVrXB7o/M5pyptzCrMn7BUkkUgn/UFB1QIDAQAB
oAAwDQYJKoZIhvcNAQEEBQADgYEAWTuRqdU0/wHEvzGFeLATpVR4PgYM9RUrjiZ4d51seMFOONb6
lnUvQxxNdZkB9KNMlqrMbKYvRC90vTM1HgCidunKJS/9aGv4SQId1hWLwZOpLhiU8UH7YKsx8xU4
g70TWoKGV7rbBfSmYghoB3ed0CRVg2mKvWbidu9Tp0322As=
-----END NEW CERTIFICATE REQUEST-----

3. Import the Certificate authenticating the public key of the trusted CA.

The Java keytool, by default, does not place any trusted CA public certificate
keys into your keyfile. For this reason, you need to download the CA’s public
root certificate key, corresponding to that used by the CA to sign your CSR. It
is strongly recommended that you cross-check the credentials of this key
before importing it into your keystore. The java keytool also ships with an
associated cacerts file found under the {WAS_ROOT}/java/jre/lib/security/
directory, as an alternative source for locating the most popular public root
signing CA certificates in circulation.

In Example 11-4, Thawte’s Test Root CA public certificate is imported under
the alias of Thawte Test CA Root into our keyfile WSV4ServerKeyFile.jsk.

When prompted to Trust the certificate, type yes only if you agree with the
credentials displayed for the CA’s public root certificate.

Example 11-4 Importing the CA root certificate

#keytool -import -alias "Thawte Test CA Root" -file ThawteTestCA.arm -keystore
WSV4ServerKeyFile.jks -storepass websphere
226 IBM WebSphere V4.0 Advanced Edition Security

Owner: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=Thawte Certification,
ST=FOR TESTING PURPOSES ONLY, C=ZA
Issuer: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=Thawte Certification,
ST=FOR TESTING PURPOSES ONLY, C=ZA
Serial number: 0
Valid from: Wed Jul 31 20:00:00 EDT 1996 until: Thu Dec 31 16:59:59 EST 2020
Certificate fingerprints:
 MD5: 5E:E0:0E:1D:17:B7:CA:A5:7D:36:D6:02:DF:4D:26:A4
 SHA1: 39:C6:9D:27:AF:DC:EB:47:D6:33:36:6A:B2:05:F1:47:A9:B4:DA:EA
Trust this certificate? [no]: yes
Certificate was added to keystore

4. Import the certificate reply from the Certificate Authority (CA).

Once you have received the reply from your chosen CA, you can import the
CA signed response and, in doing so, replace your self-signed certificate key
pair.

Typically, the response will take the form of an .arm file and will be in the
BASE64-encoded ASCII data format.

Import the certificate response from the CA into the keyfile using the same
alias name as first given to the self-signed certificate. In the example shown,
this is WSV4IntSec. Using an alternative alias name will generate a new
signer certificate and not a personal certificate chain as required.

Example 11-5 Importing the certificate response from the CA

#keytool -import -trustcacerts -alias WSV4IntSec -file WSV4IntSecRes.arm
-keystore WSV4ServerKeyFile.jks -storepass websphere
Certificate reply was installed in keystore

This concludes the steps necessary to create and sign the server certificate
that will be used to replace the Demo Keyring.

You can check the contents of your certificate database/keyfile at any time by
using the keytool list option to view all of your certificate entries, as shown in
Example 11-6. You will find that the self-signed certificate wsv4intsec is now
replaced by a chain of certificates, with the CA now authenticating the public key.
There is also a separate entry listed for the trusted certificate belonging to the
CA’s public root certificate.

Example 11-6 Listing the contents of the keystore

#keytool -list -v -keystore WSV4ServerKeyFile.jks -storepass websphere
Keystore type: jks
Keystore provider: SUN

Your keystore contains 2 entries:

Alias name: wsv4intsec
 Chapter 11. Administering WebSphere Security 227

Creation date: Mon Oct 15 17:08:54 EDT 2001
Entry type: keyEntry
Certificate chain length: 2
Certificate[1]:
Owner: CN=WebSphere V4 Internal Security, OU=IBM EMEA WebSphere Support Team,
O=IBM, C=GB
Issuer: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=Thawte Certification,
ST=FOR TESTING PURPOSES ONLY, C=ZA
Serial number: 65f724
Valid from: Mon Oct 15 18:06:29 EDT 2001 until: Mon Nov 05 17:06:29 EST 2001
Certificate fingerprints:
 MD5: 75:61:23:E2:B4:8E:76:12:B9:B4:20:14:91:D8:39:97
 SHA1: 8F:45:46:13:44:14:B4:F6:F4:B7:D4:B7:8D:00:B6:65:CC:4E:62:2E
Certificate[2]:
Owner: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=Thawte Certification,
ST=FOR TESTING PURPOSES ONLY, C=ZA
Issuer: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=Thawte Certification,
ST=FOR TESTING PURPOSES ONLY, C=ZA
Serial number: 0
Valid from: Wed Jul 31 20:00:00 EDT 1996 until: Thu Dec 31 16:59:59 EST 2020
Certificate fingerprints:
 MD5: 5E:E0:0E:1D:17:B7:CA:A5:7D:36:D6:02:DF:4D:26:A4
 SHA1: 39:C6:9D:27:AF:DC:EB:47:D6:33:36:6A:B2:05:F1:47:A9:B4:DA:EA

Alias name: thawte test ca root
Creation date: Mon Oct 15 17:08:25 EDT 2001
Entry type: trustedCertEntry
Owner: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=Thawte Certification,
ST=FOR TESTING PURPOSES ONLY, C=ZA
Issuer: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=Thawte Certification,
ST=FOR TESTING PURPOSES ONLY, C=ZA
Serial number: 0
Valid from: Wed Jul 31 20:00:00 EDT 1996 until: Thu Dec 31 16:59:59 EST 2020
Certificate fingerprints:
 MD5: 5E:E0:0E:1D:17:B7:CA:A5:7D:36:D6:02:DF:4D:26:A4
 SHA1: 39:C6:9D:27:AF:DC:EB:47:D6:33:36:6A:B2:05:F1:47:A9:B4:DA:EA

228 IBM WebSphere V4.0 Advanced Edition Security

Generating your client’s KeyFile.jks certificate database
The only requirement that now exists is to import the same public root certificate
key associated with the Certificate Authority (CA) authenticating what will be the
WebSphere server’s public key into the client certificate database/keyfile. This
accomplishes the requirement shown in Figure 11-3 on page 218.

1. Import the root certificate into a new certificate database. The CA’s public root
certificate authenticates the previously generated server public certificate key.

The action above creates a new keyfile called WSV4ClientKeyFile.jks and
sets the password protecting the keyfile (storepass) to websphere.

2. When prompted to Trust the certificate, type yes only if you agree with the
fingerprints displayed for the CA’s public root certificate.

Example 11-7 Creating the associated WSV4ClientKeyFile.jks

#keytool -import -alias "Thawte Test CA Root" -file ThawteTestCA.arm -keystore
WSV4ClientKeyFile.jks -storepass websphere
Owner: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=Thawte Certification,
ST=FOR TESTING PURPOSES ONLY, C=ZA
Issuer: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=Thawte Certification,
ST=FOR TESTING PURPOSES ONLY, C=ZA
Serial number: 0
Valid from: Wed Jul 31 20:00:00 EDT 1996 until: Thu Dec 31 16:59:59 EST 2020
Certificate fingerprints:
 MD5: 5E:E0:0E:1D:17:B7:CA:A5:7D:36:D6:02:DF:4D:26:A4
 SHA1: 39:C6:9D:27:AF:DC:EB:47:D6:33:36:6A:B2:05:F1:47:A9:B4:DA:EA
Trust this certificate? [no]: yes
Certificate was added to keystore

This concludes the steps necessary to create certificate database/keyfile that
will be used by the WebSphere Administrative Client and other J2EE clients
when communicating securely with the WebSphere Administrative Server.

11.1.4 Configuring WebSphere to use your own keyring
This section assumes you have either created a private/public self-signed
certificate key pair with the public key set as a trusted signer, or a private/public
certificate key pair signed by a third-party Certificate Authority (CA). At this point,
it is recommended that Global Security not be enabled.

Important: Before modifying any of the default security settings, copy the
sas.client.props and sas.server.props files found under the WebSphere
properties directory to a safe place. You may also choose to take an
XMLConfig export of your WebSphere administration repository, if you have
already deployed applications or made significant modifications.
 Chapter 11. Administering WebSphere Security 229

To enable WebSphere to use your own keyring, follow these steps:

1. Start WebSphere without Global Security enabled and launch the
Administrative Console. If Global Security is enabled, temporarily disable it
while you perform the following steps. This will involve stopping and starting
the WebSphere Application Server to disable Global Security.

2. From the WebSphere Administrative Client menu bar select Console >
Security Center....

3. Once at the Security Center General window, select the Default SSL
Configuration button to view the SSL parameters used for Global Security.

Figure 11-8 WebSphere Global Security General window

4. Figure 11-9 shows the default parameters specified under the Default SSL
Configuration settings. Here, the SSL key and trust file fields are set to use
the DummyServerKeyFile.jks and the DummyServerTrustFile.jks certificate
databases/keyfiles, respectively. For both files, the password is set to WebAS,
although this is not shown in plain text.
230 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-9 Default SSL configuration

5. Proceed by modifying the default SSL parameters to reference your newly
created Java Key Store (JKS) certificate databases/keyfiles. You may choose
to use a single JKS certificate database for both your personal keys and
trusted signer certificate keys. In that case, set both the Key file and Trust file
fields to the same value. We modified the fields to use the values shown
below:

Key file name: (WAS_HOME)/etc/WASV4ServerKeyFile.jks

Key file password: websphere

Confirm password: websphere

Key file format: JKS

Trust file name: (WAS_HOME)/etc/WASV4ServerTrustFile.jks

Key file password: websphere

Confirm password: websphere

Key file format: JKS

Security level: High
 Chapter 11. Administering WebSphere Security 231

6. Click OK when you are done.

Depending on how you modify the Key file and Trust file fields, you may be
presented with the SECJ8313W warning message. If you are not concerned
with multiple domains, that is, if your WebSphere install is a single instance,
typing in the fully qualified path to the WebSphere root directory in place of
(WAS_ROOT) and then clicking the Tab button will allow you to search the
relevant directories.

Alternatively, retain the (WAS_ROOT) symbolic link and specify the remaining
path to your relevant Java Key Store (JKS) certificate databases. In this case,
the certificate databases must reside in a directory below (WAS_ROOT), the
WebSphere root directory. On AIX this is /usr/WebSphere/AppServer.

Another option is to use XMLConfig to set the default SSL configuration
parameters. An example of the necessary XML is shown in Example 11-8,
with the respective XMLConfig command being: ./XMLConfig.sh
-adminNodeName rs617001 -import itsosec.xml

Example 11-8 itsosec.xml

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"file:///$XMLConfigDTDLocation$$dsep$xmlconfig.dtd" >
<websphere-sa-config>
<security-config security-cache-timeout="600" security-enabled="false">
<ssl-config>
 <key-file-name>${WAS_HOME}/etc/ITSO/WSV4ServerKeyStore.jks</key-file-name>
 <key-file-password>websphere</key-file-password>
 <key-file-format>0</key-file-format>
 <client-authentication>false</client-authentication>
 <security-level>0</security-level>
 <crypto-hardware-enabled>false</crypto-hardware-enabled>
 <crypto-library-file></crypto-library-file>
 <crypto-password>{xor}</crypto-password>
 <crypto-token-type></crypto-token-type>
 <trust-file-name></trust-file-name>

Note: The password will not appear in the text field for security reasons,
showing a * (an asterisk) instead of the characters.

Note: SECJ8313W: using the symbolic link $(WAS_ROOT) is recommended,
especially in a multiple admin servers configuration. Preserving the symbolic
link is not always possible when file browser is used to select a file. Hence
using of browser is disabled when symbolic link is present.
232 IBM WebSphere V4.0 Advanced Edition Security

 <trust-file-password></trust-file-password>
 <property name="com.ibm.ssl.protocol" value="SSLv3"/>
</ssl-config>
</security-config>
</websphere-sa-config>

The password will automatically be converted from plain text to a hashed
algorithm when imported. This example demonstrates that it is possible to
retain the ${WAS_HOME} modifier in the key-file-name file.

7. Click OK to return to the main General Security window.

8. Click Apply to instigate the modifications and then OK to close the General
Security window. Ensure that WebSphere Global Security remains disabled at
this point.

9. Restart WebSphere to ensure that the modifications take effect. If you
examine the WebSphere trace file, you will see references to keyStore and
trustStore being updated:

SECJ0046E: SAS Property:com.ibm.ssl.keyStore has been updated
SECJ0046E: SAS Property:com.ibm.ssl.trustStore has been updated

Similarly, the sas.server.props and sas.server.props.future files will be
updated to reference the new Java Key Store (JKS) certificate databases. If
the sas.server.props file fails to show the expected modifications, you will
need to go through the previous steps again, ensuring that you click Apply in
the WebSphere Security Center General window. The following example
shows an excerpt from the file sas.server.props.

Example 11-9 sas.server.props excerpt

....
com.ibm.ssl.trustStore=/usr/WebSphere/AppServer/etc/WASV4ServerTrustFile.jks
com.ibm.ssl.clientAuthentication=false
com.ibm.ssl.keyStore=/usr/WebSphere/AppServer/etc/WASV4ServerKeyFile.jks
com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.keyManager=IbmX509
com.ibm.ssl.trustStoreType=JKS
com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\=
com.ibm.ssl.trustManager=IbmX509
com.ibm.ssl.tokenType=PKCS\#11
com.ibm.ssl.protocol=SSLv3
com.ibm.ssl.trustStorePassword={xor}CDo9Hgw\=
....

10.You are now set to enable WebSphere Global Security as detailed in
Section 11.1.6, “Enabling Global Security and securing the Administrative
Server” on page 235, and to test your Keyring.
 Chapter 11. Administering WebSphere Security 233

11.1.5 Modifying the sas.client.props file
Supplementing your own Keyring in place of the Demo Keyring will prevent the
WebSphere Administration Client and any other configured J2EE Client from
successfully connecting to the WebSphere Administrative Server after Global
Security is enabled.

Before you can successfully launch the WebSphere Administrative Client, you
must modify the sas.client.props file to reference the corresponding Java Key
Store (JKS) certificate database that you created earlier. It will either contain the
public self-signed certificate key associated with the WebSphere Administration
Server, o,r if a third-party Certificate Authority (CA) was used, the trusted root
certificate of the CA authenticating the WebSphere Application Server public key.

In the following steps we will be using the WASV4ClientKeyFile.jks and
WASV4ClientTrustFile.jks Java Key Store (JKS) certificate databases/keyfiles
previously created in Section 11.1.2, “Option 1: self-signed certificate using the
IBM ikeyman utility” on page 219.

1. Using your favorite editor, modify the sas.client.props file in the
(WAS_ROOT)/properties directory to reference the previously created
certificate databases. Ensure that the password used to protect each
database is specified appropriately. As such, the edited sas.client.props file
will look similar to that shown below in Example 11-10.

Example 11-10 Modified sas.client.props file

...
com.ibm.ssl.protocol=SSL
com.ibm.ssl.keyStoreType=JKS
com.ibm.ssl.keyStore=/usr/WebSphere/AppServer/etc/WASV4ClientKeyFile.jks
com.ibm.ssl.keyStorePassword=WebAS
com.ibm.ssl.trustStoreType=JKS
com.ibm.ssl.trustStore=/usr/WebSphere/AppServer/etc/WASV4ClientTrustFile.jks

Tip: If you are testing your own Keyring for the first time, we advise that you
use LocalOS as the selected authentication mechanism when enabling
WebSphere Global Security. If you can, however, guarantee that an alternative
authentication mechanism is known to work, then you may test your Keyring
against that registry. This way, problems can be isolated to the Keyring
(certificate database).

ADGU2008E: the Administration Client failed to connect to the Administration
Server. Start the local or remote Administration Server service before
launching the Administration Client.
234 IBM WebSphere V4.0 Advanced Edition Security

com.ibm.ssl.trustStorePassword=WebAS
...

2. Note that if you have not yet enabled WebSphere Global Security, the
following directive in the sas.client.props will be set to false.

com.ibm.CORBA.securityEnabled=true

However, if Global Security is enabled at the WebSphere Administrative
Server, the directive should read true, as shown. Usually, this adjustment is
made automatically by WebSphere when Global Security is enabled.

If for some reason the adjustment is not made when Global Security is
enabled, you will either see the ADGU2008E message on the last page or the
security error shown below. If either error occurs, check the securityEnabled
directive in the sas.client.props file and modify accordingly.

3. After modifying the sas.client.props file, save your changes.

11.1.6 Enabling Global Security and securing the Administrative
Server

This section provides instructions for enabling WebSphere Global Security, an
action which, by default, secures the WebSphere Administrative Server and any
managed Application Servers configured on the same node. Administrators
should recall that there are additional steps for securing individual applications
and resources served by WebSphere; these tasks are addressed in other
chapters of this redbook.

Enabling WebSphere Global Security
1. Start the WebSphere Administrative Client and select the Security Center

from the Console drop-down menu.

2. Under the Security Center General tab, click the Enable Security button.

3. The Security Cache Timeout setting can be adjusted to extend or reduce the
period of time that security credential information is retained by WebSphere.
Once the cache expires, WebSphere will have to re-query the selected user
registry.

4. Clicking the Default SSL Configuration button will allow you to modify the
Java Key Store (JKS) certificate databases, used by the underlying Secure
Socket Layer (SSL) transport mechanism. We covered this task previously

ADGU2009E security error: either the user name/password is wrong or
this user is not authorized to connect to admin server.
 Chapter 11. Administering WebSphere Security 235

under Section 11.1.4, “Configuring WebSphere to use your own keyring” on
page 229.

Figure 11-10 WebSphere V4.0 Security Center General window

5. Once you have enabled WebSphere Global Security, select the
Authentication tab from the Security Center and select your desired
authentication mechanism. As such, you will need to select your desired
authentication mechanism from one of the following three options:

– Local Operating System Authentication

– LTPA Authentication

– Custom User Registry mechanism

Option 1: Local Operating System Authentication mechanism
You can select to authenticate WebSphere users against the local operating
system user registry or the /etc/passwd password file. Note that this option is not
supported if you elect to run WebSphere as a non-root user. In that case, you can
select to use the LTPA authentication mechanism or Custom Registry option.

Figure 11-11 Local Operating System authentication
236 IBM WebSphere V4.0 Advanced Edition Security

1. Complete the Security Server ID and associated password fields accordingly;
this is the identity with which WebSphere will run.

2. Click Apply and then OK.

3. Restart WebSphere to ensure that the modifications take effect.

Option 2: the LTPA Authentication mechanism
If you opt to use the Lightweight Third Party Authentication (LTPA) mechanism,
you must choose between either the LDAP or Custom User Registry. If you
choose to authenticate against a remote LDAP Directory Server, complete the
following steps:

Figure 11-12 LTPA settings

Complete the (optional) LTPA settings as follows:

1. Token Expiration: specify the duration for which the LTPAtoken will be valid,
set to 120. The LTPAtoken is encrypted using the LTPA Keys and gets passed
to a client in the form of a HTTP cookie. Clients are forced to re-authenticate
once the LTPAtoken expires.

2. Enable Single Sign On (SSO):use this if you wish to permit users to move
between different applications/Web resources, located on the same or
 Chapter 11. Administering WebSphere Security 237

different physical servers, without being prompted to log in each time a
subsequent resource is requested.

3. Domains: specify the DNS domain name for the scope of the Single Sign On
(SSO) operation. Note that all participating SSO servers must be in the same
domain. IP addresses are not acceptable here. Our domain was:
itso.ral.ibm.com.

4. Limit to SSL connections only will restrict Single Sign On (SSO) to only
HTTPS requests originating from a client Web browser.

5. Enable Web Trust Association: use this if you wish to delegate the
authentication of incoming requests to a third-party application. There must,
however, be a mutual level of trust established between WebSphere and the
third-party application, such as the Tivoli Policy Director product. Further
details on this topic are explained in Chapter 13, “Policy Director” on
page 353.

6. Create Keys..., Import Keys..., Export Keys...: to configure Single Sign On
(SSO) across multiple Application Servers, all participating servers must
share the same LTPA Keys. Note that key generation must be performed only
after the LDAP settings, as discussed below, are confirmed, as the LDAP
Directory Server host name is present in the exported file/LTPA key.

In addition to the LTPA settings, you must configure the LDAP settings specific to
your LDAP Directory Server configuration. The settings and expected values are
discussed in detail below (supplement your own values accordingly):

7. Security Server ID: specify the user you have created in your LDAP
implementation that will represent the WebSphere Server identity, in our case:
websphere.

8. Security Server Password: specify the corresponding password for the
Security Server user; in our case, we used the password websphere.

9. Host: this isthe fully qualified host name of the LDAP Directory Server, in our
example: rs617001.itso.ral.ibm.com.

10.Directory Type: select SecureWay here. Note that if you modify any of the
filtering rules, the Directory Type will change to Custom even though
SecureWay remains the LDAP directory of your choice.

11.Port: specify 389, which corresponds to the TCP/IP port listening for LDAP
queries on the remote SecureWay LDAP directory.

Note: in Figure 11-12, the port is set to 636 for secure LDAPS
communication. Optionally, set this value to your own setting, if the remote
Directory Server listens on a non-standard port.
238 IBM WebSphere V4.0 Advanced Edition Security

12.Base Distinguished Name: set this to the entry point into your LDAP
Directory Server where WebSphere will search for authenticated users. For
our example we set: ou=uk,dc=internetchaos,dc=com.

13.Bind Distinguished Name: specify the fully qualified Distinguished Name of
the LDAP user who has sufficient privileges to search and authenticate
WebSphere users in the LDAP Directory Server. If you have restricted
anonymous searches in the WebSphere user name space in your LDAP
Directory, this field must be completed regardless of whether of not the user is
the same as that specified for the Security Server ID. In this example, we
used: cn=websphere,ou=authenticated,ou=uk,dc=internetchaos,dc=com.

14.Bind Distinguished Password: specify the corresponding password for the
Bind Distinguished user; our password was websphere.

15.If , upon clicking OK, the configuration fails with an error message or
exception, double-check all parameters and certify that the remote LDAP
Directory Server is up and running. Do not click Apply and do not terminate
the Administration Client GUI at this point, as you will lose the ability to undo
the changes that you made.

16.If your configuration proves successful, you can click Apply in the
WebSphere Security Center window and then proceed to restart WebSphere
for the changes to be included in the next runtime.

Option 3: the Custom User Registry authentication mechanism
The third authentication mechanism option available when configuring Global
Security is the use of a Custom User Registry. As the implementation is
somewhat configurable down to the specific code employed, it is discussed in
further detail in 10.3, “CustomRegistry SPI” on page 206.

11.2 Configuring the Web Server to support HTTPS
With the demands of e-business, facilitating the secure flow of confidential
material over the Internet is of paramount importance to every online
organization. Not only is liability at stake, but also the reputation that can make or
break a modern “dot com.” It comes as no surprise, then, that establishing a
secure connection between a Web browser and Web server is probably the most
widespread use for digital certificate technology in the world today.

In this section, we document the steps necessary to configure the IBM HTTP
Server (IHS) to support HTTPS, the secure HTTP protocol.
 Chapter 11. Administering WebSphere Security 239

Although we shall focus on the practical elements of configuring the IBM HTTP
Server (IHS) and generating the appropriate Secure Socket Layer (SSL) Web
server certificates, it is worth reiterating the role that a third-party Certificate
Authority (CA) plays in the solution. Here, as shown in Figure 11-13 below, the
Web browser has the CA public root certificate installed as a trusted entity. It is
only because the Web server public key is signed and authenticated by the same
trusted CA that the Web browser considers the Web server public key valid, in
terms of identity, matching the claim substantiated by the CA.

Figure 11-13 SSL certificate relationship for HTTPS

The diagram is not intended to show the flow of any certificate keys, but rather
the location requirements for each certificate. For example, the Signing CA
certificate must also be installed as a trusted entity in the client Web browser.

11.2.1 Generating a certificate to protect your Web Server
The instructions that follow highlight the tasks involved in creating an SSL server
certificate for the IBM HTTP Server (IHS).

1. The starting point for creating a private/public certificate key pair to protect
your Web server is the IBM ikeyman tool. Ensure that you invoke the ikeyman
tool that ships as part of IBM HTTP Server (IHS) package, as it supports the
CMS Key Database format (kdb).

Note: Web browsers can still establish a secure connection if a Web server
public key is not signed by a third-party CA. The risk is that the trust
association offered by the CA is lost and potentially there is no way to
corroborate that the public key associated with the Web server is genuine.

Signing CA

Private
Key

Public
Key

Web Server - IHS

Signing CA

Server Certificates

Signing CA

Web Browser

Signing CA

Trusted Root CAs
240 IBM WebSphere V4.0 Advanced Edition Security

This is not the IBM JSSE ikeyman version that ships under the WebSphere
bin directory.

#export JAVA_HOME=/usr/jdk_base

#ikeyman

2. Create a new key database to store the certificate. You can manage multiple
certificates in a single key database. From the ikeyman menu bar, select Key
Database File -> New.

3. Set the following settings and click OK when you are done:

Key database file: CMS key database file

File name: IHS1319Certs.kdb

Location: /usr/HTTPServer/conf

4. At the Password Prompt window shown in Figure 11-14, enter the password
of your choice. The more random the password, the higher the password
strength. Finally, stash the password to a file so that the IHS can use the
password to gain access to the certificates contained in the certificate key
database.

Figure 11-14 Password prompt

5. From the IBM ikeyman menu bar, select Create -> New Certificate Request
to create a new private/public certificate key pair.
 Chapter 11. Administering WebSphere Security 241

Figure 11-15 Certificate details

Figure 11-15 above shows the options that we specified. You should
supplement the fields accordingly to match your requirements. Click OK when
this is completed.

With the successful generation of your certificate and Certificate Signing
Request (CSR), you will be prompted with the following message:

A new certificate request has been successfully create in the file....
You must send the file a certificate authority to request a certificate.

6. At this point, we strongly suggest that you close the certificate key database
and quit ikeyman. In addition to the key database file and the previously
generated Certificate Signing Request (CSR) file, you will find that you now
have three extra files. The .sth suffixed file contains the password stash and
will be used by the IHS to gain access to the certificate key database. The two
remaining files (.crl and .rdb) contain internal information specific to the
Certificate Signing Request (CSR). Back up all the files at this point as a
precautionary measure.

#tar -cvf certificates.tar *

Note: Consult the documentation from your chosen Certificate Authority
(CA) prior to completing the fields. For example, VeriSign Server IDs
stipulate that the Common Name (CN) must represent your fully qualified
server name.
242 IBM WebSphere V4.0 Advanced Edition Security

7. Submit the Certificate Signing Request (CSR) to a Certificate Authority (CA).
Typically, this step is completed by cutting and pasting the CSR into the online
tool provided by your selected CA. The data will look similar to the following:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIB8jCCAVsCAQAwgbExCzAJBgNVBAYTAlVTMRAwDgYDVQQREwdOQzI3NzA5MRcw
FQYDVQQIEw5Ob3J0aCBDYXJvbGluYTEfMB0GA1UEBxMWUmVzZWFyY2ggVHJpYW5n
bGUgUGFyazEkMCIGA1UEChMbRU1FQSBXZWJTcGhlcmUgU3VwcG9ydCBUZWFtMQww
CgYDVQQLEwNJQk0xIjAgBgNVBAMTGXJzNjE3MDAxLml0c28ucmFsLmlibS5jb20w
gZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANnpW51HQhbLBb/FV70xYKgTG3wB
dYHrh5HkR8usl+fixRPm3AfwoWUF4S4SsCz/fGZ6bT7fuA4k5OymHLz/ZN2Cg/8Z
G9K7qm2yvZIpZYrapLKhNArSVah85bFJKxAUYMW0z0laACaS4RnkitoWln4NHG7E
Z/0vYUq77kfje159AgMBAAGgADANBgkqhkiG9w0BAQQFAAOBgQAIcfcw73CnjDao
3p/AHi2ZxnOVxUznFpGWallQRRcsP2+B4VZ3mMeCiUZ8APVu5okxYE+C/k3nSYOg
92C+o0YesFGEgXiw4TZ/DJ56/zNWP1S18Wd1VQ9vwt5cKnA3LtNTJFTcDtmh0MNv
aoraXaTOvoxAcS3TgoelE+5zEmWqHg==
-----END NEW CERTIFICATE REQUEST-----

8. In the period that it takes for the CA to respond in authenticating your public
key, the certificate will be parked under the Personal Certificates Request
menu in the IBM ikeyman utility.

9. Typically, you will receive the response from your chosen CA via e-mail. If the
CA has adhered to the RFC 1421 standard, then the response will be in
Base64-encoded ASCII data format. You can either save the attachment from
your e-mail or cut and paste the response to a new file. In our example, we
cut and pasted the data to a file called IHS1319certres.arm.

10.Invoke the IBM ikeyman tool again and open the key database previously
created, entering the password when prompted.

11.Select the Personal Certificates menu and click the Receive button to take
delivery of your now Certificate Authority (CA) signed public key. Set the
following settings then click OK.

Data type: Base64-encoded ASCII data

Certificate file name: IHS1319certres.arm

Location: /usr/HTTPServer/conf/

12.If you selected to use a Certificate Authority (CA) that was not listed among
the default group of Trusted Root Certification Authorities found under the
Signer Certificates menu, you must use the Add option from the same menu,
to import the public key associated with the authenticating CA, prior to

Important: If you accidentally destroy a Personal Certificate Request after
you have submitted the Certificate Signing Request (CSR) to a Certificate
Authority (CA), you will not be able to receive the response from the CA
authenticating your public key into the certificate key database.
 Chapter 11. Administering WebSphere Security 243

receiving any response to a Certificate Signing Request (CSR) into your key
database.

13.You can verify the certificate now signed by the third-party Certificate
Authority (CA) by double-clicking the associated label name as listed under
the ikeyman Personal Certificates menu. This is shown in Figure 11-16.

Figure 11-16 Verifying the certificate

This concludes the steps necessary to generate and sign the certificate that
will be used to protect your IBM HTTP Web Server. You can now close the
certificate database and terminate the ikeyman tool.

11.2.2 Configuring the IBM HTTP Server for SSL/HTTPS support
Although the IBM HTTP Server (IHS) is powered by Apache, one of the
enhancements delivered in the IBM product is the level of SSL support. Here,
IBM ships support for both SSL version 3, SSL version 2 and TLS version 1.

Note: Any certificate that you introduce as a trusted entity into your key
database poses a security risk. It is strongly recommended that you
confirm the authenticity of such a certificate and cross-verify the certificate
fingerprints with the identity you are trusting, using some alternative
method.
244 IBM WebSphere V4.0 Advanced Edition Security

Prior to installing your Web server certificate, you must configure the IHS to load
the IBM SSL modules at runtime. If you use the publicly distributed Apache
product, you are required to install the OpenSSL module, as well as either
ModSSL or Apache-SSL. Obviously, IBM only supports the IBM HTTP Server
and the IBM SSL modules.

On Unix, you are required to add the following two directives to your httpd.conf
file for SSL support:

LoadModule ibm_ssl_module libexec/mod_ibm_ssl_128.so
AddModule mod_ibm_ssl.c

On Windows, only a single library needs to be loaded in the httpd.conf file:

LoadModule ibm_ssl_module modules/IBMModuleSSL128.dll

Note that on AIX the IBM SSL module supporting 128-bit encryption is delivered
in the http_server.ssl.128.1.3.19.0 fileset. This will be installed by default when
you select to install the IBM HTTP Server (IHS) as part of the WebSphere V4.0
install process. An equivalent product package exists on the Solaris platform for
delivering the IBM SSL module support.

You will also find an example httpd.conf.sample configuration file in the Web
server conf directory. This can be copied to httpd.conf and modified as needed.
The comments in the file are self-explanatory and offer specific advice for
enabling SSL.

In the example that follows, we manually edit the httpd.conf file to support SSL
and configure a VirtualHost listening on the default HTTPS port of 443. The
example was performed on the AIX platform with the IBM HTTP Server (IHS)
version 1.3.19, as shipped with WebSphere V4.0.1.

To enable SSL for the IBM HTTP Server (IHS), do the following:

1. Make sure that the IBM HTTP Server and IBM HTTP Administration Server
are stopped (we will not be using the Administration Server, as we will be
manually editing the httpd.conf configuration file directly).

2. Change to the IBM HTTP Server conf directory and copy the
httpd.conf.sample file to httpd.conf.

Note: This task assumes that you have not yet configured your Web server
in any way. If you have, you should back up your existing httpd.conf file. You
will also have to incorporate your previous modifications into the httpd.conf
once you are finished with the SSL specific steps.
 Chapter 11. Administering WebSphere Security 245

3. Using your favorite editor, open the new httpd.conf. At a minimum, you should
ensure that you have set the ServerName directive. In our example this was
set to: ServerName rs617001.itso.ral.ibm.com.

4. To enable 128-bit SSL support on Unix, uncomment the following modules
under the Dynamic Shared Object (DSO) Support section:

LoadModule ibm_ssl_module libexec/mod_ibm_ssl_128.so
AddModule mod_ibm_ssl.c

5. The IBM HTTP Server (IHS) will also be used to service standard HTTP
connections on the TCP/IP port 80 default. For this reason, ensure that the
following two directives are present and uncommented:

Port 80
Listen 80

6. To allow the IBM HTTP Server (IHS) to respond to requests on more than one
address or port, you must create a VirtualHost entry. We will use this entry to
service encrypted HTTPS requests on the TCP/IP port 443 default. The
complete stanza for the VirtualHost used in our example is documented
below. The SSLEnable directive is specified within VirtualHost tags to limit the
scope of the SSL support. If your only have a single VirtualHost, you do not
need to specify the SSLServerCert option. However, the directive can be
used to associate a unique SSL sever certificate label with a specific
VirtualHost:

Listen 443
<VirtualHost rs617001.itso.ral.ibm.com:443>
ServerName rs617001.itso.ral.ibm.com
ErrorLog logs/rs617001443error_log
TransferLog logs/rs617001443access_log
SSLEnable
SSLServerCert WebServer
</VirtualHost>

You are not restricted to a single VirtualHost entry in the httpd.conf file. You
may for example wish to configure multiple VirtualHosts associated with
different servername aliases. You should, however, take care when planning
your VirtualHost configuration, as you are not permitted to have multiple
VirtualHosts on the same TCP/IP port when each servername is an alias of
the same IP address. The NameVirtualHost directive exists for this task.

If you use multiple VirtualHosts with different SSLServerCert labels to
differentiate between SSL server certificates and find that the same certificate
is used for each VirtualHost, consider creating an IP alias on your Network
Interface Card (NIC) and binding the additional VirtualHost servername to
that IP address. Repeat as necessary to avoid overlapping.
246 IBM WebSphere V4.0 Advanced Edition Security

7. After the last VirtualHost stanza, ensure that you disable SSL. This is a
precautionary measure to safeguard against SSL being used globally. The
IBM HTTP Server (IHS) references multiple SSL server certificates only when
stored in a single certificate keyring file. For this reason, the certificate keyfile
directive is specified outside of any VirtualHost stanza. Similarly, the SSL
timeout values are specified for all VirtualHosts. On timing out, the client is
forced to perform another SSL handshake. The settings used as per our
example are:

SSLDisable
Keyfile /usr/HTTPServer/conf/IHS1319Certs.kdb
SSLV2Timeout 100
SSLV3Timeout 1000

8. Save and close your modified httpd.conf file. You can check the syntax of the
file with the apachectl command, as follows:

./apachectl configtest

Syntax OK

9. At this point, you can attempt to check the configuration with a Web browser
of your choice. If you experience problems, consult the IBM HTTP Server
(IHS) error logs, as the error messages are most intuitive.

10.If you copied over the httpd.conf.samples example after installing
WebSphere, the now modified httpd.conf will not contain the WebSphere
specific directives. In this case, you have two choices; you can either extract
the directives from the original httpd.conf that you backed up, or you can
re-run the WebSphere install program and choose to re-install the Web server
plug-in only, a second time. When prompted, you can select the now SSL
enabled httpd.conf file as the target for the plug-in.

11.As such, you should ensure that the following entries are present in the
httpd.conf file (the paths may be different between OS platforms):

LoadModule ibm_app_server_http_module
/usr/WebSphere/AppServer/bin/mod_ibm_app_server_http.so

WebSpherePluginConfig /usr/WebSphere/AppServer/config/plugin-cfg.xml

AddModule mod_app_server_http.c
 Chapter 11. Administering WebSphere Security 247

12.Finally, ensure that you update the WebSphere Virtual Host listing to
reference the newly created IBM HTTP Server (IHS) VirtualHost identity.
Failing to do so will prevent WebSphere from servicing requests on the now
secured HTTPS port. In our example, we added the alias:
rs617001.itso.ral.ibm.com:443.

To the already listed entries:

s617001.itso.ral.ibm.com:80
rs617001.itso.ral.ibm.com:9080

11.2.3 IBM HTTP Server (IHS) Cipher Support Strength
To ensure that your IBM HTTP Server (IHS) operates at the highest possible
level of security, you should fully understand how to restrict SSL connections
based on encryption cipher strength.

The IBM HTTP Server (IHS) version 1.3.19 supports the following SSL V2 and
SSL V3 Ciphers when (mod_ibm_ssl_128.so), the 128-bit IBM SSL Module is
loaded (this also includes support for the Triple-DES 168-bit algorithm):

SSL Version 2
27 SSL_DES_192_EDE3_CBC_WITH_MD5 3-DES (168 bit)
21 SSL_RC4_128_WITH_MD5 RC4 (128 bit)
23 SSL_RC2_CBC_128_CBC_WITH_MD5 RC2 (128 bit)
26 SSL_DES_64_CBC_WITH_MD5 DES (56 bit)
22 SSL_RC4_128_EXPORT40_WITH_MD5 RC4 (40 bit)
24 SSL_RC2_CBC_128_CBC_EXPORT40_WITH_MD5 RC2 (40 bit)

SSL Version 3
3A SSL_RSA_WITH_3DES_EDE_CBC_SHA 3-DES SHA (168 bit)
35 SSL_RSA_WITH_RC4_128_SHA RC4 SHA (128 bit)
34 SSL_RSA_WITH_RC4_128_MD5 RC4 MD5 (128 bit)
39 SSL_RSA_WITH_DES_CBC_SHA DES SHA (56 bit)
33 SSL_RSA_EXPORT_WITH_RC4_40_MD5 RC4 MD5 (40 bit)
36 SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RC2 MD5 (40 bit)
32 SSL_RSA_WITH_NULL_SHA
31 SSL_RSA_WITH_NULL_MD5
30 SSL_NULL_WITH_NULL_NULL

TLS Version 1 and SSL Version 3
62 TLS_RSA_EXPORT1024_WITH_RC4_56_SHA RC4 SHA(56 Bit)
64 TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA DES SHA(56 Bit)

Under each Version heading (SSL V2, SSL V3, TLS V1), the strongest cipher is
listed first, descending to the weakest.
248 IBM WebSphere V4.0 Advanced Edition Security

Using Netscape to check the integrity of your SSLCipherSpec
You can use the following steps to verify the SSL encryption level set by the IBM
HTTP Server (IHS).

1. Modify an SSL enabled VirtualHost entity in your httpd.conf configuration file
to use a specific encryption cipher. In this example, we will use the highest
level of encryption possible, through the Triple-DES SHA (168-bit) cipher
suite. This is achieved by adding the SSLCipherSpec 3A (3A is the short
name for the full cipher algorithm) directive to the VirtualHost entry, as shown
below:

<VirtualHost rs617001.itso.ral.ibm.com:443>
ServerName rs617001.itso.ral.ibm.com
ErrorLog logs/rs617001443error_log
TransferLog logs/rs617001443access_log
SSLEnable
SSLServerCert WebServer
SSLCipherSpec 3A
</VirtualHost>

2. Stop and start the IBM HTTP Server (IHS) to ensure that the SSLCipherSpec
modification is included in the runtime.

3. Using Netscape Communicator 4.7, select the Configure SSL V3 option
found under the Security Info management window, as shown in
Figure 11-17. By default, Netscape Communicator 4.7 does not ship with
128-bit cryptography support. This functionality can be achieved by installing
the Fortify (found at http://www.fortify.net) encryption package for
Netscape Communicator.
From the Netscape menu, select: Communicator -> Tools -> Security Info
-> Navigator -> Configure SSL V3.

Note: In a previous IHS release, the cipher specification was incorrectly
documented:

33|SSL_RSA_EXPORT_WITH_RC4_40_MD5|RC4 SHA (128 bit)
35|SSL_RSA_WITH_RC4_128_SHA|RC4 SHA (40 bit)

The correct listing should have read:

33|SSL_RSA_EXPORT_WITH_RC4_40_MD5|RC4 MD5 (40 bit)
35|SSL_RSA_WITH_RC4_128_SHA|RC4 SHA (128 bit)
 Chapter 11. Administering WebSphere Security 249

http://www.fortify.net

Figure 11-17 Netscape Security Information management

4. Selecting the Configure SSL V3 option will launch the Configure Ciphers
window, as shown below in Figure 11-18. Depending on what you find, the
settings will enable or restrict your use of certain encryption algorithms.
250 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-18 Configuring ciphers for Netscape Navigator

5. By deselecting every option apart from the RC4 encryption with a 128-bit
and a MD5 MAC entry, you will restrict the SSL handshaking achievable by
the Netscape browser. Only (RC4 128-bit) HTTPS connections will be
possible. In certain circumstances, this might be a beneficial practice, as you
might wish to safeguard against using any of the low-grade encryption
algorithms (40-bit or 56-bit).

6. If you now attempt to retrieve an SSL secured resource served by the IBM
HTTP Server (IHS) VirtualHost entry, Netscape will prompt you with the
message shown in Figure 11-19. You will not be able to establish an
SSL/HTTPS connection with the IBM HTTPServer (IHS), as the server only
supports Triple-DES SHA (168-bit) communication.

Figure 11-19 Netscape - Security error message
 Chapter 11. Administering WebSphere Security 251

7. You may specify more than one SSLCipherSpec directive per VirtualHost to
extend support to multiple encryption algorithms. This way, if a client Web
browser does not support the first encryption algorithm, it will attempt to
establish an SSL connection using the next, weaker algorithm.

<VirtualHost rs617001.itso.ral.ibm.com:443>
ServerName rs617001.itso.ral.ibm.com
ErrorLog logs/rs617001443error_log
TransferLog logs/rs617001443access_log
SSLEnable
SSLServerCert WebServer
SSLCipherSpec 3A
SSLCipherSpec 35
SSLCipherSpec 34
</VirtualHost>

8. Figure 11-20 shows the cipher strength information for a secure Triple-DES
SHA (168-bit) HTTPS connection established between Netscape
Communicator and the IBM HTTP Server (IHS).

Figure 11-20 Netscape Navigator - Page Information

Important: All available cipher specifications are enabled by default, when no
SSLCipherSpec directive is present.
252 IBM WebSphere V4.0 Advanced Edition Security

9. The Microsoft Internet Explorer Properties window, shown in Figure 11-21, is
not so explanatory. Nevertheless, you can determine the cipher strength used
in the HTTPS connection.

Figure 11-21 Microsoft Internet Explorer - Page Properties

11.3 Client-Side Certificates for Authentication
Authentication can be extended to an individual or entity with the use of a
personal digital certificate. When resident in a Web browser, such a certificate
can be used to ensure the legitimacy claimed by that individual. That is, the
certificate acts to guarantee the client’s claim as to their identity.

The steps necessary to configure WebSphere to support Client-Side Certificate
authentication are documented in this section. In addition, we briefly introduce
the concept of Public Key Infrastructure (PKI) by outsourcing the generation of
certificates to a third-party certificate authority (CA), albeit using a trial PKI
program offered by a CA.

The assumption is made that you have previously enabled WebSphere Global
Security using the Lightweight Third Party Authentication (LTPA) option, against
a remote LDAP Directory Server.
 Chapter 11. Administering WebSphere Security 253

The following products were used in the configuration documented:

� AIX 4.3.3.0-0.8

� IBM SecureWay Directory Server 3.2.1.0 for AIX

� IBM DB2 Universal Database 7.2.1 for AIX

� IBM HTTP Server 1.3.19 for AIX

� Microsoft Internet Explorer V6.00.2462.0000 / Cipher Strength128-bit for
Windows

� Netscape Communicator 4.7 for AIX and Windows

11.3.1 Securing a Web Application to use client certificates
To enable client side certificate-based authentication, you must modify the
authentication method defined on the J2EE Web Module that you wish to
manage. It might be that the Web Module has already been configured to use the
basic challenge authentication method. In this case, you will simply need to
modify the challenge type to client cert. As such, this functionality is delivered to
the WebSphere administrator in the Application Assembly Tool (AAT). However, it
is envisaged that developers will use the WebSphere Studio Application
Development (WSAD) environment to achieve the same result.

1. Launch the WebSphere Application Assembly Tool (AAT).

This step can be undertaken either before an enterprise application archive
.ear file has been deployed into WebSphere or after deployment into
WebSphere, although the latter option is discouraged in a production
environment, as it involves opening the expanded archive correlating to the
enterprise application archive in question, found under the WebSphere
installedApps directory.

2. Locate and expand the Web Module package under the Application for which
you wish to enable the client side certificate authentication method.

3. Select the appropriate Web Application, switch to the Advanced tab and
modify the Authentication method to read Client cert. The Realm name is the
scope of the login operation and should be same for all participating
resources.

4. Click OK and then save the changes made with Application Assembly Tool
(AAT).

5. If the modification was made to a resource already deployed into WebSphere,
stop and start the associated Application Server containing the resource, so
that the security modification can be included in the runtime.
254 IBM WebSphere V4.0 Advanced Edition Security

11.3.2 Obtaining a personal certificate
One method for obtaining a personal certificate is through a Public Key
Infrastructure (PKI) program offered by a third-party Certificate Authority (CA).
Such programs are geared towards creating multiple personal certificates quickly
and easily, with numerous value added functions offered by each CA.

Alternatively, you can acquire the IBM Tivoli SecureWay PKI package or a similar
product from another vendor and implement your own PKI solution. In this case,
you will be tasked with the overhead of managing the PKI infrastructure, as well
as that of creating the individual certificates for each authenticating user.

Generating and installing a PKI personal certificate

For demonstration purposes, we opted to use the free Personal Certificate
Program offered by Thawte Consulting, available at http://www.thawte.com.
Other Certificate Authorities (CAs) offer similar programs and should not be
disregarded. We will later use this certificate to demonstrate client side certificate
authentication with WebSphere Application Server.

The following is provided only as a rough guide, without warranty, and may be
subject to change at Thawte Consulting’s discretion. In this case, you should
consult the official online documentation for the definitive configuration
procedures endorsed by the CA.

1. Start the Web browser of your choice and connect to the following URL:
http://www.thawte.com

2. Join the free Personal Certificate Program and complete the necessary
registrations steps.

3. Request a certificate using the X.509 format, selecting the target Web
browser of your choice where the certificate will be installed.

4. Click the get X.509 Certificate button.

5. Click Next in the Employment window.

6. Ensure your e-mail address from the registration step is selected, as it will
form part of the certificate Common Name (CN).

7. Click Next at the Strong Extranet Identities prompt.

8. Accept the Default Extensions.

9. Select Microsoft Enhanced Cryptographic Provider V1.0 as determined
automatically by your Web browser.

10. Clicking Next will launch a new window from your Web browser entitled
Creating a new RSA exchange key; select the Medium security level.

11.Finally, confirm the certificate request and select Finish.
 Chapter 11. Administering WebSphere Security 255

http://www.thawte.com
http://www.thawte.com

The resulting certificate will contain a Distinguished Name (DN) including the
Common Name (CN) Thawte Freemail Member and your e-mail address, as
specified during registration. The inclusion of the reference to the Thawte
Freemail Member is a restriction placed on the free program offering.

It is envisaged that in a production environment, the PKI solution that you
choose to implement will allow you to specify your own fully qualified
Distinguished Name (DN).

12.Proceed to the Track Your Certificate Status window.

13.When the status of the certificate changes from Pending to issued, you can
install the certificate by clicking the Fetch This Certificate and Install this
Cert buttons, respectively.

Supplement these steps if you opted to use an alternative Certificate
Authority (CA) PKI program.

Figure 11-22 Microsoft Internet Explorer - installed certificates

Microsoft Internet Explorer users can then check the installation of personal
certificates by opening the certificates window found under the Explorer Tools ->
Internet Options -> Content menus, as shown above in Figure 11-22.

Netscape Communicator similarly allows users to manage personal certificates
by selecting the following menus: Communicator -> Tools -> Security Info ->
Certificates -> Yours.
256 IBM WebSphere V4.0 Advanced Edition Security

The WebSphere V4.0 Handbook (SG24-6176) provides further documentation
on importing and managing personal certificates with Microsoft Internet Explorer.

The following checks are also recommended on any certificate installed into
Microsoft Internet Explorer, for use as a client side certificate. Double-click any
certificate entry and verify the following:

1. Under the General tab, the certificate’s intended use includes:

Proving your identity to a remote computer (required).

2. Under the General tab:

You have a private key that corresponds to this certificate (required).

3. Under the Certificate Path, the Certificate status is given:

If you are presented with the message: This CA Root certificate is not
trusted because it is not in the Trusted Root Certification
Authorities Store, then you must install the corresponding signing root CA
certificate in the Certification Authorities Store.

Figure 11-23 below details the resulting personal certificate generated when
using the Thawte Freemail Certificate Program. The certificate subject
Distinguished Name (DN) includes two components; the e-mail entity (E)
rocaj@uk.ibm.com and the Common Name (CN) Thawte Freemail Member.

Figure 11-23 Microsoft Internet Explorer - certificate properties
 Chapter 11. Administering WebSphere Security 257

This concludes the steps necessary to generate and install a personal client side
certificate into Microsoft Internet Explorer.

11.3.3 LDAP advanced security settings
Certificate-based authentication requires either that WebSphere map the entire
certificate subject Distinguished Name (DN) to a like LDAP Distinguished Name
(in this case, the LDAP Distinguished Name (DN) formed in part from the LDAP
Directory hierarchy must match element for element the certificate subject
Distinguished Name), or that WebSphere certificate filtering be used to map a
certificate subject Distinguished Name to a specific LDAP field, for a given LDAP
user.

As structure and hierarchy are of concern when managing an LDAP Directory, it
is not always possible to use the same Distinguished Name (DN) that is
supported by the client side certificates. For example, if you have ever attempted
to create a Web server certificate signed by a third-party Certificate Authority
(CA), you will know that the Common Name (CN) needs to include the fully
qualified host name, in our example: CN=rs617001.itso.ral.ibm.com.

We acknowledge that this is more an issue having to do with Web server
certificates and anticipate that the restriction is not of any concern when dealing
with personal client side certificates.

Likewise, the LDAP Directory Distinguished Name (DN) or suffix does not
necessarily have to conform to the O=company,C=us standard, as shown in many
an example. Indeed, the fictitious Distinguished Name (DN) used in Section 11.6,
“Securing WebSphere LTPA with SSL” on page 282 specifies the following
Distinguished Name (DN): OU=uk,DC=internetchaos,DC=com.

If you have used the IBM ikeyman tool, you will be aware that attributes permitted
in the certificate subject Distinguished Name (DN) only include the following:

CN=commonName
OU=organizationUnit
O=organizationName
L=localityName
S=stateName
C=country

Obviously, the IBM ikeyman tool was never designed to create personal client
side certificates, with the flexibility to specify a Distinguished Name (DN)
matching that of an LDAP Directory Server. This problem is overcome if we use
the WebSphere certificate filtering option.

For completeness, we will demonstrate both mapping by exact Distinguished
Name (DN) and filtered certificate attribute mapping.
258 IBM WebSphere V4.0 Advanced Edition Security

Using the WebSphere LDAP Certificate Filter option
This section assumes that you have successfully installed a personal certificate
into a client Web browser and that you have previously enabled WebSphere
Global Security authenticating users against a remote LDAP Directory Server. It
is anticipated that the personal certificate subject Distinguished Name (DN) does
not necessarily match, in any way, your LDAP Distinguished Name (DN).

If you generated a certificate using Thawte’s free Personal Certificate Program,
then your certificate will hold the characteristics similar to those shown in
Example 11-11. Here, the Owner attribute equates the certificate subjectDN,
and, as in the case of our example, uniquely contains the value:
EmailAddress=rocaj@uk.ibm.com, CN=Thawte Freemail Member.

If you used an alternative PKI solution, the subjectDN will be different, but equally
unique, with the Issuer (signer) value being different again.

Example 11-11 Personal Freemail certificate

Alias name: 461d2384251e922f08231fea41a451ce_864afe53-5970-428b-816a-2980
Creation date: Fri Nov 02 17:03:35 EST 2001
Entry type: keyEntry
Certificate chain length: 1
Certificate[1]:
Owner: EmailAddress=rocaj@uk.ibm.com, CN=Thawte Freemail Member
Issuer: CN=Personal Freemail RSA 2000.8.30, OU=Certificate Services, O=Thawte,
L=Cape Town, ST=Western Cape, C=ZA
Serial number: 602ec
Valid from: Fri Nov 02 16:57:25 EST 2001 until: Sat Nov 02 16:57:25 EST 2002
Certificate fingerprints:
 MD5: 00:08:A5:AE:77:02:EE:27:E1:45:76:57:12:7F:9E:B8
 SHA1: 75:1F:8A:87:72:FB:4A:0E:06:59:94:6E:75:C3:1B:EA:0B:5D:A9:9A

The next step is to modify WebSphere LDAP filtering rules to map the certificate
subjectDN field to the IBM SecureWay LDAP uniqueIndentifier field for a given
user. You do not necessarily have to use the SecureWay LDAP uniqueIndentifier
field. However, you should ensure that the data type of the field selected is
capable of handling the specific value. Also ensure that WebSphere has the right
to search such a field when performing authentication. As such, we will set the
values to:

Certificate Mapping: Certificate Filter

Certificate Filter: uniqueIdentifier=${SubjectDN}

Ensure that the certificate attribute selected for authentication is unique between
certificates. For example, performing a search on the certificate signature
algorithm name is not advisable.
 Chapter 11. Administering WebSphere Security 259

Complete the following steps to configure WebSphere V4.0 to use LDAP
certificate filtering:

1. Launch the WebSphere Security Center from the WebSphere Administration
Console: Console -> Security Center.

2. Select the Authentication tab and click the Advanced settings button.

3. Ensure that the Certificate Mapping field is set to Certificate Filter and
that the Certificate Filter reads uniqueIdentifier=${SubjectDN}, as shown in
Figure 11-24 below:

Figure 11-24 Advanced LDAP settings

4. Click OK to save the changes.

5. Back on the Authentication tab, click Apply.

Consult Section 11.6, “Securing WebSphere LTPA with SSL” on page 282 to
view the parameters used in the LDAP Settings window. You must complete
the Bind Distinguished Name and Bind Password fields to query the LDAP
Directory server of your choice as an authenticated user.

6. Stop and start the WebSphere Administrative Server to implement the
advanced LDAP modifications.

Note: Modifying any of the attributes in the LDAP Advanced Properties
window will cause the Directory Type to read Custom, rather than your selected
directory type on the main Authentication tab.
260 IBM WebSphere V4.0 Advanced Edition Security

Modifying the SecureWay LDAP uniqueIdentifier field
After you have modified the WebSphere V4.0 LDAP Certificate Filter setting, you
must update your selected Directory Server to contain the entry that will match
and authenticate the end user. In our case, we must add the following string to
the uniqueIdentifier field of a specific LDAP user:
EmailAddress=rocaj@uk.ibm.com, CN=Thawte Freemail Member.

To modify a user in the IBM SecureWay LDAP Directory registry, do the
following:

1. Launch the SecureWay Directory Management Tool (DMT).

2. Rebind as an Authenticated User with adequate privileges to modify user
credentials.

3. Expand the Directory tree and select the user entity against which you wish to
authenticate the personal client certificate. This is shown in Figure 11-25.

Figure 11-25 Directory Management Tool - Browse Tree

4. Double-click the selected user you wish to update. This will launch a new
window allowing you to modify user specific attributes.

5. Select the Other tab and find the uniqueIdentifier field, then enter:
EmailAddress=rocaj@uk.ibm.com, CN=Thawte Freemail Member or a similar
value as defined in your certificate subjectDN. This is shown in Figure 11-26.
 Chapter 11. Administering WebSphere Security 261

Figure 11-26 LDAP user entry details

6. Click OK when you are done.

7. Repeat this step for each individual user against which you wish to perform
client side certificate authentication, setting the appropriate certificate string
in the uniqueIdentifier field each time.

Modifying the Web server to support client certificates
Finally, you must ensure that the selected Web server is configured to request
client side certificates. In the case of the IBM HTTP Server, you must edit
httpd.conf and include the SSLClientAuth directive, specifying the required
option. This should be specified for each VirtualHost entry that you wish to
secure with client side certificate authentication.

<VirtualHost rs617001.itso.ral.ibm.com:443>
ServerName rs617001.itso.ral.ibm.com
ErrorLog logs/rs617001443error_log
TransferLog logs/rs617001443access_log
262 IBM WebSphere V4.0 Advanced Edition Security

SSLEnable
SSLServerCert WebServer
SSLClientAuth required
</VirtualHost>

Ensure that you stop and start the Web server to incorporate the change into the
runtime. Failing to do so will mean that client certificates are not requested.

Testing your client side certificate
We suggest that you refrain from modifying the Default Application sample to use
the client certificate authentication method. This way, you can use the snoop
servlet, referenced by https://<your_server_name>/servlet/snoop, to
determine if your browser is correctly passing a client certificate.

Figure 11-27 Testing the client certificate, using the snoop servlet

In Figure 11-27 above, the personal certificate installed in Microsoft Internet
Explorer has successfully been passed to WebSphere. In the case that a Client
fails to pass a certificate, WebSphere will only return the Cipher Suite
specification as used in the HTTPS connection. If this occurs, check that the
client browser has a valid certificate installed and that your chosen Web server is
set to request client certificates. With the IBM HTTP Server (IHS), this is
achieved with the inclusion of the SSLClientAuth directive in the httpd.conf file.
 Chapter 11. Administering WebSphere Security 263

Figure 11-28 Microsoft Internet Explorer - selecting client certificate for authentication

A correctly configured implementation will prompt the client Web browser user to
select a personal certificate when accessing a resource protected by the
SSLClientAuth directive; this is shown above in Figure 11-28 for Microsoft
Internet Explorer. Netscape Navigator/Communicator users are prompted in a
similar fashion to select the personal certificate of their choice. In both cases,
Microsoft and Netscape allow the personal certificates in each respective
browser to be protected with a password. This further protects the certificate
against unauthorized submission.

Using the exact Distinguished Name

In contrast to the WebSphere LDAP certificate filtering option, this method
depends on mapping the certificate subject Distinguished Name (DN) to an exact
entry in your chosen LDAP registry. In this case, the LDAP Distinguished Name
(DN) is constructed from the Relative Distinguished Name (RDN) of a specific
user and the concatenated hierarchal parents of the LDAP topology tree.

Although the mapping is case-insensitive between the certificate SubjectDN and
the LDAP DN. One restriction that you might encounter is that of being unable to
create a certificate matching your LDAP DN. For example, the LDAP structure
used in Section 11.6, “Securing WebSphere LTPA with SSL” on page 282 uses a
DN to represent the fictitious domain name of internetchaos.com. In this case,
an individual LDAP entry looks like:
CN=rocaj,OU=users,OU=uk,DC=internetchaos,DC=com.

If you have experimented with ikeyman, you will be aware that you can only
create certificates with a predefined set of attributes for the SubjectDN. A typical
example may be: CN=rs617001.itso.ral.ibm.com, OU=IBM, O=International
Technical Support Organization, L=Raleigh, ST=North Carolina, C=US.
264 IBM WebSphere V4.0 Advanced Edition Security

This corresponds to the permitted fields that the IBM ikeyman tool supports:

CN=commonName
OU=organizationUnit
O=organizationName
L=localityName
S=stateName
C=country

The Java command line keytool utility, that ships with WebSphere and Java 1.3,
will, however, allow you to specify your own custom fully qualified Distinguished
Name (DN) for use with client side certificates. This is probably not of any
concern if you are using a fully functional PKI solution, as you will more than
likely be able to specify your own fully qualified certificate subject Distinguished
Name (DN) using the supplied software.

In the example that follows, we document the steps necessary to create two
certificates that match two different users in our SecureWay LDAP registry.

1. Set the environment to include the PATH for the Java keytool executable, if it is
not already set. Then change to a directory where the resulting certificates
will be created. Windows users should supplement these steps accordingly.

#export PATH=$PATH:/usr/WebSphere/AppServer/java/jre/bin/
#cd /export/home/certificates

2. The two LDAP Distinguished Names (DNs) that we will match are:

cn=rocaj,ou=users,ou=uk,dc=internetchaos,dc=com
cn=amorv,ou=users,ou=uk,dc=internetchaos,dc=com

3. Using the Java keytool utility, create a private/public self-signed certificate key
pair associated with the first user cn=rocaj. Supplement your own values as
required. Specify RSA for the private key to ensure that the MD5withRSA
signature algorithm is used, as not all Web browsers support the DSA
cryptograph algorithm (which is the default when RSA is not specified). You
need to set a password of at least six characters to protect the private key.
Finally, the keystore and keystore (storepass) password are specified.

Note: In the examples that follow in this section, a carriage return is only
required after the last keystroke / word.
 Chapter 11. Administering WebSphere Security 265

Example 11-12 Creating a certificate- 1

#keytool -genkey -keyalg RSA -dname
"cn=rocaj,ou=users,ou=uk,dc=internetchaos,dc=com" -alias rocaj -keypass
websphere -keystore testkeyring.jks -storepass websphere

4. Create the second private/public self-signed certificate key pair in the same
manner for the user cn=amorv.

Example 11-13 Creating a certificate- 2

#keytool -genkey -keyalg RSA -dname
"cn=amorv,ou=users,ou=uk,dc=internetchaos,dc=com" -alias amorv -keypass
websphere -keystore testkeyring.jks -storepass websphere

5. At this point, the keystore testkeyring.jks will contain two self-signed
certificates, with the Owner (entity) being the same as the Issuer (signer) for
each certificate.

6. Next, to ensure the integrity and authenticity of the certificates, we need to get
each certificate signed by the Certificate Authority (CA). If you are
implementing your own PKI solution, you do not necessarily need to submit
the Certificate Signing Request (CSR) to a third-party CA. You do, however,
need to ensure that any client Web browsers receiving the certificate have the
appropriate authenticating root certificate installed as a trusted authority. The
following two examples extract the Certificate Signing Request (CSR) for the
two user certificates that we are creating.

Example 11-14 Generating the CSR- 1

#keytool -v -certreq -alias rocaj -file rocajReq.csr -keypass websphere
-keystore testkeyring.jks -storepass websphere

And for the second user identified by cn=amorv.

Example 11-15 Generating the CSR- 2

#keytool -v -certreq -alias amorv -file amorvReq.csr -keypass websphere
-keystore testkeyring.jks -storepass websphere

7. We used the free Test SSL certificate program offered by Thawte Consulting
(found at http://www.thawte.com) to sign our Certificate Signing Requests
(CSRs). In each case, we selected the Custom Cert (configure below)
option and ensured that the Certificate format was set to use default for
your kind of certificate. We also selected Generate an X.509v3
Certificate and saved the two resulting files as rocajRes.arm and
amorvRes.arm, respectively.

8. Before you can receive the signed certificate response back into the keystore,
you must import the Certificate Authority’s trusted root certificate into the
keystore. Copy and paste the Thawte test root certificate in BASE64-encoded
266 IBM WebSphere V4.0 Advanced Edition Security

http://www.thawte.com

ASCII data format to a file called ThawteTestCA.arm. Then add the test root
CA certificate into the keystore with the following command:

Example 11-16 Adding the test root CA

keytool -import -alias "Thawte Test CA Root" -file ThawteTestCA.arm -keystore
testkeyring.jks -storepass websphere

9. Import the two certificate responses from the CA into the keystore using the
same alias name as first given to the self-signed certificates. In our example,
these were rocaj and amorv, respectively. Using an alternative alias name will
generate a new signer certificate and not a personal certificate chain.

Example 11-17 Importing the certificate response- 1

keytool -import -trustcacerts -alias rocaj -file rocajRec.arm -keystore
testkeyring.jks -storepass websphere
Certificate reply was installed in keystore

And for the second user identified by cn=amorv.

Example 11-18 Importing the certificate response- 2

keytool -import -trustcacerts -alias amorv -file amorvRec.arm -keystore
testkeyring.jks -storepass websphere
Certificate reply was installed in keystore

10.At this point, you need to launch the IBM JSSE ikeyman utility found in the
WebSphere bin directory (this action is necessary, as the Java keytool
command line utility does not support exporting the private certificate key).
The IBM JSSE ikeyman tool supports the PKCS12 format and will allow you
to export the private key associated with any certificate (the public key is also
exported).

11.Open the testkeyring.jks keystore previously created with the Java keytool
utility and select the first certificate from the Personal Certificates drop-down
menu.

12.Click Export, ensure that you select the PKCS12 format and name the target
file accordingly. You will be prompted to specify and confirm the password
used to protect the resulting PKCS12 file. We named the two files in our
example rocajprivate.p12 and amorvprivate.p12, respectively.

13.Before you can install a personal certificate signed by a third-party Certificate
Authority (CA) into a given Web browser, you must make sure that the same
root certificate of the authenticating CA is installed as a Trusted Authority in
the browser. Such certificates may be one of either two types: an Intermediate
Certificate Authority or a Trusted Root Certificate Authority.
 Chapter 11. Administering WebSphere Security 267

14.To install either of the personal certificates into Netscape Communicator,
simply use the Import a Certificate option found in the Your Certificates
window, as shown below in Figure 11-29. The path to selecting the menu is
as follows: Communicator -> Tools -> Security Info -> Certificates ->
Yours.

Figure 11-29 Certificates under Microsoft Internet Explorer

15.Netscape will prompt you to enter a password or PIN for the Communicator
Certificate DB when you attempt to import the certificate. You should enter the
password as used when first initializing your Certificate DB.

Note: The example documented here uses the Thawte Test Root CA
certificate to sign the personal private/public certificate key pair. This
certificate is not installed by default in either Microsoft Internet Explorer or
Netscape Communicator/Navigator. Install the required root certificate by
following the instructions on Thawte’s Web site.
268 IBM WebSphere V4.0 Advanced Edition Security

If you have not previously used personal certificates with Netscape, you will
be prompted to complete some additional steps to guard against the
unauthorized submission of your personal certificates.

16.You are also prompted to enter the password protecting the PKCS#12
certificate file, as set when you exported the personal private/public certificate
key pair in ikeyman.

17.Once imported, select the Verify option to check integrity and validity of the
certificate. If you failed to install the root Certificate Authority (CA) certificate,
your certificate will fail the verification.

Ensure that you have modified your chosen Web server to support client side
certificate requests, as documented previously in this chapter. Assuming that you
have also refrained from implementing client certificate authentication on the
Default Application sample, you can at this point check that the personal
certificate is passed to WebSphere by using the snoop servlet. In this case, you
will be prompted to select a personal certificate when you connect to the
following URL: https://<your_server_name>/servlet/snoop.

A correctly configured implementation will prompt the Web browser user to select
a personal certificate when accessing a resource protected by the SSLClientAuth
directive. This is shown in below in Figure 11-30.

Figure 11-30 Prompt for certificate window

If you check the HTTPS Information displayed by the snoop servlet, you should
now see the certificate SubjectDN matching the following: Subject: CN=amorv,
OU=users, OU=uk, DC=internetchaos, DC=com.
 Chapter 11. Administering WebSphere Security 269

Configuring WebSphere for use with exact mapping
Complete the following steps to ensure that WebSphere is set to use the exact
Distinguished Name (DN) mapping option:

1. Launch the WebSphere Security Center from the WebSphere Administration
Console: Console -> Security Center.

2. Select the Authentication tab and click the Advanced settings button.

3. Ensure that the LDAP Certificate Mapping field is set to Exact Distinguished
Name. This option will grey out the Certificate Filter field, so that no filter may
be specified.

4. Click OK for the changes to be saved.

5. Back on the Authentication tab, click Apply.

6. Stop and start the WebSphere Administrative Server to implement the
advanced LDAP modifications.

7. To test Client side certificate authentication with WebSphere, access an
application Web resource that has been secured with the Client Cert
authentication method. Recall that we documented this step initially in this
section, using the WebSphere Application Assembly Tool (AAT).

11.4 Configuring SSL between Web server and
WebSphere Application Server

This section documents the steps necessary for implementing secure HTTPS
communication between the Web server plug-in and the embedded HTTP server
of a WebSphere Web Container. By default, this connection is not secure, even
when WebSphere Global Security is enabled.

The following steps are mandatory for generating the certificates for SSL
handshaking/authentication between the two differing peers.

1. Create a self-signed certificate for the Web server plug-in.

2. Create a self-signed certificate for the WebSphere embedded HTTP Server
(Web Container).

3. Exchange the public keys.

4. Modify the Web server plugin-cfg.xml to use SSL/HTTPS.

5. Modify the WebSphere embedded HTTP Server (Web Container) to use
SSL/HTTPS.
270 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-31 Certificates

Figure 11-31 illustrates the exchange of the public certificate keys associated
with each peer participating in the secure SSL communication.

11.4.1 Generating a self-signed certificate for the Web server plug-in
The following steps will guide you through the process of generating a
self-signed certificate for the Web server plug-in.

1. Create a suitable directory on the Web server host for storing the keyring file
referenced by the plug-in and associated files.

2. Launch the IBM ikeyman tool that ships as part of GSKit and supports the
CMS key database format. This is not the JSSE ikeyman version that ships
under the WebSphere bin directory.

For AIX, ikeyman ships as part of the http_server.ssl.core.1.3.19.0 fileset and
can be invoked from the /usr/bin directory.

The Windows equivalent ikeyman version is installed by default as
C:\Program Files\ibm\gsk5\bin\gsk5ikm.

3. From the ikeyman menu bar, select Key Database File -> New.

4. Set the following settings and click OK when you are done.

Key database file: CMS Key Database File

File name: WASV4Plugin.kdb

Location: /usr/HTTPServer/conf/certs (or the directory of your choice)

5. At the Password Prompt window, enter the password of your choice. The
more random the password, the higher the password strength. Finally, stash
the password to a file so that the plug-in can use the password to gain access
to the certificates contained in the key database.

6. As we are only going to be implementing a peer-to-peer SSL connection
between the Web server plug-in and the embedded HTTP server of any given

KeyFile.jks

Web Container

KeyFile.jks

Private
Key

Public
Key

TrustFile.jks

Private
Key

Public
Key

Keys

Web server plug-in

Keyring.kdb

Public
Key

Private
Key

Private
Key

Public
Key

Trust
 Chapter 11. Administering WebSphere Security 271

Web container, we are not concerned with the signer certificates of the
publicly circulating root certificate authorities (CAs). In this case, optionally
delete all of the CA trusted signer certificates.

7. From the ikeyman menu bar select Create -> New Self-Signed Certificate to
create a new self-signed certificate key pair. The following options then need
to be specified; you may choose to complete all of the remaining fields for the
sake of completeness:

Key Label: WASV4Plugin

Version: X509 V3

Key Size: 1024

Common Name: rs617001.itso.ral.ibm.com

Organization: IBM

Country: US

Validity Period: 365

Click OK when you are finished.

8. Extract the public self-signed certificate key, as this will be used later by the
embedded HTTP server peer to authenticate connections originating from the
plug-in.

9. Select Personal Certificates in the drop-down menu and select the
WASV4Plugin certificate that was just created.

10.Click the Extract Certificate button, ensuring that WASV4Plugin remains
selected. Extract the certificate to a file:

Data type: Base64-encoded ASCII data

Certificate file name: WASV4PluginPubCert.arm

Location: /usr/HTTPServer/conf/certs (or the directory of your choice)

Click OK when you are finished.

11.Close the key database and quit ikeyman when you are finished.

11.4.2 Generating a self-signed certificate for a Web Container
The followings steps will show how to generate a self-signed certificate for the
WebSphere Web Container.

1. Launch the IBM JKS capable ikeyman version that ships under the
WebSphere bin directory. On Unix systems, this is invoked by running the
ikeyman.sh script.

2. From the ikeyman menu bar select Key Database File -> New.
272 IBM WebSphere V4.0 Advanced Edition Security

3. Set the following settings and click OK when you are done:

Key database file: JKS

File name: EmbeddedHTTPD.jks

Location: /usr/WebSphere/AppServer/etc (or the directory of your choice)

4. At the Password Prompt window, enter the password of your choice. The
more random the password, the higher the password strength. There is no
requirement to stash the password to a file with the JKS capable ikeyman
version.

5. As we are only going to be implementing a peer-to-peer SSL connection
between the embedded HTTP server and the Web server plug-in, we are not
concerned with the signer certificates of the publicly circulating root
Certificate Authorities (CA). As such, optionally delete all of the CA trusted
signer certificates.

6. From the ikeyman menu bar, select Create -> New Self-Signed Certificate
to create a new self-signed certificate key pair. The following options then
need to be specified; you may choose to complete all of the remaining fields
for the sake of completeness:

Key Label: EmbeddedHTTPD

Version: X509 V3

Key Size: 1024

Common Name: rs617002.itso.ral.ibm.com

Organization: IBM

Country: US

Validity Period: 365

Click OK when you are finished.

7. Extract the public self-signed certificate key, as this will be used later by the
Web server plug-in peer to authenticate connections originating from the
embedded HTTPD resident in the managed Application Server Web
Container.

8. Select Personal Certificates in the ikeyman drop-down menu and select the
EmbeddedHTTPD certificate that was just created.
 Chapter 11. Administering WebSphere Security 273

9. Click the Extract Certificate button, ensuring EmbeddedHTTPD remains
selected. Extract the certificate to a file:

Data type: Base64-encoded ASCII data

Certificate file name: EmbeddedHTTPDPubCert.arm

Location: /usr/WebSphere/AppServer/etc (or the directory of your choice)

Click OK when you are finished.

10.Close the key database and quit ikeyman when you are finished

11.4.3 Exchanging public certificates
The following two sections will show you how to exchange certificates between
the Web Container keystore and the Web server plug-in keyfile.

Exchanging the Web Container public certificate with the Web
server plug-in keyfile

1. Back on the Web server machine, launch the IBM ikeyman tool that ships as
part of GSKit and supports the CMS key database format.

2. From the ikeyman menu bar, select Key Database File -> Open and select
the previously created key database file WASV4Plugin.kdb.

3. At the Password Prompt window, enter the password and click OK when you
are done.

4. Select Signer Certificates in the drop-down menu and click the Add button.
This will allow you to import the public certificate previously extracted from the
embedded HTTP server/Web Container keystore. Adding the embedded
HTTP server public key certificate as a trusted signed will enable
authentication of connections originating from the embedded HTTP server
(Web Container) peer.

Data type: Base64-encoded ASCII data

Certificate file name: EmbeddedHTTPDPubCert.arm

Location: /usr/WebSphere/AppServer/etc (or the directory of your choice)

Click OK when you are finished.

5. You will then be prompted for a label name by which the trusted signer public
certificate will be known. Enter a label for the certificate:
DefaultAppWebContainer.

6. Close the key database and quit ikeyman when you are finished.
274 IBM WebSphere V4.0 Advanced Edition Security

Exchanging the public certificate from the Web server plug-in
keyfile with the Web Container keystore

1. Launch the IBM JKS capable ikeyman version that ships under the
WebSphere bin directory

2. From the ikeyman menu bar, select Key Database File -> Open and select
the previously created EmbeddedHTTPD.jks keystore file.

3. At the Password Prompt window, enter the password and click OK when you
are done.

4. Select Signer Certificates in the drop-down menu and click the Add button.
This will allow you to import the public certificate previously extracted from the
Web server plug-in certificate database/keyfile.

Data type: Base64-encoded ASCII data

Certificate file name: WASV4PluginPubCert.arm

Location: /usr/WebSphere/AppServer/etc (or the directory of your choice)

Click OK when you are finished.

5. You will then be prompted for a label name by which the trusted signer public
certificate will be known. Enter a label for the certificate: RemotePlug-in.

6. Close the key database and quit ikeyman when you are finished.

11.4.4 Modifying the Web server plug-in configuration file
After creating the certificate keys for authenticating SSL between the Web Server
plug-in and the peer Web Container, the plug-in configuration file must be
modified to reference the plug-in keyring and the password stash file. This allows
the transport protocol to be changed from HTTP to HTTPS, using the certificates
stored in the keyring.

In this case, a standard non-secure HTTP connection, as depicted below:

<Transport Hostname="rs617001" Port="9080" Protocol="http"/>

changes to:

<Transport Hostname="rs617001" Port="9080" Protocol="https">
 <Property name="keyring" value="/usr/WebSphere/AppServer/etc/Plugin.kdb"/>
 <Property name="stashfile"
value="/usr/WebSphere/AppServer/etc/Plugin.sth"/>
</Transport>
 Chapter 11. Administering WebSphere Security 275

One option that you may consider implementing is the segregation of HTTP and
HTTPS requests originating from a client Web browser, as it makes little sense to
encrypt traffic between the Web server plug-in and a Web Container, if the initial
connection to the Web server remains unsecured.

In this case, you can create two different virtual hosts within WebSphere, one
capable of handling non-secured HTTP requests, typically on port 80, and the
other dedicated to handling HTTPS traffic defaulting to port 443. Then, when you
edit the plug-in configuration file, you can specify HTTPS for the virtual host
associated with Web Server HTTPS traffic.

For administrators using the IBM HTTP Server, the location of the plug-in
configuration file plugin-cfg.xml is specified by the WebSpherePluginConfig
directive in httpd.conf.

The complete plugin-cfg.xml as used in our example is shown in Example 11-19.

Example 11-19 Sample plugin-cfg.xml

<?xml version="1.0"?>
<Config>
 <Log LogLevel="Error" Name="/usr/WebSphere/AppServer/logs/native.log"/>
 <VirtualHostGroup Name="default_host">
 <VirtualHost Name="rs617001.itso.ral.ibm.com:80"/>
 <VirtualHost Name="rs617001.itso.ral.ibm.com:9080"/>
 <VirtualHost Name="rs617001.itso.ral.ibm.com:443"/>
 </VirtualHostGroup>
 <ServerGroup Name="rs617001/Default Server">
 <Server CloneID="t7hibiq9" Name="Default Server">
 <Transport Hostname="rs617001" Port="9080" Protocol="https">
 <Property name="keyring"
value="/usr/WebSphere/AppServer/etc/ITSO2/PluginKeyring.kdb"/>
 <Property name="stashfile"
value="/usr/WebSphere/AppServer/etc/ITSO2/PluginKeyring.sth"/>
 </Transport>
 </Server>
 </ServerGroup>
 <UriGroup Name="rs617001_sampleApp/default_app_URIs">
 <Uri Name="/servlet/snoop/*"/>
 <Uri Name="/servlet/snoop"/>
 <Uri Name="/servlet/snoop2/*"/>
 <Uri Name="/servlet/snoop2"/>
 <Uri Name="/servlet/hello"/>
 <Uri Name="/ErrorReporter"/>
 <Uri Name="*.jsp"/>
 <Uri Name="*.jsv"/>
 <Uri Name="*.jsw"/>
 <Uri Name="/j_security_check"/>
 <Uri Name="/servlet/*"/>
276 IBM WebSphere V4.0 Advanced Edition Security

 </UriGroup>
 <UriGroup Name="rs617001_sampleApp/examples_URIs">
 <Uri Name="/webapp/examples"/>
 </UriGroup>
 <Route ServerGroup="rs617001/Default Server"
 UriGroup="rs617001_sampleApp/default_app_URIs"
VirtualHostGroup="default_host"/>
 <Route ServerGroup="rs617001/Default Server"
 UriGroup="rs617001_sampleApp/examples_URIs"
VirtualHostGroup="default_host"/>
</Config>

11.4.5 Modifying the Web Container to support SSL
To complete the SSL configuration between Web server plug-in and Web
Container, the WebSphere Web Container must be modified to use the
previously created self-signed certificates. For this reason, this section assumes
you have created the certificate keys for SSL authentication. If you have not done
so, go back now and complete the certificate generation and key exchange tasks.

The following steps document the required Web Container modifications.

1. Start the WebSphere Administrative console and select the managed
Application Server from the WebSphere topology tree containing the Web
Container that you wish to secure with SSL.

2. With the managed Application Server of your choice selected, hold down the
right mouse key and click the Properties button. This will launch a new
window containing the Application Server properties, as shown in
Figure 11-32.

Figure 11-32 Application Server Properties window
 Chapter 11. Administering WebSphere Security 277

3. Select the Services tab and then the Web Container Service, as shown
above in Figure 11-32. Clicking Edit Properties will launch the Web
Container Service window.

Figure 11-33 Web Container Service window

4. Detailed under the Transport tab is the HTTP transport mechanism unique to
this Web Container. The Host field denotes the source from which requests
can originate and the Port the listening socket to which requests are sent from
the Web server plug-in.

It is possible to configure more than one port per Web Container. However, if
two or more ports are set to the same protocol, such as HTTP. Only the first
port will be used by the plug-in in the Web server for servicing requests. What
this allows, in effect, is for one port to be configured for non-secured HTTP
while a second port can service HTTPS requests.

5. Select the HTTP Transport Properties specific to TCP port 9080 and click
Edit.
278 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-34 HTTP Transport Properties window

6. In the HTTP Transport Properties window, specify the full path and file name
to the certificate keyring previously created for the Web Container in the Key
file name, as such: /usr/WebSphere/AppServer/etc/EmbeddedHTTPD.jks.

Enter the Key file password as previously set with ikeyman for the keyfile.

Ensure the Key file format remains set to support the Java keystore format:
JKS.

Configure the Trust file name, Trust file password and Trust file format to
match the values inserted for the Key fields. The concept of differing files for
Key and Trust association is explained later in this chapter.

Enabling client authentication is optional. If enabled, the Web Container will
request that the Web server plug-in authenticate itself. The concept can best
be demonstrated by pointing a Web browser directly at the embedded HTTP
server, bypassing the Web server entirely. Here, as shown in Figure 11-35,
the Web Container will prompt the client for a certificate for authentication.
Previously, we cross-exchanged the public keys of the Web server plug-in and
Web Container, so both server and client authentication are valid.
 Chapter 11. Administering WebSphere Security 279

Figure 11-35 Internet Explorer Client Authentication window

The Security level should remain set to HIGH to ensure that SSL uses 128 bit
encryption.

Click OK when you are finished.

7. After the HTTP Transport Properties window closes, click OK in the Web
Container window. Likewise, click OK in the Application Server Properties
window. Finally, click Apply under Application Server to save the changes.

8. After stopping and starting both the Web server and the WebSphere
Application Server, SSL will encrypt the previously non-secured connection.

11.5 Restricting access to only HTTPS connections
In the event that you wish to restrict connections to only the secure HTTPS
protocol, you can implement a transport guarantee as a security constraint on
the resource in question. As such, the following steps must be taken:

1. Launch the WebSphere Application Assembly Tool (AAT).

2. This step can be undertaken either before an enterprise application archive
.ear file has been deployed into WebSphere or after deployment into
WebSphere. If the latter option is your choice, open the expanded archive
correlating to the enterprise application archive in question, found under the
WebSphere installedApps directory. This option is discouraged in a
production environment.

3. Expand both the Web Modules icon and the subsequent application that
contains the resources on which you wish to implement the security
constraint.
280 IBM WebSphere V4.0 Advanced Edition Security

4. Finally, by further expanding the Security Constraints icon, you can select
each permissible resource and specify the appropriate constraint as required.
Figure 11-36 illustrates this for the show config servlet ShowCfg.

Figure 11-36 Sample security constraint

5. Select the Transport guarantee as required. This dictates the level at which
communication between a client and WebSphere must be established for a
resource to be served. The options are as follows:

– None means that the application does not require any transport guarantee.

– Integral means that the application requires that the data sent between
the client and the server be sent in such a way that it cannot be changed in
transit.

– Confidential means that the application requires that the data be
transmitted in a way that prevents other entities from observing the
contents of the transmission.

6. Click OK and then save the changes made with Application Assembly Tool
(AAT).

7. If the modification was made to a resource already deployed into WebSphere,
stop and start the associated Application Server containing resource for the
security constraint modifications to be included into the runtime.
 Chapter 11. Administering WebSphere Security 281

If you now try and access a resource upholding the HTTPS security constraint
not using the HTTP protocol, you will receive the following warning:

HTTP Error 403 - Forbidden, You are not authorized to view this page error.

Certain versions of Microsoft Internet Explorer will show the response, as
shown in Figure 11-37.

Figure 11-37 False response

11.6 Securing WebSphere LTPA with SSL
SSL can be used to secure communication between WebSphere and your
chosen LDAP Directory Server, thus protecting LTPA user authentication
requests. By default, this connection is insecure, even when WebSphere Global
Security is enabled.

In the following section, we will demonstrate the tasks necessary to secure
WebSphere against three different LDAP Directory Server solutions:

� IBM SecureWay Directory Server (on AIX)

� iPlanet Directory Server (installed on Sun Solaris)

� Lotus Domino (installed on Windows 2000)

11.6.1 IBM SecureWay Directory Server
Administrators not familiar with Global Security should recognize that
WebSphere offers two options for managing the SSL certificates associated with
securing the WebSphere-to-LDAP connection.

Note: You may consider placing an ErrorDocument 403 directive in your
httpd.conf file, to present to users with an alternative customized error
message/HTML page.
282 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-38 Option 1: using the default SSL Key and Trust Files

The first, as depicted in Figure 11-38, highlights the scenario whereby the public
certificate key associated with the remote LDAP Directory server is effectively
placed into the same certificate key database as used by the WebSphere internal
security mechanism. Here, the WebSphere certificate key database actually
constitutes two Java Key Store (JKS) compliant files; the ServerKeyFile.jks and
the ServerTrustFile.jks, respectively. Both files and their contents were previously
discussed in Section 11.1.1, “The Demo Keyring” on page 217.

If you wish to centralize all of your WebSphere SSL certificates into a single key
database, then you can select this option by using the Default SSL settings from
the LDAP SSL Configuration window. You will recall that the same is also true
when configuring the SSL settings associated with a WebSphere Web Container.
That is, you can use the Default SSL settings/key database to store your Web
Container and Web server plug-in certificates.

Alternatively, the second option, as shown Figure 11-39, is to create a separate
SSL key database solely for the purpose of containing the LDAP Directory public
certificate key. This method allows you to isolate the key database to the
particular function of securing the WebSphere-to-LDAP connection. You should
select this option as your initial starting point, if you are not familiar with the
intricacies of WebSphere Global Security.

Signing CA

ClientKeyFile.jks

WebSphere V4.0 Client

Signing CA

ClientTrustFile.jks

Signing CA

Private
Key

Public
Key

ServerKeyFile.jks

WebSphere V4.0 Server

Signing CA

Private
Key

Public
Key

ServerTrustFile.jks

Public
Key

Private
Key

SecureWays LDAP Server

Keyring.kdb

Keys

sas.server.props

Trust

sas.client.props

Note: Only if the Use Global Default SSL Config
option is selected for LDAP SSL
 Chapter 11. Administering WebSphere Security 283

Figure 11-39 Option 2: using dedicated LDAP key and files

Note that in Figure 11-39 the key database is a single Java Key Store (JKS) file
named WASLDAPKeyring.jks. This is acceptable, because while the Java Secure
Sockets Extension (JSSE) standard permits the use of separate files for
certificate keys and certificate trusted keys, it also allows you to amalgamate
both entities into a single file. The words Keys and Trust are shown to document
this distinction.

We adopted the second approach, as shown in Figure 11-39, in the following
worked example.

11.6.2 Creating a self-signed certificate for the SecureWay LDAP peer
The instructions that follow in this section are identical to the tasks documented
in Section 11.4.1, “Generating a self-signed certificate for the Web server
plug-in” on page 271. The steps are nevertheless repeated here for the sake of
completeness.

1. Create a suitable directory on the SecureWay LDAP Directory server for
storing the keyfile that will contain the SSL certificate.

2. Launch the IBM ikeyman tool that ships as part of IBM GSKit and supports
the CMS key database format. This is not the JSSE ikeyman version that
ships in the WebSphere bin directory.

3. Create a new key database to store the certificate. You can manage multiple
certificates in a single key database. From the ikeyman menu bar, select Key
Database File -> New.

4. Apply the following settings and click OK when you are done.

Key database file: CMS key database file

File name: SecureWayLDAP.kdb

Location: /usr/ldap/conf

5. At the Password Prompt window, enter the password of your choice. The
more random the password, the higher the password strength. Stashing the

SecureWays LDAP Server

Keys

WebSphere Admin Server

Keyring.kdb

Public
Key

Private
Key

Private
Key

Public
Key

TrustWASLDAPkeyring.jksKeys Trust
284 IBM WebSphere V4.0 Advanced Edition Security

password to a file is optional with the SecureWay LDAP Directory server, as
you can specify the password in the SecureWay LDAP SSL configuration
settings. Click OK when you are done.

6. The assumption is made that because we are only implementing a
peer-to-peer SSL connection between the SecureWay LDAP Directory server
and WebSphere, we are not concerned with the signer certificates of the
publicly circulating root Certificate Authorities (CAs). In this case, we can
optionally delete all of the CA trusted root certificates listed under the Signed
Certificates menu in ikeyman.

7. From the ikeyman menu bar, select Create -> New Self-Signed Certificate
to create a new private/public self-signed certificate key pair. The following
options, as shown in Figure 11-40, then need to be specified. Supplement
your own values accordingly. You do not need to ensure that the certificate
Common Name equals the fully qualified host name, as the certificate will not
be signed by a third-party Certificate Authority (CA). Nevertheless, this still
remains good practice.

Figure 11-40 Creating a new self-signed certificate

Click OK when you are finished.

8. Extract the public self-signed certificate key, using Extract certificate, as this
will be used later by WebSphere to encrypt LDAP authentication requests
sent to the SecureWay LDAP Directory server. A good analogy to the public
key is an open safe. When WebSphere closes the safe, only the private key
resident at the LDAP server can unlock the safe and retrieve the data.
 Chapter 11. Administering WebSphere Security 285

9. Select Personal Certificates in the ikeyman drop-down menu and select the
LDAPSSL certificate. Click the Extract Certificate button, ensuring that
LDAPSSL remains selected. In the window entitled Extract a Certificate to a
File, enter the values as shown below and click OK when you are finished.
Supplement your own values where necessary.

Data type: Base64-encoded ACSII data

Certificate file name: SecureWayLDAPPubCert.arm

Location: /usr/ldap/conf

10.Close the key database and quit ikeyman when you are finished.

11.6.3 Creating a key database for the WebSphere LDAP SSL peer
The following steps will show how to create a key database for the WebSphere
LDAP SSL peer.

1. Launch the IBM JSSE ikeyman utility that ships under the WebSphere bin
directory. On Unix systems, this is invoked by running the ikeyman.sh script.

2. Create a new database to store the public certificate from the remote LDAP
server. From the ikeyman menu bar select Key Database File -> New.

3. In the window that appears, ensure that the key database file is set to support
the Java Key Store (JKS) format. Complete the file name and location fields
appropriately. Then click OK when you are done.

Key database file: JKS

File name: WASLDAPKeyring.jks

Location: /usr/WebSphere/AppServer/etc

4. At the Password Prompt window, enter the password of your choice. The
more random the password, the higher the password strength. There is no
requirement to stash the password to a file with the JSSE ikeyman utility.

5. No requirement exists to authenticate against any of the default trusted root
Certificate Authority (CA) certificates installed under the ikeyman Signer
Certificates menu. In this case, we can optionally delete all of the CA trusted
root certificates.

6. Remaining in the Signer Certificates menu, click the Add button. This will
allow you to import the public certificate previously extracted from the remote
SecureWay LDAP certificate database (SecureWayLDAP.kdb). The
assumption is made that you have successfully transferred the public
certificate key (SecureWayLDAPPubCert.arm) from the remote SecureWay
LDAP Directory Server. Complete the fields and click OK when you are done.
286 IBM WebSphere V4.0 Advanced Edition Security

Data type: Base64-encoded ASCII data

Certificate file name: SecureWayLDAPPubCert.arm

Location: /usr/WebSphere/AppServer/etc

7. The act of introducing a new certificate into the key database will prompt you
to specify a label name or alias for the entry; type in secureway. The label
name will be listed under the Signer Certificate menu in ikeyman.

8. After checking that the certificate successfully installed as a trusted signer,
close the key database and quit ikeyman.

11.6.4 Modifying the SecureWay LDAP Directory to use SSL
After successfully generating and exchanging the SecureWay public key, both the
SecureWay Directory Server and WebSphere must be configured to support
SSL. The assumption is made that you have previously installed and configured
the SecureWay LDAP Directory for authenticating WebSphere users, albeit
without SSL.

Note: We suggest that you refrain from using spaces in the label name.
 Chapter 11. Administering WebSphere Security 287

Figure 11-41 Configuring SSL for the SecureWay LDAP Directory Server

Complete the following steps to enable LDAP SSL communication.

1. Launch the SecureWay Web-based administration console in your chosen
Web browser. Open the URL http://<servername>/ldap.

2. Complete the LDAP Administrator ID and Password fields when prompted to
authenticate yourself to the Directory Server. Typically, the Distinguished
Name (DN) cn=root is used here. However, any user with sufficient privileges
can perform this task.

3. From the Directory Server topology tree in the left pane, select the SSL
Settings tab found under the Security heading. Example 11-41 shows the
corresponding SSL Settings window that will be displayed in the
right-hand-side pane.
288 IBM WebSphere V4.0 Advanced Edition Security

4. You must complete the following fields to enable LDAP communication over
SSL:

i. SSL status: select SSL On or SSL Only if you wish to prevent
non-SSL LDAP connections.

ii. Authentication method: select Server Authentication. You may
choose to select Server and Client Authentication, in which case you
need to ensure that the public certificate key associated with any
authenticating client is resident in your (LDAP) certificate key
database.

iii. Secure port: select 636 which is the Internet standard for secure
LDAP communication. You may choose any port that is not in use. On
Unix, only the root has access to the ports below 1024 by default.

iv. Key database path and file name: specify the fully qualified file name
of the CMS key database previously created. In our example, this is set
to /usr/ldap/conf/SecureWayLDAP.kdb. SecureWay does not support
the Java Key Store (JKS) type certificate key database.

v. Key label: as a key database can contain multiple certificates, specify
the label name of the certificate used for authenticating the LDAP
Directory Server. In our example this is set to LDAPSSL.

vi. Key password: specify the key database password if you did not
generate a password stash file when creating the certificate key
database originally. This password will be used by SecureWay to gain
access to the certificate database.

5. Click the Update button when you have completed all of the above fields.

6. For the changes to be included into the runtime, you must stop and restart the
LDAP Directory Server. Once restarted, you can check the status of the
Directory by expanding the Current State and Server Status menus. If the
Directory fails to start, check the Error logs. Unix users can also check that
the Directory is listening for incoming SSL LDAP connections by using the
netstat -a command and grepping for port 636.

If you are concerned with the level of SSL support offered by the SecureWay
LDAP Directory Server, you can choose to restrict the permitted encryption
algorithms. For example, you may decide that (40-bit) encryption is inadequate
for your SSL implementation. In this case, the (40-bit) encryption method can be
deselcted, as shown below in Figure 11-42.
 Chapter 11. Administering WebSphere Security 289

Figure 11-42 Configuring SSL encryption for LDAP

Bear in mind that each SSL peer must support the same encryption
method/cipher suite to be able to establish an encrypted session. The encryption
methods supported by WebSphere are classified into three categories high,
medium and low, and are configured via the Security level setting on the LDAP
SSL Configuration window as shown in Figure 11-44 on page 293.

11.6.5 Modifying WebSphere to use LDAP over SSL
Here, the assumption is again made that you have previously configured
WebSphere to successfully authenticate users against the SecureWay LDAP
Directory Server without using SSL for securing the WebSphere-to-LDAP
connection. The LDAP Distinguished Name (DN) and LDAP topology structure
do not need to be modified in any way to support SSL.
290 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-43 Security Center

Follow these steps to configure WebSphere to support LDAPS (LDAP over SSL):

1. Start the WebSphere administrative console and launch the Security Center.
Select the Authentication tab to view the Lightweight Third Party
Authentication (LTPA) and the LDAP settings, as shown above in
Figure 11-43.

As a prerequisite, you should only proceed to configure SSL if you have
previously enabled non-secure LDAP authentication. This recommendation is
made to isolate problem determination to the SSL transport mechanism, if the
configuration should fail.

2. Apart from the SSL configuration parameters, which we will cover in the next
step, and the LDAP port number, all of the settings should remain unmodified
as per the non-secure LDAP authentication scheme. The settings and
expected values are discussed in detail below:

Note: Care should be taken when specifying the LDAP settings, as the
Security Server ID and Base/Bind Distinguished Names are often
misinterpreted.
 Chapter 11. Administering WebSphere Security 291

i. Security Server ID: specify the user you have created in your LDAP
implementation that will represent the WebSphere Server identity; we
have used the websphere ID. Do not use the LDAP cn=root entity under
any circumstances.

ii. Security Server Password: specify the corresponding password for
the Security Server user, in our example: websphere.

iii. Host: this is the fully qualified host name of the LDAP Directory server,
rs617001.itso.ral.ibm.com.

iv. Directory Type: select SecureWay on this occasion. Note that if you
modify any of the filtering rules, the Directory Type will change to
Custom even though SecureWay remains the LDAP Directory of your
choice.

v. Port: specify 636 which corresponds to the TCP/IP port listening for
SSL enabled LDAP queries on the remote SecureWay LDAP Directory.

vi. Base Distinguished Name: set this to the entry point into your LDAP
Directory Server where WebSphere will search for authenticated users.
We have used: ou=uk,dc=internetchaos,dc=com.

vii. Bind Distinguished Name: specify the fully qualified Distinguished
Name of the LDAP user that has sufficient privileges to search and
authenticate WebSphere users in the LDAP Directory Server. If you
have restricted anonymous searches on the WebSphere user name
space in your LDAP Directory, this field must be completed regardless
of whether of not the user is the same as that specified for the Security
Server ID. Our Bind Distinguished Name was:
cn=websphere,ou=authenticated,ou=uk,dc=internetchaos,dc=com.

viii.Bind Distinguished Password: specify the corresponding password
for the Bind Distinguished user, in our example: websphere.

3. At this point do not click Apply or OK.

4. Proceed to the LDAP SSL Configuration menu by selecting the SSL
Configuration button. Figure 11-44 shows the resulting window that you will
be presented with.
292 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-44 LDAP SSL configuration

5. Select the Enable SSL box and complete the fields that follow to reference
your newly created Java Key Store (JKS) compliant certificate key database.

i. Key file name: specify the fully qualified file name of the Java Key
Store (JKS) key database previously created. In our example this is set
to /usr/WebSphere/AppServer/etc/WASLDAPKeyring.jks.

ii. Key file password and Confirm password: state the password used
to protect the Java Key Store (JKS) certificate key database above.

iii. Key file format: ensure that JKS is selected.

iv. Trust file name: potentially, you can set this to point at a second Java
Key Store (JKS) used for holding trusted certificate keys. However, if
you choose not to differentiate between personal keys and trusted
keys, and opt to use a single key database for both tasks, this field
should be set to the same value as the Key file name. In our example,
this is set to /usr/WebSphere/AppServer/etc/WASLDAPKeyring.jks.

v. Trust file password and Confirm password: state the password used
to protect the Java Key Store (JKS) certificate key database above.

vi. Trust file format: ensure that JKS is selected.
 Chapter 11. Administering WebSphere Security 293

vii. Security level: setting this to High will ensure that the strongest SSL
encryption algorithms are used for secure communication. The setting
must be compatible with algorithms supported by the SSL peer.

viii.Click OK when you are done.

6. You will now be returned to the main WebSphere Security Center
Authentication window. Double-check the LDAP settings and click OK.

7. If your configuration proves successful, SSL communication will be
established between WebSphere and the SecureWay LDAP Directory server
at this point. In this case, you can click Apply in the WebSphere Security
Center window and then proceed to restart WebSphere so the changes can
be included in the next runtime.

If, upon clicking OK, the configuration fails with an error message and exception,
double-check all parameters and certify that the remote LDAP Server is indeed
running. Do not click Apply or terminate the WebSphere Admin Client console at
this point if you experience an error, as you will lose the ability to undo the
changes that you made.

11.6.6 Disabling SecureWay Anonymous LDAP searches
In a production environment, it is envisaged that you may wish to prevent
anonymous LDAP searches of the WebSphere user space, although such
searches typically only reveal non-sensitive information about a user. The very
fact that any user information can be retrieved at all may pose a security risk.

Figure 11-45 Netscape - Address book
294 IBM WebSphere V4.0 Advanced Edition Security

The Netscape Communicator 4.7 Address Book can be used to demonstrate this
argument. Figure 11-45 shows that with a little knowledge about the remote
LDAP server, it is possible to retrieve the WebSphere authentication user
registry. Note that detailed in the listing are also the administrative users
websphere and ldapadmin1.

The LDAP Directory schema
Throughout this chapter, we have used a fictitious LDAP Distinguished Name
(DN) to demonstrate the tasks involved with configuring WebSphere V4.0 Global
Security LTPA authentication. Furthermore, we have deliberately avoided using
the o=organization, c=country suffix as documented in many a publication, in
preference for a domain name syntax-based DN. As such, our complete LDAP
Directory hierarchy matches that shown in Figure 11-46.

Figure 11-46 LDAP Directory schema

We anticipated that three special organizational units (OU) would be needed in
our configuration. The first would be used to simply hold the WebSphere
authenticating users and as such correlate to the Distinguished Name (DN):
ou=users,ou=uk,dc=internetchaos,dc=com.

A second organizational unit (OU) was created to the hold the WebSphere
Security Server ID. We also granted the identity the right to search and
authenticate entities present in the users’ organization unit, but restricted any
modification rights. As such the Distinguished Name (DN)
matches:ou=authenticated,ou=uk,dc=internetchaos,dc=com.

com

internetchaos

uk us hk

users authenticated admin

rocaj
hodgsonj
fuchsm
amorv

websphere ldapadmin1

(dc)

(dc)

(dc)

(ou)

(cn)
 Chapter 11. Administering WebSphere Security 295

Finally, it was envisaged that a number of users would be responsible for
maintaining the actual underlying LDAP Directory, adding and performing
administration tasks on entities in the users’ organizational unit (OU). This third
organization unit (OU) assumed the Distinguished Name (DN):
ou=admin,ou=uk,dc=internetchaos,dc=com.

The instructions for configuring the precise Access Control Lists (ACLs) relating
to the above scheme follow.

Restricting access to the users organizational unit (OU)
The following steps will guide you through the process of restricting access to the
users’ organizational unit (OU).

1. Launch the SecureWay Directory Management Tool (DMT) and, if necessary,
rebind as an authenticated user, with adequate administration privileges.

2. Select the Browse Tree option found under the Directory tree expandable
menu in the management topology tree. The resulting window will look similar
to that shown in Figure 11-47.

Figure 11-47 Browsing the directory

3. Select the relative distinguished name (RDN) representing the users’
organizational unit (ou=users) and click the ACL button on the DMT menu
bar. Select the ou=users entry under ou=uk,dc=internetchaos,dc=com.
296 IBM WebSphere V4.0 Advanced Edition Security

4. In the resulting window, ensure that the DN entry access control list (ACL)
source corresponds to the organizational unit (OU) specified in step 3 and
select the Descendant directory tree entries inherit from this entry box.
This will cascade the ACL modifications to the entities (users) that lie beneath
this organizational unit (OU).

5. By default, the Subject Distinguished name (DN) will be set to
CN=ANYBODY; this is equivalent to anonymous access. Select the field
where CN=ANYBODY appears and modify the entry to read:
cn=websphere,ou=authenticated,ou=uk,dc=internetchaos,dc=com.

Change the Type to access-id and click Add, as shown below in
Figure 11-48.

Figure 11-48 LDAP ACL settings
 Chapter 11. Administering WebSphere Security 297

6. The new entry will now appear in the Subject drop-down Distinguished Name
menu. Select CN=ANYBODY once more, and click Delete. This will remove
the entry that by default is currently allowing anonymous connections to view
the entities (WebSphere users) under the users’ organizational unit (OU).

7. We want to give just enough privileges to the websphere administrative user
cn=websphere,ou=authenticated,ou=uk,dc=internetchaos,dc=com to
perform authentication queries on the entities (WebSphere users) found
under ou=users,ou=uk,dc=internetchaos,dc=com.

In the Rights section, deny the websphere administrative user the privilege to
Add child and Delete an entry. For the security class, only grant Read and
Search to cn=websphere, deny all others access. Do this for Normal,
Sensitive and Critical data types.

8. Click OK when you are done.

Restricting access to the authenticated organizational unit
(OU)

When we initially created the LDAP Directory, a separate organizational unit was
created to contain the user (cn=websphere). This user serves two purposes in
our implementation. First, it fulfills the requirement for the WebSphere Security
Server ID, the effective identity which WebSphere assumes when running.
Secondly, it performs the LDAP authentication searches by being specified as
the LDAP Bind Distinguished Name. Isolating the entity from the regular users’
organization unit allows different access rights and privileges to be defined.

The steps that follow detail the tasks necessary to prevent anonymous access to
the authenticated organizational unit and by virtue that cn=websphere lies
beneath ou=authenticated, to enable LDAP access for the WebSphere
administrative user.

1. Select the Relative Distinguished Name (RDN) representing the
ou=authenticated organizational unit and click the ACL button on the DMT
menu bar. Select the ou=authenticated entry under
ou=uk,dc=internetchaos,dc=com.

2. In the resulting window, ensure that the DN entry ACL source corresponds to
the organizational unit (OU) specified above and select the Descendant
directory tree entries inherit from this entry box. This will cascade the ACL
modifications to the entities (users) that lie beneath this organizational unit
(OU).

3. By default, the Subject Distinguished name (DN) will be set to
CN=ANYBODY; this is equivalent to anonymous access. Select the field
where CN=ANYBODY appears and modify the entry to read:
cn=websphere,ou=authenticated,ou=uk,dc=internetchaos,dc=com.
298 IBM WebSphere V4.0 Advanced Edition Security

Change the Type to access-id and click Add, as shown below in
Figure 11-49.

Figure 11-49 LDAP ACL settings

4. The new entry will now appear in the Subject drop-down Distinguished
Name (DN) menu. Select CN=ANYBODY once more and click Delete; this
will remove the entry that, by default, is currently allowing anonymous
connections to view the entries under the ou=authenticated organizational
unit.

5. To enable the entities cn=websphere found under the ou=authenticated
organizational unit to gain access to the LDAP Directory and their name
space, grant the following privileges:
 Chapter 11. Administering WebSphere Security 299

In the Rights section, deny the privilege to Add a child and Delete an entry.
For the Security class, only Grant Read and Search permissions. Deny all
others access. Do this for Normal, Sensitive and Critical data types.

6. Click OK when you are done.

Restricting access to the admin organizational unit (OU)
We also created a third optional organizational unit, to hold a number of users
responsible for maintaining the actual underlying LDAP Directory.

The steps involved in restricting anonymous access to the admin organizational
unit are identical to those documented for the authenticated organizational unit,
the exception being that the Relative Distinguished Name (RDN) ou=admin is
alternatively specified in place of the ou=authenticated RDN.

If you are going to create such an organizational unit for LDAP administration
purposes, you will also have to grant the group creation and modification rights at
the respective RDN in the LDAP hierarchy.

11.6.7 SSL and the Netscape iPlanet Alliance Directory Server
In contrast to the IBM SecureWay Directory Server, the iPlanet Directory Server
must be configured with an SSL certificate signed by a third-party Certificate
Authority (CA). This approach is identical to that used when securing a Web
Server. The client (WebSphere), must hold the Certificate Authority (CA) public
key as a trusted root. The implementation is shown below in Figure 11-50.

Figure 11-50 Certificates for LDAP secure connection

When WebSphere connects to the LDAP Directory using SSL, the iPlanet public
certificate key is sent in response. As this is a certificate chain, signed by the

Signing CA

Private
Key

Public
Key

iPlanet Directory Server

Signing CA

Server Certificates

Signing CA

WebSphere V4.0 Server

Signing CA

LDAPKeyFile.jks
300 IBM WebSphere V4.0 Advanced Edition Security

Certificate Authority (CA) public key resident in WebSphere trusted key database
(LDAPKeyFile.jks), SSL handshaking will commence.

The iPlanet Directory instructions provided in this section are only a guide. You
should consult the iPlanet official documentation for the definitive configuration
procedures endorsed by the vendor.

11.6.8 SSL Certificate creation with iPlanet Directory Server
SSL certificate management is a feature fully integrated into the iPlanet
Administrative Console.

1. Start the iPlanet Console. The assumption is made that you have previously
configured the Directory Server and are using it for WebSphere LTPA
authentication, albeit without SSL support.

Figure 11-51 iPlanet Console

2. Expand the Server and Applications topology tree and select your
Directory Server entity. In the example shown in Figure 11-51, the Directory
Server is listed as sun3. Proceed by clicking Open in the upper right hand
corner of the panel.
 Chapter 11. Administering WebSphere Security 301

Figure 11-52 Directory Server management panel

3. Figure 11-52 shows the next window that you will be presented with. If you
are not familiar with the iPlanet Directory Server, you can navigate between
the Tasks, Configuration, Directory and Status menus to explore the product.

4. From the Tasks menu, select the Manage Certificates wizard. This will
present you with the window shown in Figure 11-53.
302 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-53 Manage Certificates wizard

5. Ensure that you select the Server Certs tab and click the Request button to
start the SSL certificate request process. You will be further prompted to
complete the steps detailed by the Certificate Request Wizard. Click Next
after reading the introduction.

6. Complete the certificate attributes as requested by the Wizard. Care should
be taken when specifying the attributes, as the Server name field is often
misinterpreted. For example, VeriSign Server IDs are specific to the Server
name and must be based on a fully qualified host name. VeriSign also
stipulates that the State/Province is completed. You can click the Show DN
button, to view the corresponding certificate Distinguished Name.

Figure 11-54 Certificate Request Wizard - certificate attributes

7. Click Next when you are done.

8. Although you will be creating a Certificate Signing Request (CSR) for
submission to your chosen Certificate Authority (CA), you must select a
 Chapter 11. Administering WebSphere Security 303

password to protect the private key of your currently self-signed certificate.
Click Next when this is completed.

9. Next, save the Certificate Signing Request (CSR) to a file. You can then
submit the CSR to the Certificate Authority (CA) of your choice. Typically, this
step is completed by cutting and pasting the CSR into the online tool provided
by your selected CA. The data will look like this:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIB8jCCAVsCAQAwgbExCzAJBgNVBAYTAlVTMRAwDgYDVQQREwdOQzI3NzA5MRcw
FQYDVQQIEw5Ob3J0aCBDYXJvbGluYTEfMB0GA1UEBxMWUmVzZWFyY2ggVHJpYW5n
bGUgUGFyazEkMCIGA1UEChMbRU1FQSBXZWJTcGhlcmUgU3VwcG9ydCBUZWFtMQww
CgYDVQQLEwNJQk0xIjAgBgNVBAMTGXJzNjE3MDAxLml0c28ucmFsLmlibS5jb20w
gZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANnpW51HQhbLBb/FV70xYKgTG3wB
dYHrh5HkR8usl+fixRPm3AfwoWUF4S4SsCz/fGZ6bT7fuA4k5OymHLz/ZN2Cg/8Z
G9K7qm2yvZIpZYrapLKhNArSVah85bFJKxAUYMW0z0laACaS4RnkitoWln4NHG7E
Z/0vYUq77kfje159AgMBAAGgADANBgkqhkiG9w0BAQQFAAOBgQAIcfcw73CnjDao
3p/AHi2ZxnOVxUznFpGWallQRRcsP2+B4VZ3mMeCiUZ8APVu5okxYE+C/k3nSYOg
92C+o0YesFGEgXiw4TZ/DJ56/zNWP1S18Wd1VQ9vwt5cKnA3LtNTJFTcDtmh0MNv
aoraXaTOvoxAcS3TgoelE+5zEmWqHg==
-----END NEW CERTIFICATE REQUEST-----

10.Usually, you will receive the response from your chosen Certificate Authority
(CA) via e-mail. If the CA has adhered to the RFC 1421 standard, then the
response will be returned in Base64-encoded ASCII data format. You can
either save the attachment from your e-mail or cut and paste the response to
a new file. In our example, we cut and pasted the data to a new file called:
iPlanetRES.arm.

11.Before you can install a certificate authenticated by a third-party Certificate
Authority (CA), you must ensure that the public certificate of that CA is
installed as a trusted authority or root. Such certificates may be one of two
types: an Intermediate Certificate Authority or a Trusted Root Certificate
Authority. You should ensure that your chosen CA makes their public key
available and in a format compatible with the iPlanet LDAP Directory. This
intermediate step is shown below in Figure 11-55 and may not be required if
your CA certificate is already listed.
304 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-55 Managing certificates

12.Install the Certificate Signing Request (CSR) response from your chosen
Certificate Authority (CA) by selecting Manage Certificate Wizard from the
main iPlanet Tasks menu. Ensure that you select the Server Certs tab before
clicking the Install button.

13.In the next window, you need to select the file that contains the certificate
CSR response received from the CA. This is depicted in Figure 11-56 below.

Figure 11-56 Certificate Install Wizard

14.Next, you will be prompted to enter a label name for the certificate; type in
server-cert. This is the name that the iPlanet Directory server will later use
to reference the certificate when performing SSL handshaking with secure
clients.

15.At this point, you will be prompted to enter the Token Password protecting the
private key of the certificate. This is the corresponding private key associated
with the public key that has now been signed by the third-party Certificate
Authority (CA).
 Chapter 11. Administering WebSphere Security 305

16.Click Done to complete the certificate installation task.

You can check the status of any certificate stored in the iPlanet Certificate
Management center by selecting the concerned certificate and double-clicking it
from the main Certificate Management window.

A correctly installed certificate signed by a third-party Certificate Authority (CA)
will look similar to that shown in Figure 11-57. In this case, the certificate is
issued to sun3.itso.ral.com and is signed by the Thawte Test CA Root.

Figure 11-57 Certificate details

11.6.9 Modifying iPlanet to support SSL/LDAPS
After successfully installing a certificate signed by a third-party Certificate
Authority (CA) into the integrated iPlanet Certificate Management Center, the
iPlanet Directory server must be configured to support LDAPS, the SSL secure
version of the LDAP protocol.

1. Start the iPlanet Administrative Console and select the Configuration menu
associated with the LDAP Directory instance for which LDAPS is to be
enabled, as illustrated in Figure 11-58.
306 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-58 Directory server configuration - settings

2. From the Settings tab of the Configuration window, define the Encrypted
Port number that will be used to service secure LDAPS requests. If you are
running the LDAP daemon (slapd) as any user other than root on Unix, the
port number must be above 1024. In the example shown in Figure 11-58, the
Encrypted Port is set to 7200. Note that although this figure is valid, the
default port number for the LDAPS protocol is in fact 636. Adhering to the
default port number is perhaps of more concern, if you are using the LDAP
Directory server for other functions within your organization.

3. Next, select the Encryption tab from the Configuration window.
 Chapter 11. Administering WebSphere Security 307

Figure 11-59 Directory Server Configuration - Encryption

4. Set the Certificate field to reference the certificate label name previously
created when using the iPlanet Certificate Management Wizard; the choice is
only possible from those certificates listed in the drop-down menu. To restrict
the SSL encryption strength to a particular algorithm, launch the Cipher
Settings submenu. Bear in mind that each SSL peer must support the same
encryption cipher suite to be able to establish an encrypted session. Do not
select the Require client authentication box under the Client Authentication
settings, as we have not placed a client certificate into the iPlanet Certificate
Management center.

5. Once this is completed, click Save and proceed to restart the iPlanet LDAP
Directory Server.

11.6.10 The iPlanet CA-signed certificate
The following intermediate step must be completed prior to configuring secure
communication between WebSphere and iPlanet.

1. Launch the IBM JSSE ikeyman utility that ships under the WebSphere bin
directory. On Unix systems this is invoked by running the ikeyman.sh script.
308 IBM WebSphere V4.0 Advanced Edition Security

2. Create a new Java Key Store (JKS) database to store the trusted root
certificate of the Certificate Authority (CA) authenticating the public certificate
key of the iPlanet Directory server. From the ikeyman menu bar select Key
Database File -> New. Set the following settings and click OK when you are
done.

Key database file: JKS

File name: iPlanetPubKey.jks

Location: /usr/WebSphere/AppServer/etc

3. At the Password Prompt window, enter the password of your choice. The
more random the password, the higher the password strength.

4. By default, the ikeyman Signer Certificates menu contains several trusted root
certificates from a number of well known Certificate Authorities (CAs). If the
CA that signed your iPlanet public certificate key is not in the list, you must
add the relevant certificate before SSL handshaking can commence between
WebSphere and iPlanet.

5. Most Certificate Authorities (CAs) make their public root certificate available
for download in the Base64-encode ASCII data format. This in itself does not
constitute a security risk, but caution should be used when any certificate is
installed as a Trusted Signer into your certificate database. To this end, you
should substantiate the CA certificate fingerprints using some alternative
mechanism. The Thawte test root certificate, as such, looks like this:

-----BEGIN CERTIFICATE-----
MIICmTCCAgKgAwIBAgIBADANBgkqhkiG9w0BAQQFADCBhzELMAkGA1UEBhMCWkEx
IjAgBgNVBAgTGUZPUiBURVNUSU5HIFBVUlBPU0VTIE9OTFkxHTAbBgNVBAoTFFRo
YXd0ZSBDZXJ0aWZpY2F0aW9uMRcwFQYDVQQLEw5URVNUIFRFU1QgVEVTVDEcMBoG
A1UEAxMTVGhhd3RlIFRlc3QgQ0EgUm9vdDAeFw05NjA4MDEwMDAwMDBaFw0yMDEy
MzEyMTU5NTlaMIGHMQswCQYDVQQGEwJaQTEiMCAGA1UECBMZRk9SIFRFU1RJTkcg
UFVSUE9TRVMgT05MWTEdMBsGA1UEChMUVGhhd3RlIENlcnRpZmljYXRpb24xFzAV
BgNVBAsTDlRFU1QgVEVTVCBURVNUMRwwGgYDVQQDExNUaGF3dGUgVGVzdCBDQSBS
b290MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC1fZBvjrOsfwzoZvrSlEH8
1TFhoRPebBZhLZDDE19mYuJ+ougb86EXieZ487dSxXKruBFJPSYttHoCin5qkc5k
BSz+/tZ4knXyRFBO3CmONEKCPfdu9D06y4yXmjHApfgGJfpA/kS+QbbiilNz7q2H
LArK3umk74zHKqUyThnkjwIDAQABoxMwETAPBgNVHRMBAf8EBTADAQH/MA0GCSqG
SIb3DQEBBAUAA4GBAIKM4+wZA/TvLItldL/hGf7exH8/ywvMupg+yAVM4h8uf+d8
phgBi7coVx71/lCBOlFmx66NyKlZK5mObgvd2dlnsAP+nnStyhVHFIpKy3nsDO4J
qrIgEhCsdpikSpbtdo18jUubV6z1kQ71CrRQtbi/WtdqxQEEtgZCJO2lPoIW
-----END CERTIFICATE-----

6. To add such a certificate as a Trusted Root, remain at the ikeyman Signer
Certificates menu and click the Add button. This will allow you to import the
file you previously created, based on the published Base64-encode ASCII
data.
 Chapter 11. Administering WebSphere Security 309

7. The act of introducing a new certificate into the key database will prompt you
to specify a label name or alias for the entry: type in thawtetestca. On
completing the prompt, the label name will be listed under the Signer
Certificates menu in ikeyman.

8. After checking that the certificate has successfully been installed as a trusted
signer, close the key database and quit ikeyman.

11.6.11 Modifying WebSphere to support LDAPS with iPlanet
The following steps show how to configure WebSphere to support LDAPS (LDAP
over SSL).

1. Start the WebSphere administrative console and launch the Security Center.
Make sure WebSphere Global Security is enabled on the General tab, then
select the Authentication tab to view the Lightweight Third Party
Authentication (LTPA) and the LDAP settings, as shown in Figure 11-60.

Note: We suggest that you refrain from using spaces in the label name, even
though the default signer certificates of some well known Certificate
Authorities include spaces.
310 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-60 WebSphere Global Security - Authentication

2. Apart from the SSL configuration parameters, which we will cover in the next
step, and the LDAP port number, all of the settings should remain unmodified
as per the non-secure LDAP authentication scheme. The settings and
expected values are discussed in detail below:

i. Security Server ID: specify the user you have created in your LDAP
implementation that will represent the WebSphere Server identity, in
our example: websphere. Do not use the LDAP cn=root entity under any
circumstances.

ii. Security Server Password: specify the corresponding password for
the Security Server user; in this example the password is: websphere.

iii. Host: this is fully qualified host name of the LDAP Directory server; our
host was sun3.itso.ral.ibm.com.

iv. Directory Type: select Netscape on this occasion. Note that if you
modify any of the filtering rules, the Directory Type will change to
Custom even though Netscape remains the LDAP Directory of your
choice.

v. Port: specify 636 which corresponds to TCP/IP port listening for SSL
enabled LDAP queries on the remote iPlanet LDAP Directory.
 Chapter 11. Administering WebSphere Security 311

vi. Base Distinguished Name: set this to the entry point into your LDAP
Directory Server where WebSphere will search for authenticated users,
for example: dc=itso,dc=ral,dc=ibm,dc=com.

vii. Bind Distinguished Name: specify the fully qualified Distinguished
Name of the LDAP user that has sufficient privileges to search and
authenticate WebSphere users in the LDAP Directory Server. If you
have restricted anonymous searches on the WebSphere user name
space in your LDAP Directory, this field must be completed regardless
of whether of not the user is the same as that specified for the Security
Server ID. The Bind Distinguished Name we have used was:
uid=websphere,ou=administrators,dc=itso,dc=ral,dc=ibm,dc=com.

viii.Bind Distinguished Password: specify the corresponding password
for the Bind Distinguished user; our password was websphere.

3. At this point, do not click Apply or OK.

4. Proceed to the LDAP SSL configuration menu by selecting the SSL
Configuration button. Figure 11-61 shows the resulting window.

Figure 11-61 LDAP SSL configuration

Note: Care should be taken when specifying the LDAP settings, as the
Security Server ID and Base/Bind Distinguished Names are often
misinterpreted.
312 IBM WebSphere V4.0 Advanced Edition Security

5. Select the Enable SSL box and complete the fields that follow to reference
your newly created Java Key Store (JKS) compliant key database.

i. Key file name: specify the fully qualified file name of the Java Key
Store (JKS) key database previously created. In our example, this is set
to /usr/WebSphere/AppServer/etc/iPlanetPubKey.jks.

ii. Key file password and Confirm password: state the password used
to protect the Java Key Store (JKS) certificate key database above.

iii. Key file format: ensure that JKS is selected.

iv. Trust file name: potentially you can set this to point at a second Java
Key Store (JKS) used for holding trusted certificate keys. However, if
you choose not to differentiate between personal keys and trusted
keys, and opt to use a single key database for both tasks, this field
should be set to the same as the Key file name value. In our example
this is set to /usr/WebSphere/AppServer/etc/iPlanetPubKey.jks.

v. Trust file password and Confirm password: state the password used
to protect the Java Key Store (JKS) certificate key database above.

vi. Trust file format: ensure that JKS is selected.

vii. Security level: setting this to High will ensure that the strongest SSL
encryption algorithms are used for secure communication. The setting
must be compatible with algorithms supported by the SSL peer.

viii.Click OK when you are done.

6. You will now be returned the to main WebSphere Security Center
Authentication window. Double-check the LDAP Settings and click OK.

7. If your configuration proves successful, SSL communication will be
established between WebSphere and the iPlanet LDAP Directory server at
this point. In this case, you can click Apply in the WebSphere Security Center
window and then proceed to restart WebSphere for the changes to be
included in the next runtime.

If, upon clicking OK, the configuration fails with an error message and exception,
double-check all parameters and certify that the remote iPlanet Directory Server
is functioning. Do not click Apply or terminate the Admin Client GUI at this point,
as you will lose the ability to undo the changes you made.

Future launches of the WebSphere Administration Console will now ask you to
log on with the following prompt shown in Figure 11-62.
 Chapter 11. Administering WebSphere Security 313

Figure 11-62 Login to WebSphere Administrator’s Console

11.6.12 Disabling iPlanet Anonymous LDAP searches
We first introduced the notion of disabling anonymous LDAP searches with the
IBM SecureWay LDAP Directory Server. For the same reason, it is envisaged
that you may wish to inhibit such searches if you have installed the iPlanet
Directory Server.

1. Launch the iPlanet Administrative Console and connect as an authenticated
user with sufficient management privileges.

2. Expand the Server and Applications topology tree and select your
Directory Server entity. When you initially created the Directory at install
time, iPlanet created an initial Distinguished Name (DN) based on your fully
qualified server host name. As such, the example demonstrated in this
subsection uses: dc=itso,dc=ral,dc=ibm,dc=com.

Figure 11-63 shows the two additional organization units wasusers and
administrators found below dc=itso,dc=ral,dc=ibm,dc=com. Here, the
members of ou=wasusers are listed in the right-hand pane.

Figure 11-63 Browsing the directory
314 IBM WebSphere V4.0 Advanced Edition Security

3. Proceed by selecting the dc=itso Relative Distinguished Name (RDN), shown
in the above figure as a closed folder, and hold down the right mouse button,
then select Set Access Permissions. Supplement accordingly with your own
values.

Figure 11-64 Access Control

4. By default, if you have not yet modified the Access Control Instructions (ACI)
for your selected Distinguished Name (DN), you will find the presence of the
Anonymous access ACI. It is this ACI, as shown above in Figure 11-64, that
permits anonymous searches of the iPlanet LDAP Directory. Select the
Anonymous access ACI and click Remove.

5. Next, you must create a new Access Control Instruction (ACI) to grant the
WebSphere administrative user the right to search the LDAP registry. This will
allow WebSphere to perform user authentication. Click New and enter the
ACI name WAS-Access (or a name of your choice).

Figure 11-65 Editing the Access Control Instruction

6. In the subsequent window, as shown above in Figure 11-65, delete the All
Users entry from the Users/Groups section. This is necessary, as we want to
restrict LDAP access to the WebSphere administrative user only.

7. Click Add to specify a new self-defined user.
 Chapter 11. Administering WebSphere Security 315

Figure 11-66 Adding a User/Group

8. In the resulting window, enter a wildcard (*) in the Search field before clicking
the Search button. This action will then bring in all of the entries previously
populated under in the Directory. Select the websphere user and add it to the
list of users to have access permission. Click OK when you are done.

9. The websphere user will now appear as the user listed as having access
permissions for the new Access Control Instruction (ACI). Select the Rights
tab and ensure that Read and Search are selected.

Figure 11-67 Access rights for the ACI
316 IBM WebSphere V4.0 Advanced Edition Security

10.Click OK when you are done to return to the main Access Control Instruction
(ACI) window. The newly created WAS-Access ACI will now be listed. Click
OK.

11.As the Access Control Instructions (ACI) are inherited, if you select a user
from under the wasusers organization unit (ou=wasusers), you will discover
that the ACI previously set has been cascaded to that child. It might be that no
specific ACIs are set on an individual basis, but if you select the Show
Inherited ACIs box, the inherited ACIs can be viewed.

Figure 11-68 Selecting the ACI

You can further override the ACIs of a parent by specifying a particular ACI on
a child entity, assuming you hold adequate privileges to do so. For example,
you could add an entry for an anonymous search back to a specific user or
group of users.

11.6.13 SSL and Lotus Domino LDAP
This subsection documents the steps that must be taken to achieve secure
communication between WebSphere V4.0 and Lotus Domino, when Lotus
Domino is used as the selected LDAP Directory Server.

We also assume you have previously configured Lotus Domino as a fully
functioning LDAP Directory Server with WebSphere, albeit without SSL support,
before commencing this section.
 Chapter 11. Administering WebSphere Security 317

Figure 11-69 Certificates for secure LDAP connection

Figure 11-69 shows the requirements for the SSL certificates involved in
establishing secure communication between WebSphere and Lotus Domino.
Note that the public certificate keys are exchanged between adjacent peers.

Creating a self-signed certificate for Lotus Domino
The following steps will show you how to create a self-signed certificate for Lotus
Domino.

There are a number of ways to create a valid SSL certificate for establishing
secure communication between WebSphere and the Lotus Domino LDAP
Server. In this section, we will use the integrated Domino certificate management
utility.

1. Launch your Notes client, making sure you have adequate administration
privileges. Select your chosen server and open the certserv.nsf database.
This will allow you to create a new public/private self-signed certificate key
pair.

WebSphere

WASSSLDomKeyFile.jks

Private
Key

Public
Key

Private
Key

Public
Key

Keys

Domino LDAP Server

Keyring.kdb

Public
Key

Private
Key

Private
Key

Public
Key

Trust Keys

Trust
318 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-70 Creating a self-signed certificate in Domino

2. Complete the following fields once at the Create Key Ring with Self Certified
Certificate template, as shown in Figure 11-70:

i. Key Ring File Name: specify the fully qualified file name of the
certificate key database file, in our example:
c:\lotus\notes\data\wasdominossl.kyr.

ii. Key Ring Password and Password Verify: state the password used
to protect the certificate key database above.

iii. The following options then need to be specified. You may choose to
complete all of the optional fields for completeness. Supplement your
own values accordingly.

Common name: M23X2640.itso.ral.ibm.com

Organization: ITSO

Organization Unit: IBM

City or Locality: Research Triangle Park
 Chapter 11. Administering WebSphere Security 319

State or Province: North Carolina

Country: US

3. Clicking the Create Key Ring with self-signed Certificate button will
present you with the certificate summary information as shown in
Figure 11-71.

Figure 11-71 Certificate details

4. If the information returned is correct, click the OK button in the top right-hand
corner of the window. Domino will then create two files: wasdominossl.kyr and
wasdominossl.sth under C:\Lotus\Notes\Data on your local machine.

5. To enable WebSphere to encrypt secure requests to the Domino Server, we
must now extract the associated public certificate key. A good analogy of the
public key is an open safe. When the safe is closed, only the private key
resident at the LDAP server can unlock the safe and retrieve the data.

The certificate database/keyfile created with Lotus Domino is compatible with
the ikeyman tool that ships as part of the IBM GSKIT. In this case, proceed to
open the wasdominossl.kyr keyfile with the ikeyman tool. Note that this is not
the JSSE ikeyman tool that ships in the WebSphere bin directory.

6. You will find the self-signed certificate key pair, as created in Domino, named
KeyPair, under the ikeyman Personal Certificates menu section. Select the
certificate and click the Extract Certificate button.
320 IBM WebSphere V4.0 Advanced Edition Security

7. You will then be prompted to complete the fields, then click OK when you are
done.

Data type: Base64-encoded ASCII data

Certificate file name: DominoSSLPubCert.arm

Location: /usr/WebSphere/AppServer/etc/domino

8. One step that is optional at this point is to delete all of the trusted root
certificates, as listed under the ikeyman Signer Certificates menu. This is
possible, as we are concerned only with using self-signed certificates and will
not be authenticating against any third-party Certificate Authority (CA).

9. Close the key database and quit ikeyman when you are finished.

Creating a self-signed certificate for WebSphere
It is also acceptable to create a private/public self-signed certificate key pair for
the WebSphere peer. In this case, follow these steps:

1. Launch the IBM JSSE ikeyman utility that ships under the WebSphere V4.0
bin directory. On Unix systems, this is invoked by running the ikeyman.sh
script.

2. Create a new Java Key Store (JKS) database to store a self-signed certificate
for the WebSphere Application Server peer and the public certificate key from
the remote Domino LDAP Server.

From the ikeyman menu bar, select Key Database File -> New. In the window
that follows, ensure that the key database file is set to support the Java Key
Store (JKS) format. Complete the file name and location, then click OK when
you are done.

Key database type: JKS

File Name: WASSSLDomKeyFile.jks

Location: /usr/WebSphere/AppServer/etc/domino

3. At the Password Prompt window, enter the password of your choice. The
more random the password, the higher the password strength. There is no
requirement to stash the password to a file with the JSSE ikeyman utility.

4. Optionally, as no requirement exists to authenticate against any of the default
trusted root Certificate Authority (CA) certificates installed under the ikeyman
Signer Certificates menu, you can choose to delete all of the CA trusted root
certificates.

5. From the ikeyman menu bar, select Create -> New Self-Signed Certificate
to create a new private/public self-signed certificate key pair. The following
options, as shown in Figure 11-72 then need to be specified. Supplement
your own values accordingly.
 Chapter 11. Administering WebSphere Security 321

Figure 11-72 Certificate details

6. Click OK when you are done. You will then find that the certificate is listed
under the ikeyman Personal Certificates menu, by the Key Label name.

7. Extract (not export) the public key of this certificate, as you will need to install
this into the certificate database/keyfile used by the Lotus Domino LDAP
Directory peer. From the Personal Certificates window, ensure that the
certificate just created is selected and click the Extract Certificate button.
Complete the fields, then click OK when you are done.

Data type: Base64-encoded ASCII data

Certificate file name: WASSSLDomPubCert.arm

Location: /usr/WebSphere/AppServer/etc/domino

8. Close the key database and quit ikeyman when you are finished.

Exchanging the public certificate keys
At this poin, you will have two certificate key databases/keyfiles and two .arm
files containing the associated extracted public certificate keys, one from the
Lotus Domino peer and one from the WebSphere Application Server peer.

You must now exchange the public keys between the adjacent peers for secure
communication to be possible.
322 IBM WebSphere V4.0 Advanced Edition Security

Dealing first with the Domino peer, open the key database originally created with
the integrated Domino certificate management utility using the CMS compatible
ikeyman tool, as supplied with the IBM GSKIT. The GSKIT ships with the IBM
HTTP Server (IHS), the IBM SecureWay Directory Server and is thus supplied on
the WebSphere V4.0 install media.

1. Launch the IBM GSKIT ikeyman tool and proceed to open the
wasdominossl.kyr certificate database/keyfile (the Domino peer certificate
database/keyfile.

2. When prompted, enter the password.

3. Select the ikeyman Signer Certificates menu. You may see five trusted root
Certificate Authority (CA) signer certificates, if you refrained from deleting
them earlier when extracting the Domino public certificate key.

4. Remaining in the Signer Certificates menu, click the Add button to import the
public certificate key from the WebSphere peer. In this case, you will be
prompted with the window. Specify the values as stated below, before clicking
OK.

Data type: Base64-encoded ASCII data

Certificate file name: WASSSLDomPubCert.arm

Location: /usr/WebSphere/AppServer/etc/domino

5. The action of introducing a new certificate into the certificate database/keyfile
will prompt you to specify a label name or alias for the entry. Complete the
prompt, type in wasssl. The label name will be listed under the ikeyman
Signer Certificate menu.

6. This concludes the tasks necessary to add the WebSphere public certificate
key into the Domino certificate database/keyfile. You can now close the
certificate database and quit the ikeyman tool.

The next step is to undertake the reciprocal arrangement for the public certificate
key associated with the Domino server, adding it to the WebSphere certificate
database/keyfile as a trusted signer.

Note: We suggest that you refrain from using spaces in the label name, even
though the default signer certificates of some well known Certificate
Authorities include spaces.
 Chapter 11. Administering WebSphere Security 323

1. Once more, launch the IBM JSSE ikeyman utility that ships under the
WebSphere V4.0 bin directory. On Unix systems this is invoked by running
the ikeyman.sh script.

2. Proceed to open the Java Key Store (JKS) WASSSLDomKeyFile.jks
certificate database/keyfile (the WebSphere peer certificate database/keyfile).

3. When prompted, complete the password.

4. Select the ikeyman Signer Certificates menu. You may see the trusted root
Certificate Authority (CA) signer certificates, if you refrained from deleting
them earlier when extracting the WebSphere public certificate key.

5. Remaining in the Signer Certificates menu, click the Add button to import the
public certificate key from the Domino peer. In this case, you will be prompted
with the window. Specify the values as stated below, before clicking OK.

Data type: Base64-encoded ASCII data

Certificate file name: DominoSSLPubCert.arm

Location: /usr/WebSphere/AppServer/etc/domino

6. The action of introducing a new certificate into the certificate database/keyfile
will prompt you to specify a label name or alias for the entry. Complete the
prompt, type in dominossl. The label name will be listed under the ikeyman
Signer Certificate menu.

This concludes the tasks necessary to add the Domino public certificate key to
the WebSphere certificate database/keyfile. You can now close the certificate
database and quit the ikeyman tool.

Modifying the Domino LDAP Directory Server to support SSL
After successfully generating and exchanging the public certificate keys, both
Domino and WebSphere must be configured to support SSL. In this section, we
specifically look at the tasks required to enable SSL on the Domino server.

1. Ensure that you have placed both the certificate database/keyfile and the
associated stash file into the Domino data directory, on your Lotus Domino
Server. In our case, this was c:\lotus\domino\data.

2. Start the Domino Administration client, ensuring that you are logged in as a
user with adequate administrative privileges. Then open the corresponding
Domino Server that will be SSL-enabled, by selecting the server from the left
bookmark pane.

Note: We suggest that you refrain from using spaces in the label name, even
though the default signer certificates of some well known Certificate
Authorities include spaces.
324 IBM WebSphere V4.0 Advanced Edition Security

3. Click the Configuration tab and select Server -> Current Server
Document.

4. Click Ports -> Internet Ports to view and modify the LDAP specific port
settings. The respective fields are illustrated below in Figure 11-73.

Figure 11-73 Configuring Lotus Domino for LDAPS

5. Modify the parameters to enable SSL support. The settings and expected
values are discussed in detail below:

i. SSL key file name: specify the file name of the certificate database
previously created containing the private/public certificate key pair for
the Domino server and the public certificate key from WebSphere, for
example: wasdominossl.kyr.

ii. SSL protocol version: select Negotiated to enable the Domino LDAP
Server to negotiate the encryption cipher algorithm with the remote
WebSphere Application Server peer.
 Chapter 11. Administering WebSphere Security 325

iii. Accept SSL site certificates: there is no need to enable this function
when authenticating WebSphere LDAP requests.

iv. Accept expired SSL certificates: you may choose to select this
option if either of your certificates has expired. However, typically you
will want to refrain from honoring expired SSL certificates. In our case,
this option was set to No.

v. SSL port number: select 636 which is the Internet standard for secure
LDAP communication. You may choose any port that is not in use, but
you need to ensure that you set the same value when configuring the
WebSphere peer. On Unix, only root has access to the ports below
1024 by default.

vi. SSL port status: select Enabled to turn SSL support on at the next
restart of the Domino Server.

vii. Client certificate: you may choose to allow Client certificates.
However, because we have exchanged the Domino public certificate
key with the WebSphere peer, this is not an absolutely necessity; select
No.

viii.Name and password: we will be specifying an LDAP Bind Name and
password when connecting to the Domino Directory, so specify Yes.

ix. Anonymous: to stop anonymous users from searching the LDAP
database, set this option to No for both the standard non-secured port
and secured port.

6. Once you have completed the fields, click Save and Close for the
modifications to be saved.

7. You must now restart the Domino Server for the modifications to be included
in the runtime. In this case, launch the Domino Administrator client, or launch
the Domino Server console from the command line.

8. Click the Servers icon, then Expand All Servers -> Select
SSODomino/ITSO (or your Domino server instance). You can then select the
Server in the menu bar, LDAP Server, as shown in Figure 11-74.
326 IBM WebSphere V4.0 Advanced Edition Security

Figure 11-74 Stopping the Domino LDAP server

9. From the Task navigation bar on the right-hand side, select Start; this will
launch the menu shown in Figure 11-75, where you should select and start
the LDAP Server.

Figure 11-75 Starting a new task in Domino
 Chapter 11. Administering WebSphere Security 327

Modifying WebSphere to support SSL
The final step in implementing LDAPS support between WebSphere and Lotus
Domino is to actually configure the SSL setting within WebSphere. The steps
have already been introduced with the IBM SecureWay LDAP Directory Server
and the iPlanet LDAP Directory Server, but are nevertheless detailed here for
completeness.

1. Start the WebSphere Administrative Console and launch the Security
Center. Select the Authentication tab to view the Lightweight Third Party
Authentication (LTPA) and the LDAP settings, as shown below in
Figure 11-76.

Figure 11-76 Security Center - Authentication

2. Apart from the SSL Configuration parameters, which we will cover in the next
step, and the LDAP port number, all of the settings should remain unmodified
as per the non-secure LDAP authentication scheme. The settings and
expected values are discussed in detail below:

i. Security Server ID: specify the user you have created in your LDAP
implementation that will represent the WebSphere Server identity, in
our example: wasadmin.
328 IBM WebSphere V4.0 Advanced Edition Security

ii. Security Server Password: specify the corresponding password for
the Security Server user; we have used wasadmin for a password.

iii. Host: this is the fully qualified host name of the LDAP Directory server:
M26X2640.itso.ral.ibm.com.

iv. Directory Type: select Domino on this occasion. Note that if you
modify any of the filtering rules, the Directory Type will change to
Custom even though Domino remains the LDAP Directory of your
choice.

v. Port: specify 636 which corresponds to TCP/IP port listening for SSL
enabled LDAP queries on the remote SecureWay LDAP Directory.

vi. Base Distinguished Name: this is usually set to the entry point into
your LDAP Directory Server where WebSphere will search for
authenticated users. However, when Domino is the selected Directory
Server, this field can be left blank.

vii. Bind Distinguished Name: specify the name of the remote Domino
LDAP user that has sufficient privileges to search and authenticate
WebSphere users. If you have restricted anonymous searches on the
WebSphere user name space in your LDAP Directory, this field must be
completed regardless of whether of not the user is the same as that
specified for the Security Server ID. The Bind Distinguished Name we
have used was: wasadmin.

viii.Bind Distinguished Password: specify the corresponding password
for the Bind Distinguished user; our password was wasadmin.

3. At this point do not click Apply or OK.

4. Proceed to the LDAP SSL Configuration menu by selecting the SSL
Configuration button.

5. Check the Enable SSL box and complete the fields that follow to reference
your newly created Java Key Store (JKS) compliant certificate key database.

i. Key file name: specify the fully qualified file name of the Java Key
Store (JKS) key database previously created. In our example this is set
to /usr/WebSphere/AppServer/etc/WASSSLDomKeyFile.jks.

ii. Key file password and Confirm password: state the password used
to protect the Java Key Store (JKS) certificate key database above.

iii. Key file format: ensure that JKS is selected.

Note: As we disallowed anonymous access, the Bind Distinguished Name
and Bind Password fields must be completed.
 Chapter 11. Administering WebSphere Security 329

iv. Trust file name: potentially, you can set this to point at a second Java
Key Store (JKS) used for holding trusted certificate keys. However, if
you choose not to differentiate between personal keys and trusted
keys, and opt to use a single key database for both tasks; this field
should be set to the same value as the Key file name. In our example,
this is set to /usr/WebSphere/AppServer/etc/WASSSLDomKeyFile.jks.

v. Trust file password and Confirm password: state the password used
to protect the Java Key Store (JKS) certificate key database above.

vi. Trust file format: ensure that JKS is selected.

vii. Security level: setting this to High will ensure that the strongest SSL
encryption algorithms are used for secure communication. The setting
must be compatible with algorithms supported by the SSL peer.

viii.Click OK when you are done.

6. You will now be returned the to main WebSphere Security Center
Authentication window. Double-check the LDAP settings and click OK.

If your configuration proves successful, SSL communication will be established
between WebSphere and the SecureWay LDAP Directory server at this point. In
this case, you can click Apply in the WebSphere Security Center window and
then proceed to restart WebSphere for the changes to be included in the next
runtime.

If, upon clicking OK, the configuration fails with an error message and exception,
double-check all parameters and certify that the remote LDAP Server is indeed
running. Do not click Apply or terminate the WebSphere Admin Client console at
this point if your experience an error, as you will lose the ability to undo the
changes that you made.
330 IBM WebSphere V4.0 Advanced Edition Security

Part 3 End-to-end
security
solutions

Part 3
© Copyright IBM Corp. 2002 331

332 IBM WebSphere V4.0 Advanced Edition Security

Chapter 12. Security in Patterns for
e-business

This chapter discusses the security considerations within end-to-end solutions in
the context of the Patterns for e-business. First, a short overview of the Patterns
of e-business will introduce the basic elements of this strategy, focusing
especially on security. The last sections will provide design ideas for overall
security in an end-to-end solution.

12
© Copyright IBM Corp. 2002 333

12.1 Patterns for e-business
The primary goal of the Patterns for e-business is to show the strategy of reuse
for e-business application design.

Figure 12-1 describes how the different patterns are organized and built on top of
each other. These elements also represent logical steps in the solution design
process.

Figure 12-1 Patterns for e-business

The Patterns for e-business define the Integration patterns beside the Business
patterns and Composite patterns. Integration patterns integrate multiple
applications, multiple modes of access, and multiple sources of information to
build one seamless application. Integration patterns are differentiated from
Business patterns in that they do not themselves automate specific business
problems. These Integration patterns are used within Business patterns to
support more advanced functions, or to make Composite patterns possible by
allowing the integration of two or more Business patterns.

The Access Integration and Application Integration patterns represent the two
types of Integration patterns.

Open Standards

Customer requirements

Composite patterns

Integration patternsBusiness patterns

Application patterns

Runtime patterns

Runtime product mappings

IBM Software infrastructure blueprint
334 IBM WebSphere V4.0 Advanced Edition Security

Figure 12-2 Integration patterns

The Access Integration pattern can be thought of as a front-end Integration
pattern. The Access Integration pattern is the main focus of this chapter.

12.2 Access Integration pattern
The Access Integration pattern describes the services and components
commonly required to provide users with consistent, seamless, secure,
device-independent access to relevant applications and information. Access
Integration patterns are useful when:

� Users need access to multiple applications and information sources through a
Single Sign-On and application-independent security context.

� Applications need to be accessible using multiple device types, including fat
clients, browsers, voice response units, mobile devices and PDAs.

� There is a requirement to provide a common look and feel to a collection of
applications or to aggregate result sets from discrete applications in a
business process.

� The user wishes to customize the choice of applications and how they are
presented.

� The business wishes to target information and applications to a specific user
or group.

Access Integration patterns observed in practice are composed of the following
services:

� Presentation

� Personalization

� Security and Administration

� Pervasive Device Support

Access
Integration

pattern

Application
Integration

pattern

Integration
patterns
 Chapter 12. Security in Patterns for e-business 335

The benefits of Access Integration are often best realized when these services
are combined. However, in this chapter we will focus on the Security and
Administration service of the Access Integration pattern. So, before going any
further, let us introduce the Security and Administration service.

The Security and Administration service enables users to access multiple
applications and information sources using an integrated security model and a
single set of security credentials.

We are all familiar with having to remember multiple user IDs and passwords to
access different applications. Applications frequently have different user ID and
password format requirements and expiration rules. These differences in
authentication requirements inconvenience users by requiring them to remember
multiple user IDs and password combinations and by forcing them to sign on
multiple times to access different systems. In addition, some systems may use
authentication techniques such as certificates or biometrics that are not based on
a user ID and password. The primary business driver for this service is to
eliminate these user inconveniences while continuing to protect the security of
enterprise data and applications.

Under these conditions, a key requirement is a Single Sign-On, so that a user
logs on once to gain access to all the appropriate applications and data sources.
Another key requirement is access management, which limits access based on a
user profile and the content access policies of the enterprise.

Now that we have discussed the Integration patterns found in the Patterns for
e-business, specifically the Access Integration pattern, we move to the next
logical step in the solution design process. The Application patterns are the next
logical step to discuss within Patterns for e-business.

12.2.1 Application patterns
An Application pattern shows the principal layout of the application, focusing on
the shape of the application, the application logic, and the associated data.

Application patterns for Access Integration are composed of the services
discussed above. Based on the specific application needs, you mix and match
these services to facilitate consistent and seamless access to multiple
applications.

Four commonly observed Application patterns for Access Integration are shown
in Figure 12-3 on page 337.
336 IBM WebSphere V4.0 Advanced Edition Security

Figure 12-3 Application patterns for Access Integration

These patterns are not mutually exclusive. It is very likely that more than one of
these can be found in a single solution. However, for our discussion, we will only
focus on the Single Sign-On and the Extended Single Sign-On Application
patterns.

For more details on all four of these Application patterns, refer to the redbook
Access Integration Pattern Using WebSphere Portal Server, SG24-6267 and
Mobile Applications with WebSphere Everyplace Access Design and
Development, SG24-6259.

Single Sign-On Application pattern
This is a basic pattern where the single sign-on functions are performed in the
Web tier. This Application pattern includes a Single Sign-On tier, which ensures
that the user does not have to log in to the application more than once during a
session. Single Sign-On takes over user authentication with other applications
once the user has logged in.

The Security and Administration service is used here.

Pervasive Device Access

Personalized
Delivery

Access Integration
patterns

Single Sign-On

Extended Single Sign-On
 Chapter 12. Security in Patterns for e-business 337

Figure 12-4 Single Sign-On Application pattern

Extended Single Sign-On Application pattern
This is an extended pattern where the security context is extended to include the
back-end systems, to be able to use the Single Sign-On facility through a
centralized security service.

Figure 12-5 Extended Single Sign-On Application pattern

Together with the Single Sign-On tier and the Security Integration tier, this
ensures the secure interaction with the back-end Enterprise Application tier.

Now we move to the next logical step in the solution design process: Runtime
patterns.

12.3 Runtime patterns
Runtime patterns define functional nodes that underpin an Application pattern.
Runtime patterns depict the solution architecture at a very high level, where
networks and nodes are identified but no product or technology selection is
made. Most patterns will consist of a core set of nodes, with the addition of one
or more nodes unique to that pattern. To understand the Runtime patterns, you
will need to review the following node definitions.

SynchronousSingle
Sign-On Tier

Application 1

Application 2

Client
Tier

Synchronous

Single
Sign-On

Application 1

Application 2

Client
Tier

Security
Integration

Enterprise
Application
338 IBM WebSphere V4.0 Advanced Edition Security

Nodes
The following nodes are defined in the upcoming Runtime patterns.

Client
The client node represents the user interface connecting to the server
applications.

Public Key Infrastructure
Public Key Infrastructure (PKI) is a centralized security service for all of those
clients who have certificates from the same Certificate Authority (CA).
Certificates ensure the credibility of the communicating parties. PKI covers all the
necessary infrastructure and services required to manage this type of security.
This service can usually be found on the Internet, but intranets can also have
their own PKI. PKI offers a technology which, if deployed properly, can provide
greater security.

Protocol and domain firewalls
Firewalls provide services that can be used to control access from a less trusted
network to a more trusted network. Firewalls also offer other services such as:

� Stateful packet inspection
� Logging
� Proxy support
� Address translation

The two firewall nodes provide increasing levels of protection.

Web server redirector
In order to separate the Web server node from the application server node, a
so-called Web server redirector node (redirector) is introduced. The Web server
redirector is used in conjunction with a Web server. The advantage of using a
redirector is that you can move the application server behind the domain firewall
into the secure network, where it is more protected than within the Demilitarized
Zone (DMZ). Static pages and content can be served from the DMZ by this node.

Application server
The application server node provides the infrastructure for application logic. It
might be part of a Web application server node. It is capable of running both
presentation and business logic. When used with a Web server redirector, the
application server node will run presentation and business logic. In other
situations, it may be used for business logic only.
 Chapter 12. Security in Patterns for e-business 339

Web application server node
A Web application server node is an application server that includes an HTTP
server (Web server) and is typically designed for access by HTTP clients and to
host presentation and business logic.

The Web application server node is a functional extension of the informational
(publishing-based) Web server node. The node provides robust services to allow
users to communicate with shared applications and databases; in this way, it acts
as an interface to business functions.

Directory services
The directory services node supplies information on the location, capabilities and
various attributes (including user ID/password pairs and certificates) of resources
and users known to the system. The node may supply information for various
security services (authentication and authorization).

Security services
Security services perform actual security processing such as authentication and
authorization.

The authentication, in most current designs, validates the access to the Web
server part of the Web application server node, but it can also authenticate for
access to other resources.

Security services can go further and provide authorization for applications, where
user access to certain resources is checked.

This node may be combined with Directory services into one node called
Directory and Security services.

Database
The database server node provides a persistent data storage and retrieval
service in support of transactional interactions. The data stored is relevant to the
specific business interaction.

Web Security proxy
The Security proxy stands between the user and the Web application. The role of
this node is to capture the user request from the client side before the request
reaches any application. The Security proxy also serves as a single entry point
for Web applications, ensuring a higher level of security and making the network
less vulnerable. It allows both presentation and business logic to be relocated to
a more secure network zone behind the DMZ.
340 IBM WebSphere V4.0 Advanced Edition Security

Enterprise application
Enterprise application stands for applications at the back-end. These
applications can be application servers, legacy systems or massive enterprise
applications running businesses. This node is important in that the application is
separated from the middleware nodes.

12.3.1 Basic Runtime pattern
The basic Runtime pattern illustrated in Figure 12-6 shows the simplest Runtime
pattern including the Web application server with the minimum security
components.

Figure 12-6 Basic Runtime pattern

The security is ensured by the two firewalls, which block network access from
unauthorized networks and users.

Public Key Infrastructure provides certificate-based authentication.

Directory and Security services provide security functions for the Web application
server to authenticate and authorize user access.

12.3.2 Runtime pattern variation
This variation of the Runtime pattern increases the security by separating the
application server from the Web server. The application server is moved to the
internal network.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Web
Application

Server
IP Network

P
ro

to
co

l f
ir

ew
al

l

D
om

ai
n

fir
ew

al
l

Database

Directory &
Security
Services

Client

Public Key
Infrastructure
 Chapter 12. Security in Patterns for e-business 341

Figure 12-7 Runtime pattern variation

12.3.3 Single Sign-On Runtime patterns
The Single Sign-On runtime patterns bring new security components and aim to
provide security services for a broader range of components.

Multiple application servers are running the e-business application(s); they can
be the same application servers (homogeneous) or they can be different types
from different vendors (heterogeneous). These application servers can connect
to the core business applications (legacy systems).

The following four runtime pattern depict four different realizations of Single
Sign-On with different features.

Enterprise applications in these patterns are represented with a node, but for
back-end systems that are much more sophisticated, they can be placed in a
separated network zone for higher performance and higher security reasons.

Outside World Demilitarized Zone
(DMZ)

Internal Network

Database

Client

Web Server
Redirector

Application
ServerIP Network

P
ro

to
co

l f
ir

ew
al

l

D
o

m
ai

n
 f

ir
ew

al
l

Directory &
Security
ServicesPublic Key

Infrastructure
342 IBM WebSphere V4.0 Advanced Edition Security

Single Sign-On runtime pattern for homogeneous application
servers

The Runtime pattern illustrated in Figure 12-8 depicts the homogeneous Single
Sign-On. The application servers are either the same server applications or are
using exactly the same technique for Single Sign-On.

Figure 12-8 Single Sign-On runtime pattern for homogeneous application servers

Single Sign-On runtime pattern for heterogeneous application
servers

As a variation of the previous Runtime pattern, Figure 12-9 depicts the case
where the application servers are not running the same server application nor
implementing the same Single Sign-On technique. Single Sign-On can only be
provided by a Security Server external to the application server with a security
proxy that intercepts requests to map/transform user credentials into the
appropriate credential format for that application server.

Application
Server

User

Application
Server

Directory &
Security Server

Client
Tier

App1

App2

Single
Sign-On

Single Sign-On application pattern
 Chapter 12. Security in Patterns for e-business 343

Figure 12-9 Single Sign-On runtime pattern for heterogeneous application servers

Example
WebSphere Commerce Suite is an example of an application that manages its
own internal mechanism for authentication (form-based) and authorization
(role-based). However, it is possible to establish trust relationships between
WebSphere Commerce Suite and the larger enveloping domains of IBM
WebSphere Application Server and Secureway Policy Director by sharing a
common user registry or by configuring Commerce Suite to accept an LTPA
token as proof of authentication. In this configuration, WebSphere Commerce
Suite will accept the user as an authenticated user. Its authorization service will
remain in effect and will determine permissions based on the user identity in the
LTPA token.

Extended Single Sign-On runtime pattern for credential
propagation

Extending the security context to back-end systems enables non-repudiation of
transactions initiated by the user at the back-end. Credential propagation uses
one of two approaches:

� Credential mapping, where the Web user identity is mapped to a user ID used
to access the back-end system.

� Credential transformation, where the Web user identity is forwarded to the
back-end system but is transformed into the format acceptable to that system.

Centralized security solutions can provide credential mapping services to solve
this problem.

Application
Server

Application
Server

Directory &
Security Server

Security
Proxy

User

Client
Tier

App1

App2

Single
Sign-On

Single Sign-On application pattern
344 IBM WebSphere V4.0 Advanced Edition Security

Figure 12-10 Extended Single Sign-On runtime pattern for credential propagation

For an example of the Extended Single Sign-On using credential propagation,
refer to Access Integration Pattern Using WebSphere Portal Server, SG24-6267.

Extended Single Sign-On runtime pattern for central security
service

Figure 12-11 depicts a Single Sign-On scenario with central security service.

Figure 12-11 Extended Single Sign-On runtime pattern for central security service

Application
Server

Application
Server

Directory &
Security Server

User Application
Server

Extended Single Sign-On application pattern

Enterprise
Application

Client
Tier

Security
Integration

Application 1

Application 2

Single Sign-On

Application
Server

Directory &
Security
Server

User
Application

Server
Security
Proxy

Application
Server

Extended Single Sign-On application pattern

Enterprise
Application

Client
Tier

Security
Integration

Application 1

Application 2

Single Sign-On
 Chapter 12. Security in Patterns for e-business 345

This alternative allows for extending the security context to back-end systems
and allows the same security service that controls the Web tier to control the
back-end applications. The security server provides the role-based authorization
for controlling back-end resources. No credential mapping or transformation is
required. The security context is preserved all the way through to the back-end
system.

The security proxy focuses on primary security functions such as authentication
and authorization. Security is centralized in this node, which makes the system
management easier. Security proxy provides a single access point for the
e-business application, which makes the system less vulnerable.

12.4 Product mappings
The following implementations are examples, showing how security can be
implemented in different scenarios. The approach is very similar to the runtime
product mappings. The figures will show the security products applied to the
Runtime patterns. These implementations are based on our experiences and the
implementations used for this book.

12.4.1 Single Sign-On
The next two scenarios will introduce two different types of Single Sign-On
architecture:

� Homogeneous Single Sign-On
� Heterogeneous Single Sign-On

Homogeneous Single Sign-On
With the basic Runtime pattern, the following Single Sign-On scenarios are
available:

� Between two or more WebSphere Application Servers

� Between WebSphere Application Server and Lotus Domino

The scenario is depicted in Figure 12-12 on page 347; the application servers
are placed in the DMZ.
346 IBM WebSphere V4.0 Advanced Edition Security

Figure 12-12 Homogeneous Single Sign-On

In this case, the application servers are using the same method to resolve user
login for the session. WebSphere Application Server and Lotus Domino can use
the same LTPA token to determine user credentials, as long as the application
servers are in the same realm.

Despite the different products, this scenario is still homogeneous, because the
products can share the login information without any additional code or
component. Refer to Chapter 14, “Single Sign-On” on page 393 for an example
of homogeneous Single Sign-On.

Heterogeneous Single Sign-On
Figure 12-13 on page 348 shows a scenario where different application servers
and enterprise applications have a common login. It is a more usual case than
that of the homogeneous SSO.

do
m

ai
n

fir
ew

al
l

pr
ot

oc
ol

 fi
re

w
al

l

WebSphere
Application
Server

DB2 UDB
database server

application server 2

Lotus Domino
application server

WebSphere
Application
Server
application server 1

outside world DMZ internal network

Secureway
Directory
directory server

browser
client

In
te

rn
et
 Chapter 12. Security in Patterns for e-business 347

Figure 12-13 Heterogeneous Single Sign-On

The heterogeneous scenario was not tested in this book, and only a theoretical
explanation of Single Sign-On will be documented here.

Heterogeneous Single Sign-On means that the products need additional code or
components to achieve Single Sign-On.

Tivoli Policy Director provides a solution for heterogeneous systems called
Global Sign-On (GSO). The login information is stored in an LDAP directory, and
the applications can check that information for themselves. Policy Director also
provides APIs for applications to develop the code necessary to use GSO.

In a large scale system where security is centralized, Single Sign-On is a
standard requirement; in certain cases, Global Sign-On can also be exercised.

Refer to Chapter 13, “Policy Director” on page 353 for more details.

Note: What is the difference between Single Sign-On and Global Sign-On
from a technical point of view?

Single Sign-On works between systems which are using the same mechanism
for user login. The systems can pass the login information between each other
without any difficulties.

Global Sign-On works between systems where the user login mechanism is
different on each implementation. In this case, the user login information is
stored in a centralized directory, and each application has to access this
directory to find out whether or not the user is logged in.

browser
client

do
m

ai
n

fir
ew

al
l

pr
ot

oc
ol

 fi
re

w
al

l

Application Server 1

Enterprise
Application

security & directory
services

security proxy

outside world DMZ internal network
enterprise
applications
network

Policy
Director

WebSphere
Application
Server

3rd party
Application
Server
Application Server 2

In
te

rn
et

Secureway
Directory
348 IBM WebSphere V4.0 Advanced Edition Security

An issue to be aware of within a heterogeneous environment is that different
vendor systems might use different credentials for users. One solution for this
problem is credential mapping, where the security server maps the original user
credentials to the application’s request.

Figure 12-14 Credential mapping

In Figure 12-14, the user accesses the system from a client (for example a Web
browser) through a front-end application. The front-end application has to
connect to back-end applications. The same user has different credentials for
different applications. Security services provide credential mapping to propagate
the login information as it is required for the different applications.

For more details on Tivoli Policy Director, refer to the IBM Redbook Enterprise
Security Management with Tivoli, SG24-5520; and Tivoli Policy Director:
Centrally Managing e-business Security, SG24-6008.

12.4.2 Centralized security
There is a need for centralized security when systems grow large, not only to
achieve easier management, but also to avoid security holes. It is very difficult to
see the solution end-to-end and manage all the security elements separately.
The following architecture realizes the centralized security on two different levels:

� Single entry point for the clients

� Centralized security services for the applications

Users/
Groups

Access
Policy

Users/
Groups

Access
Policy

Browser Credential
Mapping

Credential
Mapping DB

Users/
Groups

User "Larry"
Pass "BUDDY"
Data "xxx"

User "LSHICK"

Pass "yyy"

Data "xxx"

Back-end
Transactions

User "314728" Pass "asdf" Data "xxx"

Back-end
Data

Access
Policy

Front-end
Security
services

Users/
Groups

Access
Policy
 Chapter 12. Security in Patterns for e-business 349

Figure 12-15 Centralized security

The node with WebSEAL provides a single access point to the system. Every
client must go through this point to get access to the applications. WebSEAL is
connected to the Policy Director, which provides the security services for the
whole system.

In this example, only WebSphere Application Server and Lotus Domino are
deployed, but in a general architecture, any other application server (third-party
application servers) can be deployed and back-end applications are also
available in a large environment.

SecureWay LDAP provides the directory services to the system, and both
WebSphere Application Server and Lotus Domino Server use it for their user
registry.

12.5 More information
The most valuable source of information about patterns is the book Patterns for
e-business: A Strategy for Reuse by Jonathan Adams, George Galambos,
Srinivas Koushik, and Guru Vasudeva, ISBN 1931182027.

For more information about Access Integration security, refer to the following IBM
Redbook Applying the Patterns for e-business to Domino and WebSphere
Scenarios, SG24-6255.

Note: WebSEAL is a component of the Tivoli Policy Director package.

client

do
m

ai
n

fir
ew

al
l

pr
ot

oc
ol

 fi
re

w
al

l

WebSeal
security proxy

Policy Director
centralized
security services

Secureway LDAP
directory services

WebSphere
Application
Server DB2 UDB

database server
application server

Lotus Domino
application server

outside world DMZ internal network
350 IBM WebSphere V4.0 Advanced Edition Security

For more information about Patterns for e-business, see the following Web site:
http://www-106.ibm.com/developerworks/patterns, or refer to the following
IBM Redbooks:

� Applying the Patterns for e-business to Domino and WebSphere Scenarios,
SG24-6255

� Self-Service Patterns using WebSphere Application Server V4.0, SG24-6175

� User-to-Business Pattern Using WebSphere Personalization Patterns for
e-business Series, SG24-6213

� Self-Service applications using IBM WebSphere V4.0 and IBM MQSeries
Integrator Patterns for e-business Series, SG24-6160

� e-commerce Patterns for Building B2C Web Sites, Using IBM WebSphere
Commerce Suite V5.1, SG24-6180

� Access Integration Pattern using IBM WebSphere Portal Server, SG24-6267

� Mobile Applications with IBM WebSphere Everyplace Access Design and
Development, SG24-6259
 Chapter 12. Security in Patterns for e-business 351

http://www-106.ibm.com/developerworks/patterns

352 IBM WebSphere V4.0 Advanced Edition Security

Chapter 13. Policy Director

In this section, we will look at security beyond what IBM WebSphere Application
Server provides.

WebSphere’s security features allow you to protect your e-business applications
from unauthorized users. This is not all that is required for a secure end-to-end
solution. Other security issues must be dealt with, such as:

� What other related systems and resources need to be protected?

� How can I integrate my Web application security with my existing application
security infrastructure?

� How can WebSphere security interoperate with other applications in my
enterprise?

We will look at each of these questions in turn. In “End-to-end security solutions”
on page 354 we will consider the systems and resources, in addition to
WebSphere, that are required for a fully secure solution. Then, in “Using Tivoli
Policy Director” on page 355, we will see how WebSphere can be used with a
specialized enterprise security product.

13
© Copyright IBM Corp. 2002 353

13.1 End-to-end security solutions
WebSphere security is not all that is required to protect your enterprise
resources. It is only one piece in an end-to-end secure solution. There are
several levels on which security breaches can take place and all of them need to
be addressed in order to have a secure solution:

� Network level

� Operating System level

� Middleware level

� Application level

� Human level

Each of these levels is susceptible to different kinds of security breaches which
must be protected against in the most effective way.

Networks are prone to many types of attack. Here are some examples of TCP
attacks:

� Denial of service: the attacker sends thousands of request for connection to a
server. The unresolved requests fill up the buffers in the TCP/IP stack, which
stops new connections from being allowed to the server.

� Source address spoofing: you can never trust the IP address of incoming
connections.

� Network sniffing: an intermediary listening on the network can see all the
traffic.

TCP/IP stacks themselves can provide some protection nowadays. Firewalls,
virtual private networks (VPNs) and third party encryption tools are all necessary
tools to protect your networks and systems against many of these attacks.

Operating systems must be protected from unauthorized access. Hardening your
file system and limiting the access to important files are both vital actions in
implementing an overall secure solution.

Care needs to be taken with middleware application servers. You may have the
tightest security on your operating system and your applications may only allow
the right people to access the right information, but if you forget to secure the
administration tools with passwords, then anyone could modify the server
configuration. Care needs to be taken especially with Web-based administration
tools.
354 IBM WebSphere V4.0 Advanced Edition Security

Your applications need to be protected from the instance of one person getting
access to another person’s information. This could mean forcing Web users to
identify themselves with a user name and password when they start using your
Web site. Programmatic security, middleware functionality or third party security
tools could all help in this case.

Consider also that all the security products and processes in the world have no
effect if you cannot trust the people who look after them. This includes controlling
physical access to the systems which contain your sensitive data and business
logic.

All these concepts need to be considered when designing a secure solution.
WebSphere provides security features for protecting the application server
(middleware) and the applications it runs. Firewalls, system hardening and
physical security all need to be considered as well.

13.2 Using Tivoli Policy Director
Tivoli Policy Director (PD) provides a powerful solution for network security
management and Single Sign-On for Web servers and other application servers.
Tivoli PD manages the authentication and authorization of servers and Web
sites and provides an API interface so that you can extend these security
services to nearly any other system in your enterprise. PD uses a centralized
database to store its policy information; this allows new systems to be added
without having to change your security infrastructure.

Securing production applications are vital to all organizations. Using
WebSphere’s own security features is sufficient in many situations, but if you
want a consistent security infrastructure across all your middleware applications,
then integrating WebSphere applications with PD becomes necessary.

13.2.1 Using Tivoli WebSEAL
WebSEAL is one of the components that ships with Tivoli Policy Director. It is an
example of a Reverse Proxy Security Server and can protect the object space of
itself and other Web servers in the enterprise.

WebSEAL can be integrated with WebSphere to provide the authentication
services. WebSphere still provides the authorization services.
 Chapter 13. Policy Director 355

WebSEAL uses several elements to configure access control for a particular
Web object space.

� Junctions: used to define a particular Web server’s object space for the
WebSEAL server.

� Access control lists (ACL): used to assign access permissions.

� Groups: a registry element that contains a number of users.

� Users: a registry entry that defines a particular user or system.

Figure 13-1 shows the relationship between each of these elements.

Figure 13-1 Relationship between junctions, ACLs, Groups and Users

Figure 13-2 shows the flow of a request from the browser to the application
server.

Figure 13-2 HTTP request flow from browser to application server

IHS
WebSEAL
Junction

Access
Control

List
Group

UserUsers are assigned to groups.

Group is associated with an ACL.
ACL is associated with a junction
which is relative to a Web server.

Proxy IHS WAS

Browser

Web

LDAPPD Sec Mgr
356 IBM WebSphere V4.0 Advanced Edition Security

In the rest of this section, we will demonstrate several ways to configure
WebSEAL to authenticate resources belonging to the Web server and to
WebSphere.

The junctions that we will define in this section are:

� TCP junction: used to protect static resources belonging to the Web server.

� LTPA junction: used for LTPA authentication by WebSEAL.

� SSL junction: used for Web Trust Association between WebSEAL and
WebSphere.

Figure 13-3 shows in more detail which requests are made and where the
different components would exist within an enterprise.

Figure 13-3 Typical infrastructure components with WebSphere and Policy Director

1. An HTTP request for a secured WebSphere resource is made, and WebSEAL
receives it first.

2. WebSphere makes a request to Policy Director Management server to
authenticate the user.

a. Policy Director authenticates the user against the LDAP registry and
passes the result, success or failure, to WebSEAL.

3. WebSEAL forwards the request to WebSphere.

4. WebSphere determines if the user is authorized to access that particular
resource by checking the security information in the deployment descriptors
and checking group information in the LDAP registry.

W ebSEAL

W eb Server
&

W ebSphere

SecureW ay
LDAP

Policy Director
Management

Server

1

2
2a

3 4

Internet

F
ire

w
al

l

F
ire

w
al

l

 Chapter 13. Policy Director 357

13.2.2 Using Tivoli Policy Director to protect static pages
In this section, we will describe how to configure Policy Director to protect the
static resources that belong to the Web server, in our case the IBM HTTP Server.
We will use basic authentication. In our environment, we installed all the software
onto one machine.

First, install and configure:

� IBM HTTP Server V1.3.19

Then, from the Tivoli Policy Director Base product CD, install and configure:

� IBM Global Security Toolkit

� IBM SecureWay Directory Server V3.2.1
Install both the client and the server. If you do not have a version of DB2
installed, then SecureWay can install this at the same time.

� Tivoli Policy Director Runtime Environment

� Tivoli Policy Director Management Server

� Tivoli Policy Director Authorization Server

Finally, from the Tivoli Policy Director WebSEAL product CD, install and
configure:

� Tivoli Policy Director WebSEAL

See the product installation guides for more information. Make sure all these
services are started.

The key steps in securing the Web server resources with WebSEAL are:

� Creating a WebSEAL junction relative to the Web server.

� Creating a Group and associating some users with it.

� Creating an Access Control List (ACL) and associating a Group and access
permissions with it.

� Associating the ACL with the junction.

Below are the step-by-step instructions you will need. Refer to the Tivoli Policy
Directory Base Administration Guide for more details on the commands we use
here.

Note: If you have enabled security on the IBM HTTP Server (see “How to
secure HTTP basic authentication for IBM HTTP Server” on page 106), then
make sure this is disabled before following the instructions in this section.
358 IBM WebSphere V4.0 Advanced Edition Security

1. First, we need to change the port that IHS is listening on.

Edit the IHS configuration file, C:\IBM HTTP Server\conf\httpd.conf. Look for
the Port command and change the default value 80 to a new port number, for
example 8080. So the modified command looks like this:

Port: The port the standalone listens to.
Port 8080

Save the file. Now stop and start the IBM HTTP Server service.

2. Start the pdadmin tool. From a command promp, type pdadmin.

C:\> pdadmin
pdadmin>

Now log in with the security master’s user name and password. Type login at
the command prompt, then, when instructed, enter the user name and
password.

pdadmin> login
Enter User ID: sec_master
Enter Password:
pdadmin>

3. From the pdadmin command prompt, create some new users. Create at least
two. The syntax is as follows:

pdadmin> user create [-no-password-policy] user name <distinguishedName>
<commonName> <surName> password

The two we created were:

pdadmin> user create -no-password-policy peter "cn=Peter
Kovari,c=US,o=webbank" peter peter peter
pdadmin> user create -no-password-policy joanna "cn=Joanna
Hodgson,c=US,o=webbank" joanna joanna joanna

Note: WebSEAL and IHS are both Web servers which, by default, listen
for HTTP requests on the same port: port 80. Because we are running
them both on the same machine, we need to change this listening port for
one of the servers to avoid conflicts. We will change the port on IHS.

In practice, you will probably have WebSEAL and IHS running on separate
machines. In this case, you may still want to change the port that IHS is
listening on. Certainly, if you want to protect the Web server resources with
WebSEAL, you need to make sure that traffic cannot access the Web
server directly. One way this could be done is not to allow traffic for the port
that IHS is listening on through the firewall.
 Chapter 13. Policy Director 359

This syntax created the following users:

Table 13-1 Users

These users are created in the SecureWay LDAP server. You can use the
Directory Management Tool to see them.

4. We now need to make these users’ accounts active so that they are shown to
be valid users when they are given access to resources. From the pdadmin
command prompt, use the following syntax:

pdadmin> user modify <userName> account-valid yes

In our case, the commands were:

pdadmin> user modify peter account-valid yes
pdadmin> user modify joanna account-valid yes

5. Verify that you can log onto the WebSEAL Web server. Point your browser to
https://<WebSEALfullHostname>.

The first thing you will probably see is a security information box warning you
that the certificate that the Web server has presented to you is not known by
your browser. This certificate is needed to establish the secured, encrypted
connection between the browser and the Web server. These information
boxes are different in different browsers. Here we show the details for Internet
Explorer.

User Name Password

peter peter

joanna joanna

Note: There needs to be a parent entry listed in the LDAP directory that
you can add users to. That is, a DN of c=US,o=webbank must exist in the
user registry before you can add users.
360 IBM WebSphere V4.0 Advanced Edition Security

Figure 13-4 Security information warning from Internet Explorer

Choose to proceed (in the case of Internet Explorer, select Yes). Once the
security warnings have been dealt with, you will be presented with the basic
authentication challenge to log in to your Web site.

Figure 13-5 Basic login prompt for WebSEAL

Enter a valid user name and password as created in steps 3 and 4 above and
click OK. A successful login will produce the page shown in Figure 13-6 on
page 362.
 Chapter 13. Policy Director 361

Figure 13-6 Successful login to your WebSEAL Web site

6. Check the name of your WebSEAL server, as defined in Policy Director. It is
of the format webseald-<shortHostname>. To list all the servers that are
defined to PD, from a pdadmin command prompt, enter:

pdadmin> server list

Our server used for this example is webseald-m23vnx64.

7. Now, create a WebSEAL junction to associate WebSEAL with your Web
server. We will create a TCP junction rather than an SSL junction, that is, the
communication between WebSEAL and the Web server will not be encrypted.
The syntax is:

pdadmin> server task <WebSEALServer> create -t tcp -h
<WebServerFullHostname> -p <WebServerPort> </junctionName>

In our case, the command we used was:

pdadmin> server task webseald-m23vnx64 create -t tcp -h
m23vnx64.itso.ral.ibm.com -p 8080 /httpserver

This created a junction called /httpserver to our Web server, IHS, listening on
port 8080. The full name of our junction in the object space is
/WebSEAL/m23vnx64/httpserver.
362 IBM WebSphere V4.0 Advanced Edition Security

8. Create a group called employees. We will add just one of our valid users to
this group so that we can demonstrate that the access controls are working.

The syntax for creating a group is:

pdadmin> group create <groupName> <groupDistinguishedName>
<groupCommonName> <groupContainer>

In our example, we used:

pdadmin> group create employees cn=employees,c=US,o=webbank employees
WEBBANK

If you use the Directory Management Tool for the LDAP server to view your
user registry, you will now see this new group entry.

9. Now we will add one of our two valid users to this group. The syntax for this
process is:

pdadmin> group modify <groupName> add <userName>

In our example, we used:

pdadmin> group modify employees add joanna

Again, you can check that this user has been added to the group using the
LDAP tool.

10.We now need to create an access control list (ACL) to associate with the
WebSEAL junction we created earlier. The syntax to create an ACL is:

pdadmin> acl create <aclName>

For our example, we used:

pdadmin> acl create webbank-acl

11.For this ACL to be of use, we need to define some users and/or groups to it.
For this example, we will add the employees group which contains a single
user. The syntax for this is:

pdadmin> acl modify <aclName> set group <groupName> <permissions>

In our example, we used:

pdadmin> acl modify webbank-acl set group employees Trx

The permissions T,r and x refer to:

Table 13-2 Permissions descriptions

Permission Description

T Traverse sub-directories

r Read permission

x Execute permission
 Chapter 13. Policy Director 363

12.Finally we must associate this ACL to the junction. The syntax is:

pdadmin> acl attach <fullJunctionName> <aclName>
pdadmin> acl attach /WebSEAL/m23vnx64/httpserver webbank-acl

This will enable the user joanna to read, execute and traverse objects on the
Web server. The user peter should not be able to access any of the Web
server resources.

13.Now test that the result is what you expected. When you point your browser to
https://<WebSEALfullHostname>/<junctionName>/index.html, this refers to
the IHS home page. If you try to log in with the user name peter, you should
get an authentication failure. Logging in as joanna should present you with
the IHS page.

In our example, the URL we used was:
https://m23vnx64.itso.ral.ibm.com/httpserver/index.html.

If you are warned about the SSL certificate, choose to proceed. When
prompted to enter a user name and password, first enter the user that should
not work, in our case, peter. You should get an error page like the one in
Figure 13-7.

Figure 13-7 Error page received when using an invalid user name

Now restart your browser and try again. This time use a valid user name, in
our case joanna. You should see the IHS home page as shown in
Figure 13-8.
364 IBM WebSphere V4.0 Advanced Edition Security

Figure 13-8 Successful login by a valid user

13.2.3 Using Tivoli Policy Director to protect WebSphere URIs
The instructions in this section do not involve any WebSphere security. Here we
will use Policy Director to secure servlets and JSPs which belong to WebSphere.
Policy Director cannot secure EJB resources. It also cannot be used to secure
individual methods, only the URI. If this is sufficient for your requirements, then
using just Policy Director would be sufficient in some circumstances.

For this section, we assume that the instructions in the previous section, “Using
Tivoli Policy Director to protect static pages” on page 358, have also been
completed. This is because the WebSphere resources in this case are just an
extension of what we have already done. By protecting the Web server space,
we have automatically protected anything that is accessed through it.

First, install and configure WebSphere Application Server V4. Make sure you
install the Samples, as we will use them in this section.

1. From the WebSphere AdminClient, start the Default Server. Verify that the
setup was successful by using Snoop servlet, accessing it through the
embedded HTTP server, for example,
http://m23vnx64.itso.ral.ibm.com:9080/servlet/snoop.
 Chapter 13. Policy Director 365

Figure 13-9 Successful snoop servlet request

2. Now we need to change the WebSphere configuration to accept requests
coming from the IHS server. By default, WebSphere accepts traffic from port
80, so we need to change it for traffic coming from port 8080 (the port we
changed it to in “Using Tivoli Policy Director to protect static pages” on
page 358).

From the WebSphere Administration Console, expand the Domain and select
Virtual Hosts. In the right-hand pane, make sure that default_host is
selected. Next to Aliases, select Add. A new, blank line will appear in the list.
Enter *:8080, then click Apply.

Figure 13-10 Virtual Host alias list
366 IBM WebSphere V4.0 Advanced Edition Security

3. Update the Web server plug-in configuration file, plug-in-cfg.xml, to reflect
that WebSphere will accept traffic from this port. To do this, expand Nodes
and select your WebSphere node. In our case, the node is called m23vnx64.
Right-click your node and select Regen Webserver Plugin.

4. Verify that IHS can communicate with WebSphere on this port by pointing
your browser to http://<fullHosname:8080>/servlet/snoop. In our case,
that is http://m23vnx64.itso.ral.ibm.com:8080/servlet/snoop.

5. Now access Snoop through Policy Director, using
https://<fullHostname>/httpserver/servlet/snoop, and you should be
prompted for a user name and a password as before. Enter a valid user, in
our case, joanna, and you should be able to successfully access the Snoop
servlet.

6. Try out some other applications from the WebSphere samples. For example,
the HitCount application which you can use with EJBs, through
https://m23vnx64.itso.ral.ibm.com/httpserver/webapp/examples/HitCount

Figure 13-11 HitCount web application: EJB model

It is possible to change the permissions on individual objects in the object space.
For example, if you only want some people to access the Snoop servlet, you can
apply a different access control list to just this object to restrict the users who can
access it. The users you want to have access to one particular object must have
access to the parent object.
 Chapter 13. Policy Director 367

If you use the Snoop servlet, then the users you want to access this must also
have access to the /httpserver junction object space that we created earlier.

The following instructions extend what we have done so far and allow only user
peter to access Snoop. User joanna is no longer allowed access.

1. First we need to add the user name peter to the group associated with the
access control list for our junction. The group is called employees.

pdadmin> group modify employees add peter

User peter will now be able to access everything that user joanna can access.

2. Create a new group to use with the access control list for the Snoop servlet.

pdadmin> group create managers cn=managers,c=US,o=webbank managers

Now add user peter to this group.

pdadmin> group modify managers add peter

3. Create a new ACL. We will use this to control access to the Snoop servlet.

pdadmin> acl create webbank-mgr-acl

Now associate the group managers with this new ACL. Grant the users
permissions Trx as before.

pdadmin> acl modify webbank-mgr-acl set group managers

4. Now attach this ACL to the Snoop servlet object:

pdadmin> acl attach /WebSEAL/m23vnx64/httpserver/servlet/snoop
webbank-mgr-acl

This will allow user peter, but not user joanna, to access the Snoop servlet.
The user joanna still has access to the other resources in the /httpserver
object space.

To test this, point your browser to https://<fullHostname>/servlet/snoop.
Try logging on as user joanna. You should get a Forbidden error as in
Figure 13-7 on page 364. Try again with user peter and you should be
successfully authenticated to access the Snoop servlet, as shown in
Figure 13-9 on page 366.

13.2.4 Policy Director LTPA authentication
With Tivoli Policy Director 3.8, it is now possible for WebSEAL to generate and
understand WebSphere LTPA tokens. This means that WebSphere will receive
the request along with a valid LTPA token, so that WebSphere considers the user
authenticated.
368 IBM WebSphere V4.0 Advanced Edition Security

This method of authentication does not require WebSphere to be configured in
any special way to allow Policy Director to provide this service, as with Web Trust
Association (see Section 13.2.5, on page 381).

WebSphere and Policy Director do need to share the same LTPA keys. This is
because LTPA tokens are encrypted; in order for WebSphere to verify that it has
received a valid LTPA token, it must be able to decrypt it. Exporting the keys from
WebSphere and importing them into Policy Director is a manual process.

This method of integration between Policy Director 3.8 and WebSphere is very
useful, especially if the version of WebSphere you are using does not support
Web Trust Association.

For our purposes, we will use this method to authenticate access to our
Webbank application. The following steps will be required:

� Configure WebSphere to use the same LDAP repository as Policy Director.

� Enable security for the Webbank application.

� Export the LTPA keys from WebSphere.

� Create a WebSEAL junction to generate the LTPA tokens using the LTPA
keys.

For this example, we used a configuration slightly different from the previous
one. Here we have a two machine configuration: one with SecureWay LDAP,
Policy Director and WebSEAL, and a second with IBM HTTP Server and
WebSphere (see Figure 13-12 on page 370).

Note: With previous versions of WebSphere, you needed to enable SSO for
the Policy Director LTPA authentication to work correctly. This meant that
WebSphere would send a cookie containing an LTPA token back to the
browser with the HTTP response. This cookie was not used or required for
Policy Director LTPA to work. However, because this cookie, containing the
LTPA token, was sent back to the browser, there was exposure. The LTPA keys
could be cracked in an off-line attack. This meant that it was important to
periodically regenerate the LTPA keys within WebSphere and redistribute
them to Policy Director.

With WebSphere V4 SSO it is no longer required for PD LTPA authentication
to work. Even if it is enabled, the LTPA token is no longer sent to the browser,
eliminating this exposure.
 Chapter 13. Policy Director 369

Figure 13-12 Two box configuration used in this LTPA scenario

1. Create a WebSphere administration ID to access the same LDAP that Policy
Director is using:

pdadmin> user create wasadmin "cn=WAS Admin,c=US,o=webbank" wasadmin
wasadmin passw0rd
pdadmin> user modify wasadmin account-valid yes

2. Modify the LDAP ACL for this user. From the SecureWay Directory
Management Tool, click Add Server in the bottom right-hand corner of the
window.

Note: When you installed Policy Director, it made changes to the default
SecureWay LDAP server configuration. In particular, by default, a user
does not have the permissions to read or search the registry. These
permissions are required by the WebSphere administration user name.
The best way to do this is to add an LDAP ACL to this user which provides
the right level of access.

M23caaah.itso.ral.ibm.com:90

IHS

WebSphere

M23vnx64.itso.ral.ibm.com:80

WebSEAL

Policy Director

LDAP

Browser
370 IBM WebSphere V4.0 Advanced Edition Security

Figure 13-13 Adding a new server entry panel

3. In the right-hand panel, enter:

– The server name: ldap:// <fullHostname>

– The authentication type: Simple

– The user DN: cn=root

– The user password: <rootPassword>

Click OK to finish. You will see a second tree structure in the left-hand panel
for this server definition.

4. Click Browse tree to see the list of defined users and groups.
 Chapter 13. Policy Director 371

Figure 13-14 LDAP server registry tree structure

5. Double-click your new user, cn=WAS Admin, to bring up the Edit User
Properties window.

Figure 13-15 Edit user properties box
372 IBM WebSphere V4.0 Advanced Edition Security

6. Click the ACL button to bring up the window allowing you to edit the user’s
access privileges. This is where we are going to enable the user to read and
search the user registry so that this user’s information can be referenced for
the WebSphere administration user name.

Under the ACLs tab, provide the following information:

– Distinguished name (DN): CN=ACCESSID

– Type: accessid

Click Add.

7. Now change the Security classes so that Read and Search permissions are
granted for each class: normal, sensitive and critical. A completed ACL panel
should look like that shown in Figure 13-16.

Figure 13-16 Access control for wasadmin user

8. Now select the Owners tab. For the Distinguished name, enter cn=WAS
Admin,c=US,o=webbank. For the type, select access-id. Then click Add to
save the change.
 Chapter 13. Policy Director 373

Figure 13-17 Assigning the access permissions to the wasadmin user

9. Click OK to close the ACL entry box.

10.Click OK again to close the Edit User Properties window.

You now have a user name that can be used for the WebSphere
administration ID.

11.Here we assume that you already have the Webbank application installed on
your node. If you have enabled security for the application before you
installed Policy Director, then you may need to make some changes to your
global security settings.

From the WebSphere administration console, start the Security Center by
clicking Console -> Security Center. Under the General tab, make sure that
the Enable Security checkbox is selected. Now select the Authentication
tab. Enter the following information:

Table 13-3 Authentication settings

Field Value

Authentication Mechanism Lightweight Third Party Authentication (LTPA)

Enable Single Sign On (SSO) Yes

Registry LDAP

Security Server ID The user name you created in step 1

Security Server Password The password for the user name

Host IP address of your LDAP server

Directory Type SecureWay

Port 389

Base Distinguished Name o=webbank
374 IBM WebSphere V4.0 Advanced Edition Security

The values that we used are shown in the figure below.

Figure 13-18 Global authentication settings

12.For the example in this chapter, we will be using groups and users defined
from Policy Director, so we need to change the search filter for groups.

Bind Distinguished Name Full DN of user name created in step 1

Bind Password Password

Note: The default SecureWay configuration for WebSphere will search for
users in the LDAP registry using the object class ePerson and search for
groups using the object classes groupOfName and groupOfUniqueNames.
This is enough for users and groups created outside of Policy Director
(PD), but PD creates groups based on the object class accessGroup. This
means that the group filter for the SecureWay configuration needs to be
modified if you are going to use groups that you create using PD.

Field Value
 Chapter 13. Policy Director 375

Change the Directory Type to Custom. Click the Advanced button in the
LTPA Settings section of the Security Center. You will be presented with the
LDAP Advanced Properties pop-up window. Change the group entries to the
following values:

Table 13-4 Group filter values

So the completed panel will look like the one shown in Figure 13-19.

Figure 13-19 Modified search filter for SecureWay

Click OK to save the changes.

13.Click Apply in the Authentication pane to commit the changes.

14.Generate the LTPA keys by clicking the Generate keys button. You will be
prompted with the LTPA Password entry window.

Enter a password and confirm it, then click OK. Remember this password, as
it will be required to import the keys into Policy Director.

Field Value

Group Filter (&(cn=%v)(objectclass=accessGroup))

Group Member ID Map accessGroup:member

Note: If you do not do this now you, will be prompted when you click OK.
However, because we want to export the keys before we finish, we need to
have generated the keys first.
376 IBM WebSphere V4.0 Advanced Edition Security

The LTPA keys are stored in the Admin repository. There are three keys that
have been created:

– Private key: used to sign the LTPA token.

– Public key: used to verify the signature of the LTPA token.

– Shared key: a triple DES key used to encrypt and decrypt the LTPA token.

15.Export these keys to a file. From the Authentication pane of the Security
Center, click the Export key... button. You will be presented with an Export to
File... pop-up window.

Choose a location and name for your file, for example, c:\LTAPKeys.txt. Click
Save. An ASCII file is created, containing the key information. An example of
this file is shown in Example 13-1.

Example 13-1 LTPA exported key file

#
#Thu Nov 01 17:13:09 EST 2001
com.ibm.websphere.CreationDate=Thu Nov 01 17\:13\:09 EST 2001
com.ibm.websphere.ltpa.PublicKey=ALTMSay9hEW348PPww1HLzWYMYxsGaL0uHmtaPdZfZnXxq
NvLu+Fgd/E4uptPa85/RP5g9DgveQMxRfAr2GFWzQkFuA1w6RgELQa89eFYG7bzp+trABlnbEukv6H2
02g0WduSLQ8EvITYRTXNr6gy+SsCRPAXSDWxWlb9dlMvTx1AQAB
com.ibm.websphere.ltpa.version=1.0
com.ibm.websphere.ltpa.Realm=m23vnx64.itso.ral.ibm.com\:389
com.ibm.websphere.ltpa.PrivateKey=Hciu1KQVYqxh06QnNtvcCTdh4s0iyYko8RGVAHhRMQ95a
CeZAqGpHhMiiq9w3Edywh9obJD3bQTKyTc0PzlZxep+V2RF7cWf6jPXQY6clEpc28gCZsxvoUmZKtFD
D/fvpmRhgF23osC0HT6DUGJkHVTZ2K7St44nsLfqtgnzqyPn9G3lAA8JKbtstdKmP0xVy5auJ2oeg4J
AkkXskqaAf6YSBfMFupYS0aRFPqbu4YvKtAfCi1W9DUaA+XxirVrkqnL+8TQQLsvCKODC5UbNEqItcN
ZNcSkDhua1cC9dYgRYWeXRL1GKX/1d28b8r/LpqJ6CAG2d1tUHUdFynpb0r0m5nYxG/0sAo8aOBAhvl
JQ\=
com.ibm.websphere.CreationHost=M23CAAAH
com.ibm.websphere.ltpa.3DESKey=i/E2OlfUPL6tuWoS+LqPNfuDUR2O2eLPhbJvTv0VRrg\=

16.Now that you have finished configuring security, click OK to finish.

17.For the changes to take effect, you need to restart the WebSphere Admin
Server. Right-click the node and select Restart. You will be prompted for
confirmation, because this action will cause the administration console to
close. Select Yes.

18.Table 13-5 on page 378 contains the users, groups and ACLs that we used for
this example. Using the pdadmin command line tool, create similar entries.
Make sure that all of the users have the account-valid flag set to Yes.
 Chapter 13. Policy Director 377

Table 13-5 List of users and groups

19.Now we will modify the Webbank role mappings to assign appropriate groups
to the security roles for our application. Start the WebSphere Administration
Console, select the Webbank enterprise application and go the User/Role
Mappings tab.

20.Select the Employee role, then click Select. You will be presented with the
Select Users/Groups - Employee entry window.

21.Deselect All Authenticated Users if it is selected, and check Select
users/groups instead.

22.In the Search field, enter an asterisk (*) and click Search. This will list all the
available users and groups in your user registry. Select the employees group
(cn=employees) and click Add.

Figure 13-20 Selecting a specific LDAP group to map to a WebSphere security role

23.Click OK to save the change. Repeat this for the Manager role, assigning the
managers LDAP group to it.

Group Username ACL Permissions

employees joanna, peter, james webbank-emp-acl Trx

managers peter, james webbank-mgr-acl Trx

customers victoria webbank-cust-acl Trx

(no group) marko
378 IBM WebSphere V4.0 Advanced Edition Security

24.From the User/Role Mappings tab, click Apply for the changes to be
committed. If you do not do this, your changes will be lost.

Figure 13-21 Completed User/Role mapping

25.Stop and start the Webbank application.

26.Verify that you can access the Webbank through IHS. Out of interest, you can
view the LTPA token that is sent back to the browser as a cookie. In your
browser settings, turn on cookie prompting. For Internet Explorer, select
Tools -> Internet Options and choose the Security tab, then click the
Custom level... button. Scroll down to Cookies and set Allow per-session
cookies (not stored) to Prompt. Click OK and, when asked if you are sure you
want to make this change, click Yes. Click OK in the Internet Options window.

Point your browser to http://<fullHostname:90>/webbank. You will be told
that a cookie is going to be set. The browser will then be redirected to the
login form. Accept this cookie. When prompted, enter an Employee or
Manager user name. You will be prompted again with the same message
announcing a cookie. This time, view the information in the cookie; in Internet
Explorer, click the More Info button. You will see the LTPA token as a cookie.
 Chapter 13. Policy Director 379

Figure 13-22 LTPA cookie

Click Yes to accept the cookie; you will see the Webbank home page. If you
enter a user name that does not correspond to one of these roles, you will get
a You are not authorized to view this page error message.

27.Now we will create the LTPA junction in WebSEAL so that Policy Director can
perform the authentication for WebSphere. The syntax is:

pdadmin> server task <WebSEALServer> create -t tcp -h <IHSHostName> -p
<IHSPort> -j -i -A -F <LTPAKeyFile> -Z <LTPAPassword> </junctionName>

where

-i supports case insensitive URLs
-j supports WebSphere dynamically created URLs
-A supports LTPA cookies
-F is the LPTA key file
-Z is the LTPA password

The command we used in our environment was:

pdadmin> server task webseald-m23vnx64 create -t tcp -h
m23caaah.itso.ral.ibm.com -p 90 -j -i -A -F c:\LTPAKeys.txt -Z secret
/wasltpa

28.Policy Director can now authenticate the users for the Webbank application.
Verify this by pointing your browser to:
https://<WebSEALHostname>/wasltpa/webbank. If you enter a user name from
the Employee or Manager role, you should be sent to the Webbank home
page; if not, you should be denied access with the message You are not
authorized to view this page.
380 IBM WebSphere V4.0 Advanced Edition Security

If you still have the cookie prompt on, take a look at the contents of the cookie
sent to your browser this time. You will see that it is a special WebSEAL
cookie for the junction.

Figure 13-23 WebSEAL cookie for the LTPA junction

13.2.5 Web Trust Association
WebSphere has the ability to plug in a third party authentication product. The
third party product must be a Reverse Proxy Security Server (RPSS);
WebSphere communicates with this server through a plug-in called a Trust
Association Interceptor.

If you want to use an RPSS to authenticate WebSphere applications, you must
implement the com.ibm.websphere.security.TrustAssociationInterceptor
interface. This interface defines three methods:

� public boolean isTargetInterceptor(HttpServletRequest req) throws a
Web Trust Association exception.

� public void validateEstablishedTrust(HttpServletRequest req) throws a
Web Trust Association exception.

� public String getAuthenticatedUsername(HttpServletRequest req) throws
a Web Trust Association exception.

Note: Notice that even though SSO is enabled in WebSphere global
security, the LTPA token cookie is not sent to the browser as it was when
WebSphere was authenticating the user.
 Chapter 13. Policy Director 381

The plug-in is responsible for establishing trust between WebSphere and the
RPSS. This is possible because the RPSS sends WebSphere a modified HTTP
request, having substituted its credentials (user name and password) in the
header. The plug-in also extracts this client’s user name from a special HTTP
header and passes it to the WebSphere security server to be used for
authorization.

For WebSEAL, there is an implementation of the TrustAssociationInterceptor
already provided with WebSphere V4. The following picture shows the typical
flow of an HTTP request for a secured WebSphere resource authenticated by
WebSEAL through a Web Trust Association.

Figure 13-24 Web Trust Association authentication flow

1. The browser makes a request for a secured WebSphere resource.

2. WebSEAL sends back a challenge, either a HTTP Basic authentication or a
form-based challenge.

3. User name and password are supplied.

4. WebSEAL authenticates the user against LDAP.

5. The modified request is forwarded by WebSEAL to WebSphere.

6. The plug-in, TrustAssociationInterceptor (TAI), establishes that WebSphere
is going to trust the WebSEAL server. It uses the validateEstablishedTrust
method to do this. Optionally, it will bind the WebSEAL user name and
password to the LDAP server for authentication.

7. The plug-in extracts the end user’s user name from the iv-user header field
and passes it to WebSphere to handle authorization.

4

5

6

http request, id: WebSeal, pwd: password,
iv_user: joanna

Bind: joanna, joanna

authenticate

B
in

d:
 W

eb
Se

al
, p

as
sw

or
d

(o
pt

io
na

l)

WebSphere

http request

challenge

id:joanna,
pwd:joanna

WebSEAL

LDAP

7

Trust Association Interceptor

Validate Established Trust
get Authenticated Username

joanna

Security
Server

Browser
1
2

3

382 IBM WebSphere V4.0 Advanced Edition Security

The steps needed to enable Web Trust Association are as follows:

1. Configure WebSphere to enable Trust Association.

2. Set up the Trust Association Interceptors that will receive the request from the
RPSS.

3. Configure an SSL WebSEAL junction.

a. Configure Web Trust Association for WebSphere. From the WebSphere
Administration Console, open the Security Center. Go to the
Authentication tab and select Enable Web trust association.

Figure 13-25 Configuring WebSphere for trust association

Click OK to save your changes.

b. There are two associated properties files: trustedservers.properties and
webseal36.properties. These files are located in the
<WAS_HOME>\properties directory.

The file trustedservers.properties specifies the type of RPSS that is being
used (in this case, webseal36 is the type). It also specifies the class name in
which the interceptor is implemented and the name of the second properties
file.

The example of this file (see Example 13-2) contains the default entries as
shipped with WebSphere. You should not need to modify it for this example.

Example 13-2 trustedservers.properties file for WebSEAL

Trust Association Properties
IBM WebSphere Application Server, Version 4.0, 2001

#Use this property to specify the types of reverse proxy
#servers that will be loaded at runtime
com.ibm.websphere.security.trustassociation.types=webseal36
 Chapter 13. Policy Director 383

#For each type of reverse proxy servers specified in
#com.ibm.websphere.security.trustassociation.types,
#specify the class file that implements the associated
#interceptor for it.
com.ibm.websphere.security.trustassociation.webseal36.interceptor=com.ibm.ws.se
curity.web.WebSealTrustAssociationInterceptor

#Optionally, specify a properties file for any of the
#reverse proxy servers type specified above. The properties file
#must end with ".properties". e.g. webseal36.properties. However,
#do not include this extension as shown below. Moreover, you can only
#do this if the interceptor class extends
WebSphereBaseTrustAssociationInterceptor
#and both init() and cleanup() methods were implemented. The init()
#method should read and parse the contents of the properties file.
com.ibm.websphere.security.trustassociation.webseal36.config=webseal36

The file webseal36.properties specifies the following:

– Special header fields that will be sent by WebSEAL with the request to
WebSphere.

– The location of the WebSEAL server.

– The port where WebSEAL will receive the user requests.

– The user name that WebSEAL must use to establish trust with
WebSphere.

The version of this file that is shipped with WebSphere V4 needs to be
modified for your environment. Uncomment all the directives and change the
values as follows:

Table 13-6 Properties for webseal36.properties file

Example 13-3 shows the version of this file that we used in this scenario.

Example 13-3 webseal36.properties file

WebSeal 3.6 Trust Association Interceptor Configuration file
IBM WebSphere Application WebSphere Version 4.0, 2001

#Uncomment and use this property to specify the header name(s)
#you expect to exist in the HTTP Request

Property Value

com.ibm.websphere.security.webseal36.id iv-user

com.ibm.websphere.security.webseal36.hostnames <WebSEALHostname>

com.ibm.websphere.security.webseal36.ports 443

com.ibm.websphere.security.webseal36.loginId WebSeal
384 IBM WebSphere V4.0 Advanced Edition Security

com.ibm.websphere.security.webseal36.id=iv-user

#Uncomment and use this property to specify where you expect the WebSeal 3.6
#server(s) to be.
com.ibm.websphere.security.webseal36.hostnames=m23vnx64.itso.ral.ibm.com,
m23vnx64

#Uncomment and use this property to specify the port(s) from which the WebSeal
#3.6 server(s) receive user requets
com.ibm.websphere.security.webseal36.ports=443

#Uncomment and use this property to specify the id that the webseal server must
#use to validate trust with the interceptor
com.ibm.websphere.security.webseal36.loginId=WebSeal

c. For Web Trust Association, the communication between WebSEAL and
the Web server must use SSL so that WebSEAL can authenticate the Web
server. This means that both WebSEAL and IHS must be configured for
SSL. IHS must be configured as shown in “Configuring the Web Server to
support HTTPS” on page 239. The keyring that WebSEAL uses must
contain the CA’s root certificate for the server certificate that IHS is using.

This SSL link can use either self-signed certificates or CA-signed
certificates. Either way, the signer of the certificate has to be included in
WebSEAL’s keyring file. We used a self-signed certificate in this example.

Using the instructions in “Configuring the Web Server to support HTTPS”
on page 239, create a keyring file (.kdb) for IHS to use for SSL.

i. Start the ikeyman tool that comes with the GSKit.

ii. Open the keyring file (Key Database File -> Open), then choose the
file and click Open.

iii. Export the signer certificate.

As we are using a self-signed certificate, make sure that you are in the
Personal Certificates view. Select your certificate and click Extract
Certificate....

Important: It is important, when importing the IHS root CA certificate into
the Policy Director keyring, that you use the ikeyman tool that comes with
the GSKit. You installed the GSKit during the Policy Director installation;
the default location is c:\program files\ibm\gsk4\bin\gsk4ikm.exe. Due to
differences in the levels of the GSKit used by IHS and PD, the SSL
connection between WebSEAL and IHS will be impossible to establish if
you use the IHS version.
 Chapter 13. Policy Director 385

Figure 13-26 Extracting a self-signed certificate

iv. You will be presented with the Extract Certificate to a File pop-up
window. Fill out the fields, then click OK.

Data type: Base64-encoded ASCII data

Certificate file name: cert.arm

Location: C:\IBM HTTP Server\

Note: If you are using a CA-signed certificate, then switch to Signer
Certificates; select the CA root certificate and click Extract. You will be
presented with the Extract Certificate to a File pop-up window where you
can save the certificate.
386 IBM WebSphere V4.0 Advanced Edition Security

Figure 13-27 Exporting CA root certificate

v. Close this keyring by clicking Key Database File -> Close.

vi. Open the WebSEAL keyring file
<PD_HOME>\PDWeb\www\certs\pdsrv.kdb. The password for this file
is pdsrv.

vii. Switch to Signer Certificates and click Add.

viii.Enter the name and location of the CA’s root certificate you saved, then
click OK. When prompted, enter a label for the certificate, for example,
IHS Root Certificate.

ix. Close this keyring file.

d. To configure the Web server to accept encrypted traffic (HTTPS), we must
modify the configuration file for IHS. Add the following lines to the
httpd.conf file:

LoadModule ibm_ssl_module "<IHS directory>/modules/IBMModuleSSL128.dll"
AddModule mod_ibm_ssl.c
Listen 443
Keyfile <IHS keyring file>
SSLV2Timeout 100
SSLV3Timeout 1000
NameVirtualHost <fullHostname:443>
<VirtualHost <fullHostname:443>>
SSLEnable
SSLClientAuth none
SSLServerCert <yourCertificateName>
ServerName <yourServerName>
DocumentRoot "c:/ibm http server/htdocs"
</VirtualHost>

Note: Make sure, if you created the keyring file elsewhere, that you copy
the stash file (.sth) to the same location as the .kdb file.
 Chapter 13. Policy Director 387

Below are the entries we used in our httpd.conf file.

Example 13-4 Our httpd.conf file entries for SSL

LoadModule ibm_ssl_module "c:/ibm http server/modules/IBMModuleSSL128.dll"
AddModule mod_ibm_ssl.c
Listen 443
Keyfile "c:/ibm http server/PluginKeyring.kdb"
SSLV2Timeout 100
SSLV3Timeout 1000
NameVirtualHost m23caaah.itso.ral.ibm.com:443
<VirtualHost m23caaah.itso.ral.ibm.com:443>
SSLEnable
SSLClientAuth none
SSLServerCert ihsplugin
ServerName m23caaah.itso.ral.ibm.com
DocumentRoot "c:/IBM http server/htdocs"
</VirtualHost>

Verify the SSL configuration by pointing your browser to the Web server
machine (https://<fullHostname>). You may get a security warning, then
you should see the IHS home page.

e. Now we need to create the WebSEAL SSL junction to the Web server.
This junction needs to support the special header in which the client’s user
name will be transmitted, iv-user. We also need to define the special
WebSEAL user name that will be used to authenticate the server with
WebSphere.

i. First, create the new WebSEAL user and make it active. We created a
user called WebSeal.

pdadmin> user create WebSeal cn=WebSEAL,c=US,o=webbank WebSeal
WebSeal passw0rd

pdadmin> user modify WebSeal account-valid yes

ii. Create the SSL junction. The syntax is:

pdadmin> server task <WebSEALServer> create -t ssl -h
<IHSFullHostname> -i -j -B -U <username> <password> -c iv-user
</junctionName>

Note: Because we have WebSEAL and the Web server on two separate
machines, we can use port 443 for the secure traffic on both of them. If
everything were installed on a single box, you would use different ports for
the SSL traffic to avoid conflicts.
388 IBM WebSphere V4.0 Advanced Edition Security

In our example, this translated to:

pdadmin> server task webseald-m23vnx64 create -t ssl -h
m23caaah.itso.ral.ibm.com -i -j -B -U WebSeal passw0rd -c
iv-user /wastai

f. Restart the WebSphere admin server and make sure the Webbank
application is running. Now, point your browser to
https://<WebSEALHostname>/wastai/webbank. If you enter a user name
that does not have authority to access the Webbank application, you will
get a You are not authorized to view this page message, as with the
LTPA authentication. With a user name from the Employee or Manager
role, if you have kept the SSO flag on, you will see an LTPA cookie
returned.

Figure 13-28 LTPA token as a cookie with SSO and Web Trust Association

The SSO flag is on in WebSphere because our Webbank application used
Form-based authentication, which requires SSO. Now that Policy Director
is providing the authentication, this flag is no longer required.

Accept this cookie and you will be presented with a second cookie for the
junction.
 Chapter 13. Policy Director 389

Figure 13-29 Web Trust Association junction cookie

Accept this cookie and you will be presented with the Webbank home
page.

If you turn on tracing for security in the Administration Console, then start a new
browser and go to the Webbank application, you can see what is happening by
looking in the tracefile.

1. First, the WebSEAL identity is authenticated:

Example 13-5 WebSEAL user name being authenticated by WebSphere

[01.11.05 21:20:54:667 EST] 56551f4f LdapRegistryI D Authenticating
WebSeal

[01.11.05 21:20:54:667 EST] 56551f4f LdapRegistryI D Searching for users
[01.11.05 21:20:54:677 EST] 56551f4f LdapRegistryI > getUsers

WebSeal
[01.11.05 21:20:54:677 EST] 56551f4f LdapRegistryI D filter =

(&(uid=WebSeal)(objectclass=ePerson))
[01.11.05 21:20:54:727 EST] 56551f4f LdapRegistryI D Found user

cn=WebSEAL,c=US, o=webbank

Note: These are not continuous trace sections; rather, we have extracted the
key lines from the trace to show you what is happening.
390 IBM WebSphere V4.0 Advanced Edition Security

2. Then WebSphere maps the end user identity and this WebSEAL identity. We
used the user name joanna to log in to the Webbank application.

Example 13-6 WebSphere maps the end user to WebSEAL identity

[01.11.05 21:20:55:118 EST] 56551f4f LTPAServerObj > mapCredential
[01.11.05 21:20:55:118 EST] 56551f4f LTPAServerObj D TrustAssociation id in the
Credential
[01.11.05 21:20:55:118 EST] 56551f4f LTPAServerObj >
mapTrustAssociationUserCredential
[01.11.05 21:20:55:138 EST] 56551f4f SecurityColla D
MethodName=findAllByPattern(java.lang.String):0
AllByPattern
[01.11.05 21:20:55:148 EST] 56551f4f RegistryEntry D pattern

joanna

3. Now, WebSphere checks that this user is authorized to access the requested
resource.

Example 13-7 WebSphere authorizes the end user

[01.11.05 21:20:55:358 EST] 56551f4f SecurityColla > performAuthorization
[01.11.05 21:20:55:428 EST] 56551f4f WSRegistryImp > getPrivilegeAttributeId
[01.11.05 21:20:55:428 EST] 56551f4f WSRegistryImp D user

cn=Joanna Hodgson,c=US, o=webbank
[01.11.05 21:20:55:569 EST] 56551f4f LTPAServerObj D accessId :
user:m23vnx64.itso.ral.ibm.com:389/cn=Joanna Hodgson,c=US, o=webbank
[01.11.05 21:20:55:619 EST] 56551f4f SecurityColla D AccessAllowed true
 Chapter 13. Policy Director 391

392 IBM WebSphere V4.0 Advanced Edition Security

Chapter 14. Single Sign-On

This chapter discusses Single Sign-On with the IBM WebSphere Application
Server V4 Advanced Edition.

There are different scenarios in which Single Sign-On is exercised between
application servers:

� WebSphere Application Server-WebSphere Application Server

� WebSphere Application Server-Lotus Domino server, using Secureway LDAP

� WebSphere Application Server-Lotus Domino server, using Domino LDAP

14
© Copyright IBM Corp. 2002 393

14.1 Single Sign-On
Single Sign-On (SSO) is the process which permits Web users to move between
differents applications located on the same or different physical machines,
without being prompted for a user name and password (or certificate) every time.

The Lightweight Third Party Authentication (LTPA) mechanism is used for
enabling SSO between servers. This mechanism utilizes an LTPAToken which
contains the user authentication information, the network domain in which the
SSO should be valid and the expiration time after which the user might be
required to re-authenticate. The LTPAtoken is encrypted using the LTPA keys that
must be shared between all the SSO participating servers.

The token is issued to the Web user in a cookie called a transient cookie; this
means that the cookie resides in the browser memory, is not stored on the user’s
computer system and expires when the user closes the browser. This cookie is
easily recognized by its name: LtpaToken.

It is possible to enable SSO between WebSphere servers, between Domino
servers and between WebSphere and Domino servers.

The requirements for enabling SSO are:

� The use of the same registry (LDAP Server) for authentication.

� All SSO participating servers must be in the same DNS domain.

� The URLs must include the DNS domain (no IP addresses or host names).

� The browsers must be configured to accept cookies.

� Servers’ time and time zone must be correct (SSO token expiration time is
absolute).

� All servers must share the LTPA keys.

The purpose of this section is to explain how to configure the SSO between
WebSphere and Domino. To demonstrate SSO, we used the Webbank
application and created a new Domino database to allow users to send
comments to the bank site. For more information about the sample application,
refer to “Domino Webbank sample” on page 98. These two applications are
presented in the following scenarios:

1. WebSphere-Domino using IBM SecureWay as the common LDAP registry.

2. WebSphere-Domino using IBM SecureWay as the common LDAP registry
with SSL.

3. WebSphere-Domino using Domino as the common LDAP registry.

4. WebSphere-Domino using Domino as the common LDAP registry with SSL.
394 IBM WebSphere V4.0 Advanced Edition Security

14.2 WebSphere-Domino using SecureWay Directory
We used the following product versions in the example documented below:

� Windows 2000 with Service Pack 2.

� 1 GB RAM and 16 GB of hard disk space.

� IBM SecureWay Directory Server V3.2.1 for Windows.

� IBM DB2 Universal Database V7.2.1, Enterprise Edition for Windows.

� IBM HTTP Server 1.3.19 for Windows as the Web server installed in the same
machine as the WebSphere server.

� Lotus Domino Server R 5.06a.

� WebSphere Application Server Advanced Edition 4.01.

� Microsoft IE 5.5 for the Web user.

The example is shown in Figure 14-1:

Figure 14-1 Sample SSO Domino - WebSphere using IBM SecureWay Directory

1. A Web user submits a request to a Web server (Domino or the HTTP Server)
for a protected resource. In the case of Domino, the user wants to create a
new comment in the webbank.nsf database. In the case of WebSphere, the
user wants to make a new bank transfer.

LDAP
DB2

LDAP server

webbank
database

Domino server WebSphere
server

Webbank
application

SSO Domino - WebSphere

LDAP
DB2

LDAP server

webbank
database

Domino server WebSphere
server

Webbank
application

SSO WebSphere - Domino

8
7

1
2

3
6

4

5

1
2

3
6

7

8

4

5

 Chapter 14. Single Sign-On 395

2. The Web server prompts the user for the authentication information.

3. The user responds to the challenge by supplying the information (user name
and password or certificate).

4. The Web Server contacts the LTPA server (Domino or WebSphere) which
connects with the IBM SecureWay Directory to verify the authentication
information.

5. If the information supplied for the user is correct, the IBM SecureWay
Directory responds to the LTPA server with the validated information.

6. The LTPA server uses the returned values to check whether the user has
access to the requested resource and issues an LTPA token for the user. The
Web server sends the token to the user as an HTTP cookie, which is stored in
the user’s browser, and serves the requested resource (opening the Webbank
database in the case of Domino or Webbank.html in the case of WebSphere).

7. Once the user is authenticated and has the cookie available, he or she can
request another protected resource to Domino or WebSphere.

8. Domino or WebSphere validates the token provided for the user and tells the
Web server to send the requested resource to the browser (as long as the
user has access to that resource) without prompting again for user
information.

The necessary steps to set up Single Sign-On between WebSphere and Domino
involve:

� Installing and configuring software products and application examples.

� Enabling Single Sign-On for WebSphere Application Server.

� Enabling Single Sign-On for the Domino Server.

Installing and configuring software products and applications

For more details on how to install and configure the software products, refer to
the installation manuals; in the case of IBM Secureway Directory Server, refer to
Chapter 16, “IBM WebSphere Application Server and LDAP” on page 459.

Make sure, before you begin enabling SSO, that the Webbank application has
been installed in WebSphere and that the Webbank Comment Application
database has been created in Domino. For more details, refer to Section 5.6,
“Domino Webbank sample” on page 98.
396 IBM WebSphere V4.0 Advanced Edition Security

Directory structure
In our example, we set the suffix o=Webbank, where o represents an organization.
Then we created a new Organizational Unit ou=ITSO and added the Users and
Groups beneath this organizational unit. The directory structure is shown in
Figure 14-2.

Figure 14-2 IBM SecureWay Directory structure

14.2.1 Enabling Single Sign-On for WebSphere
To set up SSO in WebSphere for our example, it is necessary to execute the
following tasks:

� Configure the Global Security Settings in WebSphere for SSO.

� Apply security to the Webbank application example.

Configuring Global Security Settings for SSO
To configure Global Security Settings for SSO in WebSphere, perform these
main configuration processes:

1. Start WebSphere Administrator’s Console (the WebSphere administration
Server 4.0 must be running first).

2. Select Console -> Security Center... This will display the Global Security
Settings for WebSphere. Select Enable security in the General tab.

3. Click the Authentication tab and choose Lightweight Third Party
Authentication (LTPA) as the Authentication mechanism type.

4. Specify the following LTPA settings:

– Select how many minutes can pass before a client using an LTPA token
must authenticate again, in the Token Expiration field. By default, this is
120 minutes.

cn=root

o=webbank

ou=ITSO

Users Groups
(cn=Victoria Amor)

(cn=Joanna Hodgson)

(cn=Manager)

(cn=Employee)
 Chapter 14. Single Sign-On 397

– Select Enabled Single Sign-On (SSO). The Domain field will be currently
enabled.

– Enter a DNS domain name in the Domain field. In our example, we set
this domain to itso.ral.ibm.com. This domain name is used when the
HTTP cookie is created for SSO and determines the scope to which SSO
applies.

5. Select the LDAP radio button and introduce the LDAP server settings as
explained in Chapter 16, “IBM WebSphere Application Server and LDAP” on
page 459.

All these settings are illustrated in Figure 14-3.

Figure 14-3 Specifying LTPA authentication and SSO in WebSphere

Important: Remember that all SSO participating servers must be in the same
DNS domain.
398 IBM WebSphere V4.0 Advanced Edition Security

6. Click the Generate Keys... button to create the LTPA keys for encrypting the
LTPA token. You will be prompted for an LTPA password to protect the set of
encryption keys; type in your password, for example websphere. The LTPA
keys must be shared between all the servers using SSO.

7. Click OK. A new message in the Administrator’s Console will appear:

Command ’Generate LTPA Keys" running

When the process is completed, the Console will show the following
message:

Command ’Generate LTPA keys" completed succesfully

8. Once the LTPA keys are generated, click the Export Key... button to export
the LTPA keys to a file. We will use this file to import the keys in Domino. Save
your file to wassecurew.keys.

9. Choose the directory where you want to save the file and give it a name. Click
Save. An example of this file is shown in Example 14-1.

Example 14-1 wassecurew.keys file

#
#Mon Nov 05 17:10:54 EST 2001
com.ibm.Websphere.CreationDate=Mon Nov 05 17\:10\:54 EST 2001
com.ibm.Websphere.ltpa.PublicKey=ALTD13oj+ShmKL3FeYxucbociBn6avPaqeGWtGwekKmcOi
F3tK6gaTI0svrIkAkkm2XO49l5SCJePfhI8DpXOaHDPJx4sz9Y4FifT2zq8RIPESg/dDdz+DwZUAamX
4tbtqplFaCD4LxkcEQSkm9L9SC6jSHaQqaM/1YeAtdoLNhtAQAB
com.ibm.Websphere.ltpa.version=1.0
com.ibm.Websphere.ltpa.Realm=M23VNX78.itso.ral.ibm.com
com.ibm.Websphere.ltpa.PrivateKey=ONo+8v7dhnJ78WtzAhyZIV6imchM9E20Rj7AJM8L5MCTZ
IWZAHAzU6GuNNnOe51TdR6OYXF9X/Kiph2Psij4q32C67Kbo9279WEpJp7+Ob7RYXz7Ah/Hq7lY6fqy
znY/aHTS98BzAFyp/vLbUPo/l5gapI1HYnciWJ9VM4a9BCXEGkV+L7BNw3UqpAzsNb3ncolM8UoHADz
+7A/72Xr8fjUtDpXJZKwvhoM+kgVMhqokflTnxJx84AtqRC7ayDMFxLx+ee9c0DHHLjVxcTUc57YIrW
8hKazsH2xn7+3f/V6QPndotemJzJdD56EIupQkEEkRcZRwl9JEh5awrM9aTcC0ZpTo68o8synbkV9Vw
/g\=
com.ibm.Websphere.CreationHost=M23CABYG
com.ibm.Websphere.ltpa.3DESKey=TEDMXeMc2WF9IGTFvLK5I8UD4eyLaB9Ep7ji+BJPSDM\=

As we can see in the example, three types of LTPA keys have been
generated:

• The private key: used for the LTPA server to sign the LTPA Token.

• The public key: used to verify the digital signature.

• A shared key: used to encrypt/decrypt those tokens.

Note: Selecting the Limit To SSL Connections only field allows you to use a
connection with SSL for SSO. We discuss this topic later in this chapter.
 Chapter 14. Single Sign-On 399

10.Click Apply and then OK. Make sure that the IBM SecureWay Directory is
running, because the Security server ID and Security Server Password will be
verified against the LDAP server.

11.When the process is completed, a warning message will be displayed,
stating: Changes will not take effect until the admin server is
restarted. Click OK.

12.Restart the administration server by selecting the node in the node folder
located in the tree view on the left side of the Console, right-clicking it and
selecting Restart in the resulting context menu.

When the administration server is open for e-business, check that the security
configuration is consistent and that the following lines are added in the
sas.server.props file located in the <WAS-HOME>\properties directory:

Example 14-2 sas.server.props file Security/Authentication section

#Mon Nov 05 12:27:02 EST 2001
com.ibm.CORBA.loginPassword={xor}Lz4sLCgwLTs\=
com.ibm.CORBA.principalName=M23VNX78.itso.ral.ibm.com/wasadmin
com.ibm.CORBA.securityEnabled=true
com.ibm.CORBA.loginUserid=wasadmin
com.ibm.CORBA.authenticationTarget=LTPA

14.2.2 Enabling Single Sign-On for Domino
The SSO setup in Domino, for our example, involves the following tasks:

� Configuring Domino to use the IBM SecureWay Directory server as its user
registry.

� Enabling SSO for Domino.

� Implementing the security to the webbank.nsf database.

Important: For security reasons, it is recommended that you generate a new
set of keys periodically.

Note: The generation of the LTPA keys must be performed when the LDAP
server settings are configured; this guarantees that the LDAP host name is
present in the exported file, as shown in bold in the previous example. Domino
needs this information during the Web SSO Configuration Document creation
process.
400 IBM WebSphere V4.0 Advanced Edition Security

Configuring Domino to use IBM SecureWay Directory
To authenticate Web users using the credentials included in the IBM SecureWay
Directory, perform the following steps:

1. Create the Directory Assistance Database.

Domino uses this database to perform searches in other LDAP-compliant
directories (such as secondary Domino directories or other LDAP Directory
Servers like IBM SecureWay Directory).

To create a new Directory Assistance database, start the Domino R5
Administration client with a Notes administrator ID, then from the Domino
Administrator menu:

a. Choose File -> Database -> New. The new database Dialog Box is
displayed.

b. Select the server where you want to create the new database.

c. Enter a title for the database, for example, Directory Assistance.

d. Enter a file name for the database, for example, da.NSF.

e. Click the Template Server... button and select the Domino server that
stores the Directory Assistance template (DA50.NTF); highlight it.

f. Make sure that Inherit future design changes is selected, then click OK.

This settings are illustrated in Figure 14-4.

Figure 14-4 Creating the Directory Assistance database

Note: Create a replica of the Directory Assistance database if more Domino
servers are going to use it.
 Chapter 14. Single Sign-On 401

2. Identify the database on the server by opening the Domino server from the
left server bookmark pane; click the Configuration tab, and select Server ->
Current Server document. In the Basics tab, edit the document and include
the name of the database created (da.nsf) in the Directory Assistance
database name field as shown in Figure 14-5.

Figure 14-5 Identify Directory assistance Database on the server

3. Save the document.

4. In the same place, select Directory -> Directory Assistance database and
click the Add Directory Assistance button to create a new Directory
Assistance document. In the Basics tab, complete these fields:

• Select LDAP Directory in the Domain Type field.

• Enter the name of the Domain this record describes. The Domain
name must be unique. In our example, we set it to SecureWay.

• Select the name of the company associated with this directory (for
example: IBM).

• In the Search Order field, enter the number representing the order in
which this directory is searched relative to other directories in the
Directory Assistance Database. In our case, this is the only Directory
Assistance document, so we do not need to add any number.

• Choose Yes in the Group Expansion field to allow Directory Assistance
to verify Web user membership when a group is included in a database
ACL that the Web user is attempting to access.
402 IBM WebSphere V4.0 Advanced Edition Security

• Choose Yes (the default) in the Nested Group Expansion field to allow
servers to look up names in groups nested within LDAP directory
groups, in database ACLs.

• Choose Yes in the Enabled field to enable directory assistance for this
directory.

These settings are shown in Figure 14-6.

Figure 14-6 Basics tab in the Directory Assistance database

5. Click the Rules tab to specify one or more naming rules that correspond to
the hierarchical names of entries in the directory. Directory assistance uses
naming rules to determine the order in which to search directories when users
provide hierarchical names.

a. For our example, we set the rule */*/*/*/*/* to search for all names in
the directory.

b. Choose Enable to implement this specific rule.

c. In the Trusted for Credentials field, choose Yes to allow Domino to
authenticate only Web clients with names that match the rule.

These settings are shown in Figure 14-7.

Note: For more information about Naming rules in Directory Assistance,
refer to the Domino R5 Administration Help and Administrator’s Guide.
 Chapter 14. Single Sign-On 403

Figure 14-7 Rules tab in Directory assistance

6. Click the LDAP tab and include the LDAP Configuration settings:

a. In the Host Name field, include the DNS Host name for the IBM
SecureWay directory, for example M23VNX78.itso.ral.ibm.com.

b. Enter a distinguished name in the Username field and a password in the
Password field within the Optional Authentication Credential field. In our
example, we created a new user in SecureWay with the following
distinguished name (DN): cn=Domino Admin,ou=ITSO,o=Webbank

c. Introduce the starting point for LDAP searches in the Base DN field, for
example o=Webbank. This field is required for the SecureWay Directory.

d. Select Notes clients/Web Authentication in the Perform LDAP search for
field.

e. Choose None in the Channel Encryption field to allow Domino Server to
connect to the LDAP server without SSL.

f. The port number, by default, is 389 if none is specified.

g. In the Timeout field, enter the maximum number of seconds before a
search is terminated. The default is 60 seconds.

Note: The name and password must correspond to a valid name and
password in the directory of the LDAP directory server. If you did not enter
a name and password, the Domino server attempts to connect to the LDAP
directory server anonymously.

We also recommend using a Notes secret encryption key to encrypt the
Directory Assistance document so that only administrators with the
encryption key can see the contents of the Username and Password fields;
for more details, refer to the Domino R5 Administration Help and
Administrator’s Guide.
404 IBM WebSphere V4.0 Advanced Edition Security

h. In the Maximum number of entries returned field, enter the maximum
number of entries a single search can return; the default value is 100.

All these settings are illustrated in Figure 14-8.

Figure 14-8 LDAP tab in directory assistance

7. Save the document.

8. Make sure that the IBM SecureWay Directory is running by checking the list of
Windows services on the SecureWay machine and using the TCP/IP ping
utility to test the connection to the SecureWay Directory machine from the
Domino Server machine.

9. Restart the Domino server by entering the restart server command in the
Domino Console.

Enabling Single Sign-On for Domino
Setting up Single Sign-On for the Domino Server involves two main steps:

� Creating a Web SSO Configuration Document.

� Enabling Single Sign-On.

Follow these steps to enable SSO for Domino:

1. Create a new Web SSO Configuration Document in the Domino Directory
database.

This action is only required once (it is only possible to create a Web SSO
Configuration document once in your domain) and should be replicated to all
servers participating in the Single Sign-On domain. This document is
encrypted for all the participating servers and contains the LTPA keys used to
authenticate user credentials.
 Chapter 14. Single Sign-On 405

a. Open the Domino Directory and select Server->Servers to display the
view. Click the Web button and select Create Web SSO Document in the
resulting context menu.

b. A new Document will be displayed with the LtpaToken Token Name field ().
This name cannot be modified.

c. Include the DNS domain in the Token Domain Field. This value must
coincide with the value specified in the Domain field in WebSphere. This
domain name is used when the HTTP cookie is created for Single
Sign-On, and determines the scope to which Single Sign-On applies. For
our example, we set this domain to itso.ral.ibm.com.

d. Choose the Domino servers that are going to participate in the SSO
scenario (group names are not allowed), for example: SSODomino/ITSO.

e. Enter the maximum number of minutes that the issued token will be valid
in the Expiration (minutes) field. The Default is 30 minutes. We set this to
120 minutes to match it with the Token expiration time in WebSphere.

f. Click the Key... Action and select Import WebSphere LTPA Keys from the
drop-down menu.

g. Specify the path and the file name for the WebSphere LTPA keys file
exported previously.

h. Click OK. A new dialog box will appear, prompting the user for the LTPA
password specified when the keys were generated (see Figure 14-9).

Figure 14-9 Entering the LTPA password

i. Click OK. When the process completes, a confirmation message will be
displayed.

j. A new WebSphere Information section will appear in the document, as
shown in Figure 14-10.
406 IBM WebSphere V4.0 Advanced Edition Security

Figure 14-10 WebSphere Information in the Web SSO Configuration Document

The LDAP realm is read from the WebSphere Import File and specifies
the LDAP host name included in the WebSphere LDAP settings. This
name must also coincide with that in the Host Name field specified in the
LDAP configuration settings in the Directory Assistance database.

When a port is specified in the WebSphere LDAP configuration settings, it
will be included in the LTPA key exporting file uaing the following format:
M23VNX78.itso.ral.ibm.com\:390. But when the LTPA keys are imported
in Domino in the LDAP Realm Name, the backslash disappears:
M23VNX78.itso.ral.ibm.com:390.

Make sure you add a backslash (\) prior to the colon (:) and replace the
value above with the following: M23VNX78.itso.ral.ibm.com\:390.

The LTPA version denotes the version of the WebSphere LTPA
implementation. It is read from the LTPA importing file.

k. Click the Save and Close button. The document will be saved. To check if
the document is present in the Domino Director, select Server -> Web
Configurations View and expand the *- All Servers - section. The new
document created should be displayed as Web SSO configuration for
LtpaToken.

2. Enabling Single Sign-On in the Domino Server document involves the
following steps:

a. Make sure that in the Document server, the TCP/IP port status in the Web
tab (Ports -> Internet Ports -> Web) is enabled and the Anonymous
Authentication option is set to No, as shown in Figure 14-11.
 Chapter 14. Single Sign-On 407

Figure 14-11 TCP/IP port status settings in the Server Document.

b. Configure the Domino HTTP session support by selecting the Domino
Web Engine tab (Internet Protocols -> Domino Web Engine) of the
Domino server Document. Select the Multi-Server session. Selecting this
option allows the Web user to log on once in the Domino Server and then
gain access to another Domino Server or WebSphere server without
logging on again.

c. Open the Domino server document and switch to the Security tab. Go to
the Web server access section and select Fewer name variations with
higher security in the Web Server Authentication field.

Selecting this level of restriction makes Domino servers less vulnerable to
security attacks by refining how Domino searches for names in the LDAP
directory. This option requires users to enter the following user name
formats in the user name and password dialog box, as shown in
Table 14-1.
408 IBM WebSphere V4.0 Advanced Edition Security

Table 14-1 User name formats

d. Save the Domino Server Document.

e. Restart the HTTP server task by entering the tell http stop and load
http commands or the Tell http restart command in the Domino
Console. A new message will appear in the console, as shown in
Figure 14-12

Figure 14-12 Http: Succesfully loaded Web SSO configuration

If a server enabled for SSO cannot find a Web SSO Configuration
Document or if it is not included in the Server Names field of the document
so the document cannot be encrypted, the following message should
appear in the Domino Server console:

HTTP:Error Loading Web SSO configuration.Reverting to single-server
session authentication.

14.2.3 Implementing the security to the Webbank.nsf database
To implement the security for the Webbank database, we modified the Database
Access Control List (ACL), adding the LDAP Users or LDAP Groups to control
the users’ access to the database.

To add new user names or groups to the ACL, use the LDAP format for the name,
but use forward slashes (/) as delimiters rather than commas (,). For example, if
the name of a user in the LDAP directory is:

uid=vamor,ou=ITSO,o=Webbank

then you should enter in the database ACL:

uid=vamor/ou=ITSO/o=Webbank

Using LDAP Directory for authentication

DN (Full Distinguished Name)

CN (Common Name)

UID or UID with UID= prefix
 Chapter 14. Single Sign-On 409

To add the name of a non-hierarchical LDAP directory group in an ACL, do not
include the name of an attribute as part of the entry, but only the value for the
attribute. For example, if the name of the LDAP group is: cn=manager in the ACL,
enter only: manager. However, if the name of the group is hierarchical in the ACL:
cn=manager,ou=ITSO,o=Webbank, then you should enter:
cn=manager/ou=ITSO/o=Webbank.

To add users and groups to the ACL database, make sure that you have
manager access to the database and perform the following tasks:

1. Select the database icon from your bookmarks page.

2. Select File -> Database -> Access Control.

We set the following ACL for the Webbank Comment Application database:

Table 14-2 Webbank Comments Application database ACL with LDAP users

All these settings are shown in Figure 14-13.

Note: When the LDAP attributes correspond with the attributes used in Notes
(for example: cn, ou, o, c) , the ACL will not display the attributes. For
example: cn=manager/ou=ITSO/o=Webbank appears in the ACL as
manager/ITSO/Webbank.

People, Servers and
Groups

User Type Access Level Authorization

-Default- Unspecified No Access None

LocalDomainServers Server Group Manager Delete Documents

OtherDomainservers ServerGroups No access None

Anonymous Unspecified No access None

Administrators People Group Manager Delete Documents

Manager/ITSO/Webbank People Group Editor Delete Documents

Joanna
Hodgson/ITSO/Webbank

Person Editor Delete Documents
410 IBM WebSphere V4.0 Advanced Edition Security

Figure 14-13 Webbank Comments Application database ACL

3. Click the Advanced button and set the Maximum Internet name & password
access field to Editor, to allow a Web user to create documents in the
database.

14.2.4 Testing Single Sign-On between Domino and WebSphere
We demonstrate the SSO between Domino and WebSphere in the following
scenarios:

– Testing SSO between Domino and WebSphere

– Testing SSO between WebSphere and Domino

Testing SSO between Domino and WebSphere
The Web user wants to create a new Comment Document in the Webbank
Comment application database, specifying the Webbank database URL in its
browser. In our case, this is:

http://m23x2640.itso.ral.ibm.com/Webbank.nsf/Comments?OpenForm

The Domino server will present a default server Login page, as shown in
Figure 14-14.
 Chapter 14. Single Sign-On 411

Figure 14-14 Domino Server Session-based authentication prompt

The Web user has to type in the user name (uid attribute from LDAP) and
password and click the Login button.

The Domino server will perform a search in the IBM SecureWay Directory Server
looking for the user and verifying the password and the Web user group
membership, as we can see in the Domino Console server:

Example 14-3 Domino searches messages in the Domino Console

> 11/07/2001 01:37:53.71 PM [0DE8:0047-0E60] WebAuth> LOOKUP user='vamor'
11/07/2001 01:37:53.71 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
name='vamor' in LDAP server='M23VNX78.ITSO.RAL.IBM.COM'
> 11/07/2001 01:37:53.73 PM [0DE8:0047-0E60] WebAuth> BIND LDAP
host='M23VNX78.ITSO.RAL.IBM.COM:389' with name='cn=Domino
Admin,ou=ITSO,o=Webbank' and password='password', msgid='1'
11/07/2001 01:37:53.73 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'FullName'
11/07/2001 01:37:53.73 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'$$DomainType'
11/07/2001 01:37:53.73 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'$$DBIndex'
11/07/2001 01:37:53.73 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'AltFullName'
11/07/2001 01:37:53.73 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'AltFullNameLanguage'
11/07/2001 01:37:53.73 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'userPassword'
11/07/2001 01:37:53.73 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH Attr:'CN'
11/07/2001 01:37:53.73 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'ObjectClass'
412 IBM WebSphere V4.0 Advanced Edition Security

11/07/2001 01:37:53.75 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Base=o=Webbank
11/07/2001 01:37:53.75 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH Scope=2
11/07/2001 01:37:53.75 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Filter=(|(cn=vamor)(uid=vamor)(sn=vamor)(givenname=vamor))
11/07/2001 01:37:53.75 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Timeout=60 secs
11/07/2001 01:37:53.75 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH returned
'1' match(es).
11/07/2001 01:37:53.75 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH returned
matched DN='cn=Victoria Amor/ou=ITSO/o=Webbank'
11/07/2001 01:37:53.76 PM [0DE8:0047-0E60] WebAuth> BIND LDAP
host='M23VNX78.ITSO.RAL.IBM.COM:389' w/ user='cn=Victoria
Amor,ou=ITSO,o=Webbank', password='password'
11/07/2001 01:37:53.76 PM [0DE8:0047-0E60] WebAuth> VERIFY password='password'
11/07/2001 01:37:53.76 PM [0DE8:0047-0E60] WebAuth> Get group info for new
user.
11/07/2001 01:37:53.76 PM [0DE8:0047-0E60] WebAuth> GroupCache: WildCard
Name='*'
11/07/2001 01:37:53.76 PM [0DE8:0047-0E60] WebAuth> GroupCache: Hierarchical
Name='*/ou=ITSO/o=Webbank'
11/07/2001 01:37:53.76 PM [0DE8:0047-0E60] WebAuth> GroupCache: Hierarchical
Name='*/o=Webbank'
11/07/2001 01:37:53.76 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
name='cn=Victoria Amor/ou=ITSO/o=Webbank' in LDAP
server='M23VNX78.ITSO.RAL.IBM.COM'
11/07/2001 01:37:53.78 PM [0DE8:0047-0E60] WebAuth> BIND LDAP
host='M23VNX78.ITSO.RAL.IBM.COM:389' with name='cn=Domino
Admin,ou=ITSO,o=Webbank' and password='password', msgid='1'
11/07/2001 01:37:53.78 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'ListName'
11/07/2001 01:37:53.78 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'$$DBIndex'
11/07/2001 01:37:53.78 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'$$DomainType'
11/07/2001 01:37:53.78 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH Attr:'CN'
11/07/2001 01:37:53.78 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Attr:'ObjectClass'
11/07/2001 01:37:53.78 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Base=o=Webbank
11/07/2001 01:37:53.79 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH Scope=2
11/07/2001 01:37:53.79 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Filter=(|(&(objectclass=groupOfUniqueNames)(UniqueMember=cn=Victoria
Amor,ou=ITSO,o=Webbank))(&(objectclass=groupOfNames)(Member=cn=Victoria
Amor,ou=ITSO,o=Webbank)))
11/07/2001 01:37:53.79 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH
Timeout=60 secs
 Chapter 14. Single Sign-On 413

11/07/2001 01:37:53.79 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH returned
'1' match(es).
11/07/2001 01:37:53.79 PM [0DE8:0047-0E60] NameLookup|WebAuth> SEARCH returned
matched DN='cn=Manager/ou=ITSO/o=Webbank'

The Domino server authenticates the user and finds that this user has editor
access to the database, because it belongs to the Manager group included in the
ACL. It will then create the LTPAToken and send it as an HTTP cookie, as shown
in Figure 14-15.

Figure 14-15 LTPA token cookie

Note: To view the search messages in the Domino Console, include in the
NOTES.ini file the following setting: WebAuth_Verbose_Trace=1. Use this
setting only for troubleshooting problems with Web server user authentication
and Web server group searches, because using it slows Web server
performance.

Note: To view the cookie, type the command
javascript:alert(document.cookie) in the address bar (URL) of the Web
browser.
414 IBM WebSphere V4.0 Advanced Edition Security

The Domino server then opens the database and sends the user the following
response:

Figure 14-16 New comments document

At this point, the user can click the Submit button to save the document or return
to the Webbank application home page by clicking the link Visit our Public site
in http://www.itsoWebbank.com; this link will connect the user to the
WebSphere URL
(http://m23cabyg.itso.ral.ibm.com:90/Webbank/Webbank.html, in our case)
and will open the Webbank.html page without prompting you again for the user
name and password, as shown in Figure 14-17.

Note: The WebSphere Application Server and Domino server are running on
the same machine, and both of them are running the HTTP server. In order to
avoid port conflicts, WebSphere was set to use port 90 for HTTP requests.
 Chapter 14. Single Sign-On 415

Figure 14-17 Webbank.html page

When the new Comments document is saved, it will be kept in the database as
shown in Figure 14-18.

Figure 14-18 New Comments document in the Webbank database

Testing SSO between WebSphere and Domino
In this case, the user wants to make a new bank transfer specifying the Webbank
application URL in its browser. In our case, this is:

http://m23cabyg.itso.ral.ibm.com:90/Webbank/Webbank.html

The HTTP server prompts the user for the authentication informatio, as shown in
Figure 14-19.
416 IBM WebSphere V4.0 Advanced Edition Security

Figure 14-19 WebBank Login Page

The user responds to the challenge by supplying the information (user name and
password) and clicking the Login button.

WebSphere will connect with the IBM SecureWay Directory Server to verify the
authentication information. If the information supplied is correct, the directory
server responds to WebSphere with the valid information.

WebSphere uses the returned values to check whether the user has access to
the requested resource (Webbank.html) and issues an LTPA token for the user.
The Web server sends the token to the user as an HTTP cookie as shown in
Figure 14-15 on page 414, then opens the Webbank.html page as shown in
Figure 14-17 on page 416.

At this point, the user can type in the data for the transfer and submit it, or send a
new comment to the bank site by clicking the link Please, send your comments
(public). The link will connect to the Domino server URL (in our case
http://m23x2640.itso.ral.ibm.com/Webbank.nsf/Comments?OpenForm) and will
open the Webbank Comments Application database as shown in Figure 14-16
on page 415 , without prompting for the user name and password.
 Chapter 14. Single Sign-On 417

14.3 WebSphere-Domino using SecureWay LDAP with
SSL

Here, we demonstrate the use of SSO in a secure environment using the IBM
SecureWay Directory Server as the user registry. For that purpose, we have
secured the communications between:

� The Web Browser and the Domino server.

� The Web Browser and the HTTP server.

� The Web Server (plug-in) and the WebSphere Application Server.

� Domino and the LDAP server.

� WebSphere and the LDAP server.

Before learning how to configure SSO in a secure environment, make sure that
the following steps have been taken:

1. Certificates have been created for:

– the LDAP server

– the HTTServer

– Domino

– the Web Server plug-in

– WebSphere

2. The LDAP server has been configured to use SSL.

3. The IBM HTTP Server has been configured to use SSL.

4. The Web Server plug-in has been configured to use SSL.

5. WebSphere has been configured to use SSL.

6. Domino has been configured for SSL.

For more details of how to configure SSL and create the certificates, refer to
Section 11.2, “Configuring the Web Server to support HTTPS” on page 239.

To enable SSO in a secure environment, do the following:

� Enable SSO in WebSphere to use SSL.

� Enable SSO in Domino to use SSL.
418 IBM WebSphere V4.0 Advanced Edition Security

14.3.1 Enabling SSO to use SSL in WebSphere
Follow the instructions explained in “Enabling Single Sign-On for WebSphere” on
page 397. Open the Security Center from the WebSphere Administrator’s
Console, switch to the Authentication tab, then select Limit To SSL
Connections only, which permits the use of a connection with SSL for Single
Sign-On (SSO), as shown in Figure 14-20.

Figure 14-20 Selecting Limit to SSL Connections Only

Also remember to generate the LTPA keys after the configuration of the LDAP
settings; this guarantees that the LDAP host name and port (636) are present in
the exported file, as shown in Example 14-4.

Example 14-4 wassecureSSL.keys

com.ibm.Websphere.CreationDate=Thu Nov 08 12\:10\:18 EST 2001
com.ibm.Websphere.ltpa.PublicKey=ANyPLyqpEjKejf6Vvgn6V2gbN9NmPEywfxTCwlc2aECXhx
/RtAP7BUt5DtV6Edg+ZAOtr50QnbyAxOYC2z9dIF+ItN0mSyAYu31ot1/znlI44KSJGi1J7hoeOoK/q
HWP884MnIEIsa44pqykb7DT0ekP1afwlRT87wi6+Yx05eOtAQAB
com.ibm.Websphere.ltpa.version=1.0
com.ibm.Websphere.ltpa.Realm=rs617001.itso.ral.ibm.com\:636
com.ibm.Websphere.ltpa.PrivateKey=oxlHmllro/BZoAODl/WAPjCvRaxSr0cSBznqlPpCXRe3J
5+TcyeTrAQbOX6rGXLTtBBli/YKKPCQHSaV74lSak1j4iIaFK8UI0oeuU4uO8ySyrbAIQaAJV+mUXUz
sxow592K899m4GkKKOJsVO7dhnBWXAWtxHtoLZT7YliyaNIv4g4Y87JVhCaSJ/qWRogZ7Jn0Ih4PQXC
9nIib7mF8BMZBQzjyeDDSa+LCmFJ99osEDehloJ8cuUjVJz/61kn+zBtJ9NdEqh87aGFIAnbXlfrq03
7r422Am5sv2YAD+qfPjr7MaTzWHYXYNUTkgg9RH7SHecK/FYFFg3ZVqU+ZmMwIYmpsVecQ4BHTmLRSE
wg\=
com.ibm.Websphere.CreationHost=M23CABYG
com.ibm.Websphere.ltpa.3DESKey=+0OoLObpseEBN4PhW9pwy4QO7AgDoI5bp7ji+BJPSDM\=
 Chapter 14. Single Sign-On 419

14.3.2 Enabling SSO to use SSL in Domino
Follow the instructions explained in “Enabling Single Sign-On for Domino” on
page 400, taking into account the following:

1. When you create the Directory Assistance document in the LDAP tab, specify
the following values for the LDAP Configuration settings:

a. In the Host Name field, include the DNS host name for the IBM SecureWay
Directory, for example: rs617001.itso.ral.ibm.com.

b. Enter a distinguished name in the Username field and a password in the
Password field within the Optional Authentication Credential field. In our
example, we created a new user in SecureWay Directory with the following
distinguished name (DN): cn=Domino Admin,ou=ITSO,o=Webbank.

c. Fill out the Base DN field with the starting point for LDAP searches, for
example o=Webbank. This field is required for the SecureWay Directory.

d. Select Notes clients/Web Authentication in the Perform LDAP search
for: field.

e. Choose SSL in the Channel Encryption field to allow Domino Server to
connect with the LDAP server using SSL.

f. Specify 636 in the Port field.

g. Choose No in the Accept expired SSL certificates field to enforce
certificates’ expirations dates.

h. Choose Negotiated in the SSL protocol version field to allow SSL to
determine handshake and protocol.

i. Select Enabled in the Verify server name with remote server's certificate
field, to require that the subject line of the remote server's certificate
include the LDAP directory server host name.

j. Enter the maximum number of seconds before a search terminates in the
Timeout field. The default is 60.

k. Enter the maximum number of entries a single search can return in the
Maximum number of entries returned field. The default value is 100.

All these settings are illustrated in Figure 14-21.
420 IBM WebSphere V4.0 Advanced Edition Security

Figure 14-21 SSL settings in the Directory Assistance document

2. Make sure, when importing WebSphere LTPA keys in the Web SSO
Configuration document, to add a backslash (\) prior to the colon (:) before
you save the document. The LDAP Realm field should have the following
value:

rs617001.itso.ral.ibm.com\:636

3. Make sure that the TCP/IP Port field specifies Disabled and the SSL Port
field specifies Enabled in the Web tab (Ports -> Internet Ports -> Web tab)
in the server document.

Select Yes in the Name & Password field in the Authentication options
section, as shown in Figure 14-22.

4. Make sure you have included the Domino certificate key file name in the SSL
key file name field, as shown in Figure 14-22.
 Chapter 14. Single Sign-On 421

Figure 14-22 SSL settings in the Server Document

14.3.3 Testing SSO between Domino and WebSphere using SSL
To test SSO between Domino and WebSphere using SSL, repeat the same steps
executed in “Testing Single Sign-On between Domino and WebSphere” on
page 411, using https instead of http in the URLs, as shown for example in
Figure 14-24 on page 423.

The first thing you will see when you specify Domino and WebSphere URLs is a
security information box warning you that the certificate that the Web server
presents to you is not known by your browser. Select Yes (see Figure 14-23 on
page 423).
422 IBM WebSphere V4.0 Advanced Edition Security

Figure 14-23 Security Alert Dialog box

The yellow lock appears at the bottom left of the Web browser window to indicate
that you are using a secure connection, as shown in Figure 14-24.

Figure 14-24 Secure connection icon in the browser

Once you have logged into Domino or into WebSphere, click the following links to
move between applications: Please, send your comments (Secure) (to go to
Domino from WebSphere) or Visit our secure site
https:www.itsoWebbank.com (to go to WebSphere from Domino).

14.4 WebSphere-Domino using Domino LDAP
We used the following product versions in the example documented below:

� Windows 2000 with Service Pack 2.

� 1 GB of RAM and 16 GB of hard disk space.

� IBM DB2 Universal Database V7.2.1, Enterprise Edition for Windows.

� IBM HTTP Server 1.3.19 for Windows as the Web server installed on the
same machine as the WebSphere server.

� Lotus Domino Server R 5.06a.
 Chapter 14. Single Sign-On 423

� WebSphere Application Server Advanced Edition 4.01.

� Microsoft IE 5.5 for the Web user.

The example is shown in Figure 14-25.

Figure 14-25 Sample Domino-WebSphere SSO using Domino Directory

WebSphere-Domino Single Sign-On
The followings steps will describe the Single Sign-On process between Domino
and WebSphere, when the user logs into WebSphere first.

1. A Web user submits a request to the Web server (HTTP Server) for a
protected resource, to make a new bank transfer.

2. The Web server prompts the user for the authentication information.

3. The user responds by supplying the information (user name and password or
certificate).

4. Then the Web server contacts the LTPA server (WebSphere), which connects
with the Domino Directory to verify the authentication information.

5. If the information supplied for the user is correct, Domino responds to the
server (WebSphere) with the validated information.

6. The server uses the returned values to check whether the user has access to
the requested resource, then issues an LTPA token for the user. The Web
server sends the token to the user as an HTTP cookie, which is stored in the
user’s browser and serves the requested resource (the webbank.html page in
case of WebSphere).

webbank
database

Domino server WebSphere
server

Webbank
application

SSO Domino - WebSphere SSO WebSphere - Domino

Domino
directory
database

6
5

1
2

3
4

webbank
database

Domino server WebSphere
server

Webbank
application

Domino
directory
database

7

5

1
2

3

4

8
6

424 IBM WebSphere V4.0 Advanced Edition Security

7. Once the user is authenticated and the cookie is available, that user can
request another protected resource from Domino or WebSphere.

8. Domino/WebSphere validate the token provided for the user and tell the Web
server to send the requested resource to the browser, as long as the user has
proper access to that resource, without prompting again with the challenge
information.

Domino-WebSphere Single Sign-On
The followings steps will describe the Single Sign-On process between Domino
and WebSphere, when the user logs into Domino first.

1. A Web user submits a request to the Web server (Domino) for a protected
resource, to create a new Comment document in the Webbank Comment
Application database.

2. Domino prompts the user for the authentication information.

3. The user responds by supplying the information (user name and password or
certificate).

4. Domino then verifies the authentication information in the Domino directory,
checks whether the user has rights to access to database and issues an LTPA
token for the user as an HTTP cookie, which is stored in the user’s browser. It
then serves the requested resource (it opens the new Comment document).

5. Once the user is authenticated and the cookie is available, that user can
request another protected resource from Domino/WebSphere.

6. Domino/WebSphere validate the token provided for the user and tell the Web
server to send the requested resource to the browser, as long as the user has
proper access to that resource, without prompting again with the challenge
information.

The necessary steps to set up Single Sign-On between WebSphere and Domino
involves:

� Installing and configuring software products and application examples

� Enabling Single Sign-On for the WebSphere Application Server

� Enabling Single Sign-On for the Domino Server
 Chapter 14. Single Sign-On 425

14.4.1 Installing and configuring software products and examples
For more details on how to install and configure the software products, refer to
the installation manuals.

Make sure, before you begin to enable SSO, that the Webbank application has
been installed in WebSphere and the Webbank Comment Application database
has been created in Domino. For more details, refer to Chapter 5, “The sample
used in this book” on page 73.

Directory structure
Once the Domino server is installed, we created the following Users and Groups
in the Domino Directory.

Table 14-3 Domino Directory structure

We configured theDomino LDAP server task listening on port 390 and we did not
allow anonymous LDAP connections For more details about this feature, refer to
Chapter 16, “IBM WebSphere Application Server and LDAP” on page 459.

14.4.2 Enabling Single Sign-On for WebSphere Application Server
Follow the instructions detailed in “Enabling Single Sign-On for WebSphere” on
page 397.

Make sure to configure WebSphere to use Domino 5.0 as the directory type in
the Security Center. For more details, refer to Chapter 16, “IBM WebSphere
Application Server and LDAP” on page 459.

Before configuring Domino LDAP in the Security Center, make sure that the
Domino server is running and the LDAP task is started, because the security
server ID and security server password will be verified against Domino.

User’s Full Name User’s Short Name Groups

Was Admin/ITSO wasadmin

Notes Administrator/ITSO nadminis Administrators

Marco Fuchs/ITSO MarKo Manager

James Roca/ITSO James Employee
426 IBM WebSphere V4.0 Advanced Edition Security

14.4.3 Enabling Single Sign-On for the Domino Server
The SSO setup in Domino, for our example, involves the following tasks:

� Setting up Domino for SSO.

� Implementing the security to the webbank.nsf database.

Setting up Domino for Single Sign-On
To set up SSO for the Domino Server, follow these steps:

1. Create a new Web SSO Configuration Document in the Domino Directory
database. For more details, refer to “Enabling Single Sign-On for Domino” on
page 405.

2. Enable the TCP/IP port status in the Web tab (Ports -> Internet Ports ->
Web tab) and do not allow anonymous connections over TCP/IP by modifying
the Domino Server Document.

3. Select a Multi-Server session in the Domino Web Engine tab (Internet
Protocols -> Domino Web Engine tab) in the server document.

4. Select More name variations with lower security in the Web server
authentication in the Security tab within the server document, to allow users
to enter the following name formats in the name and password dialog box:

– Last Name

– First Name

– Common Name

– Full hierarchical name (canonical)

– Full hierarchical name (abbreviated)

– Short name

– Alias name (a name listed in the User name field of the Person document,
excluding the first name listed in the field)

– Soundex number

Important: Remember that the generation of the LTPA keys must be
performed when the Domino LDAP server settings are configured; this
guarantees that the LDAP host name and port are present in the exported file.
Domino needs this information for the Web SSO Configuration Document
creation process.
 Chapter 14. Single Sign-On 427

14.4.4 Implementing security to the Webbank.nsf database
To implement the security into the Webbank Comments Application database,
modify the Database ACL, and add the following Groups:

Table 14-4 Webbank Comments Database ACL Domino Users

All these settings are shown in Figure 14-26.

Figure 14-26 Webbank Comments Application ACL with Domino Users

Then set the Maximum Internet name & password access field to Editor under
the Advanced section.

People, Servers and
Group

User Type Access Level Authorization

-Default- Unspecified No Access None

LocalDomainServers Server Group Manager Delete Documents

OtherDomainservers ServerGroups No access None

Anonymous Unspecified No access None

Administrators People Group Manager Delete Documents

Employee People Group Editor Delete Documents
428 IBM WebSphere V4.0 Advanced Edition Security

Testing Single Sign-On between Domino and WebSphere

We demonstrate how to use SSO between Domino and WebSphere in the
following scenarios:

– Testing SSO between Domino and WebSphere

– Testing SSO between WebSphere and Domino

Testing SSO between Domino and WebSphere
The Web user wants to create a new Comment Document in the Webbank
Comment application database, specifying the Webbank database URL in its
browser:

http://m23x2640.itso.ral.ibm.com/Webbank.nsf/Comments?OpenForm

The Domino Server will present a default server Login page, as shown in
Figure 14-14 on page 412.

The Web user introduces his or her user name (Short Name/User ID) and
password (Internet password) and clicks the Login button.

The Domino Server checks whether the user is registered in the Domino
Directory database and verifies that the values included in the user name and
password dialog box are the correct ones. Then it checks whether the user has
access to the database and finds that that user has Editor access, since he or
she belongs to the Employee group included in the ACL.

Once the user is authenticated, Domino will create the LTPA token, send it to the
user as an HTTP cookie and open a New Comments document for the user, as
shown in Figure 14-16 on page 415.

At this point, the user can click the Submit button to save the document, or
return to the Webbank application home page by clicking the link: Visit our
Public site in http://www.itsoWebbank.com. This link will connect the user to
the WebSphere URL (in our case
http://m23cabyg.itso.ral.ibm.com:90/Webbank/Webbank.html) and will open
the Webbank.html page without prompting again for the user name and
password, as shown in Figure 14-17 on page 416.

Note: The WebSphere Application Server and Domino server are running on
the same machine, and both of them are running the HTTP Server. In order to
avoid port conflicts, WebSphere was set to use port 90 for HTTP requests.
 Chapter 14. Single Sign-On 429

Testing SSO between WebSphere and Domino
In this case, the user wants to make a new bank transfer, specifying the
Webbank application URL in its browser:

http://m23cabyg.itso.ral.ibm.com:90/Webbank/Webbank.html

The HTTP Server prompts the user for the authentication information, as shown
in Figure 14-19 on page 417.

The user responds to the challenge by supplying the information (user name and
password) and clicks the Login button.

WebSphere will connect to Domino to verify the authentication information. If the
information supplied for the user is correct, Domino responds to WebSphere with
the validated information.

WebSphere uses the returned values to check whether the user has access to
the requested resource (Webbank.html) and issues an LTPA token for the user.
The Web server sends the token to the user as an HTTP cookie, as shown in
Figure 14-15 on page 414 and opens the webbank.html page, as shown in
Figure 14-17 on page 416.

At this point, the user can introduce the data for the transfer, then clicks the
Transfer button or sends a new comment to the bank site by clinking the link
Please, send your comments (public). This link will connect to the Domino
server URL (in our case
http://m23x2640.itso.ral.ibm.com/Webbank.nsf/Comments?OpenForm) and will
open the Webbank Comments Application database, as shown in Figure 14-16
on page 415, without prompting again for user name and password.

14.4.5 SSO WebSphere-Domino using Domino LDAP with SSL
In this case, we demonstrate the use of SSO in a secure environment using
Domino as the user registry. For that purpose, we have secured the
communications between:

� The Web Browser and the Domino Server.

� The Web Browser and the HTTP Server.

� The Web Server plug-in and the WebSphere Application Server.

� WebSphere and the Domino Server.
430 IBM WebSphere V4.0 Advanced Edition Security

Before we explain how to configure SSO in a secure environment, make sure that
the following steps have been taken:

1. Certificates have been issued to:

– the HTTP Server

– Domino

– the Web Server plug-in

– WebSphere

2. The IBM HTTP Server is configured to use SSL.

3. The Web Server plug-in is configured to use SSL.

4. WebSphere is configured to use SSL.

5. The Domino Web Server is configured to use SSL.

6. The Domino LDAP Server is configured to use SSL.

For more details of how to configure SSL and create the certificates, refer to
“Configuring the Web Server to support HTTPS” on page 239.

To enable Single Sign-On in a secure environment, do the following:

� Enable SSO to use SSL in WebSphere.

� Enable SSO to use SSL in Domino.

Enabling SSO to use SSL in WebSphere
Follow the instructions detailed in “Enabling SSO to use SSL in WebSphere” on
page 419. The WebSphere security settings in the Security Center are as shown
in Figure 14-27 on page 433.

Enabling SSO to use SSL in Domino
Follow the instructions detailed in “Enabling Single Sign-On for the Domino
Server” on page 427, taking into account the following:

1. Make sure, when importing WebSphere LTPA keys in the Web SSO
Configuration Document, to add a backslash (\) prior to the colon (:) before
you save the document. The LDAP Realm field should show something
similar to the following value:

m23vnx78.itso.ral.ibm.com\:636
 Chapter 14. Single Sign-On 431

2. Make sure that the SSL Port field is set to Enabled and the TCP/IP Port field
specifies Disabled i the Web tanb (Ports -> Internet Ports -> Web tab) within
the server Document.

Select Yes in the Name & Password field in the Authentication options
section, as shown in Figure 14-22.

3. Make sure you have included the Domino certificate key file name in the SSL
key file name field, as shown in Figure 14-22.

Testing Single Sign-On between Domino and WebSphere
using SSL and Domino LDAP

To test SSO between Domino and WebSphere using SSL, follow the instructions
detailed in “Testing SSO between Domino and WebSphere using SSL” on
page 422.

14.4.6 Troubleshooting Single Sign-On
The following section discusses how to troubleshoot problems when SSO is
configured between Domino and WebSphere.

� If the Creating Web SSO Configuration document fails:

– Make sure that you are using at least version R5.05 Notes client or
Domino Administrator client when importing the LTPA keys.

– The Notes or Domino Administrator’s client home server must be in the
same domain as the participating SSO servers. Check that the entry in the
Home server field in the client’s location document is pointing to a server in
the same domain as the Domino SSO participating servers.

� If the loading of the Web SSO configuration on HTTP startup fails:

– Check that there is only one Web SSO document in the Web Configuration
view of the Domino Directory and the $WebSSOConfigs hidden view. To do
so, open the Domino Directory by holding the Shift and Ctrl keys down
and double-clicking the icon. This will open the directory with all the hidden
views. If more than one document is present, delete the wrong one or
delete all the documents and recreate a single new one.

� If authentication fails:

– Make sure that Domino and WebSphere have been configured for the
same LDAP directory, as we explained in the steps above. Check that you
can authenticate in WebSphere or in Domino separately before you test
SSO.

– Keep in mind that the LTPA cookie stores the full Distinguished Name
(DN) of the user; if you are using SSO with WebSphere and Domino and
432 IBM WebSphere V4.0 Advanced Edition Security

the Domino Directory as your LDAP server, flat names will not work for a
user. Make sure you placed only the hierarchical name (for example:
Victoria Amor/ITSO) in the User Name field for SSO to work.

– All the URLs must specify the full DNS server name, not the host name or
IP address, because the DNS name is included in the cookie.

– Make sure, when configuring the LDAP server with a port, to edit the Web
SSO Configuration document and to place a backslash (\) prior to the
colon (:) in the LDAPRealm field (LDAP host name\:port) before saving the
document.

– If you are using Domino Directory as your LDAP directory, include the full
DNS name of the host computer on which Domino is installed in the Fully
qualified Internet Host name field under the Basics tab of the server
document, as shown in Figure 14-27.

Figure 14-27 Fully Qualified Internet Host Name for the Domino Server

– If you are using clustered servers, they must include the host name with
the full DNS server name in the Fully qualified Internet Host name field
under the Basics tab of the server document for Domino Internet Cluster
Manager (ICM) to redirect to cluster members using SSO.
 Chapter 14. Single Sign-On 433

434 IBM WebSphere V4.0 Advanced Edition Security

Part 4 Appendixes

Part 4
© Copyright IBM Corp. 2002 435

436 IBM WebSphere V4.0 Advanced Edition Security

Chapter 15. Problem determination

This chapter is provided as a supplement to the chapter on troubleshooting in the
WebSphere V4.0 Advanced Edition Handbook. We specifically look at
security-related problem determination techniques.

The topics discussed in this chapter include:

� The IBM HTTP Server (IHS)

� The WebSphere V4.0 Web Server plug-in

� The following aspects of the IBM WebSphere Application Server:

– Enabling a security trace on the Administrative Server

– Enabling a security trace on a managed Application Server

– Enabling a Java Virtual Machine (JVM) trace argument

– Enabling a Secure Association Service trace

– The WebSphere Log Analyzer Tool

– Example traces

15
© Copyright IBM Corp. 2002 437

15.1 The IBM HTTP Web Server
An important and often neglected aspect of managing any Web Server is
problem determination. Such occurrences, while uncommon in a correctly
specified configuration, are perhaps more likely to be encountered during the
initial configuration and testing phases of deployment. Our experience tells us
that among the top causes of problems are the failure to correctly validate an
installation and the misinterpretation of a configuration parameter.

In the section that follows, we detail an approach that can be adopted for isolating
problems associated with the IBM HTTP Server (IHS).

15.1.1 First steps
Many problems may be encountered within the system; possibly the IBM HTTP
Server (IHS) fails to start, or there is a failure to serve a secure HTTPS request.
Whatever the problem, it is always a nuisance, even for the most patient of
administrators.

Proper administration and troubleshooting is all about trying to isolate the failing
component, or eliminate the suspected offender. In either case, you should
thoroughly check t the following points before proceeding:

� Do we need clarification of the exact product version, fix level and platform
environmen?

� Is this an initial configuration? Has the configuration ever worked
successfully?

� If this is not an initial configuration, what action was taken to potentially cause
the problem? Was a parameter changed, a FixPack applied?

� Does the problem occur immediately upon starting the server?

� Alternatively, does the problem build up over time?

� Does the problem manifest itself when using an IBM sample configuration?

� Are any side effects, any CPU or memory problems encountered?

� Is the problem reproducible? Can you identify what action causes the
problem?

� Is the problem reproducible on another system or platform?

Food for thought: how many System Administrators actually document the
exact parameters of a configuration and the step-by-step procedures they took
when installing the software product?
438 IBM WebSphere V4.0 Advanced Edition Security

15.1.2 Problem determination
Determining the source a of problem associated with the IBM HTTP Server (IHS)
can become a much easier task if you capture the correct data. Consider
therefore changing the LogLevel directive from Warn (the default) to Debug. To
achieve this, manually edit the httpd.conf file found under the IHS conf directory,
using the editor of your choice:

..
ErrorLog /usr/HTTPServer/logs/error_log
LogLevel debug
..

If you have enabled a VirtualHost entry in your IHS configuration, possibly to
listen on an SSL/HTTPS enabled port, you should also define a separate
ErrorLog and TransferLog. This way, you can capture additional debugging
information, specific to the concerned VirtualHost. As such, a completed
VirtualHost stanza will look something like this:

..
<VirtualHost www.internetchaos.com:443>
ServerName www.internetchaos.com
ErrorLog logs/internetchaod443error_log
TransferLog logs/internetchaos443access_log
SSLEnable
SSLServerCert WebServer
SSLClientAuth required
SSLCipherSpec 33
SSLCipherSpec 36
</VirtualHost>
..

Be sure to restart the IHS after making any modifications so that the changes will
be included in the runtime.

15.1.3 Web Server trace example
One such occasion that might merit changing the IHS LogLevel directive to
Debug is when problems with client side certificates are encountered. Here, as
demonstrated in Example 15-1, the enhanced LogLevel directive can be used to
capture the client certificate submitted to the Web Server.

Example 15-1 Client Side Certificate submission

...
[info] Cert Body:
MIICXzCCAcigAwIBAgIDUdboMA0GCSqGSIb3DQEBBAUAMIGHMQswCQYDVQQGEwJaQTEiMCAGA1UECBM
ZRk9SIFRFU1RJTkcgUFVSUE9TRVMgT05MWTEdMBsGA1UEChMUVGhhd3RlIENlcnRpZmljYXRpb24xFz
AVBgNVBAsTDlRFU1QgVEVTVCBURVNUMRwwGgYDVQQDExNUaGF3dGUgVGVzdCBDQSBSb290MB4XDTAxM
 Chapter 15. Problem determination 439

TEwNzAxMjY1MFoXDTAxMTEyODAxMjY1MFowYTETMBEGCgmSJomT8ixkARkTA2NvbTEdMBsGCgmSJomT
8ixkARkTDWludGVybmV0Y2hhb3MxCzAJBgNVBAsTAnVrMQ4wDAYDVQQLEwV1c2VyczEOMAwGA1UEAxM
FYW1vcnYwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBALGHqILI6oadtio9rFsZ2laKzSIy1xc87p
yaCNZDtm5ZyOrjWZ9pc3BP1SwaQWLa+s9rnozJ2IxuHzKESN8DSmcmRGE+SL+6vzgkAH/MDKgooRVyw
Y10Zok6GiW6M4xjxmEWvEpvoOBYzUcXTJsCusmwQQ2aFfia9uknHgmrRmmZAgMBAAEwDQYJKoZIhvcN
AQEEBQADgYEAGXyeBDKLb8cJKeD1N1VU3qyCfFj5dWo0YPmfIRoRqnQ3rqPmFJhd/HrWJMIB645isEX
2LDSsqOCZSTbbKJ876ecsri/oQ0bnyasWP6cHWFm6VoxmGwcXw6FMfloXQWT5ACqaBoTWZHkR63Qakz
Ko87S+QMkwEqFSpHO3d1qSn5E=RmmZAgMB ^EEð
[info] Cert Body Len: 816
[info] Serial Number: 51:d6:e8
[info] Distinguished name CN=amorv,OU=users,OU=uk,DC=internetchaos,DC=com
[info] Common Name: amorv
[info] Organization Unit: uk, users
[info] Issuer's Distinguished Name: CN=Thawte Test CA Root,OU=TEST TEST
TEST,O=Thawte Certification,ST=FOR TESTING PURPOSES ONLY,C=ZA
[info] Issuer's Common Name: Thawte Test CA Root
[info] Issuer's State or Province: FOR TESTING PURPOSES ONLY
[info] Issuer's Country: ZA
[info] Issuer's Organization: Thawte Certification
[info] Issuer's Organization Unit: TEST TEST TEST
...

Remember that client side certificates are only requested from client Web
browsers if the SSLClientAuth directive is specified in the IHS httpd.conf file.

15.2 The WebSphere Web Server plug-in
After an HTTP request has successfully been handled by the selected Web
Server of your choice, it is up to the WebSphere plug-in resident in the Web
Server to determine if the resource requested is one served by WebSphere. If it
is, knowing how to properly debug the plug-in when problems occur can greatly
facilitate a speedy resolution.

Management of the WebSphere Web Server plug-in has been greatly simplified,
with the parameters now being specified in a single plugin-cfg.xml file.

Note: The separate vhost.properties, queues.properties and rules.properpties
files that shipped with previous WebSphere versions are now absent.
440 IBM WebSphere V4.0 Advanced Edition Security

15.2.1 First steps
When dealing with the IHS, we introduced the concept of an initial set of
questions to ask. Diagnosing problems with the WebSphere Web Server plug-in
is no different. We revisit the questions that should be explored prior to getting
too involved in any low-level debugging. It is important to appreciate that knowing
the answers to the questions, will greatly facilitate a speedy resolution if you
decide to engage IBM Support.

� Do we need clarification of the exact product version, fix level and platform
environmen?

� Is this an initial configuration? Has the configuration ever worked
successfully?

� If this is not an initial configuration, what action was taken to potentially cause
the problem? Was a parameter changed, a FixPack applied?

� Does the problem occur immediately upon starting the server?

� Alternatively, does the problem build up over time?

� Does the problem manifest itself when using an IBM sample configuration?

� Are any side effects, any CPU or memory problems encountered?

� Is the problem reproducible? Can you identify what action causes the
problem?

� Is the problem reproducible on another system or platform?

15.2.2 Problem determination
When problems are encountered with the WebSphere Web Server plug-in,
enabling tracing can quickly help to isolate the failing component or
misconfiguration. As such, the task is simply accomplished by changing the
LogLevel attribute in the plugin-cfg.xml file from Error (the default) to Trace. This
is shown below:

<?xml version="1.0"?>
<Config>

<Log LogLevel="Trace" Name="/usr/WebSphere/AppServer/logs/native.log"/>
..

After modifying the LogLevel attribute, ensure that you restart the IHS or the Web
Server of your choice, as this will ensure that the increased trace specification is
immediately implemented. You should consider clearing the log files prior to
capturing the problem that has occurred. Otherwise, you will be faced with an
excessive amount of data to analyze. Remember that although the problem may
 Chapter 15. Problem determination 441

appear obvious to you, you can greatly improve the response from your local
support team if the immediate issue is detailed and void of any ambiguity. For
example, it has not been uncommon for customers to forward in a week’s worth
of logs to IBM Support.

15.2.3 Web Server plug-in trace example
Changing the WebSphere Web Server plug-in LogLevel attribute to Trace can be
beneficial when problems are experienced with SSL handshaking between the
plug-in and the corresponding WebSphere Web Container.

In such an event, it may be possible to verify that the embedded HTTP Server
affiliated with the WebSphere Web Container is functioning correctly by pointing
a client Web browser directly to the embedded HTTP Server IP address and
secure listening port number. If the embedded HTTP Server has been configured
with SSL client authentication enabled, the browser will be prompted to submit a
client side certificate. Otherwise, the resource requested by the Web browser will
only be displayed if the embedded HTTP Server if functioning correctly.

Example 15-2 illustrates the type of error message that can be captured in the
plug-in native.log file when SSL handshaking fails between the plug-in and a
WebSphere Web Container.

Example 15-2 native.log

...
ERROR: lib_stream: openStream: Failed in r_gsk_secure_soc_init:
 GSK_ERROR_BAD_CERT(gsk rc = 414)
ERROR: ws_common: websphereGetStream: Could not open stream
ERROR: ws_common: websphereExecute: Failed to create the stream
ERROR: ws_common: websphereHandleRequest: Failed to execute the transaction to
 'Default Server'; will try another one
ERROR: ws_common: websphereHandleRequest: Failed to find an app server to
 handle this request
...

Generally, it is always worth consulting the logs of the associated SSL peer when
problems of an SSL handshaking nature occur. On this occasion, it is the IBM
WebSphere Application Server stdout and stderr log files, responsible for the
peer Web Container, that may offer further clues as to the origin of the problem.
As such, one permissible error message that might be seen in the peer
Application Server stdout log file is shown in Example 15-3.

Example 15-3 Default_Server_stdout.log

2333b974 HttpConnectio W bad certificate; perhaps the server's SSL security
 level is higher than the client can perform
442 IBM WebSphere V4.0 Advanced Edition Security

A further clue is also revealed by the IBM WebSphere Application Server stdout
log file and is shown in Example 15-4. Here, the embedded HTTP Server, or
rather, the secure HTTPS transport protocol associated with the embedded
HTTP Server, is seen to successfully start listening on TCP port 9080. Those
familiar with WebSphere V4.0 will know that the embedded HTTP Server will fail
to start if the certificate database/keyfile referenced by the Web Container is
incorrectly configured.

Example 15-4 Default_Server_stdout.log

HttpTransport A SRVE0171I: Transport https is listening on port 9,080.

The message, however, does not provide any guarantee that the certificate keys
present in the Web Container certificate database/keyfile are specified or
correctly configured.

In this case, the problem is most likely to be caused by one of the following:

1. The SSL peer certificate databases/keyfiles do not contain the correct
certificate keys. Check, if using private/public self-signed certificate key pairs,
that the public certificate keys are exchanged successfully between the peers.
Alternatively, if using a third-party Certificate Authority (CA), check that the
public certificate key of the CA is installed as a Trusted Signer in the adjacent
certificate database of the SSL peer.

2. The private/public certificates do not contain all the information they need. As
such, check each certificate Common Name (CN) and verify that associated
fields are completed correctly.

3. The certificate label name or alias set when importing the public certificate
key from either adjacent peer contains one or more spaces. Delete the
exchanged public keys and re-add the certificate keys under the respective
ikeyman Signer Certificates menu, ensuring that the new label name contains
no spaces.

4. The encryption algorithms or cipher strength supported between the adjacent
SSL peers is not compatible. It is permissible to restrict the SSL supported
cipher strength at the WebSphere Web Container level; check this setting.

15.3 The IBM WebSphere Application Server
Dealing with IBM WebSphere Application Server problems can at first seem a
daunting prospect for even the most accomplished administrator. However, with a
little knowledge and direction, you can quickly master a situation, identifying and
rectifying the problem successfully.
 Chapter 15. Problem determination 443

In this section, we endeavour to share with you some of the techniques
commonly used and endorsed by the IBM WebSphere Support Team. As the
focus is primarily on WebSphere V4.0 security issues, you should consider
reviewing the chapter concerning troubleshooting in the WebSphere V4.0
Advanced Edition Handbook (SG24-6176) for a more holistic approach to
problem determination, if needed.

15.3.1 First steps
Understanding the components involved with WebSphere security will greatly
enhance your diagnostic skills. Figure 15-1 highlights the main Java classes
responsible for implementing security.

Figure 15-1 WebSphere V4.0 trace strings

By virtue of the tasks these classes perform, we can readily enable tracing on
any of the classes to home in on a suspected problem. We recognize that many
administrators may not be familiar with the exact workings of each class and, for
this reason, we suggest that tracing be implemented on a more general level.

core

ejb

ssl

com.ibm.ws.security

AppListener
SASConfig
WSAccessManager

BeanAccessManager
BeanPermissionRoleMap
BeanPermissionRoleMapTable
RunAsMapTable
SecurityBeanCookie

OrbSSLConfig
SSLConfig
SSLSocketFactory

ras

ltpa

registry

RasContextSupport
SharedLogBase
SharedLogWriter
TraceNLS

EJSInitializer
EJSCollaborator
Initializer
SecurityCollaborator
SecurityConext
SecurityManager
SecurityServerBean

LTPAConfigBean
LTPACrypto
LTPAServerBean
LTPAServerObject

RegistryBean
RegistryEntryBean
Registry

com.ibm.ejs.security

WebSphere V4.0 Trace strings
444 IBM WebSphere V4.0 Advanced Edition Security

For example, failure to bind to an LDAP Directory server may throw an exception
in the LdapRegistryImplementation. However, it is not immediately evident which
class or component contains this implementation. In this case, enabling tracing at
the com.ibm.ejs.security level will capture a complete yet exhaustive trace of
every component class in the com.ibm.ejs.security package. The trace
specification can then be further refined on subsequent operations.

There are, of course, many other allowable possible permutations of the trace
settings. As such, the starting point, when in doubt for diagnosing any
security-related problem, can be the following strings:

com.ibm.ws.security.*=all=enabled
com.ibm.ejs.security.*=all=enabled

Later on in this section, we will demonstrate the exact use of these trace strings.

Needless to say, problem determination also revolves around eliminating
potential suspects. In this case, as already introduced with the debugging of the
IHS and the WebSphere Web Server plug-in, you should be in a position to
clarify the following points:

� Do we need clarification of the exact product version, fix level and platform
environmen?

� Is this an initial configuration? Has the configuration ever worked
successfully?

� If this is not an initial configuration, what action was taken to potentially cause
the problem? Was a parameter changed, a FixPack applied, new code
deployed?

� Does the problem occur immediately upon starting the IBM WebSphere
Administrative Server?

� Does the problem occur immediately upon starting a managed Application
Server?

� Alternatively, does the problem build up over time?

� Does the problem manifest itself when using an IBM sample configuration?

� Are any side effects, any CPU or memory problems encountered?

� Is there any correlation to the load experienced by the Application Server?

� Is the problem reproducible? Can you identify what action causes the
problem?

� Is the problem reproducible on another system or platform?
 Chapter 15. Problem determination 445

15.3.2 Problem determination
WebSphere readily supports the ability to enable security level tracing on both
the Administration Server and on any individually configured Application Server.
Each approach, however, is slightly different, as the Administrative Server is
typically traced by setting the trace strings in the admin.config file.

It is also worth remembering that the Administrative Server performs such tasks
as authenticating and authorizing users on behalf of the managed Application
Servers. As such, the SecurityCollaborator, RegistryBean,
RegistryImplementation and LdapRegistryImplementation are functions of the
Administrative Server and appear transparent to a managed Application Server.
However, as will become apparent, such functions are critical to the viability of
any managed Application Server.

The Administration Server
To facilitate a comprehensive security trace of the Administration Server, edit the
admin.conf file found in the WebSphere bin directory and add the following two
lines:

com.ibm.ejs.sm.adminServer.traceString=com.ibm.ws.security.*=all=enabled:co
m.ibm.ejs.security.*=all=enabled
com.ibm.ejs.sm.adminServer.traceOutput=/usr/WebSphere/AppServer/logs/admin.
trace

By default, WebSphere ships with the traceString and traceOutput directives
hashed out. Enable tracing by removing the preceding hash (#), specifying the
trace string of your choice as well as the output file.

Managed Application Server
This section is dedicated exclusively to enabling tracing on a WebSphere
managed Application Server.

1. Start the WebSphere Administrative Console and select the managed
Application Server that you wish to enable tracing on from the topology
management tree. Proceed by clicking the right mouse button and then
selecting the resulting Properties tab.

2. You will be presented with the window shown in Figure 15-2. Make sure that
the Services tab is currently in focus and select the Trace Service. Click the
Edit Properties button to launch the Trace specification window.
446 IBM WebSphere V4.0 Advanced Edition Security

Figure 15-2 Application Server properties

3. If you know the exact trace requirements that you wish to implement, you can
simply type the string in the Trace Specification field. Alternatively, if you click
the button at the right hand side of the Trace Specification field, you will
launch the hierarchal trace tree. This is discussed in detail in the WebSphere
V4.0 Handbook, SG24-6176.
 Chapter 15. Problem determination 447

Figure 15-3 Application Server’s properties

4. To capture a comprehensive security trace on an Application Server, edit the
following two settings:

For the Trace specification, set the following value:

com.ibm.ejs.security.*=all=enabled:com.ibm.ws.security.*=all=enabled

For the Trace output file, fill in the fully qualified filename:

/usr/WebSphere/AppServer/logs/appsecuritytrace.log

15.3.3 JVM trace arguments
In addition to modifying the trace specification settings, it is also possible to pass
a trace argument directly to the Java Virtual Machine (JVM) associated with each
Application Server. Again, there are two slightly different approaches for
achieving this, depending on whether your are passing an argument to a JVM
associated with the Administrative Server, or to a JVM affiliated with a managed
Application Server.

In the case of the Administrative Server, this is achieved by editing the
admin.config file in the WebSphere bin directory and specifying the option you
wish to pass as an Administrative Server JVM argument.

com.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs=-Djavax.net.debu
g=true
448 IBM WebSphere V4.0 Advanced Edition Security

In contrast, if you choose to pass an argument to the JVM associated with a
managed Application Server, you will most likely perform the task using the
Administration Client console.

In this case, open the Application Server Properties window of your chosen
managed Application Server and expand the JVM Settings to reveal the
Advanced JVM Settings window. You can then, as shown below in Figure 15-4,
specify the option you wish to pass to the JVM as a command line argument.

Figure 15-4 Specifying the option for the JVM

After clicking OK, you will need to restart your managed Application Server to
ensure that the modification is included in the next runtime.

15.3.4 The Secure Association Service (SAS)
The final important trace that you can use in terms of security is a trace on the
Secure Association Service. It can be implemented for both the server and client.

In the sas.server.props file, set the following debugging directives to get a
detailed output of security activities.

com.ibm.CORBA.securityErrorsOutputMode=both
com.ibm.CORBA.securityTraceOutputMode=file
com.ibm.CORBA.securityTraceOutput=/opt/WebSphere_4.0.1_AE/AppServer/logs/sa
s_server.log
com.ibm.CORBA.securityTraceLevel=intermediate
 Chapter 15. Problem determination 449

com.ibm.CORBA.securityActivityOutputMode=file
com.ibm.CORBA.securityExceptionsOutputMode=file
com.ibm.CORBA.securityDebug=true

Example 15-5 is an excerpt from the tracefile where a detailed security log was
written.

Example 15-5 tracefile excerpt

JSAS0240E: Login failed. Verify the userid/password is correct. Check the
properties file to ensure the login source is valid. If this error occurs on
the server, check the server properties to ensure the principalName has a valid
realm and userid.

SECJ0131E: Authentication failed. Unable to get the mapped credential for
SecOwnCredentials.
SECJ0007E: Error during security initialization
SECJ0007E: Error during security initialization
WSVR0009E: Error occurred during startup

For more information about SAS, refer to Chapter 8, “Securing J2EE clients” on
page 155.

15.3.5 Post-analysis using the Log Analyzer
Learn to take full advantage of the Log Analyzer tool, as it is often neglected. IBM
is also actively investing in maintaining a downloadable symptom database. This
is projected to grow so as to meet the needs of future administrators.

One potential use of the Log Analyzer tool is to determine the exact class of a
failing exception, or the class responsible for executing an implementation when
a failure occurs.
450 IBM WebSphere V4.0 Advanced Edition Security

Figure 15-5 WebSphere Log Analyzer tool

One such example is illustrated above in Figure 15-5. Here, a problem is
encountered when implementing the com.ibm.ejs.security.SecurityContext class,
as reported by the SourceID field. The ExtendedMessage field offers a further
explanation of the problem.

From the details given above, we are now in a position to trace the problem using
the following trace string:

com.ibm.ejs.security.SecurityContext=all=enabled

However, this trace string may be too limited for the problem encountered. In this
case, a more comprehensive analysis can be performed using the following
string:

com.ibm.ejs.security.*=all=enabled

15.3.6 IBM WebSphere Application Server trace example
So far in this section, we have discussed the intricacies of enabling tracing on
both the WebSphere Administration Server and any given managed Application
Server.
 Chapter 15. Problem determination 451

By way of introducing the trace functionality offered by WebSphere, we first
examine the output from a tracefile log example indicative of a successful startup
of the IBM WebSphere Application Server; this is shown below in Example 15-6.

Example 15-6 tracefile log output

7d5ac167 Server U Version : 4.0.1
7d5ac167 Server U Edition: Advanced Edition for Multiplatforms
7d5ac167 Server U Build date: Thu Aug 09 00:00:00 BST 2000
7d5ac167 Server U Build number: a0131.07
7d5ac167 ORBRas W com.ibm.CORBA.iiop.Util Util P=649553:O=0:CT
 JORB0012: Pass by reference has been set to:true
 (NoLocalCopies = true)
7d5ac167 DrAdminServer I WSVR0053I: DrAdmin available on port 63104
7d5ac167 AdminServer I ADMS0008I: Initializing WebSphere Administration
 server
7d5ac167 ResourceBinde I WSVR0049I: Binding SM_DATASOURCE as jdbc/SM_Datasource
7d5ac167 EJBEngine I WSVR0037I: Starting EJB jar: Name Service
7d5ac167 EJBEngine I WSVR0037I: Starting EJB jar: Repository
7d5ac167 EJBEngine I WSVR0037I: Starting EJB jar: Tasks
7d5ac167 Server A WSVR0023I: Server __adminServer open for e-business
19b90167 ActiveServerP A ADMS0008I: Starting server: Default Server
19b90167 ActiveServerP A ADMS0032I: Started server: Default Server (pid 27178)

As expected, the WebSphere Administrative Server is seen to open for
e-business successfully, with the Default managed Application Server
subsequently starting up assuming the process ID (PID) 27178. It is also noted
that the Object Request Broker (ORB) associated with the Administrative Server
is invoked with the NoLocalCopies attribute set to True. This is intentional and a
result of having the -Dcom.ibm.CORBA.iiop.noLocalCopies=true attribute set in
the admin.config file as an argument passed to the Administrative Server Java
Virtual Machine (JVM).

In contrast, Figure 15-7 documents a failure encountered when starting the IBM
WebSphere Application Server. Looking more closely at the tracefile, we know
that everything appears to be starting up smoothly until we encounter the
JSAS0240E: Login failure error. Under normal circumstances, we would expect
to see the Administrative Server opening for e-business after the WSVR0036I:
Starting EJB jar: Tasks routine.

Example 15-7 tracefile excerpt

7d46e72d Server U Version : 4.0.1
7d46e72d Server U Edition: Advanced Edition for Multiplatforms
7d46e72d Server U Build date: Thu Aug 09 00:00:00 EDT 2001
7d46e72d Server U Build number: a0131.07
7d46e72d ORBRas W com.ibm.CORBA.iiop.Util Util P=649553:O=0:CT
 JORB0012: Pass by reference has been set to:true
 (NoLocalCopies = true)
452 IBM WebSphere V4.0 Advanced Edition Security

7d46e72d DrAdminServer I WSVR0053I: DrAdmin available on port 41270
7d46e72d AdminServer I ADMS0008I: Initializing WebSphere Administration
 server
7d46e72d ResourceBinde I WSVR0049I: Binding SM_DATASOURCE as jdbc/SM_Datasource
7d46e72d EJBEngine I WSVR0037I: Starting EJB jar: Name Service
7d46e72d EJBEngine I WSVR0037I: Starting EJB jar: Repository
7d46e72d EJBEngine I WSVR0037I: Starting EJB jar: Tasks
7f1ace51 SystemOut U JSAS0240E: Login failed. Verify the userid / password
 is correct. Check the properties file to ensure the
 login source is valid. If this error occurs on the
 server, check the server properties to ensure the
 principalName has a valid realm and userid.
7d46e72d SecurityConte X SECJ0131E: Authentication failed. Unable to get the
 mapped credential for SecOwnCredentials.
7d46e72d Initializer X SECJ0007E: Error during security initialization
7d46e72d Initializer X SECJ0007E: Error during security initialization
7d46e72d AdminServer X WSVR0009E: Error occurred during startup

Those familiar with WebSphere will know that when the Application Server is first
started up with Global Security enabled, the Administrative Server authenticates
itself and assumes the identity defined by the Security Server ID setting. In the
case of using the LTPA authentication mechanism, a request is sent to the
remotely configured LDAP Directory Server.

At this point, the keyword SecOwnCredentials (underlined) offers a further clue
that it is indeed the WebSphere Security Server ID identity that is failing to
authenticate against the remote LDAP Directory Server.

Analyzing the accompanying activity.log with the Log Analyzer tool shows a
similar set of entries to what was previously determined from the tracefile. As
such, the SourceId and ExtendedMessage entries recorded are as follows:

SourceId:com.ibm.ejs.security.SecurityContext
ExtendedMessage: SECJ0131E: Authentication failed. Unable to get the mapped
credential for SecOwnCredentials.

SourceId:com.ibm.ejs.security.Initializer
ExtendedMessage: SECJ0007E: Error during security initialization
SourceId:com.ibm.ejs.security.Initializer
ExtendedMessage: SECJ0007E: Error during security initialization

SourceId:com.ibm.ejs.sm.server.AdminServer
ExtendedMessage: WSVR0009E: Error occurred during startup
java.lang.RuntimeException: Authentication Failed

SourceId:com.ibm.ejs.sm.server.AdminServer
ExtendedMessage: WSVR0067E: Failed to initialize WebSphere Administration
server
 Chapter 15. Problem determination 453

Potentially, the next step in resolving the issue could involve enabling a
WebSphere trace.

It is here that the Log Analyzer output identifying the SourceID is beneficial, as it
corresponds directly with the trace specification that should be used to capture
the failure. As such, the Log Analyzer SourceID identifies the following
implementation class for the problem experienced in Example 15-7 on page 452:

com.ibm.ejs.security.SecurityContext

Also recall from Section 15.3.5, “Post-analysis using the Log Analyzer” on
page 450 that although the Log Analyzer SourceID is valid, the trace
specification may be too limited for the problem experienced. In this case, by
forfeiting the SecurityContext object class, a more comprehensive analysis can
be performed with the following specification:

com.ibm.ejs.security.*=all=enabled

To this end, and to facilitate the required WebSphere trace, the following entries
need to be placed in the admin.conf file found in the WebSphere bin directory:

com.ibm.ejs.sm.adminServer.traceString=com.ibm.ejs.security.*=all=enabled
com.ibm.ejs.sm.adminServer.traceOutput=/usr/WebSphere/AppServer/logs/admin.
trace

You must then proceed to restart WebSphere for the trace specification to be
included in the next runtime.

By way of acknowledging that our problem is most likely related to a
malfunctioning remote LDAP Directory Server, we next explore some typical
security traces, looking specifically at the function of LDAP authentication.

Example 15-8 illustrates a successful bind and authentication against a remote
IBM SecureWay LDAP Directory Server. In itself, the action is the correct
sequence employed by WebSphere upon initial startup, when Global Security is
enabled.

The trace starts by capturing the authentication of the user websphere, as set
according to WebSphere Security Server ID identity. From the filter option, it is
apparent that WebSphere is attempting to authenticate the user against the uid
field in the remote SecureWay LDAP Directory. The user happened to be stored
in the ePerson objectclass type. The getRootDSE sequence is a special function
that actually passes information describing the LDAP Directory to the requester,
in this case WebSphere.

Note: The tracefile log only reports the abbreviated SecurityConte when the
problem is experienced. The full Java package name is not detailed, as it is
with the Log Analyzer tool.
454 IBM WebSphere V4.0 Advanced Edition Security

Example 15-8 Successfull LDAP authentication

7d5ac167 LdapRegistryI D Authenticating websphere
7d5ac167 LdapRegistryI D Searching for users
7d5ac167 LdapRegistryI > getUsers websphere
7d5ac167 LdapRegistryI D filter = (&(uid=websphere)(objectclass=ePerson))
7d5ac167 LdapRegistryI > getRootDSE
7d5ac167 LdapRegistryI < getRootDSE
7d5ac167 LdapRegistryI < getUsers
7d5ac167 LdapRegistryI D Found user cn=websphere,ou=authenticated,
 ou=uk,dc=internetchaos,dc=com
7d5ac167 LdapRegistryI D Authenticated with cn=websphere,ou=authenticated,
 ou=uk,dc=internetchaos,dc=com
7d5ac167 LdapRegistryI > getGroupsForUser
7d5ac167 LdapRegistryI D filter =(|(&(objectclass=groupofnames)(member=cn=webs
 phere,ou=authenticated,ou=uk,dc=internetchaos,dc=com))
 (&(objectclass=groupofuniquenames)(uniquemember=cn=web
 sphere,ou=authenticated, ou=uk,dc=internetchaos,dc=com
)))
7d5ac167 LdapRegistryI > getRootDSE
7d5ac167 LdapRegistryI < getRootDSE
7d5ac167 LdapRegistryI < getGroupsForUser
7d5ac167 LdapRegistryI > getUserDisplayName
7d5ac167 LdapRegistryI > getRootDSE
7d5ac167 LdapRegistryI < getRootDSE
7d5ac167 LdapRegistryI D securityName =cn=websphere,ou=authenticated,
 ou=uk,dc=internetchaos,dc=com
7d5ac167 LdapRegistryI D attributes ={uid=uid: websphere, objectclass=objectcla
 ss: top, organizationalPerson, person, ePerson,
 inetOrgPerson, cn=cn: websphere}
7d5ac167 LdapRegistryI D userName = websphere
7d5ac167 LdapRegistryI < getUserDisplayName
7d5ac167 LdapRegistryI < authenticate
7d5ac167 SecurityColla < postInvoke
7d5ac167 Initializer D Authorization table found for admin application,
 Adding serverId to all roles serverId = websphere
 Accessid = user:rs617001.itso.ral.ibm.com:636/cn=webs
 phere,ou=authenticated, ou=uk,dc=internetchaos,dc=com
7d5ac167 Initializer D Added ServerId for role AdminRole
7d5ac167 Initializer < bindServerIdToAdminApp
7d5ac167 SecurityColla > enableSecurity
7d5ac167 SecurityColla < enableSecurity
7d5ac167 Initializer < initialize
7d5ac167 Server A WSVR0023I: Server __adminServer open for e-business

Note: the direction of the < > (chevrons) determines the flow of the requested
information.
 Chapter 15. Problem determination 455

The userName attribute is websphere and corresponds to the Bind Distinguished
Name as set under the WebSphere Global Security settings. It is this identity that
WebSphere uses to bind to the remote LDAP Directory and to perform user
authentication. In Example 15-8, both the WebSphere Security Server ID identity
and the Bind Distinguished Name are the same, with both attributes defined
accordingly in the configuration.

Finally, thread 7d5ac167 invokes the Initializer class and we see the serverId
Security Server ID identity websphere being added to the AdminRole, before the
Admin Server opens for e-business.

A contrasting trace is shown in Example 15-9 below, for WebSphere
authenticating against a remote Domino LDAP Directory Server. There are some
subtle differences with the filtering mechanism used in the LDAP bind, but the
sequence is more or less the same. One exception to note is that WebSphere is
connecting anonymously to the remote Domino LDAP Directory Server. This is
determined by the userName being reported as <null>. We strongly advise
against connecting anonymously to a remote LDAP Directory Server.

Example 15-9 Anonymous Bind to Domino LDAP Server

31f2a7 LdapRegistryI D Authenticating wasadmin
31f2a7 LdapRegistryI D Searching for users
31f2a7 LdapRegistryI > getUsers wasadmin
31f2a7 LdapRegistryI D filter = (&(uid=wasadmin)(objectclass=dominoPerson))
31f2a7 LdapRegistryI > getRootDSE
31f2a7 LdapRegistryI < getRootDSE
31f2a7 LdapRegistryI < getUsers
31f2a7 LdapRegistryI D Found user CN=wasadmin
31f2a7 LdapRegistryI D Authenticated with CN=wasadmin
31f2a7 LdapRegistryI > getGroupsForUser
31f2a7 LdapRegistryI D filter =(|(&(objectclass=dominogroup)
 (member=CN=wasadmin)))
31f2a7 LdapRegistryI > getRootDSE
31f2a7 LdapRegistryI < getRootDSE
31f2a7 LdapRegistryI D securityName =CN=wasadmin
31f2a7 LdapRegistryI D attributes ={objectclass=objectclass: top, person,
 organizationalPerson, inetOrgPerson, dominoPerson,
 cn=cn: wasadmin}
31f2a7 LdapRegistryI D userName =<null>
31f2a7 LdapRegistryI < getUserDisplayName
31f2a7 LdapRegistryI < authenticate
31f2a7 SecurityColla < postInvoke
31f2a7 Initializer D Authorization table found for admin application, Adding
 serverId to all roles serverId = wasadmin Accessid =
 user:rs617001.itso.ral.ibm.com:389/CN=wasadmin
31f2a7 Initializer D Added ServerId for role AdminRole
31f2a7 Initializer < bindServerIdToAdminApp
31f2a7 SecurityColla > enableSecurity
456 IBM WebSphere V4.0 Advanced Edition Security

31f2a7 SecurityColla < enableSecurity
31f2a7 Initializer < initialize
31f2a7 Server A WSVR0023I: Server __adminServer open for e-business

The final trace, shown in Example 15-10, is typical of what we would expect to
see if WebSphere, for some reason, fails to bind to the remote LDAP Directory
Server. Note, however, that the initial search for the WebSphere Security Server
ID identity user wasadmin appears be successful. It is the subsequent
getRootDSE sequence that fails, eventually throwing a
javax.naming.NameNotFound exception with a failing LDAP error code 32 - No
Such Object.

Example 15-10 When the Base Distinguished Name is not set

24c4a3 LdapRegistryI D Authenticating wasadmin
24c4a3 LdapRegistryI D Searching for users
24c4a3 LdapRegistryI > getUsers wasadmin
24c4a3 LdapRegistryI D filter = (&(uid=wasadmin)(objectclass=inetOrgPerson))
24c4a3 LdapRegistryI > getRootDSE
24c4a3 LdapRegistryI < getRootDSE
24c4a3 LdapRegistryI < getUsers
24c4a3 LdapRegistryI D Found user cn=wasadmin
24c4a3 LdapRegistryI D Authenticated with cn=wasadmin
24c4a3 LdapRegistryI > getGroupsForUser
24c4a3 LdapRegistryI D filter =(|(&(objectclass=groupofnames)(member=cn=wasadmi
 n))(&(objectclass=groupofuniquenames)
 (uniquemember=cn=wasadmin)))
24c4a3 LdapRegistryI > getRootDSE
24c4a3 LdapRegistryI < getRootDSE
24c4a3 LdapRegistryI > disconnect
24c4a3 LdapRegistryI < disconnect
24c4a3 LdapRegistryI > getRootDSE
24c4a3 LdapRegistryI < getRootDSE
24c4a3 LdapRegistryI > disconnect
24c4a3 LdapRegistryI < disconnect
24c4a3 LdapRegistryI > getRootDSE
24c4a3 LdapRegistryI < getRootDSE
24c4a3 LdapRegistryI > disconnect
24c4a3 LdapRegistryI < disconnect
24c4a3 LdapRegistryI < getGroupsForUser
 javax.naming.NameNotFoundException:
 [LDAP: error code 32 - No Such Object]

The problem indicates that the LDAP Base Distinguished Name was not set
correctly under the WebSphere Global Security settings.
 Chapter 15. Problem determination 457

Note: In all the examples documented in this section, we obmitted the
respective timestamps.
458 IBM WebSphere V4.0 Advanced Edition Security

Chapter 16. IBM WebSphere Application
Server and LDAP

The LTPA authentication mechanism in WebSphere can validate the user
authentication against a third-party Lightweight Directory Access Protocol
(LDAP) server.

IBM WebSphere Application Server 4.0 supports the following LDAP servers:

� IBM SecureWay Directory

� Netscape Directory Server

� Lotus Domino versions 4.6 and 5.0

� Microsoft Active Directory

This chapter discusses how to implement WebSphere security with the
above-mentioned LDAP servers, giving an explanation of the necessary setup
steps.

For more information about individual product installation, refer to the
corresponding product installation guides.

16
© Copyright IBM Corp. 2002 459

16.1 SecureWay Directory Server
The use of IBM SecureWay Directory Server as the LDAP server with
WebSphere can be an option for those companies that have different application
environments and want to share a separate LDAP directory for authentication
and authorization.

The IBM SecureWay Directory server provides a scalable, high performance
directory service using IBM DB2 as the underlying database to provide pre-LDAP
operation transaction integrity, high performance operations, and on-line backup
and restore capability. For more details of the SecureWay Directory Server
features refer to the IBM Redbook LDAP Implementation Cookbook, SG24-5110.

In our scenario, we demonstrate the use of the IBM SecureWay Directory Server
as the LDAP server for supporting WebSphere authentication. The purpose of
this section is to explain how to install and configure the SecureWay Directory
and how to configure WebSphere to utilize it.

16.1.1 Installing and configuring the IBM SecureWay Directory

Installing the server
We used the following products’ versions in the example documented over the
next few pages:

– Windows 2000 with Service Pack 2.

– 1 GB RAM and 16 GB hard disk space.

– IBM SecureWay Directory Server V3.2.1 for Windows.

– IBM DB2 Universal Database V7.2.1, Enterprise Edition for Windows.

– IBM HTTP Server 1.3.19 for Windows as the Web server.

– IBM GSkit 4.01 package for SSL capability.

– Microsoft IE 5.5 for administering SecureWay.

Prior to installing the SecureWay Directory, the HTTP Server and the DB2 must
be installed and running on the machine. For detailed instructions about how to
install these products, refer to the corresponding installation documentation.
460 IBM WebSphere V4.0 Advanced Edition Security

The installation of the SecureWay Directory uses the Windows InstallShield that
guides you through four general installation processes, which are:

� Language selection
� Destination location
� Components to configure
� Restarting the computer

Note: The following are the minimum system and software requirements to
install the SecureWay Directory server on Windows NT:

� Windows NT 4.0 with Service Pack 4 or later.
� A minimum of 64 MB RAM (128 MB is strongly recommended).
� One of the following Web servers (or later versions), installed and

configured:
– IBM HTTP Server 1.3.12
– Lotus Domino Go Webserver(TM) 4.6.2.6
– Lotus Domino Enterprise 5.0.2b Webserver(TM)
– Microsoft Internet Information Server 4.0
– Apache Server 1.3.12
– Netscape FastTrack Server 3.01
– Netscape Enterprise Server 3.6.3, 4.0

If a supported Web server is not detected on your system, the installation
process automatically installs the IBM HTTP Server 1.3.12 that is included
in the SecureWay Directory package.

� DB2(R) Universal Database for Windows NT, Personal, Workgroup, or
Enterprise edition. The minimum supported level is DB2 Version 5.2 with
FixPak WR09084. DB2 V6.1 is included with the IBM SecureWay Directory
and is installed if a supported version of DB2 is not detected on your
system.

� Microsoft Internet Explorer (MS IE) V4.0 plus service pack 1 or higher, or
Netscape Navigator V4.07 or later (V4.08 is recommended), or Netscape
Communicator V4.7, V4.8 or later for administering the SecureWay
Directory.

� The Global Security Kit (GSkit) is an optional software package, included in
the IBM SecureWay Directory software, that is required only if Secure
Sockets Layer Security (SSL) is used. For SSL capability, the IBM GSkit
V4.01 package needs to be installed on the system.

� Approximately 135 MB of disk space for both the SecureWay Directory and
DB2.
 Chapter 16. IBM WebSphere Application Server and LDAP 461

To begin installing SecureWay Directory V3.2, perform the following steps:

1. Depending on whether you are installing locally from a CD or remotely from
the network, select the CD-ROM drive and click the setup.exe icon.

2. When the Language panel is displayed, select the language you want to use
and click OK.

3. Click Accept at the Software License Agreement.

4. Click Next in the Welcome LDAP Setup program window.

5. The Installed applications panel is displayed, telling you which products are
installed already on the machine. In our case, the IBM HTTP Server and DB2
were pre-installed. Click Next.

6. Select the components to install:

– Express: for installing all components that are not already installed.

– Custom: for choosing the products individually to install.

Select Custom.

7. Choose the target directory. By default, the product will be installed under the
following directory: C:\Program Files\IBM\LDAP. Click Next.

8. The Custom Installation window will be displayed as shown in Figure 16-1.

Figure 16-1 SecureWay Custom Installation panel

Select the components to install and then click Next.

Note: It is recommended that you use a shorter path and no spaces in
directory names.
462 IBM WebSphere V4.0 Advanced Edition Security

9. Select the program folder where you want to add the program icons. By
default, this is the IBM SecureWay Directory.

10.Select the components to configure as shown in Figure 16-3 on page 464:

– Set the directory administrator name and password.

– Create the directory database.

– Configure a Web Server for directory administration.

Click Next. See the next section for more details about the configuration of
the IBM SecureWay Directory.

11. Once the configuration is finished, the Start Copying Files for SecureWay
Directory and Client SDK panel displays the following information:

IBM SecureWay will be installed to the following directory: C:\Program
Files\IBM\LDAP
Target Folder: IBM SecureWay Directory
Password for administrator DN cn=root will be set.
LDAP UCS-2 (UTF-8) DB2 database will be created on drive C.
Web server IBM HTTP Server will be configured using file:C:\IBM HTTP
Server\conf\httpd.conf.
GSKIT 4.01 will be installed in C:\Program Files\IBM\GSK4.

Click Next to begin copying the files onto the machine.

12. When the setup is complete, a window is displayed prompting you to restart
the computer.

If the configuration of the Directory server has been performed during the
installation process, the LDAPDB2 database will be created automatically after
you restart the machine, as shown in Figure 16-2 .

Figure 16-2 Creating LDAPDB2 database during IBM SecureWay configuration
 Chapter 16. IBM WebSphere Application Server and LDAP 463

Configuring the server
The SecureWay Directory Server configuration can be performed during the
installation process or by using the SecureWay Directory Server Administration
tool ldapxcfg (graphical interface) or the ldapcfg command-line utility. The later
two options can be undertaken after the installation is complete. The utilities can
be used when the initial configuration needs to be changed or reset.

The configuration process consists of three parts:

1. Setting the directory administrator name and password.

2. Creating the directory database.

3. Configuring a Web Server for directory administration.

All of these steps can be performed at the same time by selecting all of the
options. Alternatively, they can be done separately, but all must be completed
prior to starting SecureWay for the first time.

To manually configure the IBM SecureWay Directory server, follow these steps:

1. Select Start -> Programs -> IBM SecureWay Directory -> Directory
Configuration or type ldapxcfg at a command prompt (C:\Program
Files\IBM\ldap\bin is included in the PATH of the machine during the
installation process). The configuration utility window will be displayed as
shown in Figure 16-3:

Figure 16-3 IBM Security Directory Configuration Utility

2. Select all the components and click Next.
464 IBM WebSphere V4.0 Advanced Edition Security

3. Type the Administrator Distinguished Name (DN) or accept the default DN
(cn=root) and set a password. Click Next.

Figure 16-4 Administrator DN and password for the IBM SecureWay Directory

4. Choose Create a default LDAPDB2 database and select Create a native
language DB2 database UTF-8 (UCS Transformation Format) to create the
default DB2 database in the Universal Character Set for the directory server;
then specify a location for this database.

Figure 16-5 Creating the IBM SecureWay Directory DB2 database

This will create a new database instance named LDAPDB2 after the
configuration completes as shown in Figure 16-2 on page 463.

5. Click Next.
 Chapter 16. IBM WebSphere Application Server and LDAP 465

It is also possible to configure the database using the SecureWay Web-based
Administration interface by selecting Database -> Configure in the left pane
and with the Directory Server stopped.

6. Select the IBM HTTP Server from the list of Web servers and enter the full
path name of the Web server configuration file.

Figure 16-6 IBM HTTP Server configuration file location

7. Click Next and the configuration summary window will be displayed. Click
Configure to begin the configuration.

Note: The directory configuration tool will also prompt you to create a
database for change log support. It will create a new database called the
change log (LDAPCLOG) for recording a log of changes made to the main
directory. Select this option if you want to enable this feature.

Important: If you already have an LDAPDB2 database and want to use the
directory configuration tool to create a new database, all data will be lost. It is
recommended that you save the data by using the db2ldif command. For
additional information, refer to the Server Administration online help under
Command Line Utilities.

Attention: Do not forget to restart the IBM HTTP Server after the SecureWay
Configuration completes.
466 IBM WebSphere V4.0 Advanced Edition Security

8. Restart the machine and start the IBM SecureWay Directory. Before you start
the SecureWay Directory using the Windows services, check that the
following services are started:

– IBM HTTP Server

– DB2-LDAPDB2

Then start the IBM SecureWay Directory service.

It is possible also to start the SecureWay Directory using the Web-based
interface by opening a Web browser and accessing the URL for Server
Administration using the format: http://<your server>/ldap. Enter the
Admin ID and password as shown on Figure 16-7.

Figure 16-7 Logging on to IBM SecureWay Directory Server Administration

Then select Current State -> Start/Stop.

There is an alternative method for configuring the IBM SecureWay Directory
Server; this is using the ldapcfg command line tool. For more details about this
method, read the Installation and Configuration Guide or run the command
without specifying parameters to get the command syntax help.

16.1.2 Populating data entries in the IBM SecureWay Directory
Once the installation and configuration are finished, proceed to add new data
entries into the directory. The steps to populate data entries in the directory are
the following:

� Define a suffix

� Add user entries

� Add group entries
 Chapter 16. IBM WebSphere Application Server and LDAP 467

Defining a suffix
Before you can add entries to the database, it is necessary to define a suffix for
that directory. A suffix is the starting point in the directory and specifies the
Distinguished Name (DN) for the root of that tree. The LDAP server must have at
least one suffix defined and can have multiple suffixes. Each entry added to the
directory contains in their fully Distinguished Name (DN) a suffix that matches
one of the server’s suffixes defined on the server.

To define a valid suffix, it is possible to use the X.500 naming structure that will
set the root of the directory to a specific organization in a specific country or to a
specific organization and organizational unit:

o=ibm,c=us
where o represents Organization and c represents Country, and
ou=raleigh,o=ibm
where ou represents Organizational Unit and o represents Organization.

It is also possible to use the DNS naming model by using the domainComponent
attribute:

dc=ibm.com
where dc represents a domain component, for example:
dc=itso,dc=ral,dc=ibm,dc=com

To add a suffix in the directory, follow these steps:

1. Open a Web browser, then access the URL for the Server Administration:
http://<your server>/ldap.

2. Once logged in as an administrator, click the Add Suffixes link at the top of
the page or expand the Settings -> Suffixes folder then click Add Suffixes.

Figure 16-8 Adding a new suffix in the IBM SecureWay Directory Server Administration
468 IBM WebSphere V4.0 Advanced Edition Security

For our example, using the X.500 methodology, we set the following suffix:
o=webbank, where o represents an organization. Click Update, and the Suffix
table list will be updated with the new suffix. At this point, it contains no data.

3. Restart the server by clicking the Restart Server link on the top of the page
so that the changes may take effect.

It is also possible to remove suffixes from the directory by clicking the box next to
the suffix you want to delete. Removing a suffix eliminates access to all directory
data beneath that suffix, but the data is not removed from the directory.

Figure 16-9 Removing a suffix n the IBM SecureWay Directory Server Administration.

To check the actual status of the server, expand Current State -> Server Status.

Adding user entries
To add new user entries in the directory, use the Directory Management Tool tool
(DMT) or provide the data in an LDAP Data Interchange Format (LDIF) file.

The DMT is a Java-based graphical tool for browsing, checking and managing
directory entries.

To add a new entry, follow these steps:

1. Open the Directory Management Tool by clicking Start -> Programs -> IBM
SecureWay Directory->Directory Management Tool.

2. Click the Add Server button. The Add Server fields are displayed. Type in the
Server Name and Port and then select Simple in the Authentication Type.

3. Log on as the cn=root user and click OK.

4. A Warning message box will be displayed, notifying you that the suffix created
previously (o=Webbank) does not contain any data. Click OK.

The directory tree is now open with no suffix appearing in the tree, as shown in
Figure 16-10.

Note: If an authenticated user is not introduced during the Add Server
process, you will only have anonymous privileges; this means that it is only
possible for you to browse the directory, but not to modify it. To authenticate
yourself, select Server->Rebind from the menu in the left-hand pane.
 Chapter 16. IBM WebSphere Application Server and LDAP 469

Figure 16-10 Directory tree browser open

5. To add a new entry in the directory, click the Add button in the toolbar. Select
Organization as the Entry Type and o=Webbank as the Entry RDN (Relative
Distinguished Name), as shown in Figure 16-11.

Figure 16-11 Adding an Organization RDN

6. Click OK and a new window appears for setting attributes to the new RDN
entry. All the fields marked in bold style are mandatory.
470 IBM WebSphere V4.0 Advanced Edition Security

Figure 16-12 Setting new attributes to the organization RDN

7. Click Add. The new organization entry should appear in the directory tree
after clicking Directory -> Refresh Tree as shown in Figure 16-13.
 Chapter 16. IBM WebSphere Application Server and LDAP 471

Figure 16-13 New organization in the Directory tree after refreshing

8. Next, we create a new Country entry to include the new users beneath it.
Select the organization o=webbank and click the Add button in the toolbar.

Select Country as the Entry Type and c=US as the Entry RDN (Relative
Distinguished Name) as shown in Figure 16-14.

Figure 16-14 Adding a new Country entry

9. Click OK; a new window appears for setting attributes to the new RDN entry.
472 IBM WebSphere V4.0 Advanced Edition Security

Figure 16-15 Setting new attributes to the Country RDN

10.Click Add. The new country entry should appear in the directory tree beneath
the organization entry (o=webbank) after clicking Directory -> Refresh Tree.

11.Now, proceed to add new users to the new organization created previously.
We are going to add a new administrative user in order to set a Security
Server ID in the WebSphere Global Security settings, for use as the user ID
under which the server runs for security purposes.

Select the country c=US and click the Add button on the tool bar. Select User
as the Entry Type and type cn=wasadmin as the Entry RDN.

Figure 16-16 Adding a new user

12. Click OK; a new window appears for setting attributes to the new RDN entry,
as shown in Figure 16-17.
 Chapter 16. IBM WebSphere Application Server and LDAP 473

The Distinguished Name (DN) is the fully qualified name for the user. The
default DN is the Parent DN plus the Entry RDN. Enter the Last Name
(required for adding new users) and a password. Include any other
information in the Business and Personal tabs.

13.Switch to the Other tab and supply the UID to allow the user to authenticate
himself with this value instead of using the full DN.

Figure 16-17 Setting attributes for the new user

14. Click Add. The new user entry should appear in the directory tree beneath
the organization entry (c=us,o=webbank) after clicking Directory->Refresh
Tree, as shown in Figure 16-18.
474 IBM WebSphere V4.0 Advanced Edition Security

Figure 16-18 Directory tree with the new user

15. Create new application users following the procedure explained above,
repeating steps 9 to 11.

Adding group entries
To add new groups in the directory, it is possible to use the DMT (Directory
Management Tool) or provide the data in an LDIF (LDAP Data Interchange
Format) file. To add new groups, follow these next steps:

1. Select the country c=US and click the Add button in the toolbar.

2. Select Group as the Entry Type and type cn=Employees as the Entry RDN as
seen in Figure 16-19; then click OK.

Figure 16-19 Adding a new group

3. The next window is used for setting attributes for the new RDN entry, as
shown in Figure 16-20.
 Chapter 16. IBM WebSphere Application Server and LDAP 475

Figure 16-20 Setting groups attributes

The cn: and member (Group member): are mandatory fields; we assigned the
following group members:

• cn=Victoria Amor, c=US, o=webbank

• cn=Marco Fuchs, c=US, o=webbank

For our example, we also created two new groups, repeating the steps above
with the following values.

Table 16-1 New groups’ values

4. Click Add. The new group entries should appear in the directory tree beneath
the organization entry (c=us, o=Webbank) after clicking Directory -> Refresh
Tree, as shown in Figure 16-21.

Full DN Common
Name

Group Members

cn=Managers,c=US,o=Webbank Managers cn=James Roca,c=US,o=Webbank
cn=Joanna
Hodgson,c=US,o=Webbank

cn=Customers,c=US,o=Webbank Customers cn=Peter Kovari,c=US,o=Webbank
476 IBM WebSphere V4.0 Advanced Edition Security

Figure 16-21 Directory tree with the new groups

As mentioned before, it is possible to add users and groups using an LDIF file, a
standard format for representing LDAP entries in text form. This will be useful
when the number of entries to add is very large. An example of an LDIF file is
shown below.

Example 16-1 Sample LDIF file

dn: o=ibm, c=us
objectclass: organization
objectclass: top
o: ibm, c=us
o: ibm

dn: cn=Robert Red,o=ibm,c=us
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: ePerson
objectclass: top
objectclass: person
uid: red
userpassword: {iMASK}>15TEoHuMOv8qy9gcuXE+/AqnogmwX5NkRE7cGeHEG99ttyaTeIqiEXl4
 D7oB1wDJrDNBflWveOF+DDHmyGnxfTIht+0trS9mAzHLO517tsdE3wL0aTbHJXYV8sc17GZD6GHp
 d/d1JzaSI2LD6+dZW/TclHLMUuM6/L<
sn: Red
cn: Robert Red
 Chapter 16. IBM WebSphere Application Server and LDAP 477

dn: cn=Manager,o=ibm,c=us
objectclass: top
objectclass: groupOfNames
cn: Manager
member: cn=Robert Red,o=ibm,c=us

To import the file, perform the following steps:

1. Open the browser and access the URL for Server Administration using the
format http://<your server>/ldap. Once logged as a root, check that the
Directory server is running.

2. Select Database -> Import LDIF.

3. Enter the name of the LDIF file on the LDAP server from which you want to
import directory data, then click Import as shown in Figure 16-22.

Figure 16-22 IBM SecureWay Administration GUI - Import Webbank.ldif file

4. Wait until a message appears indicating that the entries have been
successfully added.

5. Use the DMT tool to verify the new entries.

16.1.3 Configuring WebSphere to use the SecureWay Directory
Server

To configure WebSphere to use IBM SecureWay Directory as its User Registry,
follow these next steps:

1. Start WebSphere Administrator’s Console (WebSphere Admin Server V4.0
must be running).

2. Select Console -> Security Center... This will display the security settings for
WebSphere. Select Enable security in the General tab.
478 IBM WebSphere V4.0 Advanced Edition Security

3. Switch to the Authentication tab and specify the following settings:

– Lightweight Third Part Authentication (LTPA).

– Select the LDAP radio button. This will display the LDAP settings. Set the
fields as follows:

• Security Server ID: this field should contain the full DN or the value
specified in the UID field included in the LDAP User Properties, under
the Other tab information created in the previous steps for the
WebSphere administrator user. This is the user ID that you will have to
enter in order to start the WebSphere console once security is enabled.

• Security Server Password: enter the user password set for the
wasadmin user in LDAP.

• Host: introduce the Host ID (IP address or DNS name) of the LDAP
server.

• Directory Type: select SecureWay as the LDAP server type.

• Port: the port number, by default, is 389 if nothing is specified. If the
Default SecureWay port number changes, it will be necessary to
specify it in this field.

• Base Distinguished Name: this field is required for the SecureWay
directory. A Base DN indicates the starting point for LDAP searches of
the directory service.

• Bind Distinguished Name: the fully distinguished name used by
WebSphere to bind with the LDAP server. If no name is specified, the
administration server will bind anonymously.

• Bind password: if a user is specified in the Bind Distinguished name,
include the corresponding password here.

4. All the settings are illustrated in Figure 16-23 on page 480.
 Chapter 16. IBM WebSphere Application Server and LDAP 479

Figure 16-23 LDAP settings for IBM SecureWay in WebSphere security

Clicking the Advanced button lets you view the default LDAP advanced
properties governing how WebSphere performs the query for the SecureWay
Directory, as shown in Figure 16-24.

Figure 16-24 LDAP Advanced Properties window
480 IBM WebSphere V4.0 Advanced Edition Security

The default SecureWay filter in LDAP Advanced Properties executes the
following searches:

The User Filter finds a user entry in the SecureWay Directory with the
attribute uid, belonging to the ePerson object class.

The Group Filter finds the groups’ entries in the Secureway Directory with the
attribute cn, belonging to the groupOfNames or groupOfUniqueNames object
classes, set with the group name you are looking for. It is typically used for the
assignment of a Security Role to a Group.

The User ID map and Group ID map are the filters that map the short name of
a user or group to an LDAP entry; this information represents users or groups
when they are displayed. LDAP returns the field specified by the User ID map
and Group ID map (uid in the case of a user and Common Name in the case
of groups) when the search performed by WebSphere is successful.
WebSphere uses these returned values for comparison with permission lists.

The Group Member ID map identifies membershipes of Users to Groups.

These default settings will be suitable for searching for Users and Groups in
SecureWay Directory. When the LDAP advanced properties are modified, the
Directory Type changes to Custom in the Security Center panel; this reflects
the fact that the default settings for searching are no longer used.

5. Click OK. The Security Server ID and Security Server Password will be
verified against the LDAP server.

Make sure that the IBM SecureWay Directory is running by checking the list of
Windows’ services on the directory server and pinging the IP address of the
SecureWay Directory machine from the WebSphere machine.

The first time the security is enabled, it will prompt for an LTPA password. The
LTPA password is used to protect the set of encryption keys generated for use
in a Single Sign-On environment. For more information about Single Sign-On,
refer to the Chapter 14, “Single Sign-On” on page 393.

When the process is complete, a warning message appears, stating that
changes will not take effect until the admin server is restarted.

6. Restart the Administration Server by selecting the node, then right-clicking it
and selecting Restart in the resulting context menu.

Note: ePerson, groupOfNames and groupOfUniqueNames object classes
are part of the SecureWay LDAP schema categories; to find out more
about the Secureway LDAP schema, refer to LDAP Implementation
Cookbook, SG24-5110.
 Chapter 16. IBM WebSphere Application Server and LDAP 481

7. When the server is open for e-business, start the Administrator’s Console.
You will be prompted for the administrator user ID (Security Server ID) and
password (Security Server Password).

The window is shown in Figure 16-25.

Figure 16-25 WebSphere Administrator’s Console Password prompt

16.2 Lotus Domino 5.0
Domino, as a common user registry for WebSphere, can be an option for those
organizations that already have Domino as a main application server and want to
exploit the directory architecture already in place, using WebSphere as a
complement.

You can set up a Domino server to run the Lightweight Directory Access Protocol
(LDAP) service to enable LDAP clients to search for and modify information in
the Domino Directory. For more details about Domino LDAP services features,
refer to the Domino R5 Administration Help and Administrator’s Guide.

The procedure to use Domino with WebSphere as an LDAP server involves the
following steps:

� Configure Domino Server to run the LDAP service.

� Configure WebSphere to use the Domino Directory as its user registry.

16.2.1 Configuring the Domino Server to run the LDAP service
Make sure that you have installed and configured a Domino Server. For detailed
instructions, refer to the installation manuals.

The only necessary steps to set up the Domino Server for LDAP service are as
follows:

� Configure the LDAP port in the server configuration document.

� Start the Domino LDAP server task.
482 IBM WebSphere V4.0 Advanced Edition Security

Configuring the LDAP port in the server configuration
document

To configure the LDAP port in the server configuration document, perform the
following steps:

1. Start the Domino Administration client logged in as a user with administrator
privileges, then open the Domino Server from the left server bookmark pane.
Click the Configuration tab.

2. Select Server -> Current Server Document.

3. Click Ports -> Internet Ports and go to the Directory tab to display the LDAP
port settings. The default LDAP TCP/IP port and SSL port are shown:

– LDAP: 389

– LDAPS: 636

In our present scenario and for testing purposes, we are going to use the
default settings.

4. Make sure that at least the TCP/IP port is enabled.

5. Decide which type of authentication options are better suited to your
environment, choosing Yes or No to allow a Name and Password for
authentication of clients connecting over TCP/IP, and Yes or No if you want to
allow anonymous connections over TCP/IP.

In a secure environment, usually the TCP/IP Port is disabled and the SSL port
is enabled with at least one of the Authentication options selected as Yes:

– Client certificates: allow the use of X.509 client certificates for
authentication

– Name and Password: allow the name and password for authentication.

– Anonymous: allow anonymous connections over SSL.

For more details on how to implement SSL in Domino, refer to Section 11.6.13,
“SSL and Lotus Domino LDAP” on page 317.

Every time you modify the LDAP parameters in the Server Document, it is
necessary to restart the LDAP task on the Server.

Note: If you allow anonymous connections, you can configure which fields
anonymous LDAP clients can search in Domino by editing the Directory
Settings Document. Be aware that the Anonymous entry in the Domino
Directory ACL does not control anonymous LDAP access. Consult the Domino
R5 Administration Help and Administrator’s Guide for further details.
 Chapter 16. IBM WebSphere Application Server and LDAP 483

To restart the LDAP task from the Domino Administration Client, select the LDAP
task from the task pane in the Status tab (Server-> Status), right-click the
highlighted task and select Stop.

Start the LDAP task again in the server following the procedures described next.

To restart the LDAP task from the Domino console, first enter the tell ldap quit
and then the load ldap commands.

Starting the Domino LDAP server task
There are three ways to start the Domino LDAP server task:

� Using the Domino Console by entering the load ldap command.

� Adding the ldap name in the Server Task= line, in the notes.ini file, to begin
the task every time the server is started.

� Using the Domino 5 Administration Client:

a. Start the Administration Client and open the Domino Server from the left
server bookmark pane, then click Status tab (Server->Status).

b. Open the task toolbar located on the right side of the task pane and select
the Start... action. Choose the LDAP Server entry and click Start Task.

c. Click the Done button to exit the tasks dialog.

16.2.2 Configuring WebSphere to use the Domino Directory
In order to set up WebSphere security settings using the Domino Directory as the
LDAP server, it is necessary to specify a Security Server ID, that is, the user ID
under which the server runs for security purposes. This user ID should be any
user registered in the Domino Directory (Notes or Internet/intranet users) with an
Internet password set. We recommend that you create a new specific user in the
registry to be used by WebSphere.

For that purpose, start the Domino R5 Administration with a notes ID having at
least author access for creating new documents in the Domino Directory; make
certain the UserCreator role is selected and follow these instructions:

1. Open the Domino Server from the left server bookmark pane and select the
People and Groups tab.

2. Click the Add Person button.

3. Add a new user as shown in Figure 16-26 with the Short Name/UserID and
Internet password set.

Note: You must have administration privileges in order to start the LDAP
server task.
484 IBM WebSphere V4.0 Advanced Edition Security

Figure 16-26 WebSphere Administration Person Document in Domino Directory

4. Save and close the document.

Once the user is created, ensure that it is possible to look for it in Domino using
the LDAP protocol. Domino provides a command-line search utility that allows
you to use LDAP to search entries in the Domino Directory on a server that runs
the LDAP service, or search entries in a third-party LDAP directory.

This tool is included in the Domino server and Notes client software.

In a command line window from the Domino server or Notes client, perform the
search by entering the ldapsearch command as shown in Figure 16-27.

Note: To use the ldapsearch tool for searching against a Domino Directory,
the LDAP task in the Domino Server must be started and the notes.ini file
must be included in the machine system’s Path environment variable where
ldapsearch will be executed.
 Chapter 16. IBM WebSphere Application Server and LDAP 485

Figure 16-27 LDAP search results for the wasadmin user

For more details about parameter attributes and search filters for use with the
ldapsearch utility, refer to the Domino R5 Administration Help and Administrator’s
Guide.

To configure WebSphere to use Domino as its User Registry, follow these steps:

1. Start the WebSphere Administrator’s Console (WebSphere Admin Server
V4.0 must be running).

2. Select Console -> Security Center... This will display the global security
settings for WebSphere. Select Enable security under the General tab.

3. Click the Authentication tab and specify the following settings:

– Lightweight Third Part Authentication (LTPA)

– Select the LDAP radio button. This will display the LDAP settings. Set the
fields as follows:

• Security Server ID: this field must contain the value specified in the
Short Name/User ID field in the Person Document of the Domino
Directory created in the steps above for the WebSphere administrator.
This is the user ID that will have to be used for login to start the
WebSphere Administrator’s Console once security is enabled.

• Security Server Password: enter the Internet password set for the
wasadmin user in this document.

• Host: the Host ID (IP address or DNS name) for the Domino server.

• Directory Type: Select Domino R5.0 as the LDAP server.
486 IBM WebSphere V4.0 Advanced Edition Security

Leave all other fields blank, taking into account the following considerations:

• Port: the port number, by default, is 389 if none is specified. If the
Default Domino LDAP port number changes, it will be necessary to
specify it in this field.

• Base Distinguished Name: this field is required for all the LDAP
directories except for Domino. If a Base DN is specified, it will not be
able to grant permissions to individual Web users for resources
managed by the IBM WebSphere Application Server.

• Bind Distinguished Name: the distinguished name used when
WebSphere binds with the Domino server. If no name is specified, the
administration server will bind anonymously.

• Bind password: if a user is specified in the Bind Distinguished name,
include the corresponding password here.

All the settings are illustrated in Figure 16-28.

Figure 16-28 LDAP settings for Domino In WebSphere Security
 Chapter 16. IBM WebSphere Application Server and LDAP 487

Click the Advanced button; this brings up the default LDAP Advanced
Properties window shown in Figure 16-29; you can now see how WebSphere
searches the Domino Directory.

Figure 16-29 Domino LDAP Advanced Properties window

The default Domino filters in LDAP advanced properties execute the following
searches:

The User Filter find a user entry in the Domino Directory with the attribute uid,
belonging to the dominoPerson object class, set with the name entered at
authentication. It is typically used for the assignment of a Security Role to a
User.

The Group Filter find the groups entries in the Domino Directory with the
attribute cn, belonging to the dominoGroup object class, set with the group
name you are looking for. It is typically used for the assignment of a Security
Role to a Group.

The User ID map and Group ID map are the filters that map the short name of
a User or Group to an LDAP entry; this information represents Users or
Groups when they are displayed. LDAP returns the field specified by the User
ID map and Group ID map (short name in case of a user and common name
in case of groups) when the search performed by WebSphere has been
successful. WebSphere uses these returned values for comparison with
permission lists.

The Group Member ID map identifies membership of Users to Groups.

Note: dominoPerson and dominoGroup object classes are part of the
Domino LDAP schema; to find out more about the Domino LDAP schema,
use the ldapsearch utility or refer to the Domino LDAP Schema Database.
488 IBM WebSphere V4.0 Advanced Edition Security

In most cases, these default settings are suitable for searching Users and
Groups in a Domino Directory. Notice that modifying the LDAP advanced
properties changes the Directory type to Custom to reflect the fact that the
entries are no longer the default for the Domino directory.

4. Click OK in the Security Center window. The user ID and the password will be
verified against the information within the Domino Server.

Make sure that the Domino server is running and that the LDAP task is
started by entering the show task command in the Domino Console. This will
display the status of the active server tasks, as shown in Figure 16-30.

Figure 16-30 Show Task Command response in the Domino Server Console

The first time that security is enabled, it will prompt for an LTPA password.

The LTPA password is used to protect the set of encryption keys generated for
use in a Single Sign-On environment.

For more information about Single Sign-On, refer to Chapter 14, “Single
Sign-On” on page 393.

When the process is complete, a warning message will be displayed, stating
that changes will not take effect until the admin server is restarted.

5. Restart the Administration Server by selecting the node, then right-clicking it
and selecting Restart in the resulting context menu.
 Chapter 16. IBM WebSphere Application Server and LDAP 489

6. When the server is open for e-business, start the Administrator’s Console.
You will be prompted for the administrator user ID (Security Server ID) and
password (Security Server Password).

16.3 Netscape Directory Server
This section explains how to configure WebSphere to use the Netscape Directory
Server 4.2 as an LDAP server. To do this, follow these steps:

� Add a new administrative user to the Netscape Directory for use with
WebSphere.

� Configure WebSphere to Use the Netscape Directory as its user registry.

16.3.1 Adding a new user
The following steps will show how to add a new user to the directory.

1. Make sure that the Netscape Directory Server 4.2 for Windows NT is installed
and configured on your system. For detailed instructions, refer to the Product
Installation Guide.

2. Start the Netscape Console to connect to the Administration Server in your
network.

From the Start menu, choose Programs. Then, from the Netscape Server
Family Program Group, choose Netscape Console 4.2.

3. When the Netscape Console login window appears, type the user name and
password for the administrator user, and then specify the URL for the
Administration Server you want to access.

Figure 16-31 Netscape Console login window

The administration user is defined during the installation process, as is the
administration port. Click OK.

4. The Netscape console is now displayed (see Figure 16-32).
490 IBM WebSphere V4.0 Advanced Edition Security

Figure 16-32 Netscape Console window

The Console tab shows all the information included in the Netscape Topolog,
such as information about the Administration Domain (ITSO), the Server
Group or the individual server (Administration server or Directory server).
Notice that the User Directory Subtree (o=Webbank) will be used as the
base DN in the WebSphere Global Security Settings.

5. Switch to the Users and Groups tab; you will see the window used for adding
or modifying a user, a group, or an organizational unit (see Figure 16-33).
 Chapter 16. IBM WebSphere Application Server and LDAP 491

Figure 16-33 User and Group tab in the Netscape console

6. Go to the drop-down menu situated in the lower-right corner of the Users and
Groups tab and select New User. Click the Create... button. A dialog box is
displayed, used to select the directory subtree in which to create the new
entry, as shown in Figure 16-34.

Figure 16-34 Select Organizational Unit window

7. Select People and click OK; the Create User window will appear (see
Figure 16-35).
492 IBM WebSphere V4.0 Advanced Edition Security

Figure 16-35 Creating a new user in the Netscape console

8. The fields with a * (asterisk) are required fields. Enter the First Name, Last
name, Common Name and User ID. Include a Password for the wasadmin
user and click OK.

Notice that the user ID will be used as the Security Server ID for configuring
the Global Security Settings in WebSphere.

9. To view this new entry in the Directory, it is possible to search the user by
including a unique string that can be found in the directory in the Search,
Users, Groups and Organizational Units for field, as shown on Figure 16-36.

Double-clicking the selected user allows you to modify the properties.
 Chapter 16. IBM WebSphere Application Server and LDAP 493

Figure 16-36 Searching wasadmin in the Netscape console

10.To view the contents of the LDAP directory, go to the Console tab and select
the Directory Server in the left pane, then click Open in the right pane, as
shown in Figure 16-37.
494 IBM WebSphere V4.0 Advanced Edition Security

Figure 16-37 Opening the Directory Server in Netscape console

11.This button will bring up a new window; switch to the Directory tab and
expand the Webbank folder to see its contents. Select People and the new
WebSphere administrator user will appear, as shown in Figure 16-38
 Chapter 16. IBM WebSphere Application Server and LDAP 495

Figure 16-38 Netscape Directory Server Tree

16.3.2 Configuring WebSphere to use the Netscape Directory Server
To configure WebSphere to use Netscape Directory Server as its User Registry,
follow these steps:

1. Start the WebSphere Administrator’s Console (WebSphere Admin Server 4.0
must be running).

2. Select Console -> Security Center... This will display the Global Security
settings for WebSphere. Select Enable security under the General tab.

3. Click the Authentication tab and specify the following settings:

– Lightweight Third Part Authentication (LTPA).

– Select the LDAP radio button. This will display the LDAP settings. Set the
fields as follows:

• Security Server ID: this field should contain the value specified in the
User ID field for the WebSphere administrator user created previously.

• Security Server Password: enter the password set for the wasadmin
user in the Create User panel.

• Host: this is the Host ID (IP address or DNS name) for the Netscape
Directory Server.

• Directory Type: select Netscape as the LDAP server.
496 IBM WebSphere V4.0 Advanced Edition Security

• Port: the port numbe, by default, is 389 if none is specified. If the
Default Netscape LDAP port number changes, it will be necessary to
specify it in this field.

• Base Distinguished Name: this is specified in the User Directory
subtree that appears under the Console tab, showing the
Administration Domain information. This field is required for Netscape
Directory Server.

• Bind Distinguished Name: the distinguished name used when
WebSphere binds with the Netscape server. If no name is specified,
the administration server will bind anonymously.

• Bind password: if a user is specified in the Bind Distinguished Name
field, the password is required here.

4. All the settings are illustrated in Figure 16-39.

Figure 16-39 LDAP settings for Netscape Directory Server In WebSphere security

Click the Advanced button; a new window appears showing the LDAP
advanced properties, as shown in Figure 16-40. There you can see how
WebSphere will query the Netscape Directory.
 Chapter 16. IBM WebSphere Application Server and LDAP 497

Figure 16-40 LDAP Advanced Properties window for Netscape

The default Netscape filters in LDAP Advanced Properties will perform the
following tasks:

The User Filter will find a user entry in the Netscape Directory with the
attribute uid, belonging to the inetOrgPerson object class, set with the name
entered at authentication. It is typically used for the assignment of a Security
Role to a User.

The Group Filter will find the group entries in the Netscape Directory with the
attribute cn, belonging to the groupOfNames or groupOfUniqueNames object
classes, set with the group name you are looking for. It is typically used for the
assignment of a Security Role to a Group.

The User ID map and Group ID map are the filters that map the short name of
a User or Group to an LDAP entry; this information represents Users or
Groups when they are displayed. LDAP returns the field specified by the User
ID map and Group ID map (uid in the case of a user and Common Name in
the case of groups) when the search performed by WebSphere is successful.
WebSphere uses these returned values for comparison with permission lists.

The Group Member ID map identifies membership of Users to Groups.

These default settings will be suitable for searching Users and Groups in
Netscape Directory Server. When the LDAP advanced properties are
modified, the Directory Type changes to Custom in the Security Center
window; this reflects the fact that the default settings for searching are no
longer being used.

Note: inetOrgPerson, groupOfNames and groupOfUniqueNames object
classes are part of the Netscape schema categories; to find out more
about the Netscape Directory schema, refer to the Netscape Directory
Server Schema Reference Guide.
498 IBM WebSphere V4.0 Advanced Edition Security

5. Click OK. The Security Server ID and Security Server Password will be
verified against the information in the Netscape Server.

Make sure that the Netscape Directory Server is running by checking the list
of Windows’ services in the Netscape Directory machine and pinging the IP
address of the Netscape Directory machine from the WebSphere machine.

The first time security is enabled, it will prompt for an LTPA password.

The LTPA password is used to protect the set of encryption keys generated for
use in a Single Sign-On environment. For more information about Single
Sign-On, refer to Chapter 14, “Single Sign-On” on page 393.

When the process is complete, a warning message will be displayed, stating
that changes will not take effect until the Administration Server is restarted.

6. Restart the Administration Server by selecting the node, then right-clicking it
and selecting Restart in the resulting context menu.

7. When the server is open for e-business, start the Administrator’s Console.
You will be prompted for the administrator user ID (Security Server ID) and
password (Security Server Password).

16.4 Microsoft Active Directory
Active Directory is the directory service for Windows 2000 and is included in the
operating system as part of the Windows 2000 server platform. It stores
information about objects on the network, such as user accounts, shared
printers, and other network objects, and provides access to this information.

This section explains how to configure WebSphere to use the Microsoft Active
Directory as its LDAP server; to do this:

1. Add a new administration user in the Microsoft Active Directory for use with
WebSphere.

2. Configure WebSphere to use the Microsoft Active Directory as its user
registry.

16.4.1 Adding a new user
The following steps will guide you through the process of creating a new user in
the Microsoft Active Directory.

1. Install and Configure the Active Directory server by clicking Start ->
Programs -> Administrative Tools -> Configure your Server. The
Configure Server window will be displayed. Select Active Directory and
follow the instructions of the active directory wizard.
 Chapter 16. IBM WebSphere Application Server and LDAP 499

2. Before adding a new administrative user account for WebSphere, create a
new organizational unit (OU) in the top level directory by selecting Start ->
Programs -> Administrative Tools -> Active Directory Users and
Computers. This will bring up the Active Directory Administration window, as
shown in Figure 16-41.

Figure 16-41 Active Directory Users and Computers window

3. Select the Domain node in the left panel and right-click it. Select New ->
Organizational Unit, as shown in Figure 16-42.

Figure 16-42 Adding a new organizational unit

Note: The active directory wizard will install and configure the server as a
domain controller and will set up DNS if it is not already available on the
network.
500 IBM WebSphere V4.0 Advanced Edition Security

4. Specify a name for the new organizational unit (webbank) in the New Object ->
Organizational Unit window Name field, as shown in Figure 16-43.

Figure 16-43 New organizational unit object

5. Click OK. The new organizational unit appears in the Users and Groups
Administration window.

6. Now we are ready to add new users to the new organization created
previously.

Select the Webbank Organizational Unit in the left pane of the console tree
and right-click it. Select New -> User, as shown in Figure 16-44.
 Chapter 16. IBM WebSphere Application Server and LDAP 501

Figure 16-44 Adding a new user

7. Type the user’s First Name, Last name and Full Name. Type the name with
which the user will log on in the User logon name field. Notice that the User
logon name will be used as the Security Server ID for configuring the Global
Security settings in WebSphere.

8. From the drop-down menu, click the UPN (User Principal Name) suffix that
must be appended to the user logon name (following the @ symbol). By
default, the NS Domain name of the Domain contains the user account.

If the user uses a different name to log on from a computer running Windows
NT, Windows 98, or Windows 95, change the user logon name as it appears
(pre-Windows 2000) to the different name.

All these settings are illustrated in Figure 16-45.
502 IBM WebSphere V4.0 Advanced Edition Security

Figure 16-45 Creating a new user account

9. Click Next and, in the next window, type in the password for the wasadmin
user.

10.Select Password Never expires.

11.Click Next and the next window will display the information for the new
account to be created.

12.Click Finish.

After creating the user account, edit the user account properties to enter
additional user account information.

To view the new user, refresh the administrative interface and highlight the
organizational unit webbank, as shown in Figure 16-46.
 Chapter 16. IBM WebSphere Application Server and LDAP 503

Figure 16-46 Showing the new WebSphere Administration user in Active Directory

16.4.2 Configuring WebSphere to use the Active Directory Server
To configure WebSphere to use Microsoft Active Directory Server as its User
Registry, follow these next steps:

1. Start WebSphere Administrator’s Console (the WebSphere Admin Server 4.0
must be running).

2. Select Console -> Security Center... This will display the Global Security
settings for WebSphere. Select Enable security under the General tab.

3. Click the Authentication tab and specify the following settings:

– Lightweight Third Part Authentication (LTPA).

– Select the LDAP radio button; it will display the LDAP settings. Set the
fields as follows:

• Security Server ID: this field contains the value specified in the User
logon name field for the WebSphere administrator user.

• Security Server Password: enter the password set for the wasadmin
user.

• Host: the Host ID (IP address or DNS name) for the Microsoft Active
Directory Server.

• Directory Type: select Active Directory as the LDAP server.

• Port: the port number, by default, is 389 if none is specified. If the
Default Active Directory LDAP port number changes, it will be
necessary to specify it in this field.

• Base Distinguished Name: this is specified in the domain name of the
Active Directory machine (itso.ral.ibm.com), in our case.
504 IBM WebSphere V4.0 Advanced Edition Security

• DC=itso,DC=ral,DC=ibm,DC=com: this field is required for the Active
Directory because it indicates the starting point for LDAP searches of
the Directory Service.

• Bind Distinguished Name: type a distinguished name used when
WebSphere binds with the Active Directory server (CN=WebSphere
Administrator,OU=Webbank,DC=itso,DC=ral,DC=ibm,DC=com).

• Bind password: include the Bind Distinguished Name’s password
here.

All the settings are illustrated in Figure 16-47.

Figure 16-47 LDAP settings for Active Directory Server In WebSphere Security

Important: This field is required for Active Directory installed under Windows
2000 platforms, because by default Windows 2000 does not allow you to view
group membership and other user and group information using anonymous
access. However, Windows NT 4.0 does allow this degree of access.
 Chapter 16. IBM WebSphere Application Server and LDAP 505

4. Click the Advanced button; this brings up a new window with the default
LDAP advanced properties, as shown in Figure 16-48. Here you can see how
WebSphere will query the Active Directory.

Figure 16-48 LDAP Advanced Properties for Netscape

The default Active Directory filters in LDAP Advanced Properties execute the
following searches:

The User Filter finds a user entry in the Active Directory with the attribute
sAMAccountName, belonging to the user object class, set with the name
entering at authentication challenge. It is typically used to assign a Security
Role to a User.

The Group Filter finds the groups entries in the Active Directory with the
attribute cn, belonging to the group object class, set with the group name you
are looking for. It is typically used to assign a Security Role to a Group.

The User ID map and Group ID map are the filters that map the short name of
a User or Group to an LDAP entry; this information represents Users or
Groups when they are displayed. LDAP returns the field specified by the User
ID map and Group ID map (sAMAccountName, the User logon name, in the
case of a User, and the Common Name in the case of Groups) when the
search performed by WebSphere is successful. WebSphere uses these
returned values for comparison with permissions lists.

The Group Member ID map identifies membership of Users to Groups.

Note: user and group object classes are part of the Active Directory
schema categories. To view the active Directory schema, it is necessary to
install the Active Directory schema snap-in as part of the administration
tools. To find out more about the Active Directory schema, refer to the
Active Directory Server online help.
506 IBM WebSphere V4.0 Advanced Edition Security

These default settings will be suitable for searching Users and Groups in the
Active Directory Server. When the LDAP advanced properties are modified,
the Directory Type changes to Custom in the Security Center panel; this
reflects the fact that the default settings for searching are no longer being
used.

5. Click OK. The Security Server ID and Security Server Password will be
verified against the information in the Active Directory Server.

Make sure that the Active Directory Server is running in the machine and
pinging the IP address of the Active Directory machine from the WebSphere
machine.

The first time security is enabled, it will prompt for an LTPA password.

The LTPA password is used to protect the set of encryption keys generated for
use in a Single Sign-On environment; for more information, refer to
Chapter 14, “Single Sign-On” on page 393.

When the process is complete, a warning message will be displayed.

6. Restart the Administration Server by selecting the node, then right-clicking it
and selecting Restart in the resulting context menu.

7. When the server is open for e-business, start the Administrator’s Console.
You will be prompted for the administrator user ID (Security Server ID) and
password (Security Server Password).
 Chapter 16. IBM WebSphere Application Server and LDAP 507

508 IBM WebSphere V4.0 Advanced Edition Security

Chapter 17. Using OpenSSL

This appendix provides a short example of how to set up your own CA for testing
purposes using OpenSSL.

17
© Copyright IBM Corp. 2002 509

17.1 Open Source Software
Open Source Software (OSS) is a form of software distribution in terms of
software licensing. It means, in a nutshell, that the software is freely distributable,
that the program includes the source code, provides free licensing, and allows
the developers to change the original code. There is more information about the
Open Source initiation in the following Web site:
http://www.opensource.org/docs/definition_plain.html.

Aside from legal terms and licensing, Open Source Software also represents a
free-minded and very effective software development methodology. The best
example of this kind of development is the operatingsystem Linux.

17.2 OpenSSL
OpenSSL (Open Source Software) is freely available from
http://www.openssl.org/. The program has a runnable part, which is a shell
where users can manage all security-related procedures. It also includes APIs for
development.

OpenSSL is based on security and Internet standards. The software is available
as source code and binaries are also available on the Internet for different
platforms.

Linux platform
OpenSSL runs perfectly under Linux, and is shipped with Linux products (for
example Red Hat).

It works either from the shell prompt, using the openssl command or by running
as a shell.

WIN32 platform
OpenSSL was originally developed for Unix systems, and since the source code
is available, it is ported to WIN32, more or less. The program runs under WIN32,
but the implementation still uses the original Unix resources and system calls. In
order to run programs such as OpenSSL, where the code runs under WIN32 but
uses Unix system resources and calls, shell software is required to provide the
necessary environment for these types of applications.

The shell program is called CygWin, and is freely available from
http://www.cygwin.com.
510 IBM WebSphere V4.0 Advanced Edition Security

http://www.opensource.org/docs/definition_plain.html
http://www.openssl.org/
http://www.cygwin.com

Setting up the directories
OpenSSL does not require any special directory to run. Since the results are files
we will create here, it is always better to organize them in a directory structure.

The following directory names are only recommendations; you may use any
other directories for OpenSSL.

We need only one directory for the procedure described next, to store all the
result files and the entire CA. Create a directory called openssl under the /home
directory. Before you run openssl, switch to this directory (/home/openssl), and
you will see the results written there.

The directory is important in that the CA has to have certain files and a certain
directory structure in order to run. This directory may be anywhere, since
OpenSSL will use relative paths to find the CA, in case you set up several CAs
under different directories. In our case, the working directory for OpenSSL will be
/home/openssl.

17.3 How to create certificates using OpenSSL
In some cases, developers may want to have their own Certificate Authority (CA)
in order to issue test certificates when self-signed certificates are not applicable.
OpenSSL provides an easy way to manage your own CA, managing everything
with only one command (ca) and its specific parameters.

For more information about the OpenSSL, see the documentation found at:
http://www.openssl.org/docs/.

17.3.1 Creating your own CA
The following steps will guide you through the process of creating your own CA.

1. Open the openssl.cnf file in a text editor; OpenSSL has its file under the
/usr/ssl directory.

2. Find the [CA_default] section in the configuration file.

3. The first directive is dir, which sets the CA directory for OpenSSL; the original
value is ./demoCA, you must change it to ./testCA. This is a relative directory,
which means that OpenSSL will look for the CA directory relative to the
directory where it is executed. With this setting, you can have several different
CAs set up without modifying the configuration file for OpenSSL.

4. Save the file, then close it.

5. Under the /home/openssl directory, create the directory CA.
 Chapter 17. Using OpenSSL 511

http://www.openssl.org/docs/

6. Create the following subdirectories under CA: newcerts, private.

7. Create the file index.txt.. It is simply an empty text file, and it will keep
tracking the CA’s activities. Use the command echo >index.txt to do so.

8. Create the file serial, with the content 0002. This file will keep tracking the
serial number for the certificates. Use the command echo 0002 >serial to do
so.

The directory and file structure are now set for the CA.

9. Create the certificate for the CA by issuing the following command:

openssl req -x509 -newkey rsa:1024 -keyout private/cakey.pem -out
cacert.pem

You will be asked for the password for the key file; enter the PEM pass
phrase. Use your password; here, we will use password as our example. Type
in the password again for verification.

The following fields have to be specified for the certificate:

a. Country Name (by two-letter code) [AU]: US

b. State or Province Name (full name) [Some-State]: North Carolina

c. Locality Name (for example, your city) []: Raleigh

d. Organization Name (for example, your company)[Internet Widgits Pty Ltd]:
IBM

e. Organizational Unit Name (for example, your section) []: ITSO

f. Common Name (for example, your name) []: testCA

g. E-mail Address []: testCA@us.ibm.com

Now the CA is set and ready to work. You can test it by issuing the command
openssl ca from the /home/openssl directory. You will be asked for the password,
which is password in our example. If no error occurs, then the CA is working
properly.

You may want to use the CA certificate to export the client certificate in PKCS#12
format, using the following command:

openssl pkcs12 -export -in cacert.pem -out cacert.p12 -name "testCA" -inkey
private/cakey.pem

1. First, you will be asked for the PEM password; use password.

2. Then the PKCS#12 password is required; type in password for example. You
need to type this in twice for verification.

The cacert.p12 is ready for import into any certification management tool which
supports PKCS#12 format.
512 IBM WebSphere V4.0 Advanced Edition Security

17.3.2 Client certificate
Following are directions to create the client certificate.

1. To create a certificate request, issue the following command:

openssl req -newkey rsa:1024 -keyout testclientkey.pem -out
testclientreq.pem

2. You will be asked for password; type in password for this sample. Then type in
the password again for verification.

The following fields have to be specified for the certificate:

a. Country Name (by two-letter code): US

b. State or Province Name (full name): North Carolina

c. Locality Name (for example, your city): Raleigh

d. Organization Name (for example, your company): IBM

e. Organizational Unit Name (for example, your section): ITSO

f. Common Name (for example, your name): testclient

g. E-mail Address: testclient@us.ibm.com

Please enter the following extra attributes to be sent with your certificate
request:

h. A challenge password: password

i. An optional company name: CLIENT

3. The next step is for you to sign the certificate requested for the client, using
the following command:

openssl ca -in testclientreq.pem -extensions v3_ca -out testclientcert.pem

You will be asked for the certificate password; type in password for this
example. The following information will be displayed:

Example 17-1 Verifying the certificate before signing

Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'US'
stateOrProvinceName :PRINTABLE:'North Carolina'
localityName :PRINTABLE:'Raleigh'
organizationName :PRINTABLE:'IBM'
organizationalUnitName:PRINTABLE:'ITSO'
commonName :PRINTABLE:'testclient'
emailAddress :IA5STRING:'testclient@us.ibm.com'
Certificate is to be certified until Nov 15 21:49:23 2002 GMT (365 days)
 Chapter 17. Using OpenSSL 513

4. The CA will ask if you want to sign the certificate;, type in y.

5. Then you will be asked whether you want to commit the action; type in y.

OpenSSL is using its own format for files in order to exchange the certificates it
has created; you can export them into the PKCS#12 format, which is widely
accepted.

6. To export the client certificate in PKCS#12 format, use the following
command:

openssl pkcs12 -export -in testclientcert.pem -out testclient.p12 -name
"test_client_certificate" -inkey testclientkey.pem

7. You will be asked for the PEM password; use password.

8. The PKCS#12 password is then required; use password for example. You
need to type this in twice for verification.

17.3.3 Using the certificates
As a result, a couple of PEM and PKCS#12 files are generated with OpenSSL.
The question is, how and where do we use them?

The PKCS#12 files are ready to import into IBM’s ikeyman utility. Create either a
JKS file or a KDB file, then import the PKCS#12 file as a personal certificate.
PKCS#12 files store not only the certificate but the public and the private key
pairs as well.

The format OpenSSL uses to store keys and certificates is called privacy
enhanced mail (PEM), and is very like that of the files used for certificates:
BASE64-encoded data surrounded by header lines. The IBM key management
utility uses the .arm extension for these files.

The PEM files can be imported as .arm files into IBM’s ikeyman utility without any
changes. PEM files can store certificates, private keys, public keys, and so on.
With the IBM key management utility, you can for example import certificates in
PEM format for signers.
514 IBM WebSphere V4.0 Advanced Edition Security

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246520

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-520.

Using the Web material
The additional Web material that accompanies this redbook includes the
following file:

SG246520.zip: a Webbank sample application with security enhancements.

A

© Copyright IBM Corp. 2002 515

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB minimum
Operating system: Windows 2000 or AIX
Processor: 500MHz or higher
Memory: 512 MB or higher

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

Refer to Chapter 5, “The sample used in this book” on page 73 for instructions on
how to import the sample application into the development environment, and how
to install it in a runtime environment.
516 IBM WebSphere V4.0 Advanced Edition Security

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 519.

� IBM WebSphere V4.0 Advanced Edition Handbook, SG24-6176

� Deploying Public Key Infrastructure, SG24-5512

� Working with Business Process Objects for Tivoli PKI, SG24-6043

� Web Services Wizardry with WebSphere Studio Application Developer,
SG24-6292

� Access Integration Using WebSphere Portal Server, SG24-6267

� Mobile applications with WebSphere Everyplace Access Design and
Development, SG24-6259

� Enterprise Security Management with Tivoli, SG24-5520

� Tivoli SecureWay Policy Director - Centrally Managing e-business Security,
SG24-6008

� Applying the Patterns for e-business to Domino and WebSphere Scenarios,
SG24-6255

� Self-Service Patterns using WebSphere Application Server V4.0, SG24-6175

� User-to-Business Pattern Using WebSphere Personalization Patterns for
e-business Series, SG24-6213

� User-to-Business Patterns Using WebSphere Advanced and MQSI: Patterns
for e-business Series, SG24-6160

� e-commerce Patterns for Building B2C Web Sites, Using IBM WebSphere
Commerce Suite V5.1, SG24-6180

� LDAP Implementation Cookbook, SG24-5110
© Copyright IBM Corp. 2002 517

Other resources
These publications are also relevant as further information sources:

� Jonathan Adams, George Galambos, Srinivas Koushik, Guru Vasudeva,
Strategy for Reuse, ISBN 1931182027.

� A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied
Cryptography, CRC Press,1996

� GPK Reference Manual (GemPlus 2001)

Referenced Web sites
These Web sites are also relevant as further information sources:

� Tivoli’s Web site

http://www.tivoli.com

� Entrust’s Web site

http://www.entrust.com

� Baltimore’s Web site

http://www.baltimore.com

� RSA’s Web site

http://www.rsa.com

� VeriSign’s Web site

http://www.verisign.com

� Gemplus’s Web site

http://www.gemplus.com

� Datakey’s Web site

http://www.datakey.com

� Sun’s Java Web site, Servlet 2.2 specification

http://java.sun.com/products/servlet/2.2

� Sun’s Java Web site, EJB specification

http://java.sun.com/products/ejb/docs.html

� IBM WebSphere Advanced Edition V4.0 Infocenter

http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/inde
x.html
518 IBM WebSphere V4.0 Advanced Edition Security518 IBM WebSphere V4.0 Advanced Edition Security

� IBM Software, WebSphere

http://www.ibm.com/websphere

� IBM Patterns for e-business Web site

http://www-106.ibm.com/developerworks/patterns

� Apache Web server’s tutorials

http://apache-server.com/tutorials/

� OMG’s Web site

http://www.omg.org

� W3C’s Web site

http://www.w3.org/

� Thawte’s Web site

http://www.thawte.com

� Open Source Web site

http://www.opensource.org/docs/definition_plain.html

� OpenSSL’s Web site

http://www.openssl.org/

� Cygwin’s Web site

http://www.cygwin.com

� Fortify’s Web site

http://www.fortify.net

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 519

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

520 IBM WebSphere V4.0 Advanced Edition Security520 IBM WebSphere V4.0 Advanced Edition Security

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2002 521

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others
522 IBM WebSphere V4.0 Advanced Edition Security

acronyms
AAT Application Assembly Tool

AC Administrator’s Console

ACL Access Control List

AE Advanced Edition

API Application Programmer’s
Interface

CA Certificate Authority

CN Common Name

CRL Certificate Revocation List

CSR Certificate Signing Request

DD Deployment Descriptor

DMZ De-Militarized Zone

DN Distinguished Name

DNS Domain Name Server

EAR Enterprise Application
Archive

EJB Enterprise Java Bean

GSO Global Sign-On

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

IHS IBM HTTP Server

IIOP Internet Inter ORB Protocol

IOR Interoperable Object
Reference

IT Information Technology

ITSO International Technical
Support Organization

J2EE Java 2 Enterprise Edition

Abbreviations and
© Copyright IBM Corp. 2002
JCE Java Cryptography Extension

JDBC Java Database Connectivity

JKS Java Key Store

JSP JavaServer Page

JVM Java Virtual Machine

KDB Key Database, file extension
for IBM’s iKeyman

LDAP Lightweight Directory Access
Protocol

LDIF LDAP Data Interchange
Format

LTPA Lightweight Third Party
Authentication

ORB Object Request Broker

OS Operating System

OU Organizational Unit

PD Policy Director

PID Process ID

PKI Public Key Infrastructure

QOP Quality Of Protection

RA Registration Authority

RFC Request For Comments

RMI Remote Method Invocation

RPC Remote Procedure Call

RPSS Reverse Proxy Security
Server

SAS Secure Association Service

SOA Service Oriented Architecture

SOAP Simple Object Access
Protocol

SPI Service Provider Interfaces

SSL Secure Socket Layer

SSO Single Sign-On
 523

UDDI Universal Description,
Discovery, Integration

URI Unified Resource Identifier

URL Unified Resource Locator

VPN Virtual Private Network

WAR Web Application Archive

WAS WebSphere Application
Server

WSAD WebSphere Studio
Application Developer

WSCP WebSphere Control Program

WSDL Web Services Description
Language

XML eXtensible Markup Language
524 IBM WebSphere V4.0 Advanced Edition Security

Index

A
Access Control 6

List 10
Access integration patterns 334
Accountability 6
Action method 120
Active Directory Server settings 504
Admin Repository 64
Admin Server

disabling security 64
security 63

admin.config 446
Administration 6
Administration Server 446
Administrativon Server

securing 235
Administrator’s Console 52
All authenticated users 82
Anonymous LDAP connection 456
Applet client 156, 168
Application Assembly Tool (AAT) 41
Application design 334
Application integration patterns 334
Application patterns 336
Application security 37
Application server 90, 339
application.xml 48
Assurance 6
Authentication 6, 8, 17

flow 382
mechanism 168
method 112
method configuration 113

Authorization 10

B
Basic authentication 46, 112
Basic Runtime pattern 341
Biometric authentication 8–9
Business patterns 334
© Copyright IBM Corp. 2002
C
CA creating 511
Caller’s security context 203
Caller’s security information 204
Capability List 10
Centralized security 349
Certificate 9, 17

exact mapping 270
Practice Statement 25
Repository 20
Revocation List 20
signed by a third-party CA 224

Certificate Authority (CA) 19, 217, 511
Certificate Signing Request (CSR) 226, 242
Certificates authentication flow 58
Cipher Support Strength 248
Client 11

authentication 47
identity 11, 44

Client certificate
authentication 113
creating 513

Client-side
certificate 253
login 161
login process 162

Common Name 258
common repository 41
Communicator Certificate DB 268
Composite patterns 334
Confidential transport guarantee 119
Confidentiality 6, 17
CORBA security 66
CORBA Security Service 158
Creating

a Client Keyfile 223
a Client trust file 224
a sample application server 90
a self-signed certificate 219
a self-signed certificate key pair 221
a server keyfile 219
a server trust file 223

Credential
mapping 344
 525

transformation 344
Credential propagation 344
Credentials 158
Cross certification 24
Custom Login 132
Custom Registry

configuration 206
sample 60, 78
SPI 206

Custom User Registry 59
authentication mechanism 239

CygWin 510

D
Data integrity 17
Database Access Control List (ACL) 409
Database node 340
DB2 custom registry 206
Default SSL Configuration 53, 230
Delegation 11
Delegation policy 44, 147, 149–150
De-Militarized Zone (DMZ) 339
Demo keyring 217
Denial of service 354
Deploy 89
deployment descriptor 41
Development environment 74
digest 17
Digest authentication 47
Directory Assistance document 402
Directory Management Tool 360
Directory services 340
Disabling Anonymous LDAP searches 294, 314
Distinguished Name 258, 264
Domain firewall 339
Domino

Directory settings 484
LDAP

self-signed certificate 318
Server 482
Server configuration 482
SSL configuration 324

sample import 79
security settings 428
Webbank sample 98

dominoGroup object class 488
dominoPerson object class 488

E
EJB

client 156, 164
collaborator 35
container 157
security methods 203

ejb-jar.xml 48
Embedded HTTP server 270
Enable Single Sign On (SSO) 237
Enable Web Trust Association 238
Enabling Global Security 235
Encryption 14
Enterprise application node(s) 341
Enterprise Java Bean (EJB) 136
Envelope Editor 177
ePerson object class 481
Everyone 82
Exchanging public certificate keys 322
Exchanging public certificates 274
Extended Single Sign-On Application pattern 338
Extract public key 222

F
Facade design pattern 12
File Serving Servlet 117
Finer grained security 202
Form-based authentication 47, 113
Form-based login 131

G
Generate Certificate Signing Request 226
Generating a client key file 229
Generating a server key file 225
getCallerPrincipal() 203
getRemoteUser() 204
getUserPrincipal() 205
Global 37
Global Default SSL configuration 218
Global Security 216
Global Security Kit (GSkit) 461
Global Sign-On (GSO) 348
groupOfNames objcet class 498
groupOfNames object class 481
groupOfUniqueNames object class 481, 498

H
Hash algorithm 17
526 IBM WebSphere V4.0 Advanced Edition Security

Heterogeneous Single Sign-On 343, 347
Homogeneous Single Sign-On 343, 346
htaccess 111
HTTP

basic authentication 106
Server authorization 111
server task 409
session support 408
transport mechanism 278
Transport Properties 279

HTTPS 216
connections only 280

I
IBM HTTP Server 438
IBM ikeyman 219
IBM JSSE ikeyman 267
IBM SecureWay Directory

adding a group 475
adding a user 469
configuration 464
defining a suffix 468
filter 481
install 460
populating 467
Server 282, 460

IBM Tivoli SecureWay PKI 255
Identification 6
Identity assigned to a Specific Role 149
Identity of caller 149
Identity of EJB Server 149
IHS SSL support 244
IIOP with SSL 216
ikeyman 514
Import certificate reply from CA 227
Import trusted root certificate 226
inetOrgPerson object class 498
Install 89
Install personal certificate 256
Integral transport guarantee 119
Integration patterns 334
Integrity 6
Interoperable Object Reference 158, 523
iPlanet Directory Server 300

CA-signed certificate 308
certificate 301
SSL configuration 300
SSL support 306

isCallerInRole() 203
isUserInRole() 205
iv_password 63
iv_user 63

J
J2EE 156

API 203
application client 156
security 67

Java command line keytool 224
Java Key Store (JKS) 179, 217
Java keytool 265
Java language security 66
Java Secure Sockets Extension (JSSE) 217
Java thin application client 156, 166
Java Virtual Machine (JVM) 448
JavaServer Pages (JSP) 124
JVM Trace Arguments 448

K
key generation 22
key-based authentication 8
Keytool list option 227
Knowledge based authentication 8

L
LDAP 57, 258

advanced settings 258
authentication 454
Certificate Filter 259
certificate filtering configuration 260
Directory Schema 295
realm 407
restricting access 296, 298, 300
self-signed certificate 284

LDAPS 216
ldapsearch 485
ldapxcfg 464
LDIF 477
LDIF import 478
Lightweight Third Party Authentication 253, 394
Limit to SSL connections only 238
Local operating system 54
Local Operating System Authentication mechanism
236
Log Analyzer 450
 Index 527

Logical security 4
Login facilities 131
LogLevel 439
Logout 132
Lotus Domino LDAP SSL configuration 317
Lotus Domino server 394, 482
LTPA 344

authentication mechanisms 57
keys 369, 377

LTPAToken 394
view 414

M
MD5withRSA 225
Message handler 177
Method permission 137, 140, 143
Methods mapping 137
Microsoft Active Directory 499

add user 499
Model-View-Controller 124
Modifying uniqueIdentifier field 261
Monitoring 6
MQSeries custom registry 206

N
Netscape Directory Server 490

adding a user 490
settings 496

Network sniffing 354
New key database 219
None transport guarantee 119
Non-repudiation 6, 17

O
Object Request Broker (ORB) 216
Obtaining personal certificate 255
Open Source Software (OSS) 510
OpenSSL 510
Operating environment 66
Operating system security 66
ORB 157

P
Password encoding 68

tool 69
Patterns for e-business 334
PEM file format 514

Performance 67
Personal certificate 255
Personal Certificatie install 268
Physical keys 9
Physical security 4
PKCS#12 514
PKCS12 267
PKI Policies 25
Policy Director

associate ACL 364
create a group 363
create ACL 363
install 358
LTPA authentication 368
permissions 367

Privacy 6
private key 15
Product mappings 346
Programmatic login 161
Protect static pages 358
Protect WebSphere URIs 365
Protocol firewall 339
public key 15
Public key cryptography 15
Public Key Infrastructure (PKI) 14, 253, 339

Q
Quality of protection (QOP) 158

R
Realm 128
Redbooks Web site 519

Contact us xv
Registration Authority 20
Reverse Proxy Security Server (RPSS) 62, 213,
381
RMI/IIOP 156
Role mapping 93
row-level security 202
RPC router servlet 173
Run-As

mapping 151
Mode 44, 149

Runtime pattern variation 341
Runtime patterns 338
528 IBM WebSphere V4.0 Advanced Edition Security

S
Sample data source 80, 90
Sample LDAP settings 82
SAS interceptor 157
SAS properties 157, 159
SAS settings 159, 161
sas.client.props 234
Search filter 375
Secret key cryptography 14
Secure Association Service (SAS) 35, 156, 216,
449
Secure Socket Layer (SSL) 216
Secure Sockets Layer (SSL) 16
Secure Web services

certificates 197
logs 194
sample 183, 199

SecureWay Directory for Domino 401
SecureWay Directory Server settings 478
SecureWay Directory Server SSL configuration
282
SecureWay LDAP Directory SSL configuration 287
Securing WebSphere - LDAP communication 282
Security

architecture 34
constraint 42, 112, 118, 124
identity 148
mapping 96
policy 5
services 340
settings locations 39

Security and Administration 336
Security Cache Timeout 68
Security Center 52
Security Collaborators 35
Security Management 6
Security Policies 36
Security role mapping 93, 95, 204
Security role reference 43, 122, 145, 204
Security roles 81, 83, 86, 112, 140
Security Server 35

ID 453
Server configuration document 483
Server side authentication 164
Server-side login 163
Server-side login process 163
SHA1withDSA 225
show task command 489
Signature 17

Signature Header Handler 178
Single Sign-On 48, 98, 337, 348, 394
Single Sign-On Application pattern 337
Single Sign-On Runtime pattern 342
Smart cards 25
SOAP 172

client 189
envelope 178, 180
message 178, 180
security 172
signature 175

Source address spoofing 354
Special subjects 45
special subjects 82
Specified identity 11, 44
SSL

configuration httpd.conf 245
handshaking 442
settings 46

SSL V2 Ciphers 248
SSL V3 Ciphers 248
SSLCipherSpec checking 249
SSLClientAuth directive 440
SSLV3Timeout property 68
SSO configuration 400, 405, 418, 426
SSO configuration SSL 420, 430
SSO testing 416, 422, 429
Stand-alone Java application 76
Starting the sample 93
Static resources 106, 117
symmetric key cryptography 14
Symptom database 450
System identity 11, 44

T
Testing client certificate 263
Testing SSO 411
Thawte Consulting 255
Third-party Certificate Authority 255
Tivoli Policy Director 350
Tivoli SecureWay Policy Director 344
Token Expiration 237
Transport guarantee 119, 281
Transport hook 175
Troubleshooting 432
Trust Association Interceptor 381
Trust Association Interceptor SPI 213
 Index 529

U
User name and password 9

V
Verification Header Handler 180
virtual private networks 354

W
Web application

server node 340
using client certificates 254

Web collaborator 35
Web Container self-signed certificate 272
Web Container SSL support 277
Web module security 127
Web security proxy 340
Web Serve

redirector 339
Web Server

certificate generation 240
HTTPS configuration 239
LDAP authentication 107
plug-in 270

configuration 367
configuration file 275
LogLevel 442
self-signed certificate 271
trace 442

SSL support configuration 244
support client certificates 262
Trace 439

Web Service configuration files 191
Web Service Java Bean Identity 187
Web Service Test Client 189
Web service wizard 184
Web services 172
Web services Admin 192
Web SSO Configuration Document 409
Web trust Association 62
Web Trust Association enable 383
web.xml 48
Webbank 89
Webbank sample 74
Webbank sample import 77
WebSEAL 213

junction 362
junction SSL 383
Web server 360

WebSphere Advanced Edition V4 ptf2 70
WebSphere Application Server 344

Trace 451
WebSphere Commerce Suite 344
WebSphere Control Program (WSCP) 37
WebSphere keyring configuration 229
WebSphere LDAP configuration 478, 484, 496, 504
WebSphere LDAP key database 286
WebSphere LDAP SSL configuration 290, 310, 328
WebSphere security 67
WebSphere self-signed certificate 321
WebSphere Studio Application Developer 74
WebSphere Test Environment 79, 190
WebSphere trace settings 444
WebSphere Web Server plug-in 440
Windows NT domain-controller 54

X
X.509 18
XML Digital Signature 172
XML signature 175
XMLConfig SSL configuration 232
XML-SOAP Admin 192

Z
z/OS 70
530 IBM WebSphere V4.0 Advanced Edition Security

(1.0” spine)
0.875”<

->1.498”
460 <

-> 788 pages

IBM
 W

ebSphere V4.0
Advanced Edition Security

®

SG24-6520-00 ISBN 0738424110

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

IBM WebSphere V4.0
Advanced Edition
Security

IBM WebSphere
Application Server
security in detail

End-to-end security
using Tivoli Policy
Director

Single Sign-On for
application servers

This IBM Redbook provides IT Architects, IT Specialists,
application designers, application developers, application
deployers and consultants with information to design,
develop and deploy secure e-business applications using
WebSphere Application Server V4 Advanced Edition.

The book focuses on WebSphere Application Server’s
security features and services. It provides a detailed
overview of how to administer WebSphere security and how
to secure Web components, EJBs, Java clients and Web
services.

It also provides details about end-to-end security solutions
and application design. You will find an introduction to
Patterns for e-business, in which security is in focus. This
book will also address Tivoli Policy Director and how to use it
with WebSphere Application Server. Single Sign-On between
application servers such as WebSphere and Lotus Domino is
discussed in detail.

Finally, this redbook will provide additional information on
problem determination, installation and configuration of
WebSphere and different LDAP servers, and how to use
OpenSSL to run your own CA.

Back cover

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Notice
	IBM trademarks
	Comments welcome

	Part 1 Introduction
	Chapter 1. Introduction to security
	1.1 Security
	1.1.1 Physical security
	1.1.2 Logical security
	1.1.3 Security policy

	1.2 Security in use

	Chapter 2. Security fundamentals
	2.1 Authentication
	2.2 Authorization
	2.3 Delegation

	Chapter 3. Security certificates
	3.1 Public Key Infrastructure (PKI)
	3.1.1 Encryption
	3.1.2 Certificates
	3.1.3 Elements of a certification authority system
	3.1.4 Tivoli SecureWay PKI
	3.1.5 Certification process
	3.1.6 Infrastructure
	3.1.7 Policies

	3.2 Smart cards
	3.2.1 Using smart cards

	3.3 Where to find more information

	Part 2 WebSphere security
	Chapter 4. IBM WebSphere Application Server security
	4.1 WebSphere security model
	4.1.1 Security architecture

	4.2 IBM WebSphere Application Server security features
	4.2.1 How to secure an application
	4.2.2 WebSphere authentication model
	4.2.3 User registry
	4.2.4 Security Center
	4.2.5 Web Trust Association
	4.2.6 Securing only the Administrative Server

	4.3 WebSphere security and the operating environment
	4.4 Performance considerations
	4.5 Other security features of WebSphere
	4.5.1 Encoded passwords
	4.5.2 Security interoperability with z/OS

	4.6 WebSphere Advanced Edition V4 ptf2

	Chapter 5. The sample used in this book
	5.1 Sample application: Webbank
	5.1.1 Base Webbank application structure

	5.2 Importing the sample into WebSphere Studio Application Developer
	5.3 Defining security roles
	5.3.1 Setting up users and groups in LDAP
	5.3.2 Security roles with Application Assembly Tool
	5.3.3 Security roles with WebSphere Studio Application Developer

	5.4 Installing the Webbank application
	5.4.1 Creating the application server
	5.4.2 Setting up the data source
	5.4.3 Installing the enterprise application
	5.4.4 Starting the application

	5.5 Security role mapping
	5.5.1 Security role mapping with the Security Center
	5.5.2 Security role mapping during installation
	5.5.3 Security role mapping with the Application Assembly Tool
	5.5.4 Security mapping with WebSphere Studio Application Developer

	5.6 Domino Webbank sample
	5.7 Security samples

	Chapter 6. Securing Web components
	6.1 Static components served by a Web server
	6.1.1 How to secure HTTP basic authentication for IBM HTTP Server
	6.1.2 Managing access to IBM HTTP Server using .htaccess

	6.2 WebSphere Web module security
	6.3 Securing the Web components
	6.3.1 Static pages served by WebSphere Application Server
	6.3.2 Servlets
	6.3.3 JavaServer Pages (JSPs)

	6.4 Defining WebSphere Studio Application Developer security constraints
	6.5 Configuring Web module security using WebSphere Studio Application Developer
	6.6 Form-based and Custom Login facilities
	6.6.1 Form-based login
	6.6.2 Custom login

	Chapter 7. Securing EJBs
	7.1 Securing EJBs
	7.2 Assigning methods to roles
	7.2.1 Configuring method permissions using AAT
	7.2.2 Configuring method permission with WebSphere Studio ApplicationDeveloper

	7.3 Setting up security role references
	7.4 Configuring the delegation policy
	7.4.1 Setting up delegation policy (Run-As mode) using AAT
	7.4.2 Setting up delegation policy (Run-As mode) using WebSphere Studio Application Developer
	7.4.3 Run-As mapping using the Administrator’s Console
	7.4.4 Run-As mapping during deployment

	7.5 Topology considerations

	Chapter 8. Securing J2EE clients
	8.1 J2EE clients
	8.2 The Secure Association Service (SAS)
	8.2.1 SAS on the client side
	8.2.2 SAS on the server-side

	8.3 Programmatic login
	8.3.1 Client-side login
	8.3.2 Server-side login

	8.4 J2EE application client
	8.4.1 Webbank J2EE client

	8.5 Java thin application clients
	8.5.1 Running the WebbankThinClient sample

	8.6 Applet clients
	8.7 Authentication summary

	Chapter 9. Securing Web services
	9.1 Web services
	9.2 Securing WebSphere Web services
	9.2.1 Securing SOAP services

	9.3 SOAP signature components
	9.3.1 Web module
	9.3.2 Envelope Editor
	9.3.3 Signature Header Handler
	9.3.4 Verification Header Handler

	9.4 How to create secure Web services with WebSphere Studio Application Developer
	9.4.1 Modifying the Webbank code
	9.4.2 Creating the secure Web service
	9.4.3 Testing the Web service
	9.4.4 Generated code
	9.4.5 The XML-SOAP Admin tool
	9.4.6 Running the Webbank Web services sample
	9.4.7 Checking the log file

	9.5 Customizing the certificates for secure Web services
	9.5.1 Certificates provided by WebSphere Studio Application Developer

	9.6 Secure Web services samples in WebSphere V4 AE

	Chapter 10. Programmatic security
	10.1 Programmatic security
	10.2 J2EE API
	10.2.1 EJB security methods
	10.2.2 Servlet security methods

	10.3 CustomRegistry SPI
	10.4 Trust Association Interceptor SPI

	Chapter 11. Administering WebSphere Security
	11.1 WebSphere Global Security
	11.1.1 The Demo Keyring
	11.1.2 Option 1: self-signed certificate using the IBM ikeyman utility
	11.1.3 Option 2: certificate signed by a third-party CA
	11.1.4 Configuring WebSphere to use your own keyring
	11.1.5 Modifying the sas.client.props file
	11.1.6 Enabling Global Security and securing the Administrative Server

	11.2 Configuring the Web Server to support HTTPS
	11.2.1 Generating a certificate to protect your Web Server
	11.2.2 Configuring the IBM HTTP Server for SSL/HTTPS support
	11.2.3 IBM HTTP Server (IHS) Cipher Support Strength

	11.3 Client-Side Certificates for Authentication
	11.3.1 Securing a Web Application to use client certificates
	11.3.2 Obtaining a personal certificate
	11.3.3 LDAP advanced security settings

	11.4 Configuring SSL between Web server and WebSphere Application Server
	11.4.1 Generating a self-signed certificate for the Web server plug-in
	11.4.2 Generating a self-signed certificate for a Web Container
	11.4.3 Exchanging public certificates
	11.4.4 Modifying the Web server plug-in configuration file
	11.4.5 Modifying the Web Container to support SSL

	11.5 Restricting access to only HTTPS connections
	11.6 Securing WebSphere LTPA with SSL
	11.6.1 IBM SecureWay Directory Server
	11.6.2 Creating a self-signed certificate for the SecureWay LDAP peer
	11.6.3 Creating a key database for the WebSphere LDAP SSL peer
	11.6.4 Modifying the SecureWay LDAP Directory to use SSL
	11.6.5 Modifying WebSphere to use LDAP over SSL
	11.6.6 Disabling SecureWay Anonymous LDAP searches
	11.6.7 SSL and the Netscape iPlanet Alliance Directory Server
	11.6.8 SSL Certificate creation with iPlanet Directory Server
	11.6.9 Modifying iPlanet to support SSL/LDAPS
	11.6.10 The iPlanet CA-signed certificate
	11.6.11 Modifying WebSphere to support LDAPS with iPlanet
	11.6.12 Disabling iPlanet Anonymous LDAP searches
	11.6.13 SSL and Lotus Domino LDAP

	Part 3 End-to-end security solutions
	Chapter 12. Security in Patterns for e-business
	12.1 Patterns for e-business
	12.2 Access Integration pattern
	12.2.1 Application patterns

	12.3 Runtime patterns
	12.3.1 Basic Runtime pattern
	12.3.2 Runtime pattern variation
	12.3.3 Single Sign-On Runtime patterns

	12.4 Product mappings
	12.4.1 Single Sign-On
	12.4.2 Centralized security

	12.5 More information

	Chapter 13. Policy Director
	13.1 End-to-end security solutions
	13.2 Using Tivoli Policy Director
	13.2.1 Using Tivoli WebSEAL
	13.2.2 Using Tivoli Policy Director to protect static pages
	13.2.3 Using Tivoli Policy Director to protect WebSphere URIs
	13.2.4 Policy Director LTPA authentication
	13.2.5 Web Trust Association

	Chapter 14. Single Sign-On
	14.1 Single Sign-On
	14.2 WebSphere-Domino using SecureWay Directory
	14.2.1 Enabling Single Sign-On for WebSphere
	14.2.2 Enabling Single Sign-On for Domino
	14.2.3 Implementing the security to the Webbank.nsf database
	14.2.4 Testing Single Sign-On between Domino and WebSphere

	14.3 WebSphere-Domino using SecureWay LDAP with SSL
	14.3.1 Enabling SSO to use SSL in WebSphere
	14.3.2 Enabling SSO to use SSL in Domino
	14.3.3 Testing SSO between Domino and WebSphere using SSL

	14.4 WebSphere-Domino using Domino LDAP
	14.4.1 Installing and configuring software products and examples
	14.4.2 Enabling Single Sign-On for WebSphere Application Server
	14.4.3 Enabling Single Sign-On for the Domino Server
	14.4.4 Implementing security to the Webbank.nsf database
	14.4.5 SSO WebSphere-Domino using Domino LDAP with SSL
	14.4.6 Troubleshooting Single Sign-On

	Part 4 Appendixes
	Chapter 15. Problem determination
	15.1 The IBM HTTP Web Server
	15.1.1 First steps
	15.1.2 Problem determination
	15.1.3 Web Server trace example

	15.2 The WebSphere Web Server plug-in
	15.2.1 First steps
	15.2.2 Problem determination
	15.2.3 Web Server plug-in trace example

	15.3 The IBM WebSphere Application Server
	15.3.1 First steps
	15.3.2 Problem determination
	15.3.3 JVM trace arguments
	15.3.4 The Secure Association Service (SAS)
	15.3.5 Post-analysis using the Log Analyzer
	15.3.6 IBM WebSphere Application Server trace example

	Chapter 16. IBM WebSphere Application Server and LDAP
	16.1 SecureWay Directory Server
	16.1.1 Installing and configuring the IBM SecureWay Directory
	16.1.2 Populating data entries in the IBM SecureWay Directory
	16.1.3 Configuring WebSphere to use the SecureWay Directory Server

	16.2 Lotus Domino 5.0
	16.2.1 Configuring the Domino Server to run the LDAP service
	16.2.2 Configuring WebSphere to use the Domino Directory

	16.3 Netscape Directory Server
	16.3.1 Adding a new user
	16.3.2 Configuring WebSphere to use the Netscape Directory Server

	16.4 Microsoft Active Directory
	16.4.1 Adding a new user
	16.4.2 Configuring WebSphere to use the Active Directory Server

	Chapter 17. Using OpenSSL
	17.1 Open Source Software
	17.2 OpenSSL
	17.3 How to create certificates using OpenSSL
	17.3.1 Creating your own CA
	17.3.2 Client certificate
	17.3.3 Using the certificates

	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Abbreviations and acronyms
	Index
	Back cover

